WorldWideScience

Sample records for energy monitoring device

  1. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  2. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  3. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  4. Power consumption monitoring using additional monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Truşcă, M. R. C., E-mail: radu.trusca@itim-cj.ro; Albert, Ş., E-mail: radu.trusca@itim-cj.ro; Tudoran, C., E-mail: radu.trusca@itim-cj.ro; Soran, M. L., E-mail: radu.trusca@itim-cj.ro; Fărcaş, F., E-mail: radu.trusca@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Abrudean, M. [Technical University of Cluj-Napoca, Cluj-Napoca (Romania)

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  5. Energy expenditure prediction via a footwear-based physical activity monitor: Accuracy and comparison to other devices

    Science.gov (United States)

    Dannecker, Kathryn

    2011-12-01

    Accurately estimating free-living energy expenditure (EE) is important for monitoring or altering energy balance and quantifying levels of physical activity. The use of accelerometers to monitor physical activity and estimate physical activity EE is common in both research and consumer settings. Recent advances in physical activity monitors include the ability to identify specific activities (e.g. stand vs. walk) which has resulted in improved EE estimation accuracy. Recently, a multi-sensor footwear-based physical activity monitor that is capable of achieving 98% activity identification accuracy has been developed. However, no study has compared the EE estimation accuracy for this monitor and compared this accuracy to other similar devices. Purpose . To determine the accuracy of physical activity EE estimation of a footwear-based physical activity monitor that uses an embedded accelerometer and insole pressure sensors and to compare this accuracy against a variety of research and consumer physical activity monitors. Methods. Nineteen adults (10 male, 9 female), mass: 75.14 (17.1) kg, BMI: 25.07(4.6) kg/m2 (mean (SD)), completed a four hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as three physical activity monitoring devices used in research: hip-mounted Actical and Actigraph accelerometers and a multi-accelerometer IDEEA device with sensors secured to the limb and chest. In addition, participants wore two consumer devices: Philips DirectLife and Fitbit. Each individual performed a series of randomly assigned and ordered postures/activities including lying, sitting (quietly and using a computer), standing, walking, stepping, cycling, sweeping, as well as a period of self-selected activities. We developed branched (i.e. activity specific) linear regression models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Results. The shoe

  6. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  7. A new energy-harvesting device system for wireless sensors, adaptable to on-site monitoring of MR damper motion

    International Nuclear Information System (INIS)

    Yu, Miao; Peng, Youxiang; Wang, Siqi; Fu, Jie; Choi, S B

    2014-01-01

    Under extreme service conditions in vehicle suspension systems, some defects exist in the hardening, bodying, and poor temperature stability of magnetorheological (MR) fluid. These defects can cause weak and even invalid performance in the MR fluid damper (MR damper for short). To ensure the effective validity of the practical applicability of the MR damper, one must implement an online state-monitoring sensor to monitor several performance factors, such as acceleration. In this empirical work, we propose a new energy-harvesting device system for the wireless sensor system of an MR damper. The monitoring sensor system consists of several components, such as an energy-harvesting device, energy-management circuit, and wireless sensor node. The electrical energy harvested from the kinetic energy of the MR fluid that flows within the MR damper can be automatically charged and discharged with the help of an energy-management circuit for the wireless sensor node. After verifying good performance from each component, an experimental apparatus is built to evaluate the feasibility of the proposed self-powered wireless sensor system. The measured results of pressure, temperature, and acceleration data within the MR damper clearly demonstrate the practical applicability of monitoring the operating work states of the MR damper when it is subjected to sinusoidal excitation. (technical note)

  8. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  9. Energy Monitoring

    DEFF Research Database (Denmark)

    Hansen, Claus T.; Madsen, Dines; Christiensen, Thomas

    Energy measurement has become an important aspect of our daily lives since we have learned that energy consumption, is one of the main source of global warming. Measuring instruments varies from a simple watt-meter to more sophisticated microprocessor control devices. The negative effects...... that fossil fuels induce on our environment has forced us to research renewable energy such as sunlight, wind etc. This new environmental awareness has also helped us to realize the importance of monitoring and controlling our energy use. The main purpose in this research is to introduce a more sophisticated...... but affordable way to monitor energy consumption of individuals or groups of home appliances. By knowing their consumption the utilization can be regulated for more efficient use. A prototype system has been constructed to demonstrate our idea....

  10. Incore monitoring device

    International Nuclear Information System (INIS)

    Tai, Ichiro; Shirayama, Shin-pei; Nozaki, Shin-ichi.

    1978-01-01

    Purpose: To provide an incore monitoring device wherein both radiation monitoring and acoustic monitoring are carried out simultaneously by one detector, whereby installation of the device and signal pick-up are facilitated. Incore conditions are accurately grasped. Constitution: When a neutron is irradiated in a state where a DC voltage is applied between the electrode and the vessel in the device, an ionization current is occured by (n.γ) reaction of the transformed substance as in an ionization chamber, Accordingly, a voltage drop occurs at both ends of the resistor of the radiation signal processing system, as a result of which a neutron flux can be detected. Further, when a sound is generated in the reactor, the monitoring device bottom wall which formed by a piezoelectric element detects the sound-waves. This output signal is picked up by the acoustic signal processing system to judge the generation of sound. (Aizawa, K.)

  11. Plant monitoring device

    International Nuclear Information System (INIS)

    Moriyama, Kunio.

    1991-01-01

    The monitoring device of the present invention is most suitable to early detection for equipment abnormality, or monitoring of state upon transient conditions such as startup and shutdown of an electric power plant, a large-scaled thermonuclear device and an accelerator plant. That is, in existent moitoring devices, acquired data are stored and the present operation states are monitored in comparison. A plant operation aquisition data reproduction section is disposed to the device. From the past operation conditions stored in the plant operation data aquisition reproducing section, the number of operation cycles that agrees with the present plant operation conditions is sought, to determine the agreed aquired data. Since these aquired data are time sequential data measured based on the standard time determined by the operation sequence, aquired data can be reproduced successively on every sample pitches. With such a constitution, aquired data under the same operation conditions as the present conditions are displayed together with the measured data. Accordingly, accurate monitoring can be conducted from the start-up to the shutdown of the plant. (I.S.)

  12. Studying fish near ocean energy devices using underwater video

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL; Cullinan, Valerie I.

    2017-09-18

    The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish or not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.

  13. Nuclear reactor monitoring device

    International Nuclear Information System (INIS)

    Mihashi, Ishi; Honma, Hitoshi.

    1993-01-01

    The monitoring device of the present invention comprises a reactor core/reactor system data measuring and controlling device, a radioactivity concentration calculation device for activated coolants for calculating a radioactivity concentration of activated coolants in a main steam and reactor water by using an appropriate physical model, a radioactivity concentration correlation and comparison device for activated coolants for comparing correlationship with a radiation dose and an abnormality alarm device. Since radioactivity of activated primary coolants is monitored at each of positions in the reactor system and occurrence of leakage and the amount thereof from a primary circuit to a secondary circuit is monitored if the reactor has secondary circuit, integrity of the reactor system can be ensured and an abnormality can be detected rapidly. Further, radioactivity concentration of activated primary circuit coolants, represented by 16 N or 15 C, is always monitored at each of positions of PWR primary circuits. When a heat transfer pipe is ruptured in a steam generator, leakage of primary circuit coolants is detected rapidly, as well as the amount of the leakage can be informed. (N.H.)

  14. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    Science.gov (United States)

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  15. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  16. Movement monitoring device

    International Nuclear Information System (INIS)

    Ichikawa, Takashi; Yoneda, Yasuaki; Hanatsumi, Masaharu.

    1997-01-01

    The present invention provides a device suitable to accurate recognition for the moving state of reactor core fuels as an object to be monitored in a nuclear power plant. Namely, the device of the present invention prepares each of scheduled paths for the movement of the object to be monitored and executed moving paths along with the movement based on the information of the movement obtained from scheduled information for the movement of the reactor core fuels as a object to be monitored and the actual movement of the object to be monitored. The results of the preparation are outputted. As an output mode, (1) the results of preparation for each of the paths for movement and the results of the monitoring obtained by monitoring the state of the object to be monitored are jointed and outputted, (2) images showing each of the paths for the movement are formed, and the formed images are displayed on a screen, and (3) each of the moving paths is prepared as an image, and the image is displayed together with the image of the regions before and after the movement of the object to be monitored. In addition, obtained images of each of the paths for the movement and the monitored images obtained by monitoring the state of the object to be monitored are joined and displayed. (I.S.)

  17. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    Science.gov (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  18. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Science.gov (United States)

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  19. Monitoring device for withdrawing control rods

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi.

    1985-01-01

    Purpose: To improve the sensitivity and the responsivity to an equivalent extent to those in the case where local power range monitors are densely arranged near each of the control rods, with no actual but pseudo increase of the number of local power range monitors. Constitution: The monitor arrangement is patterned by utilizing the symmetricity of the reactor core and stored in a monitor designating device. The symmetricity of control rods to be selected and withdrawn by an operator is judged by a control rod symmetry monitoring device, while the symmetricity of the withdrawn control rods is judged by a control rod withdrawal state monitoring device. Then, only when both of the devices judge the symmetricity, the control rods are subjected to gang driving by the control rod drive mechanisms. In this way, monitoring at a high sensitivity and responsivity is enabled with no increase for the number of monitors. (Yoshino, Y.)

  20. Feasibility of energy harvesting techniques for wearable medical devices.

    Science.gov (United States)

    Voss, Thaddaeus J; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    Wearable devices are arguably one of the most rapidly growing technologies in the computing and health care industry. These systems provide improved means of monitoring health status of humans in real-time. In order to cope with continuous sensing and transmission of biological and health status data, it is desirable to move towards energy autonomous systems that can charge batteries using passive, ambient energy. This not only ensures uninterrupted data capturing, but could also eliminate the need to frequently remove, replace, and recharge batteries. To this end, energy harvesting is a promising area that can lead to extremely power-efficient portable medical devices. This paper presents an experimental prototype to study the feasibility of harvesting two energy sources, solar and thermoelectric energy, in the context of wearable devices. Preliminary results show that such devices can be powered by transducing ambient energy that constantly surrounds us.

  1. Portable devices for monitoring radon and its progeny in air

    International Nuclear Information System (INIS)

    Zhang Huaiqin; Yao Wanyuan; Su Jingling; Liu Jinhua

    1990-01-01

    We have developed two kinds of portable monitoring devices to measure the concentration and potential energy concentration of radon and its progeny in air. The thermoluminescence material CaSO4 (Tm) is used as the detection element. One of the devices is called passive radon monitor. The lowest detectable limit for radon in air is about 1.5 Bq/m 3 , as a sampling time being one week. Good reliability and ease to operate are its main advantages. The second kind of device is called a working level monitor which consists of a miniature remembrane pump and an integrating sampling probe. The lowest detectable limit is about 0.00043 WL (9x10 -9 J/m 3 ) for a sampling time of 6 hours. It weighs only 0.35 kg, but maintenance is necessary sometimes. (author). 6 refs, 2 figs, 4 tabs

  2. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Saito, Haruo; Takai, Yoshihiro; Mitsuya, Masatoshi; Sakakida, Hideharu; Yamada, Shogo; Kohzuki, Masahiro

    2002-01-01

    Information on electron energy is important in planning radiation therapy using electrons. The Geske 3405 electron beam energy monitor (Geske monitor, PTW Nuclear Associates, Carle Place, NY, USA) is a device containing nine ionization chambers for checking the energy of the electron beams produced by radiotherapy accelerators. We wondered whether this might increase the likelihood of ionization chamber trouble. In spite of the importance of the stability of such a quality assurance (QA) device, there are no reports on the stability of values measured with a Geske monitor. The purpose of this paper was therefore to describe the stability of a Geske monitor. It was found that the largest coefficient of variation (CV) of the Geske monitor measurements was approximately 0.96% over a 21-week period. In conclusion, the stability of Geske monitor measurements of the energy of electron beams from a linear accelerator was excellent. (author)

  3. Radiation monitoring device

    International Nuclear Information System (INIS)

    Sato, Toshifumi.

    1993-01-01

    The device of the present invention concerns a reactor start-up region monitor of a nuclear power plant. In an existent start-up region monitor, bias voltage is limited, if the reactor moves to a power region, in order to prevent degradation of radiation detectors. Accordingly, since the power is lower than an actual reactor power, the reactor power can not be monitored. The device of the present invention comprises a memory means for previously storing a Plateau's characteristic of the radiation detectors and a correction processing means for obtaining a correction coefficient in accordance with the Plateau's characteristic to correct and calculate the reactor power when the bias voltage is limited. With such a constitution, when the reactor power exceeds a predetermined value and the bias voltage is limited, the correction coefficient can be obtained by the memory means and the correction processing means. Corrected reactor power can also be obtained from the start-up region monitor by the correction coefficient. As a result, monitoring of the reactor power can be continued while preventing degradation of the radiation detector even if the bias voltage is limited. (I.S.)

  4. Design of wearable health monitoring device

    Science.gov (United States)

    Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy

    2018-02-01

    Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.

  5. Individual monitoring in high-energy stray radiation fields

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.

    1995-01-01

    Due to the lack of passive or active devices that could be considered as personal dosemeters in high-energy stray fields one can at present only perform individual monitoring around high energy accelerators. Of all detectors currently available it is shown that the NTA film is the most suitable method for individually monitoring the neutron exposure of more than 3000 persons regularly, reliably, and cost effectively like at CERN. (author)

  6. The eCOMBAT: Energy consumption monitoring tool for battery powered communication device

    CSIR Research Space (South Africa)

    Olwal, TO

    2013-09-01

    Full Text Available computing, communication and networking applications. One of the best ways to obtain energy-efficient communication and networking is to invest in the renewable energy sources to charge batteries for communication devices and to develop smart energy...

  7. High energy devices versus low energy devices in orthopedics treatment modalities

    Science.gov (United States)

    Schultheiss, Reiner

    2003-10-01

    The orthopedic consensus group defined in 1997 the 42 most likely relevant parameters of orthopedic shock wave devices. The idea of this approach was to correlate the different clinical outcomes with the physical properties of the different devices with respect to their acoustical waves. Several changes in the hypothesis of the dose effect relationship have been noticed since the first orthopedic treatments. The relation started with the maximum pressure p+, followed by the total energy, the energy density; and finally the single treatment approach using high, and then the multiple treatment method using low energy. Motivated by the reimbursement situation in Germany some manufacturers began to redefine high and low energy devices independent of the treatment modality. The OssaTron as a high energy, single treatment electro hydraulic device gained FDA approval as the first orthopedic ESWT device for plantar fasciitis and, more recently, for lateral epicondylitis. Two low energy devices have now also gained FDA approval based upon a single treatment. Comparing the acoustic data, differences between the OssaTron and the other devices are obvious and will be elaborated upon. Cluster analysis of the outcomes and the acoustical data are presented and new concepts will be suggested.

  8. A new device for monitoring moorings

    Digital Repository Service at National Institute of Oceanography (India)

    Namboothiri, E.G.; Krishnakumar, V.

    A new device - Mooring Monitoring Unit (MMU), which consists of an inwater unit and a deck unit has been designed to monitor mooring in situ. This device helps tracing underwater moorings, once its marker buoy is removed either by accident or theft...

  9. Monitor inspection device

    International Nuclear Information System (INIS)

    Ueshima, Yoshinobu.

    1995-01-01

    The device of the present invention reliably conducts monitoring by radiation monitors in a nuclear power plant thereby contributing to save the number of radiation operators and reduction of radiation exposure. Namely, radiation monitors continuously measure a plurality of γ-ray levels. A branched simultaneously counting circuit receives these signals. The output of the branched simultaneously counting circuit is inputted to a differentiation means. The differentiation means calculates a variation coefficient for each of the radiation monitoring values, namely, equivalent dose rates, and records and monitors change with time of the equivalent dose rates. With such procedures, the results of the monitoring of γ-ray levels can be judged objectively corresponding to the increase of the equivalent dose rates. As a result, the number of radiation operators can be saves and radiation exposure of the radiation operators can be reduced. (I.S.)

  10. Travelling type monitoring and inspection device

    International Nuclear Information System (INIS)

    Ito, Takao; Maruki, Hideaki.

    1994-01-01

    The present invention sufficiently ensures video output images even if lenses of a television camera of a monitoring means are degraded to reduce the quantity of transmission light. That is, a light amount control mechanism capable of controlling the quantity of illumination light irradiated from an illumination device at an output level of a sensor of an inspection device main body. A test chart for measuring a luminance which is an output level of the sensor is disposed. During plant operation, the lenses of the television camera undergo influences of radioactivity and are degraded to reduce the quantity of transmission light on every periodical monitoring and inspection using a travelling type monitoring inspection device. In this case, the test chart disposed near the equipment to be monitored and inspected is caught by the television camera to measure a sensor output luminance. Then, the light amount control mechanism of the illumination device is controlled so as to provide a luminance which has been set at an initial stage of the plant inspection. With such procedures, video data of the objective equipment to be monitored and inspected can be obtained at a constant luminance during inspection. (I.S.)

  11. Survey of hydrogen monitoring devices

    International Nuclear Information System (INIS)

    Lai, W.

    1981-01-01

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels

  12. [Wireless device for monitoring the patients with chronic disease].

    Science.gov (United States)

    Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A

    2008-01-01

    Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.

  13. Development and Application of Devices for Remote Monitoring of Gamma-Ray Contamination at RECOM Ltd

    International Nuclear Information System (INIS)

    Ivanov, O.P.; Stepanov, V.E.; Chesnokov, A.V.; Sudarkin, A.N.; Urutskoev, L.I.

    1999-01-01

    Devices for remote monitoring of gamma-ray contamination develop at RECOM Ltd. are described and typical examples of their application are show. The following devices are discussed: spectrum-sensitive collimated devices for mapping of radioactivity on contaminated surfaces- scanning collimated Gamma Locator, device for field Cs-137 contamination mapping-CORAD; devices for gamma-ray imaging computer-controlled High-Energy Radiation Visualizer (HERV) and Coded Mask Imager

  14. Microfabricated fuel heating value monitoring device

    Science.gov (United States)

    Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  15. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  16. Nonimaging radiant energy device

    Science.gov (United States)

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  17. Production of Inorganic Thin Scintillating Films for Ion Beam Monitoring Devices

    CERN Document Server

    Re, Maurizio; Cosentino, Luigi; Cuttone, Giacomo; Finocchiaro, Paolo; Hermanne, Alex; Lojacono, Pietro A; Ma, YingJun; Thienpont, Hugo; Van Erps, Jurgen; Vervaeke, Michael; Volckaerts, Bart; Vynck, Pedro

    2005-01-01

    In this work we present the development of beam monitoring devices consisting of thin CsI(Tl) films deposited on Aluminium support layers. The light emitted by the scintillating layer during the beam irradiation is measured by a CCD-camera. In a first prototype a thin Aluminium support layer of 6 micron allows the ion beam to easily pass through without significant energy loss and scattering effects. Therefore it turns out to be a non-destructive monitoring device to characterize on-line beam shape and beam position without interfering with the rest of the irradiation process. A second device consists of an Aluminium support layer which is thick enough to completely stop the impinging ions allowing to monitor at the same time the beam profile and the beam current intensity. Some samples have been coated by a 100 Å protective layer to prevent the film damage by atmosphere exposition. In this contribution we present our experimental results obtained by irradiating the samples with proton beams at 8.3 and 62 Me...

  18. Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments

    Directory of Open Access Journals (Sweden)

    Carlos Perez-Vidal

    2012-04-01

    Full Text Available This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753 to measure the consumption of electrical energy and thento transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600 has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user’s program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  19. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    Science.gov (United States)

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  20. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Science.gov (United States)

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  1. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Enhad A Chowdhury

    Full Text Available Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise and over a 24 hour period in free-living conditions. Thirty men (n = 15 and women (n = 15 wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR, an accelerometry-only device as a comparison (Jawbone UP24 and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™. During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01. The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01. None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors

  2. Innovative wave energy device applied to coastal observatory systems

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Piermattei, Viviana; Scanu, Sergio; Paladini de Mendoza, Francesco; Martellucci, Riccardo; Maximo, Peviani

    2017-04-01

    anchored to a dead body on the seabed, with consequent simplifications from the point of view of deployment and maintenance, resulting in further cost reduction, compared to existing systems. At last but not less important, this device produces low impacts on marine environment according to the monitoring techniques identified in the frame of the european project "Marine Renewables Infrastructure Network for Emerging Energy Technologies" (Marinet - FP7). Within this context the device finds an excellent application field in the low consumption monitoring systems which can be located near the priority habitats to analyse the impacts due to coastal anthropic pressures. Civitavecchia coastal zone is suitable to be used as the test site for this new device as it includes the observing system C-CEMS (Bonamano et al. 2016), composed by three water quality fixed stations that continuously measure the physical, chemical and biological parameters of the water column, and Sites of Community Importance (SCI) where effective and urgent management measures were requested by the EC to protect the Posidonia oceanica meadows.

  3. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  4. Assessing Power Monitoring Approaches for Energy and Power Analysis of Computers

    OpenAIRE

    El Mehdi Diouria, Mohammed; Dolz Zaragozá, Manuel Francisco; Glückc, Olivier; Lefèvre, Laurent; Alonso, Pedro; Catalán Pallarés, Sandra; Mayo, Rafael; Quintana Ortí, Enrique S.

    2014-01-01

    Large-scale distributed systems (e.g., datacenters, HPC systems, clouds, large-scale networks, etc.) consume and will consume enormous amounts of energy. Therefore, accurately monitoring the power dissipation and energy consumption of these systems is more unavoidable. The main novelty of this contribution is the analysis and evaluation of different external and internal power monitoring devices tested using two different computing systems, a server and a desktop machine. Furthermore, we prov...

  5. Design and Realization of a Condition Management System for the Gateway Electrical Energy Metering Device

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2013-12-01

    Full Text Available With the construction of firm and intelligent power grid in China, it is difficult for the traditional management method of electrical energy metering device to meet the prospecting requirements. Using the computer and internet techniques to realize the information and intelligentization of the electrical energy metering management has become a necessary guarantee of improving power supply ability, marketing control, and customer service. This paper introduced a kind of large and intelligent condition management system of the gateway electrical energy metering device. The key technologies and realize process were analyzed. Moreover, a detailed description of the application modules such as the GIS smart display of metering point, the condition management of metering devices and the visual monitoring of metering point was presented. The trial operation in the selected transformer substations and the power stations of Chongqing Power Electrical Corp. indicated that, the condition management system is very open, safety and efficient. According to the data exchange with the production and scheduling platform, the system improved the efficient operation of the electrical energy metering devices. Meanwhile, combined with the real-time visual monitoring, the condition management system improved the prevention ability of electricity filching, realized the unified automatic large-scale management of electrical energy metering devices.

  6. Reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hiroto.

    1990-01-01

    The present invention concerns a reactor noise monitoring device by detecting abnormal sounds in background noises. Vibration sounds detected by accelerometers are applied to a loose parts detector. The detector generates high alarm if there are sudden impact sounds in the background noises and applies output signals to an accumulation device. If there is slight impact sounds in the vicinity of any of the accelerometers, the accumulation device accumulates the abnormal sounds assumed to be generated from an identical site while synchronizing the waveforms for all of the channels. Then, the device outputs signals in which the background noises are cancelled, as detection signals. Therefore, S/N ratio can be improved and the abnormal sounds contained in the background noises can be detected, to thereby improve the accuracy for estimating the position where the abnormal sounds are generated. (I.S.)

  7. Evaluation of commercial self-monitoring devices for clinical purposes

    DEFF Research Database (Denmark)

    Leth, Søren; Hansen, John; Nielsen, Olav Wendelboe

    2017-01-01

    Commercial self-monitoring devices are becoming increasingly popular, and over the last decade, the use of self-monitoring technology has spread widely in both consumer and medical markets. The purpose of this study was to evaluate five commercially available self-monitoring devices for further...

  8. Dietary assessment and self-monitoring with nutrition applications for mobile devices.

    Science.gov (United States)

    Lieffers, Jessica R L; Hanning, Rhona M

    2012-01-01

    Nutrition applications for mobile devices (e.g., personal digital assistants, smartphones) are becoming increasingly accessible and can assist with the difficult task of intake recording for dietary assessment and self-monitoring. This review is a compilation and discussion of research on this tool for dietary intake documentation in healthy populations and those trying to lose weight. The purpose is to compare this tool with conventional methods (e.g., 24-hour recall interviews, paper-based food records). Research databases were searched from January 2000 to April 2011, with the following criteria: healthy or weight loss populations, use of a mobile device nutrition application, and inclusion of at least one of three measures, which were the ability to capture dietary intake in comparison with conventional methods, dietary self-monitoring adherence, and changes in anthropometrics and/or dietary intake. Eighteen studies are discussed. Two application categories were identified: those with which users select food and portion size from databases and those with which users photograph their food. Overall, positive feedback was reported with applications. Both application types had moderate to good correlations for assessing energy and nutrient intakes in comparison with conventional methods. For self-monitoring, applications versus conventional techniques (often paper records) frequently resulted in better self-monitoring adherence, and changes in dietary intake and/or anthropometrics. Nutrition applications for mobile devices have an exciting potential for use in dietetic practice.

  9. Usage monitoring of electrical devices in a smart home.

    Science.gov (United States)

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  10. Loose part monitoring device

    International Nuclear Information System (INIS)

    Nomura, Hiroshi.

    1992-01-01

    The device of the present invention estimates a place where loose parts occur and structural components as the loose parts in a fluid flow channel of a reactor device, to provide information thereof to a plant operator. That is, the device of the present invention comprises (1) a plurality of detectors disposed to each of equipments constituting fluid channels, (2) an abnormal sound sensing device for sensing signals from the detectors, (3) an estimation section for estimating the place where the loose parts occur and the structural components thereof based on the signals sensed by the abnormal sound sensing section, (4) a memory section for storing data of the plant structure necessary for the estimation, and (5) a display section for displaying the result of the estimation. In such a device, the position where the loose parts collide against the plant structural component and the energy thereof are estimated. The dropping path of the loose parts is estimated from the estimation position. Parts to be loose parts in the path are listed up. The parts on the list is selected based on the estimated energy thereby enabling to determine the loose parts. (I.S.)

  11. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  12. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Energy harvesting schemes for building interior environment monitoring

    Science.gov (United States)

    Zylka, Pawel; Pociecha, Dominik

    2016-11-01

    A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).

  14. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  15. Monitoring and control of a hybrid energy system

    International Nuclear Information System (INIS)

    Raceanu, M.; Culcer, M.; Patularu, L.; Enache, A.; Balan, M.; Varlam, M.

    2010-01-01

    Full text: This article presents monitoring and control of a Hybrid Energy System (HES). The HES is composed of six main components: solar panels, electrolyzer, fuel cells stack, charge controller, DC-AC inverter and lead acid batteries. Solar panels function as the primary source of energy, converting the energy from the sun into electricity that is given to a DC bus. Electrolyzer is a device that produces hydrogen and oxygen from the water following a process electrochemical. When there is excess energy from solar panels, electrolyzer is switched to produce hydrogen which is stored in hydrogen tank. Hydrogen produced is used by an assembly of fuel cell; this produces electricity that is transmitted on the DC bus, using hydrogen produced by electrolysis. Can be measured and displayed in real time data including, voltage, current, flow of hydrogen from the fuel cell, voltage, current, temperature of the photovoltaic panels, pressure hydrogen from electrolysis, pressure hydrogen tank and battery voltage. The control system is designed according to state of charge (SoC) of the battery. Are presented control strategy which ensures the On/Off control of the electrolyzer, to consume electricity from the battery and to generate electricity from fuel cells. The system hardware consists of an acquisition board, communication system of type CAN, sensors and interface devices. Monitoring and control software was developed in LabView 9.0. (authors)

  16. Evaluation of Commercial Self-Monitoring Devices for Clinical Purposes

    DEFF Research Database (Denmark)

    Leth, Soren; Hansen, John; Nielsen, Olav W

    2017-01-01

    Commercial self-monitoring devices are becoming increasingly popular, and over the last decade, the use of self-monitoring technology has spread widely in both consumer and medical markets. The purpose of this study was to evaluate five commercially available self-monitoring devices for further...... activity trackers and compared to gyroscope readings. Two trackers were also tested on nine subjects by comparing pulse readings to Holter monitoring. RESULTS: The lowest average systematic error in the walking tests was -0.2%, recorded on the Garmin Vivofit 2 at 3.5 km/h; the highest error was the Fitbit...... the current functionality and limitations of the five self-tracking devices, and point towards a need for future research in this area....

  17. Optical Structural Health Monitoring Device

    Science.gov (United States)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  18. Grid regulation services for energy storage devices based on grid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  19. Grid regulation services for energy storage devices based on grid frequency

    Science.gov (United States)

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  20. Monitoring Device Safety in Interventional Cardiology

    OpenAIRE

    Matheny, Michael E.; Ohno-Machado, Lucila; Resnic, Frederic S.

    2006-01-01

    Objective: A variety of postmarketing surveillance strategies to monitor the safety of medical devices have been supported by the U.S. Food and Drug Administration, but there are few systems to automate surveillance. Our objective was to develop a system to perform real-time monitoring of safety data using a variety of process control techniques.

  1. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  2. Intracranial pressure monitoring in severe blunt head trauma: does the type of monitoring device matter?

    Science.gov (United States)

    Aiolfi, Alberto; Khor, Desmond; Cho, Jayun; Benjamin, Elizabeth; Inaba, Kenji; Demetriades, Demetrios

    2018-03-01

    OBJECTIVE Intracranial pressure (ICP) monitoring has become the standard of care in the management of severe head trauma. Intraventricular devices (IVDs) and intraparenchymal devices (IPDs) are the 2 most commonly used techniques for ICP monitoring. Despite the widespread use of these devices, very few studies have investigated the effect of device type on outcomes. The purpose of the present study was to compare outcomes between 2 types of ICP monitoring devices in patients with isolated severe blunt head trauma. METHODS This retrospective observational study was based on the American College of Surgeons Trauma Quality Improvement Program database, which was searched for all patients with isolated severe blunt head injury who had an ICP monitor placed in the 2-year period from 2013 to 2014. Extracted variables included demographics, comorbidities, mechanisms of injury, head injury specifics (epidural, subdural, subarachnoid, intracranial hemorrhage, and diffuse axonal injury), Abbreviated Injury Scale (AIS) score for each body area, Injury Severity Score (ISS), vital signs in the emergency department, and craniectomy. Outcomes included 30-day mortality, complications, number of ventilation days, intensive care unit and hospital lengths of stay, and functional independence. RESULTS During the study period, 105,721 patients had isolated severe traumatic brain injury (head AIS score ≥ 3). Overall, an ICP monitoring device was placed in 2562 patients (2.4%): 1358 (53%) had an IVD and 1204 (47%) had an IPD. The severity of the head AIS score did not affect the type of ICP monitoring selected. There was no difference in the median ISS; ISS > 15; head AIS Score 3, 4, or 5; or the need for craniectomy between the 2 device groups. Unadjusted 30-day mortality was significantly higher in the group with IVDs (29% vs 25.5%, p = 0.046); however, stepwise logistic regression analysis showed that the type of ICP monitoring was not an independent risk factor for death

  3. Industrial wireless monitoring with energy-harvesting devices

    NARCIS (Netherlands)

    Brian Blake, M.; Das, Kallol; Zand, P.; Havinga, Paul J.M.

    Vibration monitoring and analysis techniques are used increasingly for predictive maintenance. While traditional vibration monitoring relies on wired sensor networks, recent industrial technologies such as WirelessHART, ISA100.11a, and IEEE802.15.4e have brought a paradigm shift in the automation

  4. Tritium contaminated surface monitoring with a solid - state device

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2004-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counters and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  5. Graphene-based energy devices

    CERN Document Server

    Yusoff, A Rashid bin Mohd

    2015-01-01

    This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic f

  6. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  7. Electrocardiographic Patch Devices and Contemporary Wireless Cardiac Monitoring

    Directory of Open Access Journals (Sweden)

    Erik eFung

    2015-05-01

    Full Text Available Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG, Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable ‘on-body’ ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery.

  8. Exploring a New Security Framework for Remote Patient Monitoring Devices

    Directory of Open Access Journals (Sweden)

    Brian Ondiege

    2017-02-01

    Full Text Available Security has been an issue of contention in healthcare. The lack of familiarity and poor implementation of security in healthcare leave the patients’ data vulnerable to attackers. The main issue is assessing how we can provide security in an RPM infrastructure. The findings in literature show there is little empirical evidence on proper implementation of security. Therefore, there is an urgent need in addressing cybersecurity issues in medical devices. Through the review of relevant literature in remote patient monitoring and use of a Microsoft threat modelling tool, we identify and explore current vulnerabilities and threats in IEEE 11073 standard devices to propose a new security framework for remote patient monitoring devices. Additionally, current RPM devices have a limitation on the number of people who can share a single device, therefore, we propose the use of NFC for identification in Remote Patient Monitoring (RPM devices for multi-user environments where we have multiple people sharing a single device to reduce errors associated with incorrect user identification. We finally show how several techniques have been used to build the proposed framework.

  9. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  10. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device.

    Science.gov (United States)

    Cordeiro, C A; de Vries, M G; Ngabi, W; Oomen, P E; Cremers, T I F H; Westerink, B H C

    2015-05-15

    Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will provide better understanding of brain energy metabolism and its role in neuropathologies such as diabetes, ischemia, and epilepsy. We have developed and characterized an implantable multiplex microbiosensor device (MBD) for simultaneous and continuous in vivo monitoring of glucose, lactate, and pyruvate. First, we developed and characterized amperometric microbiosensors for monitoring lactate and pyruvate. In vitro evaluation allowed us to choose the most suitable biosensors for incorporation into the MBD, along with glucose and background biosensors. Fully assembled MBDs were characterized in vitro. The calculated performance parameters (LOD, LR, LRS, IMAX and appKM) showed that the multiplex MBD was highly selective and sensitive (LRS≥100 nA/mM) for each analyte and within an adequate range for in vivo application. Finally, MBDs were implanted in the mPFC of anesthetized adult male Wistar rats for in vivo evaluation. Following an equilibration period, baseline brain levels of glucose (1.3±0.2 mM), lactate (1.5±0.4 mM) and pyruvate (0.3±0.1 mM) were established. Subsequently, the MBDs recorded the responses of the animals when submitted to hyperglycemic (40% glucose i.v.) and hypoglycemic (5 U/kg insulin i.v.) challenges. Afterwards, MBDs were recalibrated to convert electrochemical readings into accurate substrate concentrations and to assess biofouling. The presented MBD can monitor simultaneously multiple biomarkers in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  12. Development of a user-friendly, low-cost home energy monitoring and recording system

    International Nuclear Information System (INIS)

    Fletcher, James; Malalasekera, Weeratunge

    2016-01-01

    This paper reports research undertaken to develop a user-friendly home energy monitoring system which is capable of collecting, processing and displaying detailed usage data. The system allows users to monitor power usage and switch their electronic appliances remotely, using any web enabled device, including computers, phones and tablets. The system aims to raise awareness of consumer energy use by gathering data about usage habits, and displaying this information to support consumers when selecting energy tariffs or new appliances. To achieve these aims, bespoke electrical hardware, or ‘nodes’, have been designed and built to monitor power usage, switch devices on and off, and communicate via a Wi-Fi connection, with bespoke software, the ‘server’. The server hosts a webpage which allows users to see a real-time overview of how power is being used in the home as well as allowing scheduled tasks and triggered tasks (which respond to events) to be programmed. The system takes advantage of well standardised networking specifications, such as Wi-Fi and TCP, allowing access from within the home, or remotely through the internet. The server runs under Debian Linux on a Raspberry Pi computer and is written in Python, HTML and JavaScript. The server includes advanced functionality, such as device recognition which allows users to individually monitor several devices that share a single node. The openPicus Flyport is used to provide Wi-Fi connectivity and programmable logic control to nodes. The Flyport is programmed with code compiled from C. - Highlights: • The system is capable of collecting, processing and displaying detailed usage data. • The system is built using commonly available components and software. • Nodes in this system can communicate via a Wi-Fi connection with a server. • The data saved in the server can be used in smart grid applications.

  13. Method of inspecting the function of reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hirohito.

    1985-01-01

    Purpose: To enable to inspect the function of a reactor noise monitoring device used for monitoring the operation abnormality in coolant circuits during reactor operation. Constitution: A cylinder incorporating a steel ball moved laterally by a pneumatic pressure is disposed to the main body of a reactor coolant circuit. A three-way solenoid valve disposed to a central control room outside to a radiation controlled area is connected with the cylinder by way of pneumatic pipeways. The three-way solenoid valve is operated for a certain period of time by a timer in the central control room to thereby impinge the steel ball in the cylinder against the main body of the coolant circuit and it is inspected as to whether the reactor noise monitoring system can detect the impinging energy or not. Accordingly, the remote control is possible from out of the radiation controlled area and the inspection work can be simplified. (Seki, T.)

  14. A monitoring device for pressurised-air-driven diaphragm-based artificial heart assist devices

    NARCIS (Netherlands)

    Hoeben, F.P.; Hoeben, F.P.; de Mul, F.F.M.; Stokkink, J.S.D.; Stokkink, H.S.D.; Koelink, M.H.; Koelink, M.H.; Greve, Jan

    1992-01-01

    A non-invasive device has been developed to monitor the diaphragm position and the blood flow in artificial heart assist devices equipped with a pressurised-air-driven diaphragm. Light scattering from the diaphragm is used as a mechanism for measuring. Information about the position of several

  15. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  16. Control rod withdrawal monitoring device

    International Nuclear Information System (INIS)

    Ebisuya, Mitsuo.

    1984-01-01

    Purpose: To prevent the power ramp even if a plurality of control rods are subjected to withdrawal operation at a time, by reducing the reactivity applied to the reactor. Constitution: The control rod withdrawal monitoring device is adapted to monitor and control the withdrawal of the control rods depending on the reactor power and the monitoring region thereof is divided into a control rod group monitoring region a transition region and a control group monitoring not interfere region. In a case if the distance between a plurality of control rods for which the withdrawal positions are selected is less than a limiting value, the coordinate for the control rods, distance between the control rods and that the control rod distance is shorter are displayed on a display panel, and the withdrawal for the control rods are blocked. Accordingly, even if a plurality of control rods are subjected successively to the withdrawal operation contrary to the control rod withdrawal sequence upon high power operation of the reactor, the power ramp can be prevented. (Kawakami, Y.)

  17. Monitoring and life-support devices

    International Nuclear Information System (INIS)

    Noback, C.R.; Murphy, C.H.

    1987-01-01

    The radiographic and physical principles involved in interpreting films, and some of the altered anatomy and pathology that may be seen on such films, are discussed. This chapter considers the radiographic appearances of monitoring and life-support devices. Appropriate positioning and function are shown, as are some of the complications associated with their placement and/or function

  18. Review on energy harvesting for structural health monitoring in aeronautical applications

    Science.gov (United States)

    Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean

    2015-11-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.

  19. Development of gas-sampling device for 13N monitoring system

    International Nuclear Information System (INIS)

    Zhao Lihong; Gong Xueyu

    2003-01-01

    The 13 N monitoring system is used in the monitoring of the rate of leakage of the primary coolant circuit in nuclear power stations. The author introduces a gas-sampling device of the 13 Nmonitoring system. It is with a close-loop flow control system with intelligent control of Single Chip Micyoco (SCM), and has the ability to monitor and replace the filter paper automatically, to increase the automation of the device and stable operation in long time

  20. Monitoring Human Activity through Portable Devices

    Directory of Open Access Journals (Sweden)

    G. Sebestyen

    2012-06-01

    Full Text Available Monitoring human activity may be useful for medical supervision and for prophylactic purposes. Mobile devices like intelligent phones or watches have multiple sensors and wireless communication capabilities which can be used for this purpose. This paper presents some integrated solutions for determining and continuous monitoring of a person’s state. Aspects taken into consideration are: activity detection and recognition based on acceleration sensors, wireless communication protocols for data acquisition, web monitoring, alerts generation and statistical processing of multiple sensorial data. As practical implementations two case studies are presented, one using an intelligent phone and another using a mixed signal processor integrated in a watch.

  1. Installation and sampling of vadose zone monitoring devices

    International Nuclear Information System (INIS)

    Bergeron, S.M.; Strickland, D.J.; Pearson, R.

    1987-10-01

    A vadose zone monitoring system was installed in a sanitary landfill near the Y-12 facility on the Department of Energy's Oak Ridge, Tennessee Reservation. The work was completed as part of the LLWDDD program to develop, design, and demonstrate new low level radioactive waste disposal monitoring methods. The objective of the project was to evaluate the performance of three types of vadose zone samplers within a similar hydrogeologic environment for use as early detection monitoring devices. The three different types of samplers included the Soil Moisture Equipment Corporation Pressure-Vacuum samplers (Models 1920 and 1940), and the BAT Piezometer (Model MK II) manufactured by BAT Envitech, Inc. All three samplers are designed to remove soil moisture from the vadose (unsaturated) zone. Five clusters of three holes each were drilled to maximum depths of 45 ft around part of the periphery of the landfill. Three samplers, one of each type, were installed at each cluster location. Water samples were obtained from 13 of the 15 samplers and submitted to Martin Marietta for analysis. All three samplers performed satisfactorily when considering ease of installation, required in-hole development, and ability to collect water samples from the vadose zone. Advantages and disadvantages of each sampler type are discussed in the main report

  2. Automatic ingestion monitor: a novel wearable device for monitoring of ingestive behavior.

    Science.gov (United States)

    Fontana, Juan M; Farooq, Muhammad; Sazonov, Edward

    2014-06-01

    Objective monitoring of food intake and ingestive behavior in a free-living environment remains an open problem that has significant implications in study and treatment of obesity and eating disorders. In this paper, a novel wearable sensor system (automatic ingestion monitor, AIM) is presented for objective monitoring of ingestive behavior in free living. The proposed device integrates three sensor modalities that wirelessly interface to a smartphone: a jaw motion sensor, a hand gesture sensor, and an accelerometer. A novel sensor fusion and pattern recognition method was developed for subject-independent food intake recognition. The device and the methodology were validated with data collected from 12 subjects wearing AIM during the course of 24 h in which both the daily activities and the food intake of the subjects were not restricted in any way. Results showed that the system was able to detect food intake with an average accuracy of 89.8%, which suggests that AIM can potentially be used as an instrument to monitor ingestive behavior in free-living individuals.

  3. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.

    Science.gov (United States)

    Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W

    2016-05-04

    It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma

  4. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  5. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  6. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  7. Real-time energy monitoring system : Web-Keruu; Energian tosiaikainen seurantapalvelu : Web-Keruu

    Energy Technology Data Exchange (ETDEWEB)

    Serkkola, A. (Aalto University, Espoo (Finland)); Nyman, J.; Fraemling, K.; Kaustell, A.

    2011-07-01

    Climate action and reducing greenhouse gases have become a top topics in EU and all over the world. But how can an individual consumer reduce his or her energy consumption, if he does not even know how much energy he or she is consuming and when? Or how can he know if an electrical device is not working properly and needs to be fixed to avoid extra electricity bills or other harms? One solution is to make the invisible energy consumption visible, by visualizing the consumption on the web. In the Housing Eco-Monitoring Service (Asemo) project funded by the EU's Regional Development fund, Southern Finland program, the STOK electrical building services center, Posintra Oy in Porvoo (Finland) and the Aalto University School of Engineering Lahti Center (Finland) are developing an energy monitoring system that visualizes the actual energy consumption of a house or a flat in real time. A resident may instantly 'see' his or her energy consumption as a constantly updating graph on a web page. The graph makes it easy to understand the effect of various energy savings measures. One instantly gets feedback on how energy consumption is affected by switching on and off electrical devices, for instance a television set. The users of the system can also write blog-type comments, and share them with other users. The system itself is flexible and cheap. It is a stand-alone, plug-and-play type of solution, based on off-the-shelf consumer hardware supplemented by software created in the project. The system reads data from an electricity meter, channels it through the Internet using the residence's broadband connection, and stores the data in a database. This energy monitoring system will be used to monitor energy usage in Finland in Porvoo's new Skaftkaerr housing area, where this system will be set-up in residences, or LivingLabs. Currently we are in the initial testing phase with half a dozen LivingLabs. The residences are inhabited by real families, so that

  8. Tests of an electron monitor for routine quality control measurements of electron energies

    International Nuclear Information System (INIS)

    Ramsay, E.B.; Reinstein, L.E.; Meek, A.G.

    1991-01-01

    The depth dose for electrons is sensitive to energy and the AAPM Task Group 24 has recommended that tests be performed at monthly intervals to assure electron beam energy constancy by verifying the depth for the 80% dose to within ±3 mm. Typically, this is accomplished by using a two-depth dose ratio technique. Recently, a new device, the Geske monitor, has been introduced that is designed for verifying energy constancy in a single reading. The monitor consists of nine parallel plate detectors that alternate with 5-mm-thick absorbers made of an aluminum alloy. An evaluation of the clinical usefulness of this monitor for the electron beams available on a Varian Clinac 20 has been undertaken with respect to energy discrimination. Beam energy changes of 3 mm of the 80% dose give rise to measurable output changes ranging from 1.7% for 20-MeV electron beams to 15% for 6-MeV electron beams

  9. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  10. Survey of Energy Harvesting Systems for Wireless Sensor Networks in Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Dziadak Bogdan

    2016-12-01

    Full Text Available Wireless Sensor Networks (WSNs have existed for many years and had assimilated many interesting innovations. Advances in electronics, radio transceivers, processes of IC manufacturing and development of algorithms for operation of such networks now enable creating energy-efficient devices that provide practical levels of performance and a sufficient number of features. Environmental monitoring is one of the areas in which WSNs can be successfully used. At the same time this is a field where devices must either bring their own power reservoir, such as a battery, or scavenge energy locally from some natural phenomena. Improving the efficiency of energy harvesting methods reduces complexity of WSN structures. This survey is based on practical examples from the real world and provides an overview of state-of-the-art methods and techniques that are used to create energyefficient WSNs with energy harvesting.

  11. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring

    Directory of Open Access Journals (Sweden)

    Sanjiv Sharma

    2017-04-01

    Full Text Available The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective.We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases. Keywords: Microneedles, Minimally invasive sensors, Continuous glucose monitoring (CGM, Continuous lactate monitoring (CLM, Interstitial therapeutic drug monitoring (iTDM

  12. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  13. Comparison of lancing devices for self-monitoring of blood glucose regarding lancing pain.

    Science.gov (United States)

    Kocher, Serge; Tshiananga, J K Tshiang; Koubek, Richard

    2009-09-01

    Self-monitoring of blood glucose empowers diabetes patients to effectively control their blood glucose (BG) levels. A potential barrier to frequent BG controls is lancing pain, intrinsically linked to pricking the finger several times a day. In this study, we compared different state-of-the-art lancing devices from leading manufacturers regarding lancing pain, and we intended to identify lancing devices that are less painful. First, 165 subjects compared 6 different BG monitoring systems-consisting of a lancing device and a BG meter-at home for 36 days and at least 3 BG tests per day. Second, the subjects directly compared 6 different lancing devices-independent from a BG meter-in a laboratory setting. The test results were collected in questionnaires, and lancing pain was rated on a numerical rating scale. One hundred fifty-seven subjects were included in the analysis. Accu-Chek BG monitoring systems were significantly (p competitor BG monitoring systems and were rated by >50% of the subjects as "less painful" than competitor BG monitoring systems. Accu-Chek lancing devices were significantly (p competitor lancing devices and were rated by >60% of the subjects as "less painful" than competitor lancing devices. We found significant differences in lancing pain between lancing devices. Diabetes patients clearly preferred lancing devices that cause less lancing pain. In order to improve patient compliance with respect to an adequate glycemic control, the medical staff should preferentially prescribe lancing devices that cause less lancing pain. 2009 Diabetes Technology Society.

  14. A distributed design for monitoring, logging, and replaying device readings at LAMPF

    International Nuclear Information System (INIS)

    Burns, M.

    1991-01-01

    As control of the Los Alamos Meson Physics linear accelerator and Proton Storage Ring moves to a more distributed system, it has been necessary to redesign the software which monitors, logs, and replays device readings throughout the facility. The new design allows devices to be monitored and their readings logged locally on a network of computers. Control of the monitoring and logging process is available throughout the network from user interfaces which communicate via remote procedure calls with server processes running on each node which monitors and records device readings. Similarly, the logged data can be replayed from anywhere on the network. Two major requirements influencing the final design were the need to reduce the load on the CPU of the control machines, and the need for much faster replay of the logged device readings. 1 ref., 2 figs

  15. A distributed design for monitoring, logging, and replaying device readings at LAMPF

    International Nuclear Information System (INIS)

    Burns, M.

    1992-01-01

    As control of the Los Alamos Meson Physics linear accelerator and Proton Storage Ring moves to a more distributed system, it has been necessary to redesign the software which monitors, logs, and replays device readings throughout the facility. The new design allows devices to be monitored and their readings logged locally on a network of computers. Control of the monitoring and logging process is available throughout the network from user interfaces which communicate via remote procedure calls with server processes running on each node which monitors and records device readings. Similarly, the logged data can be replayed from anywhere on the network. Two major requirements influencing the final design were the need to reduce the load on the CPU of the control machines, and the need for much faster replay of the logged device readings. (author)

  16. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  17. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage

    Science.gov (United States)

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-06-01

    The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.

  18. Investigating User Identification in Remote Patient Monitoring Devices.

    Science.gov (United States)

    Ondiege, Brian; Clarke, Malcolm

    2017-09-13

    With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that

  19. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    Science.gov (United States)

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    Executive Summary Objective The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions. Clinical Need: Condition and Target Population Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD. Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities. Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs. Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however

  20. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  1. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  2. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  3. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    Science.gov (United States)

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  4. Monitoring device for the reactor power distribution

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi; Tsuiki, Makoto

    1982-01-01

    Purpose: To enable accurate monitoring for the power distribution in a short time, as well as independent detection for in-core neutron flux detectors in abnormal operation due to failures or like other causes to thereby surely provide reliable substitute values. Constitution: Counted values are inputted from a reactor core present status data detector by a power distribution calculation device to calculate the in-core neutron flux density and the power distribution based on previously stored physical models. While on the other hand, counted value from the in-core neutron detectors and the neutron flux distribution and the power distribution calculated from the power distribution calculation device are inputted from a BCF calculation device to compensate the counting errors incorporated in the counted value from the in-core neutron flux detectors and the calculation errors incorporated in the power distribution calculated in the power distribution calculation device respectively and thereby calculate the power distribution in the reactor core. Further, necessary data are inputted to the power distribution calculation device by an input/output device and the results calculated in the BCF calculation device are displayed. (Aizawa, K.)

  5. Experimental Results on a Wireless Wattmeter Device for the Integration in Home Energy Management Systems

    Directory of Open Access Journals (Sweden)

    Eduardo M. G. Rodrigues

    2017-03-01

    Full Text Available This paper presents a home area network (HAN-based domestic load energy consumption monitoring prototype device as part of an advanced metering system (AMS. This device can be placed on individual loads or configured to measure several loads as a whole. The wireless communication infrastructure is supported on IEEE 805.12.04 radios that run a ZigBee stack. Data acquisition concerning load energy transit is processed in real time and the main electrical parameters are then transmitted through a RF link to a wireless terminal unit, which works as a data logger and as a human-machine interface. Voltage and current sensing are implemented using Hall effect principle-based transducers, while C code is developed on two 16/32-bit microcontroller units (MCUs. The main features and design options are then thoroughly discussed. The main contribution of this paper is that the proposed metering system measures the reactive energy component through the Hilbert transform for low cost measuring device systems.

  6. Device for contamination monitoring against radiation contamination of people

    International Nuclear Information System (INIS)

    Rische, U.W.; Gerlach, R.

    1986-01-01

    The monitor has detector devices at an angle to each other made as a rigid component which can be rotated around a vertical axis in the angle between the joined detector devices. A reset drive which can be tensioned is provided at the axis of rotation. If it is in its rest position, a platform is situated as floor plate with a foot detector between the vertical detector devices. (orig./HP) [de

  7. Energy harvesting: an integrated view of materials, devices and applications

    Science.gov (United States)

    Radousky, H. B.; Liang, H.

    2012-12-01

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  8. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility and operat......The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... and operation patterns of the devices in a set of real households. We propose a number of specific pre-processing steps such as operation stage segmentation, and aberrant operation duration removal to clean device level data. Further, we demonstrate various device operation properties such as hourly and daily...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  9. A four lumen screwing device for multiparametric brain monitoring.

    Science.gov (United States)

    Feuerstein, T H; Langemann, H; Gratzl, O; Mendelowitsch, A

    2000-01-01

    We describe multiparametric monitoring in severe head trauma using a new screwing device. Our aim was to create a screw which would make the implantation of the probes and thus multiparametric monitoring easier. The new screw allows us to implant 3 probes (microdialysis, Paratrend and an intracranial pressure device) through one burr hole. The screw has four channels, the fourth being for ventricular drainage. We monitored 13 patients with severe head trauma (GCS = 3-8) for up to 7 days. Brain tissue pO2, pCO2, pH, and temperature were measured on-line with the Paratrend 7 machine. The microdialytic parameters glucose, lactate, pyruvate and glutamate were determined semi on-line with a CMA 600 enzymatic analyser. There were no complications in any of the patients that could be ascribed to the screw.

  10. Energy-Based Devices in Treatment of Acne Vulgaris.

    Science.gov (United States)

    Handler, Marc Z; Bloom, Bradley S; Goldberg, David J

    2016-05-01

    Acne vulgaris is a chronic dermatologic complaint with a multifactorial cause. Traditionally, antibiotics and retinoids have been used to manage the condition; patient compliance has been an ongoing issue. A variety of energy-based devices have been reported to be effective in the treatment of acne vulgaris. To review and summarize the current literature specific to treatment of acne vulgaris with energy-based devices. A review of the current literature of energy-based devices used for the treatment of acne vulgaris. Although limited randomized controlled trials for the treatment of acne have been performed, significant clinical improvement of acne vulgaris, especially of inflammatory lesions, has been demonstrated with a variety of energy-based devices. Newer approaches may lead to even better results.

  11. A high-energy (35-500 MeV) proton monitor for the Gravity Probe-B Mission

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. E-mail: stil@may.ie; Rusznyak, Peter; Buchman, Sasha; Shestople, Paul; Thatcher, John

    2003-02-11

    An innovative fault tolerant, high-energy particle monitor designed to record protons in the range 35-500 MeV when in polar orbit aboard NASA's Gravity Probe B spacecraft, is described. This device, which is configured to provide continuous, reliable operation in the hostile particle environment traversed by the spacecraft, can potentially be used either as an onboard monitor or as a scientific experiment.

  12. Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-03-01

    Full Text Available Overhead high voltage power line (HVPL online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.

  13. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    Science.gov (United States)

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  14. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    Science.gov (United States)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  15. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  16. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions.

    Science.gov (United States)

    Wen, Dong; Zhang, Xingting; Liu, Xingyu; Lei, Jianbo

    2017-03-07

    Wearable devices are gaining increasing market attention; however, the monitoring accuracy and consistency of the devices remains unknown. The purpose of this study was to assess the consistency of the monitoring measurements of the latest wearable devices in the state of normal activities to provide advice to the industry and support to consumers in making purchasing choices. Ten pieces of representative wearable devices (2 smart watches, 4 smart bracelets of Chinese brands or foreign brands, and 4 mobile phone apps) were selected, and 5 subjects were employed to simultaneously use all the devices and the apps. From these devices, intact health monitoring data were acquired for 5 consecutive days and analyzed on the degree of differences and the relationships of the monitoring measurements ​​by the different devices. The daily measurements by the different devices fluctuated greatly, and the coefficient of variation (CV) fluctuated in the range of 2-38% for the number of steps, 5-30% for distance, 19-112% for activity duration, .1-17% for total energy expenditure (EE), 22-100% for activity EE, 2-44% for sleep duration, and 35-117% for deep sleep duration. After integrating the measurement data of 25 days among the devices, the measurements of the number of steps (intraclass correlation coefficient, ICC=.89) and distance (ICC=.84) displayed excellent consistencies, followed by those of activity duration (ICC=.59) and the total EE (ICC=.59) and activity EE (ICC=.57). However, the measurements for sleep duration (ICC=.30) and deep sleep duration (ICC=.27) were poor. For most devices, there was a strong correlation between the number of steps and distance measurements (R 2 >.95), and for some devices, there was a strong correlation between activity duration measurements and EE measurements (R 2 >.7). A strong correlation was observed in the measurements of steps, distance and EE from smart watches and mobile phones of the same brand, Apple or Samsung (r>.88

  17. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  18. Study on storage energy devices: supercapacitors, a green alternative

    OpenAIRE

    Rancaño Fernandez, Ariadna

    2011-01-01

    Nowadays, it is increasingly common to hear about environmental issues. This fact keep us to continually try to improve energy optimization, either through new storage devices that pollute less or improvements in the environmental energy generation systems. Recent new types of devices under study are those called supercapacitors. Supercapacitors are electronic devices able to store charge in form of electrical energy. This energy is stored as an electric field, so supercapacitors are less pol...

  19. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  20. uFLIP: Understanding the Energy Consumption of Flash Devices

    DEFF Research Database (Denmark)

    Bjørling, Matias; Bonnet, Philippe; Bouganim, Luc

    2010-01-01

    Understanding the energy consumption of flash devices is important for two reasons. First, energy is emerging as a key metric for data management systems. It is thus important to understand how we can reason about the energy consumption of flash devices beyond their approximate aggregate...... consumption (low power consumption in idle mode, average Watt consumption from the data sheets). Second, when measured at a sufficiently fine granularity, the energy consumption of a given device might complement the performance characteristics derived from its response time profile. Indeed, background work...... which is not directly observable with a response time profile appears clearly when energy is used as a metric. In this paper, we discuss the results from the {uFLIP} benchmark applied to four different {SSD} devices using both response time and energy as metric....

  1. Design of a low-cost microcontroller-based lightning monitoring device

    NARCIS (Netherlands)

    Kamau, G.M.; Kang'ethe, S.; Kamau, S.I.; Van de Giesen, N.C.

    2015-01-01

    Lightning data is not only important for environment and weather monitoring but also for safety purposes. A device that monitors and keeps track of occurrences of lightning strikes has been developed. A communication interface is established between the sensors, data logging circuit and the

  2. Monitoring critical facilities by using advanced RF devices

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hanchung; Liu, Yung Y. [Argonne National Laboratory, Argonne, IL (United States); Shuler, James [U.S. Department of Energy, Washington, D.C. (United States)

    2013-07-01

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being

  3. Monitoring critical facilities by using advanced RF devices

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    2013-01-01

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being

  4. 40 CFR 60.714 - Installation of monitoring devices and recordkeeping.

    Science.gov (United States)

    2010-07-01

    ... to the manufacturer's specifications, prior to the initial performance tests in locations such that... in § 60.713(b)(2), (3), (4), (5), or (6) (which include control device efficiency determinations... gas streams would be monitored if the percent control device efficiency is used as the basis for...

  5. Water sampling device for fuel rod failure monitoring

    International Nuclear Information System (INIS)

    Oogami, Hideaki; Echigoya, Hironori; Matsuoka, Tesshi.

    1991-01-01

    The device of the present invention accurately samples coolants in a channel box as sampling water even if the upper end of the channel box of a fuel assembly is positioned at the same height or lower than the upper end of an upper lattice plate. An existent device comprises an outer cap, an inner cap, an air supply pipe and a water sampling tube. In addition, the device of the present invention comprises a sealing material disposed at the end of the outer cap for keeping liquid sealing with the upper lattice plate and a water level monitoring pipe extended to lower than the inner cap passing through the liquid sealing of the outer cap for sucking the atmosphere in the outer cap. Pressurized air is sent through the air supply pipe, to lower the water level of the coolants in the outer cap and the water level monitoring pipe sucks the pressurized air, by which the inside and the outside of the channel box are partitioned. Subsequently, if the sample water is sampled by a sampling tube, sampling water which enables accurate evaluation for radioactivity concentration in the fuel assembly can be obtained. (I.S.)

  6. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  7. Monitoring device for local power peaking coefficients

    International Nuclear Information System (INIS)

    Mihashi, Ishi

    1987-01-01

    Purpose: To determine and monitor the local power peaking coefficients by a method not depending on the combination of fuel types. Constitution: Representative values for the local power distribution can be obtained by determining corresponding burn-up degrees based on the burn-up degree of each of fuel assembly segments obtained in a power distribution monitor and by the interpolation and extrapolation of void coefficients. The typical values are multiplied with compensation coefficients for the control rod effect and coefficients for compensating the effect of adjacent fuel assemblies in a calculation device to obtain typical values for the present local power distribution compensated with all of the effects. Further, the calculation device compares them with typical values of the present local power distribution to obtain an aimed local power peaking coefficient as the maximum value thereof. According to the present invention, since the local power peaking coefficients can be determined not depending on the combination of the kind of fuels, if the combination of fuel assemblies is increased upon fuel change, the amount of operation therefor is not increased. (Kamimura, M.)

  8. Design and fabrication of an energy-harvesting device using vibration absorber

    Science.gov (United States)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  9. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. LiH thermal energy storage device

    Science.gov (United States)

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  11. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Fei Fei

    2014-05-01

    Full Text Available Wireless sensor networks (WSNs have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that converts the mechanical energy from the airflow in ventilation ducts into electrical energy. The system uses a flutter energy conversion device (FECD capable of working at low airflow speeds while installed on the ventilation ducts inside of buildings. A power management strategy implemented with a circuit system ensures sufficient power for driving commercial electronic devices. For instance, the power management circuit is capable of charging a 1 F super capacitor to 2 V under ventilation duct airflow speeds of less than 3 m/s.

  12. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  13. Hybrid radical energy storage device and method of making

    Science.gov (United States)

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  14. A New Device to Automate the Monitoring of Critical Patients’ Urine Output

    Directory of Open Access Journals (Sweden)

    Abraham Otero

    2014-01-01

    Full Text Available Urine output (UO is usually measured manually each hour in acutely ill patients. This task consumes a substantial amount of time. Furthermore, in the literature there is evidence that more frequent (minute-by-minute UO measurement could impact clinical decision making and improve patient outcomes. However, it is not feasible to manually take minute-by-minute UO measurements. A device capable of automatically monitoring UO could save precious time of the healthcare staff and improve patient outcomes through a more precise and continuous monitoring of this parameter. This paper presents a device capable of automatically monitoring UO. It provides minute by minute measures and it can generate alarms that warn of deviations from therapeutic goals. It uses a capacitive sensor for the measurement of the UO collected within a rigid container. When the container is full, it automatically empties without requiring any internal or external power supply or any intervention by the nursing staff. In vitro tests have been conducted to verify the proper operation and accuracy in the measures of the device. These tests confirm the viability of the device to automate the monitoring of UO.

  15. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  16. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  17. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...... these models, estimates of the power production, eciency, forces and moments are made. We nd that it is possible to extract a signicant amount of energy from an ocean wave using the described device. Further studies are required for a full treatment of the device....

  18. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  19. Crosstalk compensation in analysis of energy storage devices

    Science.gov (United States)

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  20. An automatic energy-saving and thermal monitoring/controlling system for a pond

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Chien

    2017-01-01

    Full Text Available Because of low temperatures and oxygen in cold water, fish will die when cold currents arrive. This will cause tremendous loss of money. In order reduce the cooling of the pond, an automatic thermal detecting and cold-roofing system using a wind-proofing device, heaters, and thermal detectors is proposed. To reduce heat loss due to thermal convection above the pond surface, a motor-driven wind-proofing device automatically controlled by a PLC controller is adopted. Here, the wind-proofing device, thermal detectors, and heating system are connected to the PLC controller. The PLC will also be connected to the PC interface. The temperature thresholds used to trigger the heater and the wind proofing device can be set at the PC interface. Two options for manipulating the heating and the automatic heating can be selected. The related wind-proofing area and the number of heaters will be determined according to the current temperature. Moreover, the PLC can be wirelessly connected to the server PC in the control room. The pond keeper can monitor everything online and control the pond water's temperature. With this, the problem of fish dying in a cold wave can be solved. Consequently, to reduce the electrical exhaust when heating up the pond water, green energy, solar energy and wind energy, is used.

  1. Device for converting electromagnetic radiation energy into electrical energy and method of manufacturing such a device

    NARCIS (Netherlands)

    2007-01-01

    Device (10) for converting electromagnetic radiation energy into electrical energy, comprising at least a photovoltaic element (11) with a radiation-sensitive surface, wherein a covering layer (12) of a material comprising a silicon compound, to which a rare earth element has been added, is present

  2. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  3. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  4. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment.

    Science.gov (United States)

    Stuer-Lauridsen, Frank

    2005-08-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.

  5. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Frank

    2005-01-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds. - Major developments in the passive sampling of organic contaminants in aquatic environments will support future monitoring, compliance and research

  6. Cutting device for spent local power range monitor

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Tsuji, Teruaki.

    1976-01-01

    Purpose: To prevent radioactive contamination of the reactor water and simplify the operation of transferring the spent local power range monitor to a pool and preparation of the space for storing the monitor in the pool by arranging it such that the monitor is cut in the reactor water and that its cut end is closed in the reactor water. Constitution: A device for clamping a spent local power range monitor disposed within the reactor core and for cutting the monitor such that the content will not be exposed are supported by support means such that they are spaced apart in the vertical direction, and the support means is suspended in the reactor water such that it is movable relative to the monitor. Thus, there is no need to mount the cutter in any separately provided support means, and there is no possibility of exposure of the content since the cut end of the monitor is closed by the outer frame. It is therefore possible to prevent contamination of the reactor water. (Horiuchi, T.)

  7. [2011 after-service customer satisfaction survey of monitoring devices in Shanghai area].

    Science.gov (United States)

    Wang, Lijun; Li, Bin; Qian, Jianguo; Cao, Shaoping; He, Dehua; Zheng, Yunxin

    2013-01-01

    In 2011, Shanghai Medical Equipment Management Quality Control Center launched the fifth after-sale service satisfaction survey for medical devices in Shanghai area. There are 8 classes medical devices involving in the survey. This paper demonstrates the investigation results of monitoring devices which are from different manufacturers.

  8. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  9. Energy-Neutral Data Collection Rate Control for IoT Animal Behavior Monitors

    Directory of Open Access Journals (Sweden)

    Jay Wilhelm

    2017-11-01

    Full Text Available Energy-neutral operation (ENO is a major concern for Internet of things (IoT sensor systems. Animals can be tagged with IoT sensors to monitor their movement and behavior. These sensors wirelessly upload collected data and can receive parameters to change their operation. Typically, the behavior monitors are powered by a battery where the system relies upon harvesting solar radiation for sustainable operation. Solar panels typically are used as the harvesting mechanism and can have a level of uncertainty regarding consistent energy delivery due to factors such as adverse weather, foliage, time of day, and individual animal behavior. The variability of available energy inevitably creates a trade-off in the rate at which data can be collected with respect to incoming and stored energy. The objective of this research was to investigate and simulate methods and parameters that can control the data collection rate of an IoT behavior monitor to achieve sustained operation with unknown and random energy harvesting. Analysis and development of a control system were performed by creating a software model of energy consumption and then simulating using different initial conditions and random energy harvesting rates for evaluation. The contribution of this effort was the exploration into the usage of a discrete-time gain scheduled Proportional–Integral–Derivative (PID that was tuned to a specific device configuration, using battery state of charge as an input, and found to maintain a battery level set-point, reject small solar harvesting energy disturbances, and maintain a consistent data collection rate throughout the day.

  10. Clinical implementation of a low energy x-ray therapy device in the treatment of breast cancer

    International Nuclear Information System (INIS)

    Haworth, A.; University of Western Australia, WA; Joseph, D.; Lanzon, P.; Caswell, N.; Ebert, M.; University of Western Asutralia, WA

    2001-01-01

    Full text: A low energy device producing x-rays of maximum operating potential of 50kV is used to treat primary breast tumours intraoperatively. In pathologically favourable cases, the treatment replaces conventional external beam irradiation. For patients at greater risk of local recurrence, the treatment replaces conventional 'boost' therapy. The dosimetry of the device will be described in a companion paper. QA tests prior to irradiation include: output calibration/verification; isotropy verification and external radiation monitor (the secondary beam termination device) functionality. The internal radiation monitor count (similar to setting monitor units on a linac) for a prescribed dose is calculated from tables of measured depth dose and applicator factors. The spherical applicator which best suits the size of the excised tumour is lightly sutured into position maintaining as much distance between the skin surface as possible to minimise skin erythema. Radiation protection is achieved with the use of portable lead shields and tungsten impregnated silicon drapes. Patients entered into a TROG randomised clinical trial comparing intraoperative with conventional postoperative radiotherapy after conservative breast surgery for women with early stage breast cancer will be studied in collaboration with the CRC/University College London, Cancer Trials Centre (UK) to record the effects of local tumour control, cosmesis, patient satisfaction and health economics. QA tests take approximately 15 minutes to perform and a treatment prescription of 5Gy at 1cm depth with a 5cm applicator would take approximately 30 minutes. A low energy x-ray device may be used intraoperatively in selected cases to replace conventional radiotherapy minimising the inconvenience for patients and reducing waiting lists on treatment machines. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  11. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  12. Multidimensional materials and device architectures for future hybrid energy storage

    Science.gov (United States)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  13. Toward flexible polymer and paper-based energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, Leif [Department of Materials Chemistry, The Aangstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Nystroem, Gustav; Mihranyan, Albert; Stroemme, Maria [Nanotechnology and Functional Materials, Department of Engineering Sciences, The Aangstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2011-09-01

    All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Defining an Inteligent Information System for Monitoring and Verification of Energy Management in Cities

    International Nuclear Information System (INIS)

    Tomsic, Z.; Gasic, I.; Lugaric, L.; Cacic, G.

    2011-01-01

    Improving the efficiency of energy consumption (EC) is a central theme of any energy policy. Improved energy efficiency (EE) meets three energy policy goals: security of supply, competitiveness and protection of the environment. Systematic energy management is a body of knowledge and skills based on an organizational structure that links people with assigned responsibilities, efficiency monitoring procedures and continuous measurement and improvement of energy efficiency. This body of knowledge must be supported by appropriate ICT for gathering, processing and disseminating data on EC, EE targets and information. Energy Management Information System - EMIS is a web application for monitoring and analysis of energy and water consumption in public buildings and represents inevitable tool for systematic energy management. EMIS software tool connects processes of gathering data on buildings and their energy consumption, monitoring consumption indicators, setting energy efficiency targets and reporting energy and water consumption savings. Project Intelligent Information System for Monitoring and Verification of Energy Management in Cities (ISEMIC) will distribute EMIS software tool in region (BiH, Slovenia and Serbia). This project also has a goal of improving a software system for utilizing EC measurements, both from smart meters and traditional measurement devices and subsequent data processing and analysis to facilitate, upgrade and eventually replace the currently used energy management system for public buildings in Croatia. ISEMIC will enable use of smart meters within an energy management for the first time in BiH, Slovenia and Serbia, along with an analytical part which enables intelligent estimation of energy consumption based on multiple criteria. EMIS/ISEMIC will enable: Continuous updating and maintenance of a database of information on buildings; Continuous entry and monitoring of consumption data for all energents and water in buildings; Calculation of

  15. A Novel Pseudo-PMOS Integrated ISFET Device for Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Pawan Whig

    2013-01-01

    Full Text Available The paper presents a performance analysis of novel CMOS Integrated pseudo-PMOS ISFET (PP-ISFET having zero static power dissipation. The main focus is on simulation of power and performance analysis along with the comparison with existing devices, which is used for water quality monitoring. The conventional devices, generally used, consume high power and are not stable for long term monitoring. The conventional device has the drawbacks of low value of slew rate, high power consumption, and nonlinear characteristics, but in this novel design, due to zero static power, less load capacitance on input signals, faster switching, fewer transistors, and higher circuit density, the device exhibits a better slew rate and piecewise linear characteristics and is seen consuming low power of the order of 30 mW. The proposed circuit reduces total power consumption per cycle, increases the speed of operation, is fairly linear, and is simple to implement.

  16. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  17. Energy transport in cooling device by magnetic fluid

    Science.gov (United States)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  18. Device for monitoring electron-ion ring parameters

    International Nuclear Information System (INIS)

    Tyutyunnikov, S.I.; Shalyapin, V.N.

    1982-01-01

    The invention is classified as the method of collective ion acceleration. The device for electron-ion ring parameters monitoring is described. The invention is aimed at increasing functional possibilities of the device at the expense of the enchance in the number of the ring controlled parameters. The device comprises three similar plane mirrors installed over accelerating tube circumference and a mirror manufactured in the form of prism and located in the tube centre, as well as the system of synchrotron radiation recording and processing. Two plane mirrors are installed at an angle of 45 deg to the vertical axis. The angle of the third plane mirror 3 α and that of prismatic mirror 2 α to the vertical axis depend on geometric parameters of the ring and accelerating tube and they are determined by the expression α=arc sin R K /2(R T -L), where R K - ring radius, R T - accelerating tube radius, L - the height of segment, formed by the mirror and inner surface of the accelerating tube. The device suggested permits to determine longitudinal dimensions of the ring, its velocity and the number of electrons and ions in the ring

  19. Energy level alignment at interfaces in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Opitz, Andreas; Frisch, Johannes; Schlesinger, Raphael; Wilke, Andreas; Koch, Norbert

    2013-01-01

    Highlights: ► Energy level alignment is crucial for organic solar cell efficiency. ► Photoelectron spectroscopy can reliably determine energy levels of organic material interfaces. ► Care must be taken to avoid even subtle sample damage. -- Abstract: The alignment of energy levels at interfaces in organic photovoltaic devices is crucial for their energy conversion efficiency. Photoelectron spectroscopy (PES) is a well-established and widely used technique for determining the electronic structure of materials; at the same time PES measurements of conjugated organic materials often pose significant challenges, such as obtaining sufficiently defined sample structures and radiation-induced damage of the organic layers. Here we report how these challenges can be tackled to unravel the energy levels at interfaces in organic photovoltaic devices, i.e., electrode/organic and organic/organic interfaces. The electronic structure across entire photovoltaic multilayer devices can thus be reconciled. Finally, general considerations for correlating the electronic structure and the photovoltaic performance of devices will be discussed

  20. Nano devices and circuit techniques for low-energy applications and energy harvesting

    CERN Document Server

    2016-01-01

    This book describes the development of core technologies to address two of the most challenging issues in research for future IT platform development, namely innovative device design and reduction of energy consumption. Three key devices, the FinFET, the TunnelFET, and the electromechanical nanoswitch are described with extensive details of use for practical applications. Energy issues are also covered in a tutorial fashion from material physics, through device technology, to innovative circuit design. The strength of this book lies in its holistic approach dealing with material trends, state-of-the-art of key devices, new examples of circuits and systems applications.    This is the first of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering signific...

  1. Floating attenuator wave energy device: Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes research funded by the Department of Trade and Industry (DTI) into the feasibility of developing and constructing a floating attenuator wave energy device known as HYDRA following initial studies by Wavegen. HYDRA is a floating externally tensioned articulated raft wave energy generator based on work by Professor FJM Farley and colleagues during the 1980s. The project's first four work tasks confirmed the theoretical potential of the device but also highlighted significant practical problems in translating that potential into a viable design. It was therefore decided not to proceed further, i.e. not to construct and test a prototype device. The report provides a general description of the device and describes the results of the initial analysis and the first series of model tests. It then discusses device design and component testing and explains the methodology for determining device performance at a particular site and mathematical modelling of a one-third scale device. To help future research and development programmes, the report emphasises the generic problems associated with the development of wave devices.

  2. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  3. Application of monitoring and targeting to energy management

    Energy Technology Data Exchange (ETDEWEB)

    Gotel, D G; Hale, D K

    1989-01-01

    This general guide has been prepared to show how monitoring and targeting can control energy use and improve the efficiency with which energy is used in different sectors of the national economy. It is based on the results of work carried out, under the Energy Efficiency Office Monitoring and Targeting Programme, on the development of practical energy management systems for use in manufacturing industry, commerce and the public sector. The principles of monitoring and targeting are described together with the steps which have to be taken to set up monitoring and targeting as an integral part of an existing management organization. Procedures are given for monitoring energy use, defining standards and targets, reporting results and reviewing progress. These procedures which have been developed and tested in working environments are illustrated with examples of their practical application. Finally, an account is given of the improvements of performance in the use of energy and the other benefits which can be gained through energy monitoring and targeting.

  4. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  5. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    Science.gov (United States)

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2017-11-01

    Full Text Available In this paper, we present an energy-efficient resource allocation and power control scheme for D2D (Device-to-Device multicasting transmission. The objective is to maximize the overall energy-efficiency of D2D multicast clusters through effective resource allocation and power control schemes, while considering the quality of service (QoS requirements of both cellular users (CUs and D2D clusters. We first build the optimization model and a heuristic resource and power allocation algorithm is then proposed to solve the energy-efficiency problem with less computational complexity. Numerical results indicate that the proposed algorithm outperforms existing schemes in terms of throughput per energy consumption.

  7. The uniformity study of non-oxide thin film at device level using electron energy loss spectroscopy

    Science.gov (United States)

    Li, Zhi-Peng; Zheng, Yuankai; Li, Shaoping; Wang, Haifeng

    2018-05-01

    Electron energy loss spectroscopy (EELS) has been widely used as a chemical analysis technique to characterize materials chemical properties, such as element valence states, atoms/ions bonding environment. This study provides a new method to characterize physical properties (i.e., film uniformity, grain orientations) of non-oxide thin films in the magnetic device by using EELS microanalysis on scanning transmission electron microscope. This method is based on analyzing white line ratio of spectra and related extended energy loss fine structures so as to correlate it with thin film uniformity. This new approach can provide an effective and sensitive method to monitor/characterize thin film quality (i.e., uniformity) at atomic level for thin film development, which is especially useful for examining ultra-thin films (i.e., several nanometers) or embedded films in devices for industry applications. More importantly, this technique enables development of quantitative characterization of thin film uniformity and it would be a remarkably useful technique for examining various types of devices for industrial applications.

  8. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  9. The Development of Smart Home System for Controlling and Monitoring Energy Consumption using WebSocket Protocol

    Science.gov (United States)

    Witthayawiroj, Niti; Nilaphruek, Pongpon

    2017-03-01

    Energy consumption especially electricity is considered one of the most serious problems in households these days. It is because the amount of electricity consumed is more than the amount that people actually need. This means that there is an overusing which resulted from the inconvenience of moving to the switch to turn off the light or any appliances and it is often that closing the light is forgettable, for instance; in addition, there are no tools for monitoring how much energy that is consumed in residents. From this, it can be easily seen that people are having a problem in energy usage monitor and control. There are two main objectives of this study including 1) creating the communication framework among server, clients and devices, and 2) developing the prototype system that try to solve the mentioned problems which gives the user an opportunity to know the amount of electricity they have used in their houses and also the ability to turn appliances on and off through the Internet on smart devices such as smart phones and tablets that support Android platform or any web browser. Raspberry Pi is used as a microcontroller and the data is transferred to the smart device by WebSocket protocol which is strongly recommended for real-time communication. The example features on the device’s screen are user management, controlling and monitoring of appliances. The result expresses that the system is very effective and not difficult to use from users’ satisfaction. However, current sensors may be used for a more accurate electricity measurement and Wi-Fi module for more appliances to calculate its power in the future.

  10. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    Science.gov (United States)

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p 90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  11. Radiation area monitor device and method

    Science.gov (United States)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni; Morrell, Jonathan S.; Kosicek, Andrej

    2018-01-30

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.

  12. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  13. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    DEFF Research Database (Denmark)

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H

    2014-01-01

    -implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. CONCLUSION: The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient......BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  14. MRI device – alternative for electrical energy storage

    Directory of Open Access Journals (Sweden)

    Molokáč, Š.

    2008-01-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically difficult process. Such a process is marked by the energy losses, as the conversion of electrical energy into another form, is most frequently for example mechanical, and then back to the primary electrical form. Though, the superconducting magnetic energy storage (SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. Magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the application of superconducting magnet. After its rejection from operation, there is possibility of using such devices for energy storage purposes. Additionally, such a technology of storage is also ecological.

  15. Consumer protection issues in energy: a guide for attorneys general. Insulation, solar, automobile device, home devices

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Harry I.; Hulse, William S.; Jones, Robert R.; Langer, Robert M.; Petrucelli, Paul J.; Schroeder, Robert J.

    1979-11-01

    The guide attempts to bring together two important and current issues: energy and consumer protection. Perhaps the most basic consumer-protection issue in the energy area is assuring adequate supplies at adequate prices. It is anticipated, though, that consumers will want to consider new ways to lower enegy consumption and cost, and will thus be susceptible to fraudulent energy claims. Information is prepared on insulation, solar, energy-saving devices for the home, and energy-saving devices for the automobile.

  16. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    International Nuclear Information System (INIS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified

  17. Method and apparatus for in-situ characterization of energy storage and energy conversion devices

    Science.gov (United States)

    Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT

    2010-03-09

    Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.

  18. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  19. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  20. Wearable Fall Detector using Integrated Sensors and Energy Devices

    OpenAIRE

    Sungmook Jung; Seungki Hong; Jaemin Kim; Sangkyu Lee; Taeghwan Hyeon; Minbaek Lee; Dae-Hyeong Kim

    2015-01-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction wi...

  1. Plant operation monitoring method and device therefor

    International Nuclear Information System (INIS)

    Ando, Tsugio; Matsuki, Tsutomu.

    1997-01-01

    The present invention provides a method of and a device for monitoring the operation of a nuclear power plant during operation, which improves the safety and reliability of operation without increasing an operator's burden. Namely, a chief in charge orally instruct an operation to an operator upon the operation of a plant constituent equipment. The operator points the equipment and calls the name. Actual operation instruction for the equipment is inputted after confirmation by oral response. The voices of theses series of operation instruction/point-calling/response confirmation are taken into a voice recognition processing device. The processing device discriminates each of the person who calls, and discriminates the content of the calls and objective equipments to be operated. Then, the series of procedures and contents of the operation for the equipments previously disposed in the data base are compared with the order of inputted calls, discriminated contents and the objective equipments to be operated. If they are not agreed with each other, the operation instruction is blocked even if actual operation instructions are inputted. (I.S.)

  2. Fiber-shaped energy harvesting and storage devices

    CERN Document Server

    Peng, Huisheng

    2015-01-01

    This comprehensive book covers flexible fiber-shaped devices in the area of energy conversion and storage. The first part of the book introduces recently developed materials, particularly, various nanomaterials and composite materials based on nanostructured carbon such as carbon nanotubes and graphene, metals and polymers for the construction of fiber electrodes. The second part of the book focuses on two typical twisted and coaxial architectures of fiber-shaped devices for energy conversion and storage. The emphasis is placed on dye-sensitized solar cells, polymer solar cells, lithium-ion b

  3. Research on a new wave energy absorption device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  4. Can validated wrist devices with position sensors replace arm devices for self-home blood pressure monitoring? A randomized crossover trial using ambulatory monitoring as reference.

    Science.gov (United States)

    Stergiou, George S; Christodoulakis, George R; Nasothimiou, Efthimia G; Giovas, Periklis P; Kalogeropoulos, Petros G

    2008-07-01

    Electronic devices that measure blood pressure (BP) at the arm level are regarded as more accurate than wrist devices and are preferred for home BP (HBP) monitoring. Recently, wrist devices with position sensors have been successfully validated using established protocols. This study assessed whether HBP values measured with validated wrist devices are sufficiently reliable to be used for making patient-related decisions in clinical practice. This randomized crossover study compared HBP measurements taken using validated wrist devices (wrist-HBP, Omron R7 with position sensor) with those taken using arm devices (arm-HBP, Omron 705IT), and also with measurements of awake ambulatory BP (ABP, SpaceLabs), in 79 subjects (36 men and 43 women) with hypertension. The mean age of the study population was 56.7 +/- 11.8 years, and 33 of the subjects were not under treatment for hypertension. The average arm-HBP was higher than the average wrist-HBP (mean difference, systolic 5.2 +/- 9.1 mm Hg, P or =10 mm Hg difference between systolic wrist-HBP and arm-HBP and twelve subjects (15%) showed similar levels of disparity in diastolic HBP readings. Strong correlations were found between arm-HBP and wrist-HBP (r 0.74/0.74, systolic/diastolic, P arm-HBP (r 0.73/0.76) than with wrist-HBP (0.55/0.69). The wrist-arm HBP difference was associated with systolic ABP (r 0.34) and pulse pressure (r 0.29), but not with diastolic ABP, sex, age, arm circumference, and wrist circumference. There might be important differences in HBP measured using validated wrist devices with position sensor vs. arm devices, and these could impact decisions relating to the patient in clinical practice. Measurements taken using arm devices are more closely related to ABP values than those recorded by wrist devices. More research is needed before recommending the widespread use of wrist monitors in clinical practice. American Journal of Hypertension doi:10.1038/ajh.2008.176American Journal of Hypertension (2008

  5. Device-Centric Monitoring for Mobile Device Management

    Directory of Open Access Journals (Sweden)

    Luke Chircop

    2016-03-01

    Full Text Available The ubiquity of computing devices has led to an increased need to ensure not only that the applications deployed on them are correct with respect to their specifications, but also that the devices are used in an appropriate manner, especially in situations where the device is provided by a party other than the actual user. Much work which has been done on runtime verification for mobile devices and operating systems is mostly application-centric, resulting in global, device-centric properties (e.g. the user may not send more than 100 messages per day across all applications being difficult or impossible to verify. In this paper we present a device-centric approach to runtime verify the device behaviour against a device policy with the different applications acting as independent components contributing to the overall behaviour of the device. We also present an implementation for Android devices, and evaluate it on a number of device-centric policies, reporting the empirical results obtained.

  6. Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.

    Science.gov (United States)

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars

    2012-12-20

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.

  7. A programmable point-of-care device for external CSF drainage and monitoring.

    Science.gov (United States)

    Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.

  8. System monitoring feedback in cinemas and harvesting energy of the air conditioning condenser

    Science.gov (United States)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2017-05-01

    Our article monitors the degree of emotional involvement of the audience in the action film in theaters by measuring the concentration of CO2. The software performs data processing obtained dispersion sensors and displays data during the film. The software will also trigger the start of the air conditioning condenser where we can get harvesting energy by installing a piezoelectric device. Useful energy can be recovered from various waste produced in cinema. The time lag between actions and changes in environmental systems determines that decisions made now will affect subsequent generations and the future of our environment.

  9. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Science.gov (United States)

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  10. Plant monitoring device

    International Nuclear Information System (INIS)

    Ito, Toru.

    1994-01-01

    The device of the present invention comprises a data collecting section for periodically collecting processed data sent from plant equipments, a top node induction and processing section for an important plant function model for inducing the plant function to be noted particularly by an operator from important plant function models by using process data and a window screen selection section for selecting a window screen to be displayed based on the result of the evaluation for each of function nodes based on the processing described above and determining the layout and automatically forming the display screen. It is constituted so that the kind and the layout of the window under display are checked if they are the same as those one cycle before or not and, if they are different, the screen is automatically switched to a new screen display. Then, operator's psychological burdens such as selection of information and judgement for the operation upon occurrence of plant abnormality and accident can be mitigated, to provide a safe operation circumstance having reinforced monitoring of the function of the whole plant can be provided. (N.H.)

  11. Hematological clozapine monitoring with a point-of-care device

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Thode, Dorrit; Stenager, Elsebeth

    2012-01-01

    for several reasons, perhaps most importantly because of the mandatory hematological monitoring. The Chempaq Express Blood Counter (Chempaq XBC) is a point-of-care device providing counts of white blood cells (WBC) and granulocytes based on a capillary blood sampling. A randomized cross-over trial design...

  12. Energy efficient hybrid computing systems using spin devices

    Science.gov (United States)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  13. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    Science.gov (United States)

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Energy transport in cooling device by magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroshi, E-mail: hyamaguc@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyo-tanabe, Kyoto 610-0321 (Japan); Iwamoto, Yuhiro [Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  15. Energy transport in cooling device by magnetic fluid

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-01-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  16. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  17. Human Motion Energy Harvester for Biometric Data Monitoring

    International Nuclear Information System (INIS)

    Hoffmann, D; Folkmer, B; Manoli, Y

    2013-01-01

    In this paper we present an energy autonomous sensor system fully integrated into the heel of a shoe for biometric data monitoring. For powering the wireless sensor system a pulse-driven energy harvester was developed, which uses the acceleration-impulses from heel-strike during walking. In preparation of the device development acceleration measurements were carried out. The pulse-driven energy harvester is based on the electromagnetic conversion principle and incorporates a 4×4 coil matrix. A beam fixed at both ends is used for suspending the magnetic circuit. The geometric parameters of coil and magnetic circuit were optimized for maximum power output. For an idealized acceleration pulse with a width of 5 ms and a height of 200 m/s 2 an average power output of 0.7 mW was generated using a step frequency of 1 Hz. The functionality of the self-sustained sensor system is demonstrated by measuring the temperature and step-frequency of a walking person and transmitting the data to a base station. We also found that the implementation of the suspension can have a significant impact on the harvester performance reducing the power output

  18. Home energy monitors : Impact over the medium-term

    NARCIS (Netherlands)

    Van Dam, S.S.; Bakker, C.A.; Van Hal, J.D.M.

    2010-01-01

    Home Energy Management Systems (HEMS), e.g. energy monitors, are intermediary products that can visualize, manage, and/or monitor the energy use of other products or whole households. HEMS increasingly receive attention for their role in energy conservation in households. A literature review and a

  19. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  20. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    Science.gov (United States)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one

  1. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Feasibility test on green energy harvesting from physical exercise devices

    Science.gov (United States)

    Mustafi, Nirendra N.; Mourshed, M.; Masud, M. H.; Hossain, M. S.; Kamal, M. R.

    2017-06-01

    The demand of power is increasing day by day due to the increase of world population as well as the industrialization and modernization. Depletion of the world's fossil fuel reserves and the adverse effects of their uses on the environment insist the researchers to find out some means of efficient and cost effective alternative energy sources from small to large scales. In a gymnasium the human metabolism power is used to drive the physical exercise devices. However there are a number of exercise device which can have the potential to generate electricity during physical exercise. By converting the available mechanical energy from these exercise devices into kinetic energy, electric power can be produced. In this work, energy was harvested from the most commonly used physical exercise devices used in the gymnasium - paddling and chin up. The paddle pulley and the chin up pulley were connected to the couple pulley which in turn coupled to an alternator by a V-belt to produce electrical energy and a rechargeable battery was used to store electrical energy. The power generation from the device depends upon the speed at which the alternator runs and the age limit. The electrical energy output was observed 83.6 watt at 1300 rpm and 62.5 watt at1150 rpm alternator speed for the paddling and chin up respectively recorded for an average adult. The device was designed for a constant 49N load on the alternator for both paddling and chin up operation. By running each of these devices for about 12 hours in a day, any gymnasium can avoid burning of almost 23.67 kg and 31.6 kg of diesel fuel per year for chin up and paddling respectively. Also it can cut off the CO2 emission to the environment which reveals itself a standalone green micro gym.

  3. A review on remote monitoring technology applied to implantable electronic cardiovascular devices.

    Science.gov (United States)

    Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro

    2010-12-01

    Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider

  4. The UZPI ash content monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.P.; Bezverkhii, E.A.; Mozhaev, L.G.

    1987-07-01

    This paper describes the results of industrial trials (in coal preparation plants) to establish the accuracy of the UZPI device which determines coal ash content using X-ray detection. It is designed to monitor ash content in the 4-40% range in coal with a grain size of 0-100 mm and a coal layer thickness of 50-150 mm (depending on the ash content and grain size). The ash frequently contains oxides, and although variations in magnesium, aluminium, silicon and sulfur oxides have virtually no effect on accuracy of the UZPI, changes in the levels of calcium oxides and particularly iron oxides have a considerable influence on measurement accuracy (caused by changes in their gamma ray scattering cross section values and atomic numbers). The overall sensitivity to ash content in coal varies from 1.6 to 2.4% abs./% while that to iron oxides in ash is 0.4% abs./%. Concludes that this device is suitable for use in coal preparation plants on thin layers of coal, but its efficiency is affected by external influences, e.g. fluctuations in conveyor loading.

  5. Control Strategies for Arrays of Wave Energy Devices

    OpenAIRE

    Westphalen, J; Bacelli, G; Balitsky, P; Ringwood, John

    2011-01-01

    In this paper, we investigate the differences between two control strategies for a two-device linear array of wave energy converters (WEC) for device spacings of 4 to 80 times the device diameter. The WECs operate in heave only and are controlled in real time. The control strategies, called the independent device and global array control, estimate the excitation forces and calculate the optimum vertical velocity trajectory and reactive power take off force to achieve the ...

  6. The impact of an electronic monitoring and reminder device on patient compliance with antihypertensive therapy

    DEFF Research Database (Denmark)

    Christensen, Arne; Christrup, Lona Louring; Fabricius, Paul Erik

    2010-01-01

    . In the first half of the study, patients using the device reported 91% compliance versus 85% in the control group. This difference diminished after crossover (88 versus 86%). BP was not affected. Electronic monitoring data on compliance revealed taking, dosing and timing compliance between 45 and 52% in study...... to be effective in improving patient compliance to some extent, but the combined effect has not been documented. OBJECTIVE: To assess the impact of an electronic reminder and monitoring device on patient compliance and BP control. METHODS: All patients received medical treatment with telmisartan once daily...... and were randomized to either electronic compliance monitoring with a reminder and monitoring device or standard therapy for 6 months. Both groups were crossed over after 6 months. Intervention effectiveness was assessed using self-reported compliance and BP. RESULTS: Data from 398 patients were analysed...

  7. Theoretical basis, application, reliability, and sample size estimates of a Meridian Energy Analysis Device for Traditional Chinese Medicine Research

    Directory of Open Access Journals (Sweden)

    Ming-Yen Tsai

    Full Text Available OBJECTIVES: The Meridian Energy Analysis Device is currently a popular tool in the scientific research of meridian electrophysiology. In this field, it is generally believed that measuring the electrical conductivity of meridians provides information about the balance of bioenergy or Qi-blood in the body. METHODS AND RESULTS: PubMed database based on some original articles from 1956 to 2014 and the authoŕs clinical experience. In this short communication, we provide clinical examples of Meridian Energy Analysis Device application, especially in the field of traditional Chinese medicine, discuss the reliability of the measurements, and put the values obtained into context by considering items of considerable variability and by estimating sample size. CONCLUSION: The Meridian Energy Analysis Device is making a valuable contribution to the diagnosis of Qi-blood dysfunction. It can be assessed from short-term and long-term meridian bioenergy recordings. It is one of the few methods that allow outpatient traditional Chinese medicine diagnosis, monitoring the progress, therapeutic effect and evaluation of patient prognosis. The holistic approaches underlying the practice of traditional Chinese medicine and new trends in modern medicine toward the use of objective instruments require in-depth knowledge of the mechanisms of meridian energy, and the Meridian Energy Analysis Device can feasibly be used for understanding and interpreting traditional Chinese medicine theory, especially in view of its expansion in Western countries.

  8. A spent fuel assemblies monitoring device by nondestructive analysis 'PYTHON'

    International Nuclear Information System (INIS)

    Saad, M.; Broeskamp, M.; Hahn, H.; Bignan, G.; Boisset, M.; Silie, P.

    1995-01-01

    The monitoring of spent fuel assemblies (16 x 16 UOX) in KWG-reactor pool with the use of non-destructive methods (total Gamma and neutron counting) allow the control of average burn-up and the extremity burn-up. The measurements allow a safety-criticality control before loading the fuel assemblies into the transport casks. A device called PYTHON has been tested and qualified in France. This paper presents a description of the industrial PYTHON device and the results of the measurements. (orig.)

  9. Integrated Solar-Energy-Harvesting and -Storage Device

    Science.gov (United States)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  10. A chest drainage system with a real-time pressure monitoring device.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Tsang-Pai; Chang, Ho; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung

    2015-07-01

    Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the "tidaling phenomenon" in the bottle can be reflective of the extent of patient's recovery. However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. The device is made of a pressure sensor with an operating range between -100 to +100 cmH2O and an amplifying using the "Wheatstone bridge" concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system.

  11. Evaluating clinical accuracy of continuous glucose monitoring devices: other methods

    NARCIS (Netherlands)

    Wentholt, Iris M. E.; Hart, August A.; Hoekstra, Joost B. L.; DeVries, J. Hans

    2008-01-01

    With more and more continuous glucose monitoring devices entering the market, the importance of adequate accuracy assessment grows. This review discusses pros and cons of Regression Analysis and Correlation Coefficient, Relative Difference measures, Bland Altman plot, ISO criteria, combined curve

  12. Device-Centric Monitoring for Mobile Device Management

    OpenAIRE

    Chircop, Luke; Colombo, Christian; Pace, Gordon J.

    2016-01-01

    The ubiquity of computing devices has led to an increased need to ensure not only that the applications deployed on them are correct with respect to their specifications, but also that the devices are used in an appropriate manner, especially in situations where the device is provided by a party other than the actual user. Much work which has been done on runtime verification for mobile devices and operating systems is mostly application-centric, resulting in global, device-centri...

  13. NodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniques

    Directory of Open Access Journals (Sweden)

    Geraldo P. R. Filho

    2014-01-01

    Full Text Available In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM, to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN. It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

  14. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques.

    Science.gov (United States)

    Filho, Geraldo P R; Ueyama, Jó; Villas, Leandro A; Pinto, Alex R; Gonçalves, Vinícius P; Pessin, Gustavo; Pazzi, Richard W; Braun, Torsten

    2014-01-06

    In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

  15. Using MRI devices for the energy storage purposes

    Directory of Open Access Journals (Sweden)

    Štefan Molokáč

    2007-04-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically a difficult process. Such a process is connected with energy losses, as most frequently it is the conversion of electrical energy into another form, for example mechanical, and then back to the primal electrical form. Though, the SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. The magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the basis of superconducting magnet. After its rejection from operation, (basically caused only by its „software fustiness“ and not by functional faults, there is a possibility of using such devices for the energy storage purposes. Additionally, such a technology of storage is also ecological. A research project is running at the Faculty of Mining, Ecology, Process Control and Geotechnologies (F BERG, the Department of Business and Management, in the field of using rejected MRI for energy storage purposes.

  16. Concordance of Adherence Measurement Using Self-Reported Adherence Questionnaires and Medication Monitoring Devices: An Updated Review.

    Science.gov (United States)

    Monnette, Alisha; Zhang, Yichen; Shao, Hui; Shi, Lizheng

    2018-01-01

    As medication adherence continues to be a prevalent issue in today's society, the methods used to monitor medication-taking behaviors are constantly being re-evaluated and compared in search of the 'gold standard' measure. Our review aimed to assess the current literature surrounding the correlation between self-reported questionnaires (SRQs) and electronic monitoring devices to determine if these measures produce similar results. We performed a literature search from 2009 to 2017 using PubMed, PubMed In-Process and Non-Indexed, EMBASE, Ovid MEDLINE, and Ovid MEDLINE In-Process. A keyword search using the terms 'patient compliance', 'treatment compliance', 'medication adherence', 'drug monitoring', 'drug therapy', 'electronic', 'digital', 'computer', 'monitor', 'monitoring', 'drug', 'pharmaceutical preparations', 'compliance', and 'medications' was done to capture all articles. We included articles measuring adherence using both monitoring devices and SRQs. Thirty-five articles were included in this review. The average difference in measured adherence rates between the two measures was 9.2% (range -66.3 to 61.5). A majority (62.7%) of articles reported moderate (n = 12; 27.9%), high (n = 5, 11.6%), or significant (n = 10, 23.3%) correlations between SRQs and monitoring devices. Results from our review are consistent with previous studies, as we found that many of our studies produced moderate to high correlation between both SRQs and monitoring devices [Farmer, Clin Ther 21(6):1074-90 (1999), IMS Institute for Healthcare Informatics. Avoidable costs in US health care (2012), Patel et al., Respirology 18(3):546-52 (2013), Siracusa et al., J Cyst Fibros 14(5):621-6 (2015), Smith et al., Int J Cardiol 145(1):122-3 (2010)]. Our findings demonstrate that self-reported adherence produces comparable results to electronic monitoring devices. As there is not yet a 'gold standard' measure for monitoring patient adherence, SRQs and Medication Event Monitoring Systems

  17. Characterisation of the biofouling community on a floating wave energy device.

    Science.gov (United States)

    Nall, Christopher R; Schläppy, Marie-Lise; Guerin, Andrew J

    2017-05-01

    Wave energy devices are novel structures in the marine environment and, as such, provide a unique habitat for biofouling organisms. In this study, destructive scrape samples and photoquadrats were used to characterise the temperate epibenthic community present on prototypes of the Pelamis wave energy converter. The biofouling observed was extensive and diverse with 115 taxa recorded including four non-native species. Vertical zonation was identified on the sides of the device, with an algae-dominated shallow subtidal area and a deeper area characterised by a high proportion of suspension-feeding invertebrates. Differences in species composition and biomass were also observed between devices, along the length of the device and between sampling dates. This research provides an insight into the variation of biofouling assemblages on a wave energy device as well as the potential technical and ecological implications associated with biofouling on marine renewable energy structures.

  18. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    Science.gov (United States)

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  20. Development and Validation of a Novel Cuff-Less Blood Pressure Monitoring Device

    Directory of Open Access Journals (Sweden)

    Naoki Watanabe, MD

    2017-12-01

    Full Text Available Ordinary cuff-based blood pressure–monitoring devices remain a technical limitation that disturbs activities of daily life. Here we report a novel system for the cuff-less blood pressure estimation (CLB that requires only 1 sensor for photoplethysmography. The present study is the first report to validate and assess the clinical application of the CLB in accordance with the latest wearable device standard (issued by the Institute of Electrical and Electronics Engineers, standard 1708-2014. Our CLB is expected to offer a flexible and wearable device that permits blood pressure monitoring in more continuous and stress-free settings.

  1. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  2. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  3. Affordable Remote Health Monitoring System for the Elderly Using Smart Mobile Device

    Directory of Open Access Journals (Sweden)

    Matthew CLARK

    2015-01-01

    Full Text Available Aging population has been growing as life expectancy increases. In the years to come a much larger percentage of the population will be dependent on others for their daily care. According to a recent report more than 11 million seniors live alone in the USA. These seniors may face serious consequences when they have an emergency situation. However health-monitoring systems are often not affordable for many seniors. The remote health monitoring system presented in this paper addresses the challenge to provide caregivers an emergency alert system for the elderly based on monitoring of their heart rates, breathing activities, and room temperature measurements. The device also allows the dependents to make on demand request for assistance. The remote communication is enabled through the cellular telephone services; so there is no special or additional subscription services needed. This is essential to make the device more affordable for the elderly. We expect that this affordable remote health-monitoring system can be used to help seniors who live alone be safer and healthier.

  4. Design, Manufacturing and Experimental Validation of Optical Fiber Sensors Based Devices for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Angela CORICCIATI

    2016-06-01

    Full Text Available The use of optical fiber sensors is a promising and rising technique used for Structural Health Monitoring (SHM, because permit to monitor continuously the strain and the temperature of the structure where they are applied. In the present paper three different types of smart devices, that are composite materials with an optical fiber sensor embedded inside them during the manufacturing process, are described: Smart Patch, Smart Rebar and Smart Textile, which are respectively a plate for local exterior intervention, a rod for shear and flexural interior reinforcement and a textile for an external whole application. In addition to the monitoring aim, the possible additional function of these devices could be the reinforcement of the structures where they are applied. In the present work, after technology manufacturing description, the experimental laboratory characterization of each device is discussed. At last, smart devices application on medium scale masonry walls and their validation by mechanical tests is described.

  5. Process monitoring by display devices

    International Nuclear Information System (INIS)

    Eggerdinger, C.; Schattner, R.

    1984-01-01

    The use of extensive automation, regulating, protection and limiting devices and the application of ergonomic principles (e.g. the increased use of mimic diagrams) has led to plant being capable of continued operation. German nuclear power stations are in top position worldwide as regards safety and availability. However, there is already a requirement to overcome the unmanageable state due to the large number and miniaturization of elements by renewed efforts. An attempt at this made with conventional technology is represented by a mimic board, which was provided in a powerstation just being set to work. Such mimic boards give the opportunity of monitoring the most important parameters at a glance but there are limits to their use due to the large space required. The use of VDU screens represents a possibility of solving this problem. (orig./DG) [de

  6. Highly conductive paper for energy-storage devices

    KAUST Repository

    Hu, L.

    2009-12-07

    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30-47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices.

  7. A piezoelectric device for impact energy harvesting

    International Nuclear Information System (INIS)

    Jacquelin, E; Adhikari, S; Friswell, M I

    2011-01-01

    This paper studies a piezoelectric impact energy harvesting device consisting of two piezoelectric beams and a seismic mass. The aim of this work is to find the influence of several mechanical design parameters on the output power of such a harvester so as to optimize its performance; the electrical design parameters were not studied. To account for the dynamics of the beams, a model including the mechanical and piezoelectric properties of the system is proposed. The impacts involved in the energy harvesting process are described through a Hertzian contact law that requires a time domain simulation to solve the nonlinear equations. A transient regime and a steady-state regime have been identified and the performance of the device is characterized by the steady-state mean electrical power and the transient electrical power. The time simulations have been used to study the influence of various mechanical design parameters (seismic mass, beam length, gap, gliding length, impact location) on the performance of the system. It has been shown that the impact location is an important parameter and may be optimized only through simulation. The models and the simulation technique used in this work are general and may be used to assess any other impact energy harvesting device

  8. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  9. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  10. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  11. A Real-Time Audio Tele-Presence Device for Remote Acoustic Monitoring

    National Research Council Canada - National Science Library

    Vaudrey, Michael

    2003-01-01

    .... At the end of the Phase I effort, ATI delivered to ARL a fully functional wired binaural hearing device capable of accurately monitoring remote acoustic environments as far as 50 feet from the listener/operator...

  12. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    Science.gov (United States)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  13. Electronic device, system on chip and method for monitoring a data flow

    NARCIS (Netherlands)

    2012-01-01

    An electronic device is provided which comprises a plurality of processing units (IP1-IP6), a network-based inter-connect (N) coupled to the processing units (IP1-IP6) and at least one monitoring unit (P1, P2) for monitoring a data flow of at least one first communication path between the processing

  14. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  15. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  16. Wearable Fall Detector using Integrated Sensors and Energy Devices

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  17. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  18. Protocol Monitoring Passive Solar Energy. Background document

    International Nuclear Information System (INIS)

    Van den Ham, E.R.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The monitoring will be directed at the absolute amount of used solar energy, the relative contribution of passive solar energy to the energy demand in the Netherlands, and the average efficiency of passive solar energy systems. Based on a model of the total building stock the quantities to be monitored can be determined. The most important parameters in the model are: the window surface per orientation, the average U-value (heat transfer coefficient) of windows, the average ZTA-value (incoming solar radiation factor) of windows, and the presence of sun lounges and atriums

  19. A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    Science.gov (United States)

    Sheehan, Emma V.; Stevens, Timothy F.; Attrill, Martin J.

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms−1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and

  20. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.

    Directory of Open Access Journals (Sweden)

    Emma V Sheehan

    2010-12-01

    Full Text Available Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs. Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a "flying array" that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects. The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth, then subsequently successfully deployed in demanding conditions at the deep (>50 m high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms⁻¹ current, the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath

  1. RFQ1 diagnostic devices

    International Nuclear Information System (INIS)

    Chidley, B.G.; Arbique, G.M.; de Jong, M.S.; McMichael, G.E.; Michel, W.L.; Smith, B.H.

    1991-01-01

    The diagnostic devices in use on RFQ1 will be described. They consist of a double-slit emittance-measuring unit, a 45 degree deflection energy-analysis magnet, parametric current transformers, optical beam sensors, beam-stop current monitors, and an x-ray end-point analyzer. All of these devices are able to operate up to the full output current of RFQ1 (75 mA cw at 0.6 MeV)

  2. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  3. Making Image More Energy Efficient for OLED Smart Devices

    Directory of Open Access Journals (Sweden)

    Deguang Li

    2016-01-01

    Full Text Available Now, more and more mobile smart devices are emerging massively; energy consumption of these devices has become an important consideration due to the limitation of battery capacity. Displays are the dominant energy consuming component of battery-operated devices, giving rise to organic light-emitting diode (OLED as a new promising display technology, which consumes different power when displaying different content due to their emissive nature. Based on this property, we propose an approach to improve image energy efficiency on OLED displays by perceiving image content. The key idea of our approach is to eliminate undesired details while preserving the region of interest of the image by leveraging the color and spatial information. First, we use edge detection algorithm to extract region of interest (ROI of an image. Next, we gradually change luminance and saturation of region of noninterest (NON-ROI of the image. Then we perform detailed experiment and case study to validate our approach; experiment results show that our approach can save 22.5% energy on average while preserving high quality of the image.

  4. Energy policies and renewable energy systems monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Di Nisio, Attilio; Savino, Mario; Spadavecchia, Maurizio [Electrical and Electronic Measurements Laboratory, Dept. of Electrical and Electronic Engineering - Politecnico di Bari, Bari (Italy)], e-mails: dinisio@misure.poliba.it, savino@misure.poliba.it, spadavecchia@misure.poliba.it

    2011-07-01

    Full text: The global energy crisis is forcing every country worldwide to review its policies on energy. The environmental disaster at Japan's Fukushima Daiichi nuclear power plant has accelerated this process. Many people around the world are citing the disaster as evidence that nuclear power would endanger the survival of mankind on earth and should be banned. Today we need to focus more substantially on energy saving, especially using smart devices with low power consumption. We have also to review the approach to the exploitation of energy and move from a philosophy 'from the ground to the subsurface' to another 'from the earth to the sun'. This paper highlights the increasing importance of solar power in meeting energy needs while achieving security of supply and minimising carbon dioxide (CO{sub 2}) emissions. It deals also with the development of solar power plants, which require a supervisory control system that improves their efficiency and reliability. (author)

  5. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  6. A Novel Wireless Wearable Volatile Organic Compound (VOC Monitoring Device with Disposable Sensors

    Directory of Open Access Journals (Sweden)

    Yue Deng

    2016-12-01

    Full Text Available A novel portable wireless volatile organic compound (VOC monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  7. Device-based monitoring in physical activity and public health research

    International Nuclear Information System (INIS)

    Bassett, David R

    2012-01-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose–response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use. (paper)

  8. Method and device for monitoring distortion in an optical network

    NARCIS (Netherlands)

    2012-01-01

    A method and a device for monitoring of distortion in an optical network are provided, wherein at least one reference signal and at least one data signal are conveyed via an optical link and wherein a distortion of the at least one data signal is determined based on the at least one reference

  9. Devices for Ambulatory Monitoring of Sleep-Associated Disorders in Children with Neurological Diseases.

    Science.gov (United States)

    Ulate-Campos, Adriana; Tsuboyama, Melissa; Loddenkemper, Tobias

    2017-12-25

    Good sleep quality is essential for a child's wellbeing. Early sleep problems have been linked to the later development of emotional and behavioral disorders and can negatively impact the quality of life of the child and his or her family. Sleep-associated conditions are frequent in the pediatric population, and even more so in children with neurological problems. Monitoring devices can help to better characterize sleep efficiency and sleep quality. They can also be helpful to better characterize paroxysmal nocturnal events and differentiate between nocturnal seizures, parasomnias, and obstructive sleep apnea, each of which has a different management. Overnight ambulatory detection devices allow for a tolerable, low cost, objective assessment of sleep quality in the patient's natural environment. They can also be used as a notification system to allow for rapid recognition and prompt intervention of events like seizures. Optimal monitoring devices will be patient- and diagnosis-specific, but may include a combination of modalities such as ambulatory electroencephalograms, actigraphy, and pulse oximetry. We will summarize the current literature on ambulatory sleep devices for detecting sleep disorders in children with neurological diseases.

  10. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    International Nuclear Information System (INIS)

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-01-01

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 angstrom to 304 angstrom) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner

  11. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    Science.gov (United States)

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.

  12. [A design and study of a novel electronic device for cuff-pressure monitoring].

    Science.gov (United States)

    Wang, Shupeng; Li, Wei; Li, Wen; Song, Dejing; Chen, Desheng; Duan, Jun; Li, Chen; Li, Gang

    2017-06-01

    To design a novel electronic device for measuring the pressure in the cuff of the artificial airway; and to study the advantage of this device on continuous and intermittent cuff pressure monitoring. (1) a portable electronic device for cuff pressure measurement was invented, which could turn pressure signal into electrical signal through a pressure transducer. Meantime, it was possible to avoid pressure leak from the joint and the inside of the apparatus by modified Luer taper and sophisticated design. If the cuff pressure was out of the normal range, the apparatus could release a sound and light alarm. (2) Six traditional mechanical manometers were used to determine the cuff pressure in 6 tracheal tubes. The cuff pressure was maintain at 30 cmH 2 O (1 cmH 2 O = 0.098 kPa) by the manometer first, and repeated every 30 seconds for 4 times. (3) Study of continuous cuff pressure monitoring: We used a random number generator to randomize 6 tracheal tubes, 6 mechanical manometers and 6 our products by number 1-6, which has the same number of a group. Every group was further randomized into two balanced groups, one group used the mechanical manometer first, and the other used our product first. The baseline pressure was 30 cmH 2 O, measurement was performed every 4 hours for 6 times. When traditional mechanical manometer was used for cuff pressure monitoring, cuff pressure was decreased by an average of 2.9 cmH 2 O for each measurement (F = 728.2, P = 0.000). In study of continually monitoring, at each monitoring point, the pressure measured by electronic manometer was higher than the mechanical manometer. All the pressures measured by mechanical manometer were dropped below 20 cmH 2 O at 8th hour, and there was no pressure decrease below 20 cmH 2 O measured by electronic manometer in 24 hours by contrast. In study of intermittent monitoring, the same result was found. The pressure was dropped significantly with time when measured by mechanical manometer (F = 61.795, P

  13. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    Science.gov (United States)

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  14. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  15. Implementasi Wireless Monitoring Energi Listrik Berbasis Web Database

    Directory of Open Access Journals (Sweden)

    Irwan Dinata

    2015-03-01

    Full Text Available Web Database based wireless device for monitoring electricity consumption is designed to substitute manual and conventional measurement system. This device consists of sensor, processor, display and network. The sensor consists of current transformer and AC to AC Power Adapter. The processor is Arduino UNO which process sensor output. Liquid crystal device (LCD is used to display real time output. The last part of the device is network composed of Ethernet Shield, 3G Modem for communication with Database Server as data further processing and storage. The testing with nominal total load 120 watt shows that Vrms value on LCD of the device is 218 volt, Vrms value measured with clamp meter is 216 volt. Irms value on LCD of the device is 0,44 ampere, Irms value measured with clamp meter 0,5 ampere. The real power value on LCD of the device is 92 watt, the real power value measured with clamp meter is 84 watt. The power factor value on LCD of the device is 0,97, the power factor value measured with clamp meter is 0,99.

  16. Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy

    Science.gov (United States)

    Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao

    2018-01-01

    Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.

  17. Valve packing leakage monitoring device

    International Nuclear Information System (INIS)

    Ezekoye, L.I.

    1985-01-01

    A device for monitoring leakage of fluid across a seal in a component connected to a pressurized fluid system including a housing having a chamber with an inlet for receiving fluid leaking across the seal and an outlet. A positioning means is connected to an orifice plug so as to move the plug for permitting the fluid to be discharged through the orifice at the same rate at which it enters the first chamber and means for detecting the movement of the plug is provided to produce and output signal corresponding to the distance moved by the plug and thereby indicate flow rate. The positioning means compromise a piston attached to the plug by a hollow tube and springs, which at low flow rates locate the piston. When flow increases sufficiently pressure increases and urges the piston upwards. A magnetic portion of tube actuates a succession of proximity switches to indicate flow rate. (author)

  18. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  19. Process and device for energy production from thermonuclear fusion reactions

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  20. Bias-Flip Technique for Frequency Tuning of Piezo-Electric Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    Jianguo Ma

    2013-06-01

    Full Text Available Devices that harvest electrical energy from mechanical vibrations have the problem that the frequency of the source vibration is often not matched to the resonant frequency of the energy harvesting device. Manufacturing tolerances make it difficult to match the Energy Harvesting Device (EHD resonant frequency to the source vibration frequency, and the source vibration frequency may vary with time. Previous work has recognized that it is possible to tune the resonant frequency of an EHD using a tunable, reactive impedance at the output of the device. The present paper develops the theory of electrical tuning, and proposes the Bias-Flip (BF technique, to implement this tunable, reactive impedance.

  1. Current state of low energy EB devices and its application technology

    International Nuclear Information System (INIS)

    Kinoshita, Shinobu

    2000-01-01

    This paper introduced the current state of low energy type EB (electron beam) devices with an acceleration voltage of 300 kV or below and specific application examples. As for EB devices, it introduced the ultra-compact new EB device (microbeam LV), experimental devices, and the pilot/production devices which have been recently developed by the manufacturer to which the author belongs. As the applications of low energy EB devices, it specifically introduced curing, graft polymerization, crosslinking, and sterilization/disinfection with soft electrons: (1) examples of EB curing; antistatic agents in antibacterial/antifungal property imparting processing, hard coat, printing and topcoat, high gloss/pattern transfer processing, and metal vapor deposition film, (2) example of graft polymerization; barrier imparting films, and (3) examples of crosslinking; shrinking films/tubes and foamed sheets. (A.O.)

  2. Multimodal piezoelectric devices optimization for energy harvesting

    Directory of Open Access Journals (Sweden)

    G Acciani

    2016-09-01

    Full Text Available The use of the piezoelectric effect to convert ambient vibration into useful electrical energy constitutes one of the most studied areas in Energy Harvesting (EH research. This paper presents a typical cantilevered Energy Harvester device, which relates the electrical outputs to the vibration mode shape easily. The dynamic strain induced in the piezoceramic layer results in an alternating voltage output. The first six modes of frequencies and the deformation pattern of the beam are carried out basing on an eigenfrequency analysis conducted by the MEMS modules of the COMSOL Multiphysic® v3.5a to perform the Finite Element Analysis of the model. Subsequently, the piezoelectric material is cut around the inflection points to minimize the voltage cancellation effect occurring when the sign changes in the material. This study shows that the voltage produced by the device, increases in as the dimensions of the cuts vary in the piezoelectric layer. Such voltage reaches the optimum amount of piezoelectric material and cuts positioning. This proves that the optimized piezoelectric layer is 16% more efficient than the whole piezoelectric layer.

  3. Remote monitoring of implantable cardiac devices: current state and future directions.

    Science.gov (United States)

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V

    2018-01-01

    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  4. Low Mass Printable Devices for Energy Capture, Storage, and Use

    Science.gov (United States)

    Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.

    2010-01-01

    The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function

  5. Accuracy of Consumer Monitors for Estimating Energy Expenditure and Activity Type.

    Science.gov (United States)

    Woodman, James A; Crouter, Scott E; Bassett, David R; Fitzhugh, Eugene C; Boyer, William R

    2017-02-01

    Increasing use of consumer-based physical activity (PA) monitors necessitates that they are validated against criterion measures. Thus, the purpose of this study was to examine the accuracy of three consumer-based PA monitors for estimating energy expenditure (EE) and PA type during simulated free-living activities. Twenty-eight participants (mean ± SD: age, 25.5 ± 3.7 yr; body mass index, 24.9 ± 2.6 kg·m) completed 11 activities ranging from sedentary behaviors to vigorous intensities. Simultaneous measurements were made with an Oxycon portable calorimeter (criterion), a Basis Peak and Garmin Vivofit on the nondominant wrist, and three Withings Pulse devices (right hip, shirt collar, dominant wrist). Repeated-measures ANOVA were used to examine differences between measured and predicted EE. Intraclass correlation coefficients were calculated to determine reliability of EE predictions between Withings placements. Paired samples t tests were used to determine mean differences between observed minutes and Basis Peak predictions during walking, running, and cycling. On average, the Basis Peak was within 8% of measured EE for the entire PA routine (P > 0.05); however, there were large individual errors (95% prediction interval, -290.4 to +233.1 kcal). All other devices were significantly different from measured EE for the entire PA routine (P types, Basis Peak correctly identified ≥92% of actual minutes spent walking and running (P > 0.05), and 40.4% and 0% of overground and stationary cycling minutes, respectively (P < 0.001). The Basis Peak was the only device that did not significantly differ from measured EE; however, it also had the largest individual errors. Additionally, the Basis Peak accurately predicted minutes spent walking and running, but not cycling.

  6. Remote device control and monitor system for the LHD deuterium experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Ohsuna, Masaki; Ito, Tatsuki; Nonomura, Miki; Imazu, Setsuo; Emoto, Masahiko; Iwata, Chie; Yoshida, Masanobu; Yokota, Mitsuhiro; Maeno, Hiroya; Aoyagi, Miwa; Ogawa, Hideki; Nakamura, Osamu; Morita, Yoshitaka; Inoue, Tomoyuki; Watanabe, Kiyomasa [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Ida, Katsumi; Ishiguro, Seiji; Kaneko, Osamu [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan)

    2016-11-15

    Highlights: • Device remote control will be significant for the LHD deuterium experiments. • A central management GUI to control the power distribution for devices. • For safety, power management is separated from operational commanding. • Wi-Fi was tested and found to be not reliable with fusion plasmas. - Abstract: Upon beginning the LHD deuterium experiment, the opportunity for maintenance work in the torus hall will be conspicuously reduced such that all instruments must be controlled remotely. The LHD data acquisition (DAQ) and archiving system have been using about 110 DAQ front-end, and the DAQ central control and monitor system has been implemented for their remote management. This system is based on the “multi-agent” model whose communication protocol has been unified. Since DAQ front-end electronics would suffer from the “single-event effect” (SEE) of D-D neutrons, software-based remote operation might become ineffective, and then securely intercepting or recycling the electrical power of the device would be indispensable for recovering from a non-responding fault condition. In this study, a centralized control and monitor system has been developed for a number of power distribution units (PDUs). This system adopts the plug-in structure in which the plug-in modules can absorb the differences among the commercial products of numerous vendors. The combination of the above-mentioned functionalities has led to realizing the flexible and highly reliable remote control infrastructure for the plasma diagnostics and the device management in LHD.

  7. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  8. Re-materialising energy use through transparent monitoring systems

    International Nuclear Information System (INIS)

    Burgess, Jacquelin; Nye, Michael

    2008-01-01

    This paper reviews the effect of transparent energy monitoring systems on the purchasing, production and energy use behaviour of consumers and producers. Relevant literature is explored on the linkages between feedback, risk and responsibility, knowledge, economic drivers, and sustainable energy consumption. Drawing on international as well as UK-specific experiences, the paper focuses on the prospects for current and future energy monitoring systems to 're-materialise' energy use in economic and environmental terms that are more meaningful, and thus more behaviourally significant, to a substantially wider range of energy users than today's. Appliance labelling, smart metering and carbon footprint analyses are explored as case studies

  9. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  10. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Energy Analysis of Multi-Function Devices in an Office Environment

    Data.gov (United States)

    National Aeronautics and Space Administration — As part of an effort to monitor electricity usage by plug loads in a new high performance office building, plug load management devices were deployed to enable data...

  12. EnTracked: Energy-Efficient Robust Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben

    2009-01-01

    conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. The realized system tracks pedestrian targets equipped with GPS-enabled devices. The system is configurable to realize different trade-offs between energy consumption and robustness. We provide...... of the mobile device. Furthermore, tracking has to robustly deliver position updates when faced with changing conditions such as delays due to positioning and communication, and changing positioning accuracy. This work proposes EnTracked --- a system that, based on the estimation and prediction of system...... extensive experimental results by profiling how devices consume power, by emulation on collected data and by validation in several real-world deployments. Results from this profiling show how a device consumes power while tracking its position. Results from the emulation indicate that the system can...

  13. Registered manufacturers of renewable energy devices

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Registered manufacturers of renewable energy devices in India are listed. The list is arranged under the headings : solar water heating system, solar cooker, solar still and water pumping wind mill. In all 38 manufacturers are listed. The list gives the postal address, name of the contact person and phone number of each manufacturer. (M.G.B.)

  14. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    Science.gov (United States)

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New device architecture of a thermoelectric energy conversion for recovering low-quality heat

    Science.gov (United States)

    Kim, Hoon; Park, Sung-Geun; Jung, Buyoung; Hwang, Junphil; Kim, Woochul

    2014-03-01

    Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, /W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.

  16. ECOPS: Energy-Efficient Collaborative Opportunistic Positioning for Heterogeneous Mobile Devices

    Directory of Open Access Journals (Sweden)

    Kaustubh Dhondge

    2013-01-01

    and prevalent WiFi, broadcasted from a few other devices in the communication range. The position-broadcasting devices in ECOPS have sufficient battery power and up-to-date location information obtained from accurate but energy-inefficient GPS. A position receiver in ECOPS estimates its location using a combination of methods including received signal strength indicators and 2D trilateration. Our field experiments show that ECOPS significantly reduces the total energy consumption of devices while achieving an acceptable level of location accuracy. ECOPS can be especially useful for unique resource scarce, infrastructureless, and mission critical scenarios such as battlefields, border patrol, mountaineering expeditions, and disaster area assistance.

  17. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-01-01

    The SLAC linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. The energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08 %. The design considerations of this monitor are presented. A pair of these monitors is under construction with an installation data set for late summer 1986

  18. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-04-01

    The SLAC Linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved Linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. the energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC Linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08%. The design considerations of this monitor are presented in this paper. A pair of these monitors is under construction with an installation date set for late summer 1986. 5 refs., 6 figs

  19. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Clinical evaluation of a new intracranial pressure monitoring device.

    Science.gov (United States)

    Stendel, R; Heidenreich, J; Schilling, A; Akhavan-Sigari, R; Kurth, R; Picht, T; Pietilä, T; Suess, O; Kern, C; Meisel, J; Brock, M

    2003-03-01

    Continuous monitoring of intracranial pressure (ICP) still plays a key role in the management of patients at risk from intracranial hypertension. Numerous ICP-measuring devices are available. The aim of the present study was to investigate the clinical characteristics and the magnetic resonance imaging (MRI) compatibility of the recently developed Neurovent-P(REHAU AG+CO, REHAU, Germany) ICP monitoring device. In a prospective two-center study, a total of 98 patients with severe head injury, subarachnoid haemorrhage, intracerebral haemorrhage, and non-traumatic brain edema underwent intraparenchymal monitoring of ICP using the Neurovent-P. A control group comprising 50 patients underwent implantation of the Camino-OLM-110-4B ICP monitor. The zero drift of the probes was determined before and after the ICP recording period. Technical and medical complications were documented. The MRI compatibility of the Neurovent-P ICP probe was investigated by evaluating artifacts caused by the probe, probe function and temperature changes during MRI, and probe movement caused by the magnetic field. The mean zero drift was 0.2+/-0.41 mmHg (maximum 3 mmHg) for the Neurovent-P ICP probes and 0.4+/-0.57 mmHg (maximum 12 mmHg) for the Camino-OLM-110-4B ICP probes. No significant correlation was identified between the extent of zero drift following the removal of the probes and the length of monitoring. Intraparenchymal haemorrhage spatially related to the probe occurred in 1 out of 50 (2%) patients with a Camino-OLM-110-4B probe and in 1 out of 98 (1%) with a Neurovent-P. Damage of the probe due to kinking or overextension of the cable or glass fiber occurred in 4 of the 50 (8%) Camino-OLM-110-4B ICP probes and in 5 of the 98 (5%) Neurovent-P probes. On T2-weighted MR images, the Neurovent-P ICP probe induced only small artifacts with very good discrimination of the surrounding tissue. On T1-weighted MR images, there was a good imaging quality but artifact-related local disturbances

  1. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    Science.gov (United States)

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preliminary Load Estimations for DEXA Wave Energy Device - Hanstholm, Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    by DEXA Wave Energy ApS, in regular and irregular wave states, as described in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The length scale of the model was 1:20 compared to a full scale device suitable fro the Danish part of the North Sea, according...... to DEXA Wave Energy ApS. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by DEXA Wave Energy ApS, were measured and used for calculation of power available...... to the power take-off....

  3. Evaluation of NEB energy markets and supply monitoring function

    International Nuclear Information System (INIS)

    2003-09-01

    Canada's National Energy Board regulates the exports of oil, natural gas, natural gas liquids and electricity. It also regulates the construction, operation and tolls of international and interprovincial pipelines and power lines. It also monitors energy supply and market developments in Canada. The Board commissioned an evaluation of the monitoring function to ensure the effectiveness and efficiency of the monitoring activities, to identify gaps in these activities and to propose recommendations. The objectives of the monitoring mandate are to provide Canadians with information regarding Canadian energy markets, energy supply and demand, and to ensure that exports of natural gas, oil, natural gas liquids and electricity do not occur at the detriment of Canadian energy users. The Board ensures that Canadians have access to domestically produced energy on terms that are as favourable as those available to export buyers. The following recommendations were proposed to improve the monitoring of energy markets and supply: (1) increase focus and analysis on the functioning of gas (first priority) and other commodity markets, (2) increase emphasis on forward-looking market analysis and issue identification, (3) demonstrate continued leadership by encouraging public dialogue on a wide range of energy market issues, (4) improve communication and increase visibility of the NEB within the stakeholder community, (5) build on knowledge management and organizational learning capabilities, (6) improve communication and sharing of information between the Applications and Commodities Business Units, and (7) enhance organizational effectiveness of the Commodities Business Unit. figs

  4. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  5. Automatic Energy Control And Monitoring System For Building

    Directory of Open Access Journals (Sweden)

    Hnin Nu Thaung

    2015-08-01

    Full Text Available The use of smart home technology in the home or building offers significant potential for energy savings. In this paper an energy management system based on wireless sensor networks. The proposed system is composed of two main components a wireless sensor network and monitoring terminal. Wireless sensors are used for sensing and transmitting electricity data and remote monitoring and control of appliances are provided to users through computer. The system enables users to save energy by monitoring and controlling appliances through terminal. This paper gives an overview of sensor technology and wireless networks in the development of an intelligent energy management system for buildings. This technology has ample potential to change the way live and work. ZigBee is used as a communication medium in building intelligent energy management system in this paper. From the prototype setup it is shown that ZigBee is a suitable technology to be adopted as the communication infrastructure in energy management system for buildings .The proposed system can be installed and maintained in residential environments with ease.

  6. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  7. Reliability and Maintenance for Offshore Wind Turbines and Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines are in some countries contributing significantly the production of electricity and wave energy devices have the potential to be developed in a similarway. For both offshore wind turbines and wave energy devices reliability is a key issue since costs to operation and maintenance may...... be significant contributors to the Levelized Cost Of Energy and OM costs are highly dependent on the reliability of the components implying that it is important to focus on increasing the reliability as much as is economically reasonable. This paper describes basic aspects for reliability analysis of wind...... turbines and wave energy devices with special focus on structural components. The reliability assessment needs include the effects of the control system and possible faults due to failure of electrical/mechanical components and e.g. loss of grid connection. The target reliability level for wind turbine...

  8. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    Directory of Open Access Journals (Sweden)

    Tien-Wei Shyr

    2014-02-01

    Full Text Available In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements.

  9. Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices

    Science.gov (United States)

    Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.

    2016-12-01

    Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC

  10. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. ICT energy efficiency in higher education. Continuous measurement and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ter Hofte, H. [Novay, Enschede (Netherlands)

    2011-11-15

    Power consumption of information and communications technology (ICT) is rising rapidly worldwide. Reducing (the growth in) energy demand helps to achieve sustainability goals in the area of energy resource depletion, energy security, economy, and ecology. Various governments and industry consortia have set out policies and agreements to reduce the (growth in) demand for energy. In the MJA3 agreements in the Netherlands, various organizations, including all 14 universities and 39 universities of applied sciences pledged to achieve 30% increase in energy efficiency in 2020 compared to 2005. In this report, we argue that using the number of kilowatt-hours of final electricity used for ICT per enrolled student per day (kWh/st/d), should be used as the primary metric for ICT energy efficiency in higher education. For other uses of electricity than ICT in higher education, we express electricity use in kilowatthours per person per day (kWh/p/d). Applying continuous monitoring and management of ICT energy is one approach one could take to increase ICT energy efficiency in education. In households, providing direct (i.e. real-time) feedback about energy use typically results in 5-15% energy savings, whereas indirect feedback (provided some time after consumption occurs), results in less energy savings, typically 0-10%. Continuous measurement of ICT electricity use can be done in a variety of ways. In this report, we distinguish and describe four major measurement approaches: (1) In-line meters, which require breaking the electrical circuit to install the meter; (2) clamp-on-meters, which can be wrapped around a wire; (3) add-ons to existing energy meters, which use analog or digital ports of existing energy meters; (4) software-only measurement, which uses existing network interfaces, protocols and APIs. A measurement approach can be used at one or more aggregation levels: at building level (to measure all electrical energy used in a building, e.g. a datacenter); at

  12. A rotary multimodal hybrid energy harvesting device powered by human motion

    Science.gov (United States)

    Larkin, Miles R.

    This thesis presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models of the device were developed, from which numerical simulations were performed for several different generator sizes. Two prototypes, 180 mm and 100 mm in diameter, respectively, were fabricated and characterized experimentally with a modal shaker. The 180 mm prototype generated 120 mW from the electromagnetic system at 5 Hz and 0.8g, and 4.23 mW from the piezoelectric system at 20.2 Hz and 0.4g excitation acceleration. Finally, the power generation capabilities of the two prototypes were compared to other similar devices.

  13. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Fisher, Frank T

    2011-01-01

    Future deployment of wireless sensor networks will ultimately require a self-sustainable local power source for each sensor, and vibration energy harvesting is a promising approach for such applications. A requirement for efficient vibration energy harvesting is to match the device and source frequencies. While techniques to tune the resonance frequency of an energy harvesting device have recently been described, in many applications optimization of such systems will require the energy harvesting device to be able to autonomously tune its resonance frequency. In this work a vibration energy harvesting device with autonomous resonance frequency tunability utilizing a magnetic stiffness technique is presented. Here a piezoelectric cantilever beam array is employed with magnets attached to the free ends of cantilever beams to enable magnetic force resonance frequency tuning. The device is successfully tuned from − 27% to + 22% of its untuned resonance frequency while outputting a peak power of approximately 1 mW. Since the magnetic force tuning technique is semi-active, energy is only consumed during the tuning process. The developed prototype consumed maximum energies of 3.3 and 3.9 J to tune to the farthest source frequencies with respect to the untuned resonance frequency of the device. The time necessary for this prototype device to harvest the energy expended during its most energy-intensive (largest resonant frequency adjustment) tuning operation is 88 min in a low amplitude 0.1g vibration environment, which could be further optimized using higher efficiency piezoelectric materials and system components

  14. Impact of stand-by energy losses in electronic devices on smart network performance

    Directory of Open Access Journals (Sweden)

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  15. Monitoring and optimization of energy consumption of base transceiver stations

    International Nuclear Information System (INIS)

    Spagnuolo, Antonio; Petraglia, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six BSs (Base Transceiver Stations) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy. - Highlights: • Energy consumption and environmental parameters of a base transceiver system have been monitored. • Energy consumption is related to the air conditioning functions and to the load of telephone traffic. • Energy saving can be obtained by careful choice of cooling parameters and by turn off BS transceivers. • Energy saving parameters can be estimated by a simulation Monte Carlo method

  16. Energy harvesting from high-rise buildings by a piezoelectric harvester device

    International Nuclear Information System (INIS)

    Xie, X.D.; Wang, Q.; Wang, S.J.

    2015-01-01

    A novel piezoelectric technology of harvesting energy from high-rise buildings is developed. While being used to harness vibration energy of a building, the technology is also helpful to dissipate vibration of the building by the designed piezoelectric harvester as a tuned mass damper. The piezoelectric harvester device is made of two groups of series piezoelectric generators connected by a shared shaft. The shaft is driven by a linking rod hinged on a proof mass on the tip of a cantilever fixed on the roof of the building. The influences of some practical considerations, such as the mass ratio of the proof mass to the main structure, the ratios of the length and flexural rigidity of the cantilever to those of the main structure, on the root mean square (RMS) of the generated electric power and the energy harvesting efficiency of the piezoelectric harvester device are discussed. The research provides a new method for an efficient and practical energy harvesting from high-rise buildings by piezoelectric harvesters. - Highlights: • A new piezoelectric technology in energy harvesting from high-rise buildings is introduced. • A new mathematics model to calculate the energy harvested by the piezoelectric device is developed. • A novel efficient design of the piezoelectric harvester device in provided. • An electric power up to 432 MW under a seismic excitation at a frequency of 30 rad/s is achieved.

  17. The applications of carbon nanomaterials in fiber-shaped energy storage devices

    Science.gov (United States)

    Wu, Jingxia; Hong, Yang; Wang, Bingjie

    2018-01-01

    As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).

  18. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides

    Science.gov (United States)

    Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-01-01

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157

  19. Trend of Energy Saving in Electronic Devices for Research and Development

    Directory of Open Access Journals (Sweden)

    Rahmayanti R.

    2016-01-01

    Full Text Available In electronic industry, energy saving is one of the performance indicators of competitiveness beside price, speed, bandwidth and reliability. This affects research and development (R&D activity in mechatronic systems which uses electronic components and electronic systems. A review of trend of electronic devices technology development has been conducted with focus on energy saving. This review includes electronic devices, semiconductor, and nanotechnology. It can be concluded that the trend in electronic devices is mainly dictated by semiconductor technology development. The trend can be concluded as smaller size, lower voltage leading to energy saving, less heat, higher speed, more reliable, and cheaper. In accordance to such technology development, R&D activities in mechatronics especially in Indonesia is being pushed to make proper alignment.Some of such alignment actions are surface mount technology (SMT for installing surface mount devices components (SMD, design layout and SMD troubleshooting tools as well as human resources training and development.

  20. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  1. The design of a wireless portable device for personalized ultraviolet monitoring

    Science.gov (United States)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  2. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    Science.gov (United States)

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  3. Development of a Whole Blood Paper-Based Device for Phenylalanine Detection in the Context of PKU Therapy Monitoring

    Directory of Open Access Journals (Sweden)

    Robert Robinson

    2016-02-01

    Full Text Available Laboratory-based testing does not allow for the sufficiently rapid return of data to enable optimal therapeutic monitoring of patients with metabolic diseases such as phenylketonuria (PKU. The typical turn-around time of several days for current laboratory-based testing is too slow to be practically useful for effective monitoring or optimizing therapy. This report describes the development of a rapid, paper-based, point-of-care device for phenylalanine detection using a small volume (40 μL of whole blood. The quantitative resolution and reproducibility of this device with instrumented readout are described, together with the potential use of this device for point-of-care monitoring by PKU patients.

  4. Algorithm of Energy Efficiency Improvement for Intelligent Devices in Railway Transport

    Directory of Open Access Journals (Sweden)

    Beinaroviča Anna

    2016-07-01

    Full Text Available The present paper deals with the use of systems and devices with artificial intelligence in the motor vehicle driving. The main objective of transport operations is a transportation planning with minimum energy consumption. There are various methods for energy saving, and the paper discusses one of them – proper planning of transport operations. To gain proper planning it is necessary to involve the system and devices with artificial intelligence. They will display possible developments in the choice of one or another transport plan. Consequently, it can be supposed how much the plan is effective against the spent energy. The intelligent device considered in this paper consists of an algorithm, a database, and the internet for the connection to other intelligent devices. The main task of the target function is to minimize the total downtime at intermediate stations. A specific unique PHP-based computer model was created. It uses the MySQL database for simulation data storage and processing. Conclusions based on the experiments were made. The experiments showed that after optimization, a train can pass intermediate stations without making multiple stops breaking and accelerating, which leads to decreased energy consumption.

  5. Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term

    International Nuclear Information System (INIS)

    Hargreaves, Tom; Nye, Michael; Burgess, Jacquelin

    2013-01-01

    This paper reports on how, over a 12-month period, UK householders interacted with feedback on their domestic electricity consumption in a field trial of real time displays or smart energy monitors. Drawing on the findings of 11 follow-up qualitative interviews with householders involved in a ‘Visible Energy Trial’, the paper suggests that: (i) over time, smart energy monitors gradually become ‘backgrounded’ within normal household routines and practices; (ii) the monitors do increase householders’ knowledge of and confidence about the amount of electricity they consume; (iii) but, beyond a certain level and for a wide variety of reasons, the monitors do not necessarily encourage or motivate householders to reduce their levels of consumption; and (iv) once equipped with new knowledge and expertise about their levels of electricity consumption, household practices may become harder to change as householders realise the limits to their energy saving potential and become frustrated by the absence of wider policy and market support. The paper concludes by reflecting on the policy and research implications of these findings in relation to future transition pathways to a low-carbon economy. - Highlights: ► We interviewed 11 householders who had used a smart energy monitor for 12 months. ► The monitors did help interviewees learn about their energy use. ► Over time, the monitors became ‘backgrounded’ within normal household routines. ► After early behaviour changes, the monitors did not motivate further energy saving. ► The monitors may ‘harden’ energy use patterns in the absence of wider support.

  6. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  7. Energy monitoring and the 'energy passport' for buildings - Preliminary study; Energie-Monitoring Gebaeude und Gebaeude-Energiepass

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A.; Menti, U.-P. [Amstein and Walthert AG, Zuerich (Switzerland); Sigg, R.; Besser, U. [Intep Integrale Planung GmbH, Zuerich (Switzerland)

    2004-07-01

    This preliminary study for the Swiss Federal Office of Energy (SFOE) examines the situation in Switzerland with regard to the creation of an energy-consumption rating system for buildings. Present and future developments in Europe in this area are examined. This preliminary study provides the basis for a main study in that it defines the main questions to be looked at. Present-day data collection on the energy consumption of buildings is looked at critically. The authors suggest the integration of an energy-consumption data bank in the existing building and apartment register. The situation in Europe, where specific ideas on the introduction of national 'energy passports' for buildings are being looked at, is considered. The work that will have to be done in Switzerland in this area is reviewed, and the essential prerequisites for the implementation of such an energy-monitoring system are discussed.

  8. Electrochemical energy storage devices comprising self-compensating polymers

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-01-30

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises a zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.

  9. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  10. Energy-efficient Trajectory Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Bhattacharya, Sourav; Blunck, Henrik

    2011-01-01

    Emergent location-aware applications often require tracking trajectories of mobile devices over a long period of time. To be useful, the tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile de vice. Furthermore, when trajectory information needs to ...

  11. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  12. Wave energy devices with compressible volumes.

    Science.gov (United States)

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  13. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.

    Science.gov (United States)

    Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-01-01

    One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Energy Harvesting Based Body Area Networks for Smart Health.

    Science.gov (United States)

    Hao, Yixue; Peng, Limei; Lu, Huimin; Hassan, Mohammad Mehedi; Alamri, Atif

    2017-07-10

    Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.

  15. Protocol Monitoring Passive Solar Energy

    International Nuclear Information System (INIS)

    Van den Ham, E.R.; Bosselaar, L.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The contribution was 57 PJ in 1990 and also 57 PJ in 1995. The efficiency of passive solar energy systems increased from -31.5% to -28.1% in the period 1990-1995, mainly as a result of the use of extra insulating glazing. As a result of the reduction of energy consumption for heating in houses it is expected that the extra contribution of 2 PJ will not be realized in the year 2010. It is suggested that the method to determine the absolute contribution of passive solar energy to the energy demand of dwellings is to be included in the protocol monitoring renewable energy. For the method to be included in the energy statistics of Statistics Netherlands (CBS) it can be considered only to take into account the difference compared to 1990. 11 refs

  16. Results of remote follow-up and monitoring in young patients with cardiac implantable electronic devices.

    Science.gov (United States)

    Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio

    2016-01-01

    Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.

  17. Structure requirements for magnetic energy storage devices

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Huang, X.

    1993-01-01

    Large variety of large and small magnetic energy storage systems have been designed and analyzed in the last 20 years. Cryoresistive and superconductive energy storage (SMES) magnets have been considered for applications such as load leveling for electric utilities, pulsed storage for electromagnetic launchers and accelerator devices, and space borne superconductive energy storage systems. Large SMES are supported by a combination of cold and warm structure while small SMES are supported only by cold structure. In this article we provide analytical and numerical tools to estimate the structure requirements as function of the stored energy and configuration. Large and small solenoidal and toroidal geometries are used. Considerations for both warm and cold structure are discussed. Latest design concepts for both large and small units are included. (orig.)

  18. Condition Monitoring and Fault Diagnosis for an Antifalling Safety Device

    Directory of Open Access Journals (Sweden)

    Guangxiang Yang

    2015-01-01

    Full Text Available There is a constant need for the safe operation and reliability of antifalling safety device (AFSD of an elevator. This paper reports an experimental study on rotation speed and catching torque monitoring and fault diagnosis of an antifalling safety device in a construction elevator. Denoising the signal using wavelet transform is presented in this paper. Based on the denoising effects for several types of wavelets, the sym8 wavelet basis, which introduces the high order approximation and an adaptive threshold, is employed for denoising the signal. The experimental result shows a maximum data error reduction of 7.5% is obtained and SNRs (signal-to-noise ratio of rotation speed and catching torque are improved for 3.9% and 6.4%, respectively.

  19. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    Science.gov (United States)

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  20. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  1. Using Smart Meters Data for Energy Management Operations and Power Quality Monitoring in a Microgrid

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio J.; Diaz, Enrique Rodriguez; Anvari-Moghaddam, Amjad

    2017-01-01

    purposes, integrating HAN/BAN communications, alarms and power quality indicators in some cases. All those characteristics make this widely spread equipment a free, accurate and flexible source of information that can replace expensive and dedicated devices. Therefore, this paper presents the integration...... of a commercial advanced metering infrastructure (AMI) in the context of a smart building with an energy management system (EMS). Furthermore, power quality monitoring based on this AMI is explained. All the details regarding the implementation in a laboratory scale application, as well as the obtained results...

  2. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  3. Personalized Remote Monitoring of the Atrial Fibrillation Patients with Electronic Implant Devices

    Directory of Open Access Journals (Sweden)

    Gokce B. Laleci

    2011-01-01

    Full Text Available Cardiovascular Implantable Electronic Devices (CIED are gaining popularity in treating patients with heart disease. Remote monitoring through care management systems enables continuous surveillance of such patients by checking device functions and clinical events. These care management systems include decision support capabilities based on clinical guidelines. Data input to such systems are from different information sources including medical devices and Electronic Health Records (EHRs. Although evidence-based clinical guidelines provides numerous benefits such as standardized care, reduced costs, efficient and effective care management, they are currently underutilized in clinical practice due to interoperability problems among different healthcare data sources. In this paper, we introduce the iCARDEA care management system for atrial fibrillation patients with implant devices and describe how the iCARDEA care plan engine executes the clinical guidelines by seamlessly accessing the EHR systems and the CIED data through standard interfaces.

  4. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    Science.gov (United States)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  5. Measuring and monitoring energy access: Decision-support tools for policymakers in Africa

    International Nuclear Information System (INIS)

    Hailu, Yohannes G.

    2012-01-01

    A significant number of African States have adapted energy access targets. In evaluating progress towards these goals, measuring and monitoring energy access becomes relevant. This paper reviews energy access indicators and identifies their utility and challenges in their application. By focusing on Africa, a broader framework for energy access measurement and monitoring is discussed, along with implementation barriers and potential solutions. To demonstrate the utility of energy access decision-support tool in Africa, a scenario analysis in five regional energy pools is conducted using the Energy Spending Model tool. Institutionalizing monitoring and decision-support tools can provide valuable feedback to policymakers aiming to design and implement effective energy access programs serving a growing population in Africa. - Highlights: ► Most African countries have adapted energy access targets. ► To monitor and evaluate performance, monitoring and decision-support tools are required. ► Framework for tool development should consider data, cost, political and other factors. ► Implementation constraints include technical, data, resource and urban/rural issues. ► Electricity Spending Needs model is one decision support tool that ties access targets to investment needs. ► Monitoring tools provide crucial feedback on Africa's energy access progress.

  6. Design of a tracking device for on-line dose monitoring in hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Collamati, F.; De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Faccini, R. [Dipartimento di Fisica, “La Sapienza” Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Marafini, M. [INFN Sezione di Roma, Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Mattei, I. [INFN Sezione di Milano, Milano (Italy); Muraro, S., E-mail: silvia.muraro@mi.infn.it [INFN Sezione di Milano, Milano (Italy); Paramatti, R. [INFN Sezione di Roma, Roma (Italy); Patera, V. [INFN Sezione di Roma, Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, “La Sapienza” Università di Roma, Roma (Italy); Pinci, D. [INFN Sezione di Roma, Roma (Italy); Rucinski, A. [INFN Sezione di Roma, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, “La Sapienza” Università di Roma, Roma (Italy); Russomando, A. [Dipartimento di Fisica, “La Sapienza” Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma (Italy); and others

    2017-02-11

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project , capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution. - Highlights: • On-line range monitoring in hadrontherapy. • New approach: detection of charged secondary particles escaping the patient. • Correlation of longitudinal emission profile of secondaries with the beam range. • New detector integrated in a multi-modal system to be tested in clinical operation.

  7. 2D materials for renewable energy storage devices: Outlook and challenges.

    Science.gov (United States)

    Sahoo, Ramkrishna; Pal, Anjali; Pal, Tarasankar

    2016-11-15

    Scientists are looking for cost-effective, clean and durable alternative energy devices. Superior charge storage devices can easily meet the demands of our daily needs. In this respect, a material with suitable dimensions for charge storage devices has been considered to be very important. Improved performance of charge storage devices has been derived from whole-body participation and the best are from 2D materials, which provide a viable and acceptable solution.

  8. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  9. CAS-3 H - a device for tritium monitoring

    International Nuclear Information System (INIS)

    Corbu, N.; Popescu, I. V.; Bucur, C.

    2001-01-01

    The equipment for tritium monitoring is designed to continuous sampling of tritium from working places in nuclear power plants (NPP) or from plants' surroundings. Its construction allows continuous function in free atmosphere during 8 hours, it is protected against environment factors by support beg, while its components are made from stainless steel or corrosion resistant materials. Inside and surroundings of NPP tritium can exist in different form. The most important tritium quantity (over 90%) are in form of tritiated water, and in form of free hydrogen (less than 10% in closed rooms inside NPP), as well as, in a very small quantity in form of chemical organic tritiated combinations (less than 1%). Tritium sampling from indoor following a mixing phase is considered a simply and fast method. Even this method isn't too precise it requires short time for determination. This is a big advantage because inside NPP the momentary evolution of tritium concentration must be known to be able to take adequate measures. Constructive data for this device are: - dimensions, length x width x height, 470 x 410 x 130 mm; - supply, 2,5 V c.c.; - maxim power consumed, 5 W/h - weight, max. 6 kg. Device main components are: - dry mini-pump with double membrane that ensures a nominal debit upper then necessary, of 12 l/h air at a depression of least 20 mm Hg; - electrical engine with supply tension of 2.5 V c.c., and revolution of 500 rev/min, that acts the pump. Engine power is about 5 W; - filter used as device's shield against particles from air; - revmeter type ROTROM-I.D-PTFE, for air debit measurement by mixing vessels, with measure scale between 4 and 27 Nl/h air; - two mixing vessels made of glass with active capacity of 100 ml; - 28 photoelectric cells placed over support beg, that ensures accumulator charging, thus allowing an increased autonomy in time for device function; - two accumulators type R20 with tension of 1.25 V and minimum intensity of 4 A; - support beg

  10. eWALL Innovation for Smart e-Health Monitoring Devices

    DEFF Research Database (Denmark)

    Mihovska, Albena Dimitrova; Kyriazakos, Sofoklis

    2017-01-01

    E-health environments should be designed to provide personalized services and applications to their primary users (i.e. the patients) by breaking the barrier of technology acceptance and addressing their daily needs, under strict regulation and security constraints. A typical scenario would employ...... wireless and wired sensors and local or cloud-based processing units to collect, process, store and communicate data related to the patients’ needs and condition. E-health devices can be located on the patients’ bodies or immediate environments to monitor and interact with the patients, while they perform...

  11. E4 - Energy efficient elevators and escalators. Monitoring campaign - Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hirzel, Simon; Boege, Christian

    2009-12-15

    A monitoring campaign was carried out within the E4 project as a contribution to improving the understanding of energy consumption and energy efficiency of elevators and escalators in Europe. The aim of this campaign is to broaden the empirical base on the energy consumption of elevators and escalators, to provide publicly available monitoring data and to find hints on system configurations using little energy. Originally, 50 installations were planned to be monitored within the project. In the end, 74 elevators and 7 escalators, i.e. a total of 81 installations, were analyzed in the four countries under study: Portugal, Poland, Italy and Germany. The aim of this document is to summarize the results of the German monitoring campaign with its 14 installations (13 elevators, 1 escalator) and to provide interested readers with some additional information on the campaign. This document has six parts: Second, after the introductory section, some general information on the monitoring methodology is provided as a background for understanding and interpreting the subsequent results. In the third part, information on the monitored elevator installations and their characteristics is given. Part four is concerned with presenting and discussing the results of the monitoring campaign for the elevators while part five shortly presents the results for the monitored escalator. Finally, some conclusions are found in the last part. (orig.)

  12. Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors

    International Nuclear Information System (INIS)

    Hargreaves, Tom; Nye, Michael; Burgess, Jacquelin

    2010-01-01

    This paper explores how UK householders interacted with feedback on their domestic energy consumption in a field trial of real-time displays or smart energy monitors. After examining relevant bodies of literature on the effects of energy feedback on consumption behaviour, and on the complex role of energy and appliances within household moral economies, the paper draws on qualitative evidence from interviews with 15 UK householders trialling smart energy monitors of differing levels of sophistication. It focuses specifically on householder motivations for acquiring the monitors, how the monitors have been used, how feedback has changed consumption behaviour, and the limitations to further behavioural change the householders experienced. The paper concludes by identifying significant implications for future research and policy in this area.

  13. Wireless energy transfer platform for medical sensors and implantable devices.

    Science.gov (United States)

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  14. Temperature monitoring device and thermocouple assembly therefor

    Science.gov (United States)

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  15. Passive safety device and internal short tested method for energy storage cells and systems

    Science.gov (United States)

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  16. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie; Fu, Hui-chun; Li, Linsen; Cabá n-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-01-01

    photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly

  17. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays

    Science.gov (United States)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-11-01

    Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.

  18. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays.

    Science.gov (United States)

    Claussen, Jonathan C; Algar, W Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L

    2013-12-21

    Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.

  19. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device With Integrated Self-Powered Piezo-Floating-Gate Sensors.

    Science.gov (United States)

    Borchani, Wassim; Aono, Kenji; Lajnef, Nizar; Chakrabartty, Shantanu

    2016-07-01

    Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.

  20. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    Science.gov (United States)

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  1. Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices

    International Nuclear Information System (INIS)

    Wang, Z; Chen, A; Winslow, R; Madan, D; Nill, M; Wright, P K; Juang, R C; Evans, J W

    2012-01-01

    This paper reports on an integrated energy harvesting prototype that consists of dispenser-printed thermoelectric energy harvesting and electrochemical energy storage devices. Parallel-connected thermoelectric devices with low internal resistances were designed, fabricated and characterized. The use of a commercially available dc-to-dc converter was explored to step-up a 27.1 mV input voltage from a printed thermoelectric device to a regulated 2.34 V output at a maximum of 34% conversion efficiency. The regulated power succeeds in charging dispenser-printed, zinc-based micro-batteries with charging efficiencies of up to 67%. The prototype presented in this work demonstrates the feasibility of deploying a printable, cost-effective and perpetual power solution for practical wireless sensor network applications. (paper)

  2. Monitoring readiness of safety relevant devices in nuclear power plants by means of CRT-colour displays

    International Nuclear Information System (INIS)

    Haubert, R.; Stokke, R.

    1980-01-01

    The development of an information system for monitoring readiness of safety relevant devices is encouraged by the requirements of KTA-rule 3501 (DIN 25434), which states in section 4.9.1.1. 'A display shall be provided for giving a survey of the condition of the components of the reactor protection system and the active engineered safeguards including their energy and auxiliary media supplies'. In the first stage of the development which was reported at the Enlarged Halden Programme Group Meeting in Loen, Norway, 5th-9th June, 1978, only the components of parts of a BWR-protection system were considered and no display was provided. This paper outlines the next step in the development which comprises implementation of the active engineered safeguards into the system and development of a display system based on a colour CRT-screen. A prototype of this computer-based system for monitoring of protection systems has been established, and it is planned to demonstrate this prototype system using the computer equipment at GRS, Garching (orig./HP)

  3. Multiple Timescale Energy Scheduling for Wireless Communication with Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2012-09-01

    Full Text Available The primary challenge in wireless communication with energy harvesting devices is to efficiently utilize the harvesting energy such that the data packet transmission could be supported. This challenge stems from not only QoS requirement imposed by the wireless communication application, but also the energy harvesting dynamics and the limited battery capacity. Traditional solar predictable energy harvesting models are perturbed by prediction errors, which could deteriorate the energy management algorithms based on this models. To cope with these issues, we first propose in this paper a non-homogenous Markov chain model based on experimental data, which can accurately describe the solar energy harvesting process in contrast to traditional predictable energy models. Due to different timescale between the energy harvesting process and the wireless data transmission process, we propose a general framework of multiple timescale Markov decision process (MMDP model to formulate the joint energy scheduling and transmission control problem under different timescales. We then derive the optimal control policies via a joint dynamic programming and value iteration approach. Extensive simulations are carried out to study the performances of the proposed schemes.

  4. From supramolecular electrochemistry to molecular-level devices

    Energy Technology Data Exchange (ETDEWEB)

    Credi, Alberto; Ferrer Ribera, Belen; Venturi, Margherita

    2004-09-15

    Supramolecular (multi-component) systems can perform complex functions which result from the cooperation of actions performed by suitably selected molecular components. Looking at supramolecular systems, from the viewpoint of the functions, shows that the concept of macroscopic device can be extended to molecular level. Nature exploits very complex molecular-level devices to substain life, and, in the last twenty years, the development of supramolecular chemistry has allowed the construction of simple molecular-level devices, that are of interest not only for basic research, but also for the growth of nanoscience and nanotechnology. Molecular-level devices operate via electronic and/or nuclear rearrangements, and like macroscopic devices, they need energy to operate and signals to communicate with the operator. Electrochemistry can provide the answer to this dual requirement, since electrons/holes, besides supplying the energy needed to make a devices work, can also be useful to 'read' the state of the system and thus to control and monitor the operation of the device. In this article, some examples of molecular-level devices investigated in our laboratory will be reviewed.

  5. Device for remote control of monitoring of a conveyor line

    Energy Technology Data Exchange (ETDEWEB)

    Shubin, N F; Rybak, Yu I

    1981-01-01

    The known device under mine conditions because of the decrease of resistance of the insulation of the current-carrying lines of the transfer line does not guarantee reliable protection from false triggering. The purpose of the invention is to improve the reliability of monitoring and control by improving interference-resistance of the device. This goal is achieved because the compensation block is equipped with a transistor, seven diodes, three stabilitrons and resistors united into two compensation circuits which are connected in parallel. The first of them is formed by two stabilitrons connected in series, where the cathode of one of them through a resistor and the counter-connected first diode is connected to a common lead and to the first pole of the block of monitoring and control. The anode of the other through the second counter-connected diode is connected to the second pole of the block of monitoring and control. The second compensation circuit is formed of a transistor, whose collector is connected to the common lead. The emitter is connected through the resistor to the cathode of the third diode whose anode is connected to the lead of the communications line and to the anodes of the fourth diode directly, and the fifth through the resistor, and with the cathode of the third stabilitron whose anode is connected to the transistor base and through the resistor to the common lead. The cathode of the fourth diode is connected to the common point of the first and second stabilitrons through the resistor, connected through the sixth diode, connected by cathode to the cathode of the fourth diode, parallel to the information block. The cathode of the fifth diode is connected to the anode of the second diode, and the second pole of the block of monitoring and control is connected to the communications lead through the seventh diode, connected counter to the fourth and fifth diodes.

  6. New Monitoring Technology to Objectively Assess Adherence to Prescribed Footwear and Assistive Devices During Ambulatory Activity

    NARCIS (Netherlands)

    Bus, Sicco A.; Waaijman, Roelof; Nollet, Frans

    2012-01-01

    Bus SA, Waaijman R, Nollet F. New monitoring technology to objectively assess adherence to prescribed footwear and assistive devices during ambulatory activity. Arch Phys Med Rehabil 2012;93:2075-9. Objective: To assess the validity and feasibility of a new temperature-based adherence monitor to

  7. Method of exchanging cables of neutron monitoring instrumentation tube and folding device of the cable

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1990-01-01

    In a BWR type reactor, a wide range monitor (WRNM) is used instead of a conventional neutron source range monitor (SRM) or an intermediate range monitor (IRM). The WRNM is always fixed to a predetermined position in a reactor core while containing a detection section in a dry tube, different from a conventional monitor. Accordingly, driving devices for the conventional detection section such as in SRM and IRM are not necessary but, when the reactor is operated for a long period of time, it is sometimes necessary to be replaced with new WRNM. According to the present invention, the cable of the detector placed in a neutron instrumentation tube is connected to a cable take-up drum in a take-up device passing through a cask. Then, the cable is taken-up by driving the take-up drum by a driving motor and the WRNM detection section attached to the top end of the cable is contained in the cask. With this constitution, replacing and processing operation for the detection section can be facilitated and operator's exposure dose can be reduced. (I.S.)

  8. Midinfrared radiation energy harvesting device

    Science.gov (United States)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  9. Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    Directory of Open Access Journals (Sweden)

    Salina A. Samad

    2011-12-01

    Full Text Available Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK, frequency shift keying (FSK and phase shift keying (PSK of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices.

  10. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  11. The energy aware smart home

    OpenAIRE

    Jahn, M.; Jentsch, M.; Prause, C.R.; Pramudianto, F.; Al-Akkad, A.; Reiners, R.

    2010-01-01

    In this paper, we present a novel smart home system integrating energy efficiency features. The smart home application is built on top of Hydra, a middleware framework that facilitates the intelligent communication of heterogeneous embedded devices through an overlay P2P network. We interconnect common devices available in private households and integrate wireless power metering plugs to gain access to energy consumption data. These data are used for monitoring and analyzing consumed energy o...

  12. Solar Pond devices: free energy or bioreactors for Artemia biomass production?

    Science.gov (United States)

    Gouveia, Luisa; Sousa, João; Marques, Ana; Tavares, Célia; Giestas, Margarida

    2009-08-01

    The recent exponential growth in industrial aquaculture has led to a huge increase in Artemia biomass production in order to meet increased fish production needs. The present study explores the potential use of salt gradient solar ponds (SGSPs) for production of Artemia nauplii. An SGSP is a basin of water where solar energy is trapped and collected via an artificially imposed gradient. Three zones can be identified in an SGSP: upper and lower zones, which are both convective, and a middle zone, which is intended to be non-convective. The latter acts as a transparent insulation layer and allows for storage of solar energy at the bottom, where it is available for use. The combination of salt, temperature and high transparency could make SGSPs promising bioreactors for the production of Artemia nauplii. Using particle image velocymetry (PIV) and Shadowgraph visualisation techniques, the behaviour of Artemia nauplii under critical cultivation parameters (namely, salinity, temperature and light) was monitored to determine movement velocity, and how movement of Artemia affects the salt gradient. It was observed that Artemia nauplii constantly follow light, irrespective of adverse salinity and/or temperature conditions. However, despite the substantial displacement of Artemia following the light source, the salt gradient is not disrupted. The suitability of SGSPs as bioreactors for Artemia biomass production was then tested. The results were disappointing, probably due to the lack of sufficient O(2) for Artemia survival and growth. Follow-up trials were conducted aimed at using the SGSP as a green and economically attractive energy source to induce faster hatching of cysts and improved Artemia nauplii growth. The results of these trials, and a case study of Artemia nauplii production using an SGSP, are presented. The authors constructed a Solar Pond device, which they suggest as a novel way of supplying thermal energy for Artemia biomass production in an aquaculture

  13. The environmental interactions of tidal and wave energy generation devices

    OpenAIRE

    Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E.

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other...

  14. Demonstrating EnTracked a System for Energy-Efficient Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben

    An important feature of a modern mobile device is that it can position itself. Not only for use on the device but also for remote applications that require tracking of the device. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life...... of the mobile device. To address this challenge we have build a system named EnTracked that, based on the estimation and prediction of system conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. In this demonstration we would like to show how...

  15. CMOS-based optical energy harvesting circuit for biomedical and Internet of Things devices

    Science.gov (United States)

    Nattakarn, Wuthibenjaphonchai; Ishizu, Takaaki; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Sawan, Mohamad; Ohta, Jun

    2018-04-01

    In this work, we present a novel CMOS-based optical energy harvesting technology for implantable and Internet of Things (IoT) devices. In the proposed system, a CMOS energy-harvesting circuit accumulates a small amount of photoelectrically converted energy in an external capacitor, and intermittently supplies this power to a target device. Two optical energy-harvesting circuit types were implemented and evaluated. Furthermore, we developed a photoelectrically powered optical identification (ID) circuit that is suitable for IoT technology applications.

  16. Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT).

    Science.gov (United States)

    Moiş, George Dan; Sanislav, Teodora; Folea, Silviu Corneliu; Zeadally, Sherali

    2018-05-25

    Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO₂ and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings.

  17. Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT

    Directory of Open Access Journals (Sweden)

    George Dan Moiş

    2018-05-01

    Full Text Available Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5 and volatile organic compounds (VOCs in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs and the Internet of Things (IoT have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO2 and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective in applications that monitor the environment or the air quality in indoor or outdoor settings.

  18. An Energy Saving Green Plug Device for Nonlinear Loads

    Science.gov (United States)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  19. CloudMonitor: Profiling Power Usage

    OpenAIRE

    Smith, James William; Khajeh-Hosseini, Ali; Ward, Jonathan Stuart; Sommerville, Ian

    2012-01-01

    In Cloud Computing platforms the addition of hardware monitoring devices to gather power usage data can be impractical or uneconomical due to the large number of machines to be metered. CloudMonitor, a monitoring tool that can generate power models for software-based power estimation, can provide insights to the energy costs of deployments without additional hardware. Accurate power usage data leads to the possibility of Cloud providers creating a separate tariff for power and therefore incen...

  20. Study and development of a PET device dedicated to cancer monitoring

    International Nuclear Information System (INIS)

    Vandenbussche, Vincent

    2014-01-01

    Medical imaging first began at the end of the 19. century with the discover of X-rays by Roentgen. Then, numerous imaging modalities have been developed and are used now for a wide range of cases. Positron Emission Tomography (PET) has a high sensitivity, is functional and quantitative, thus being of high interest in cancer monitoring. Nevertheless, PET is not as much spread in hospitals as magnetic resonance imaging and scanner. In this context, this work aims to prove the feasibility of PET dedicated for cancer monitoring. Thanks to instrumental developments such as light sharing in scintillating crystals, use of Silicon Photomultipliers, and an original geometry, cost is expected to be reduced while having same performances as commercial devices. An extensive study of light sharing within scintillating barrels has been made, through many parameters (crystal length, coating, data analysis...). An intrinsic spatial resolution of 4 mm has been measured over a 75 mm long crystal of LYSO, coated with teflon. From such a configuration, a first image has been reconstructed using two modules in coincidence. A spatial resolution of 5 mm has been measured in the image. Finally, Monte Carlo simulations has been made with experimental data as input, in order to measure the performances of the final PET device. Thanks to NEMA standard protocol, performances has been measured and compared to other systems. A spatial resolution of 4 mm has been reached, for a sensitivity of 2.5 cps/kBq. Quantification problem has been assessed, providing results similar to existing devices. (author) [fr

  1. Energy auditing and monitoring in local authorities

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.

    1979-07-01

    An energy audit, relating the individual energy performance to the building structure and usage after discounting the effects of variation in weather and then measuring on a continuing program the actual energy usage, is described. A list of measures that can reduce the cost of energy is presented. The actual auditing and monitoring may be carried out by either a manual system using specially prepared record cards or a computer system. Details of these systems and their implementation are described. (MCW)

  2. Energy Use and Power Levels in New Monitors and Personal Computers; TOPICAL

    International Nuclear Information System (INIS)

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-01-01

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC

  3. Energy efficiency comparison of forced-air versus resistance heating devices for perioperative hypothermia management

    International Nuclear Information System (INIS)

    Bayazit, Yilmaz; Sparrow, Ephraim M.

    2010-01-01

    Hypothermia is a state in which the temperature of a human body is below the normal temperature, with the onset of the hypothermic state commonly regarded as 36 o C. This state may be encountered due to exposure to a very cold environment in the outdoors or, surprisingly, in a hospital operating room. In the latter situation, the diminution of metabolic heat generation, coupled with moderate temperatures in the surroundings and absence of a covering over the afflicted parts of the body, creates the possibility of hypothermia. There are several available devices that are designed to ward off the onset of hypothermia. These currently most frequently used devices can be placed in two categories: (a) convective air warming and (b) direct-contact heat conduction. The warming principles that underlie these two approaches are distinctly different. Furthermore, the energy efficiencies of the two approaches differ significantly. The energy penalty which results from these different efficiencies may be compounded by the fact that the portion of the input energies to these devices which escapes into the operating room ambient must be extracted to maintain a comfortable temperature for the surgical staff. Since energy-extracting equipments such as air-conditioning machines are far from being perfectly efficient, the heat-extraction process also introduces wasted energy. Experiments were performed to determine the energy-utilization efficiencies of the representative devices in the two categories cited above. This information, taken together with the known efficiencies of air-conditioning machines, enabled an overall efficiency encompassing both the therapeutic device and the heat-extraction device to be calculated. The experimental data revealed that the specifics of individual devices within a category played a larger role with regard to energy efficiency than did the category itself.

  4. Energy efficiency comparison of forced-air versus resistance heating devices for perioperative hypothermia management

    Energy Technology Data Exchange (ETDEWEB)

    Bayazit, Yilmaz; Sparrow, Ephraim M. [Laboratory for Heat Transfer and Fluid Flow Practice, Department of Mechanical Engineering, University of Minnesota, 111 Church Street, SE, Minneapolis, MN 55455-0111 (United States)

    2010-03-15

    Hypothermia is a state in which the temperature of a human body is below the normal temperature, with the onset of the hypothermic state commonly regarded as 36 C. This state may be encountered due to exposure to a very cold environment in the outdoors or, surprisingly, in a hospital operating room. In the latter situation, the diminution of metabolic heat generation, coupled with moderate temperatures in the surroundings and absence of a covering over the afflicted parts of the body, creates the possibility of hypothermia. There are several available devices that are designed to ward off the onset of hypothermia. These currently most frequently used devices can be placed in two categories: (a) convective air warming and (b) direct-contact heat conduction. The warming principles that underlie these two approaches are distinctly different. Furthermore, the energy efficiencies of the two approaches differ significantly. The energy penalty which results from these different efficiencies may be compounded by the fact that the portion of the input energies to these devices which escapes into the operating room ambient must be extracted to maintain a comfortable temperature for the surgical staff. Since energy-extracting equipments such as air-conditioning machines are far from being perfectly efficient, the heat-extraction process also introduces wasted energy. Experiments were performed to determine the energy-utilization efficiencies of the representative devices in the two categories cited above. This information, taken together with the known efficiencies of air-conditioning machines, enabled an overall efficiency encompassing both the therapeutic device and the heat-extraction device to be calculated. The experimental data revealed that the specifics of individual devices within a category played a larger role with regard to energy efficiency than did the category itself. (author)

  5. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy, 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM's) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM's on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices.

  6. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    Science.gov (United States)

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  8. A MEMS Energy Harvesting Device for Vibration with Low Acceleration

    DEFF Research Database (Denmark)

    Triches, Marco; Wang, Fei; Crovetto, Andrea

    2012-01-01

    We propose a polymer electret based energy harvesting device in order to extract energy from vibration sources with low acceleration. With MEMS technology, a silicon structure is fabricated which can resonate in 2D directions. Thanks to the excellent mechanical properties of the silicon material......, the proof mass could be successfully driven by an external vibrations with acceleration as low as 0.014g (∼0.14 m/s2). A root mean square (RMS) power output of 1.17μW under 0.014g RMS acceleration at 75Hz is measured when an optimal load of 20.3 MΩ is applied. The frequency response of the device is also...

  9. Fabrication and Characterization of Li-ion Electrodes for High-Power Energy Storage Devices

    OpenAIRE

    Lai, Chun-Han

    2017-01-01

    Renewable energy technologies have been a rapidly emerging option to meet future energy demand. However, their systems require stable, high-power storage devices to overcome fluctuating energy outputs for consistent distribution. Since traditional Li-ion batteries (LIB) are not considered to be capable of fast charging and discharging, we have to develop devices with new chemistry for high-power operation. This dissertation focuses on the development of supercapacitors and high-rate batteries...

  10. Regulation E 69-14. Monitoring requirements for medical devices

    International Nuclear Information System (INIS)

    2015-01-01

    In the 'Regulations for the State Evaluation and Registration of Medical Equipment' force (Hereinafter Rules) set forth in Chapter VII, Articles 79 and 86, the monitoring activity as one of the programs necessary for evaluating the safety and effectiveness of medical monitoring equipment. In the years 2008 and 2011 were approved and implemented by the Center for State Control of Medical Equipment (CCEEM) Regulations and -1.1 ER and ER-1 that support and regulatory requirements 'Control and monitoring of pacemakers and implantable defibrillators' and 'Assessment, recording and control after market surgical silicone implants,' which are specific to these products and have provided a useful result for the performance of the activity. Given the number and diversity of high-risk medical devices as implantable or sustain human life that are brought into our National Health System (SNS), a regulation establishing control over the behavior becomes necessary safety and effectiveness of this equipment during use, which provide inputs to risk management. The objective of this regulation is to establish the regulatory requirements for tracking medical equipment introduced in the NHS. The provisions of this Regulation is aimed at health institutions, to CECMED as manufacturers, suppliers, distributors and importers of medical equipment.

  11. 2012 EIMR poster - marine renewable energy devices: ecological traps for fish?

    OpenAIRE

    Guerin, Andrew

    2014-01-01

    A poster presented at the 2012 Environmental Interactions of Marine Renewable Energy Technologies Conference, in Kirkwall, Orkney. We raise the possibility that marine renewable energy technologies, acting as Fish Aggregating Devices, may be ecological traps.

  12. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    Science.gov (United States)

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  13. Point-of-care coagulation monitoring: first clinical experience using a paper-based lateral flow diagnostic device.

    Science.gov (United States)

    Hegener, Michael A; Li, Hua; Han, Daewoo; Steckl, Andrew J; Pauletti, Giovanni M

    2017-09-01

    Vitamin K antagonists such as warfarin are the most widely used class of oral anticoagulants. Due to a narrow therapeutic window, patients on warfarin require regular monitoring. Self-testing using point-of-care (POC) diagnostic devices is available, but cost makes this monitoring method beyond reach for many. The main objective of this research was to assess the clinical utility of a low-cost, paper-based lateral flow POC diagnostic device developed for anticoagulation monitoring without the need for a separate electronic reader. Custom-fabricated lateral flow assay (LFA) test strips comprised of a glass fiber sample pad, a nitrocellulose analytical membrane, a cellulose wicking pad, and a plastic backing card were assembled in a plastic cassette. Healthy volunteers and patients on warfarin therapy were recruited for this prospective study. For each participant, a whole blood sample was collected via fingerstick to determine: (1) international normalized ratio (INR) using the CoaguChek® XS coagulometer, (2) hematocrit by centrifugation, and (3) red blood cell (RBC) travel distance on the experimental LFA device after 240 s using digital image analysis. RBC travel distance measured on the LFA device using blood samples obtained from warfarin patients positively correlated with increasing INR value and the LFA device had the capability to statistically distinguish between healthy volunteer INR values and those for patients groups with INR ≥ 2.6. From these data, it is predicted that this low-cost, paper-based LFA device can have clinical utility for identifying anticoagulated patients taking vitamin K antagonists who are outside of the desired therapeutic efficacy window.

  14. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    Science.gov (United States)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  15. Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review

    Directory of Open Access Journals (Sweden)

    Anwar Ul Haq

    2018-01-01

    Full Text Available The smart grid initiative has encouraged utility companies worldwide to roll-out new and smarter versions of energy meters. Before an extensive roll-out, which is both labor-intensive and incurs high capital costs, consumers need to be incentivised to reap the long-term benefits of such smart meters. Off-the-shelf energy monitors (e-monitors can provide consumers with an insight into such potential benefits. As e-monitors are owned by the consumer, the consumer has greater control over the data, which significantly reduces the privacy and data confidentiality concerns. Because only limited online technical information is available about e-monitors, we evaluate several existing e-monitors using an online technical survey directly from the vendors. Besides automated e-monitoring, the use of different off-the-shelf e-monitors can also help to demonstrate state-of-the-art techniques such as non-intrusive load monitoring (NILM, data analytics, and the predictive maintenance of appliances. Our survey indicates a trend towards the incorporation of such state-of-the-art capabilities, particularly the appliance-level e-monitoring and load disaggregation. We have also discussed some essential requirements to implement load disaggregation in the next generation e-monitors. In future, these intelligent e-monitoring techniques will encourage effective consumer participation in the demand-side management (DSM programs.

  16. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  17. Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index

    International Nuclear Information System (INIS)

    Ang, B.W.

    2006-01-01

    Since the 1973 world oil crisis, monitoring trends in energy efficiency at the economy-wide level has been an important component of energy strategy in many countries. To support this effort, various energy efficiency-related indicators have been developed. We examine some classical indicators which are often found in national and international energy studies in the 1970s and 1980s. We then describe the recent developments in using the index decomposition analysis to give an economy-wide composite energy efficiency index based on a bottom-up approach. This composite index is superior to the classical indicators as an economy-wide energy efficiency measure and has lately been adopted by a growing number of countries for national energy efficiency trend monitoring

  18. Monitoring and evaluation of Sustainable Energy Action Plan: Practice and perspective

    International Nuclear Information System (INIS)

    Delponte, Ilaria; Pittaluga, Ilaria; Schenone, Corrado

    2017-01-01

    The Sustainable Energy Action Plan (SEAP), promoted by the Covenant of Mayor, is a key tool for policies aimed at reducing fossil fuel consumption and GHG emissions, in accordance with the Kyoto protocol and its updates. To achieve an actual implementation of the SEAP and to obtain its expected targets, monitoring is a crucial component. SEAP monitoring has to look at both the progress of each single action and its global environmental effect, which requires more than one level of development. In the present paper, an integrated strategy for surveying, controlling and managing the SEAP through a “Monitoring and Evaluation” (M&E) process is introduced. The implementation in the city of Genoa, Italy, was used to test the efficacy of this approach and to assess its strengths and weaknesses. In particular, cost benefit analysis, bankability, peer review and participatory level were identified as key elements for obtaining an operative SEAP monitoring and for then fostering an effective environmental energy policy. Some recommendations were proposed to better outline the “Monitoring and Evaluation” methodology and to help other cities to define a strategy for SEAP monitoring and fulfilment. - Highlights: • SEAP monitoring is a key issue for urban energy policies. • Monitoring and evaluation for effective management of sustainable energy planning. • Lessons learned by monitoring the SEAP in the city of Genoa. • Monitoring strategy using CBA, bankability, peer reviewing and participatory level.

  19. Development of a calibration system for airborne "1"3"1I monitoring devices

    International Nuclear Information System (INIS)

    Zhao, C.; Tang, F.; He, L.; Xu, Y.; Lu, X.

    2016-01-01

    A prototype calibration system for airborne "1"3"1I monitoring devices was developed at the Shanghai Institute of Measurement and Testing Technology (SIMT). This system consists of a gaseous "1"3"1I_2 generator, an airborne storage chamber, an airborne iodine sampler, and an HPGe spectrometer. With this system, "1"3"1I reference samples in the form of charcoal filters and charcoal cartridges, with activities ranging from 100 to 10,000 Bq, were produced with overall relative standard uncertainties of 2.8% (for filter samples) and 3.5% (for cartridge samples); the activities range could be extended according to need. - Highlights: • Original calibration system for airborne "1"3"1I monitoring devices was developed. • Two types of "1"3"1I reference samples was prepared. • The activity of the produced "1"3"1I reference sample could be easily controlled. • The influence of uneven distribution of "1"3"1I in cartridge samples was considered.

  20. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  1. Predicting physical activity energy expenditure in wheelchair users with a multisensor device.

    Science.gov (United States)

    Nightingale, T E; Walhin, J P; Thompson, D; Bilzon, J L J

    2015-01-01

    To assess the error in predicting physical activity energy expenditure (PAEE), using a multisensor device in wheelchair users, and to examine the efficacy of using an individual heart rate calibration (IC) method. 15 manual wheelchair users (36±10 years, 72±11 kg) completed 10 activities: resting, folding clothes, wheelchair propulsion on a 1% gradient (3456 and 7 km/h) and propulsion at 4 km/h (with an additional 8% of body mass, 2% and 3% gradient) on a motorised wheelchair treadmill. Criterion PAEE was measured using a computerised indirect calorimetry system. Participants wore a combined accelerometer and heart rate monitor (Actiheart). They also performed an incremental arm crank ergometry test to exhaustion which permitted retrospective individual calibration of the Actiheart for the activity protocol. Linear regression analysis was conducted between criterion (indirect calorimetry) and estimated PAEE from the Actiheart using the manufacturer's proprietary algorithms (group calibration, GC) or IC. Bland-Altman plots were used and mean absolute error was calculated to assess the agreement between criterion values and estimated PAEE. Predicted PAEE was significantly (p<0.01) correlated with criterion PAEE (GC, r=0.76 and IC, r=0.95). The absolute bias ±95% limits of agreement were 0.51±3.75 and -0.22±0.96 kcal/min for GC and IC, respectively. Mean absolute errors across the activity protocol were 51.4±38.9% using GC and 16.8±15.8% using IC. PAEE can be accurately and precisely estimated using a combined accelerometer and heart rate monitor device, with integration of an IC. Interindividual variance in cardiovascular function and response to exercise is high in this population. Therefore, in manual wheelchair users, we advocate the use of an IC when using the Actiheart to predict PAEE.

  2. A comparison of laparoscopic energy devices on charges in thermal power after application to porcine mesentery.

    Science.gov (United States)

    Eto, Ken; Omura, Nobuo; Haruki, Koichiro; Uno, Yoshiko; Ohkuma, Masahisa; Nakajima, Shintaro; Anan, Tadashi; Kosuge, Makoto; Fujita, Tetsuji; Yanaga, Katsuhiko

    2015-02-01

    Advances in energy devices have played a major role in the rapid expansion of laparoscopic surgery. However, complications due to these energy devices are occasionally reported, and if the characteristics of these devices are not well understood, serious complications may occur. This study evaluated various typical energy devices and measured temperature rises in the adjacent tissue and in the devices themselves. We used the following 7 types of energy devices: AutoSonix (AU), SonoSurg (SS), Harmonic Scalpel (HS), LigaSure Atlas (LA), LigaSure Dolphin Tip (LD), monopolar diathermy (Mono), and bipolar scissors (Bi). Laparoscopy was performed under general anesthesia in pigs, and the mesentery was dissected using each energy device. Tissue temperature at a distance of 1 mm from the energy device blade before and after dissection was measured. Temperature of the device blade both before and after dissection, time required for dissection, and interval until the temperature fell to 100°C, 75°C, and 50°C were documented. Temperature of the surrounding tissue using each device rose the most with the Mono (50.5±8.0°C) and the least with the HS in full mode (6.2±0.7°C). Device temperature itself rose the highest with the AU in full mode (318.2±49.6°C), and the least with the Bi (61.9±4.8°C). All ultrasonic coagulation and cutting devices (AU, SS, and HS) had device temperatures increase up to ≥100°C, and even at 8 seconds after completing dissection, temperatures remained at ≥100°C. Because the adjacent tissue temperature peaked with the Mono, cautious use near the intestine and blood vessels is necessary. In addition, the active blades of all ultrasonic coagulation and cutting devices, regardless of model, developed high temperatures exceeding 100°C. Therefore, an adequate cooling period after using these devices is therefore necessary between applications.

  3. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  4. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    Science.gov (United States)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  5. Study on light and thermal energy of illumination device for plant factory design

    Science.gov (United States)

    Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.

    2018-01-01

    To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.

  6. Ambulatory stress monitoring with a wearable bluetooth electrocardiographic device.

    Science.gov (United States)

    Hong, Sungyoup; Yang, Youngmo; Lee, Jangyoung; Yang, Heebum; Park, Kyungnam; Lee, Suyeul; Lee, Inbum; Jang, Yongwon

    2010-01-01

    We tried to monitor stress by using a wearable one channel ECG device that can send ECG signals through Bluetooth wireless communication. Noxious physical and mental arithmetic stress was given three times repeatedly to healthy adults, and cortisol and catecholamines were measured serially from peripheral blood. At the same time, time domain and frequency domain parameters of heart rate variability (HRV) were calculated by taking precordial electrocardiogram. The intensity of correlation between subjective visual analogue scale (VAS) and catecholamine, cortisol, and HRV parameters according to stress was analyzed by using concordance correlation coefficients. The HRV triangular index and LF/HF ratio had high concordance correlation with the degree of stress in the physical stress model. In mental arithmetic stress model, the HRV triangular index and LF/HF ratio had weak concordance correlation with the degree of stress, and it had lower predictability than epinephrine. In both models, cortisol had some correlation with catecholamine, but it had little correlation with HRV parameters. HRV parameters using wearable one channel ECG device can be useful in predicting acute stress and also in many other areas.

  7. Proceedings of the workshop on new solid state devices for high energy physics

    International Nuclear Information System (INIS)

    1987-12-01

    This paper contains articles on semiconductor devices used in the detection of high energy particles. Some articles reported: Position sensitive semiconductor devices; Scintillation techniques and optical devices; Radiation damage to detectors; VLSI for physics; and experience with Si detectors in NA32

  8. Study on Differentiation Management of Grid Energy Metering Device under High Permeability by Distributed Energy and Smart Grid Technology

    Science.gov (United States)

    Wang, Haiyuan; Huang, Rui; Yang, Maotao; Chen, Hao

    2017-12-01

    At present, the electric energy metering device is classified according to the amount of electric energy and the degree of importance of the measurement object. The measuring device is also selected according to the characteristics of the traditional metering object.With the continuous development of smart grid, the diversification of measurement objects increasingly appear, the traditional measurement object classification has been unable to meet the new measurement object of personalized, differentiated needs.Withal, this paper constructs the subdivision model based on the object feature-system evaluation, classifies according to the characteristics of the measurement object, and carries on the empirical analysis with some kind of measurement object as the research object.The results show that the model works well and can be used to subdivide the metrological objects into different customer groups, which can be reasonably configured and managed for the metering devices. The research of this paper has effectively improved the economy and rationality of the energy metering device management, and improved the working efficiency.

  9. SUBWAY POWER SYSTEMS WITH MODERN SEMICONDUCTOR CONVERTERS AND ENERGY STORAGE DEVICES

    Directory of Open Access Journals (Sweden)

    O.I. Kholod

    2013-02-01

    Full Text Available Five subway power systems, a traditional power system and power systems with an active rectifier and an energy storage device, are considered. Estimation of energy loss in the analyzed subway power systems circuits is made.

  10. Energy Monitor ICT 2008; Energiemonitor ICT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Clevers, S.; Popma, P.; Elderman, M. [Tebodin Netherlands, Den Haag (Netherlands)

    2009-08-15

    Following the report 'ICT flows' (ICT stroomt door) of 2007, the Energy Monitor ICT 2008 offers an update of the energy use of the ICT sector in the Netherlands (households, offices and ICT infrastructure) and recommendations for increasing the energy efficiency in the ICT sector. [Dutch] In navolging van het rapport 'ICT stroomt door' uit 2007 geeft de Energiemonitor ICT 2008 een update van het energiegebruik door ICT in Nederland (huishoudens, kantoren en ICT infrastructuur) en de aanbevelingen om de energie-efficientie in de ICT-sector te verhogen.

  11. Marine current energy devices: Current status and possible future applications in Ireland

    International Nuclear Information System (INIS)

    Rourke, Fergal O.; Boyle, Fergal; Reynolds, Anthony

    2010-01-01

    There is a growing demand for the use of renewable energy technologies to generate electricity due to concerns over climate change. The oceans provide a huge potential resource of energy. Energy extraction using marine current energy devices (MCEDs) offers a sustainable alternative to conventional sources and a predictable alternative to other renewable energy technologies. A MCED utilises the kinetic energy of the tides as opposed to the potential energy which is utilised by a tidal barrage. Over the past decade MCEDs have become an increasingly popular method of energy extraction. However, marine current energy technology is still not economically viable on a large scale due to its current stage of development. Ireland has an excellent marine current energy resource as it is an island nation and experiences excellent marine current flows. This paper reviews marine current energy devices, including a detailed up-to-date description of the current status of development. Issues such as network integration, economics, and environmental implications are addressed as well as the application and costs of MCEDs in Ireland. (author)

  12. Protocol Monitoring Energy Conservation; Protocol Monitoring Energiebesparing

    Energy Technology Data Exchange (ETDEWEB)

    Boonekamp, P.G.M. [ECN Beleidsstudies, Petten (Netherlands); Mannaerts, H. [Centraal Planburea CPB, Den Haag (Netherlands); Tinbergen, W. [Centraal Bureau voor de Statistiek CBS, Den Haag (Netherlands); Vreuls, H.H.J. [Nederlandse onderneming voor energie en milieu Novem, Utrecht (Netherlands); Wesselink, B. [Rijksinstituut voor Volksgezondheid en Milieuhygiene RIVM, Bilthoven (Netherlands)

    2001-12-01

    On request of the Dutch ministry of Economic Affairs five institutes have collaborated to create a 'Protocol Monitoring Energy Conservation', a common method and database to calculate the amount of energy savings realised in past years. The institutes concerned are the Central Bureau of Statistics (CBS), the Netherlands Bureau for Economic Policy Analysis (CPB), the Energy research Centre of the Netherlands (ECN), the National Agency for Energy and Environment (Novem) and the Netherlands Institute of Public Health and the Environment (RIVM). The institutes have agreed upon a clear definition of energy use and energy savings. The demarcation with renewable energy, the saving effects of substitution between energy carriers and the role of import and export of energy have been elaborated. A decomposition method is used to split up the observed change in energy use in a number of effects, on a national and sectoral level. This method includes an analysis of growth effects, effects of structural changes in production and consumption activities and savings on end use or with more efficient conversion processes. To calculate these effects the total energy use is desegregated as much as possible. For each segment a reference energy use is calculated according to the trend in a variable which is supposed to be representative for the use without savings. The difference with the actual energy use is taken as the savings realised. Results are given for the sectors households, industry, agriculture, services and government, transportation and the energy sector; as well as a national figure. A special feature of the protocol method is the application of primary energy use figures in the determination of savings for end users. This means that the use of each energy carrier is increased with a certain amount, according to the conversion losses caused elsewhere in the energy system. The losses concern the base year energy sector and losses abroad for imports of secondary

  13. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  14. Air alpha monitoring device and system for the calibration of the track detectors

    International Nuclear Information System (INIS)

    Danis, A; Oncescu, M.; Ciubotariu, M.

    2001-01-01

    The radon measurement plays a critical role: - in monitoring the human health and safety, due to radon destructive health effects. Sustained exposures of humans to high concentration of radon, in fact to high concentrations of its decay products, can produce lung cancer; - in a variety of geophysical, geochemical, hydrological and atmospheric investigations, such as exploring resources of uranium or hydrocarbons. The transport of radon within the earth, waters and atmosphere makes it a useful tracer in these purposes. in both cases, the reliable long-term measurements are required because usual short-term variations in concentration need to be averaged. These variations are caused by factors such as relative humidity, temperature, atmospheric pressure and their seasonal variations, moisture content in the air, or ventilation in the dwelling or working places. The integrating measurement methods meet these requirements. Among them, the alpha track method is one of the adequate and useful method and it is used by authors in radon measurements in dwelling and working places including mines and house cellars. The best etched track alpha detector for radon measurements proved to be the detector CR-39 due to: - its sensitivity to alpha particles emitted by radon decay products; - its stability against various environmental factors; - its high degree of optical clarity, was used in a proper device for alpha monitoring in air. Its calibration for radon measurements was performed in the proper calibration system. The general descriptions and specifications were given previously. Only some characteristics of these devices are given here. For air alpha monitoring device: i) equipped with filter, during alpha exposure, the alpha particles of radon are registered in the etched track detector mounted inside (ρ Rn - track density); ii) without filter, the alpha particles emitted by radon + its alpha decay products/their aerosols are registered in the detector (ρ tot - track

  15. A respiratory monitoring device based on clavicular motion

    International Nuclear Information System (INIS)

    Pitts, D G; Aspinall, R; Patel, M K; Lang, P-O; Sinclair, A J

    2013-01-01

    Respiratory rate is one of the key vital signs yet unlike temperature, heart rate or blood pressure, there is no simple and low cost measurement device for medical use. Here we discuss the development of a respiratory sensor based upon clavicular motion and the findings of a pilot study comparing respiratory rate readings derived from clavicular and thoracic motion with an expiratory breath flow reference sensor. Simultaneously sampled data from resting volunteers (n = 8) was analysed to determine the location of individual breaths in the data set and from these, breath periods and frequency were calculated. Clavicular sensor waveforms were found to be more consistent and of greater amplitude than those from the thoracic device, demonstrating good alignment with the reference waveform. On comparing breath by breath periods a close agreement was observed with the reference, with mean clavicular respiratory rate R 2 values of 0.89 (lateral) and 0.98 (longitudinal-axis). This pilot study demonstrates the viability of clavicular respiratory sensing. The sensor is unobtrusive, unaffected by bioelectrical or electrode problems and easier to determine and more consistent than thoracic motion sensing. With relatively basic signal conditioning and processing requirements, it could provide an ideal platform for a low-cost respiratory monitor. (note)

  16. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator.

    Science.gov (United States)

    Zheng, Qiang; Zhang, Hao; Shi, Bojing; Xue, Xiang; Liu, Zhuo; Jin, Yiming; Ma, Ye; Zou, Yang; Wang, Xinxin; An, Zhao; Tang, Wei; Zhang, Wei; Yang, Fan; Liu, Yang; Lang, Xilong; Xu, Zhiyun; Li, Zhou; Wang, Zhong Lin

    2016-07-26

    Harvesting biomechanical energy in vivo is an important route in obtaining sustainable electric energy for powering implantable medical devices. Here, we demonstrate an innovative implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting. Driven by the heartbeat of adult swine, the output voltage and the corresponding current were improved by factors of 3.5 and 25, respectively, compared with the reported in vivo output performance of biomechanical energy conversion devices. In addition, the in vivo evaluation of the iTENG was demonstrated for over 72 h of implantation, during which the iTENG generated electricity continuously in the active animal. Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.

  17. Randomized trial of the ForeseeHome monitoring device for early detection of neovascular age-related macular degeneration. The HOme Monitoring of the Eye (HOME) study design - HOME Study report number 1.

    Science.gov (United States)

    Chew, Emily Y; Clemons, Traci E; Bressler, Susan B; Elman, Michael J; Danis, Ronald P; Domalpally, Amitha; Heier, Jeffrey S; Kim, Judy E; Garfinkel, Richard A

    2014-03-01

    To evaluate the effects of a home-monitoring device with tele-monitoring compared with standard care in detection of progression to choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD), the leading cause of blindness in the US. Participants, aged 55 to 90 years, at high risk of developing CNV associated with AMD were recruited to the HOme Monitoring of Eye (HOME) Study, an unmasked, multi-center, randomized trial of the ForeseeHome (FH) device plus standard care vs. standard care alone. The FH device utilizes preferential hyperacuity perimetry and tele-monitoring to detect changes in vision function associated with development of CNV, potentially prior to symptom and visual acuity loss. After establishing baseline measurements, subsequent changes on follow-up are detected by the device, causing the monitoring center to alert the clinical center to recall participants for an exam. Standard care consists of instructions for self-monitoring visual changes with subsequent self-report to the clinical center. The primary objective of this study is to determine whether home monitoring plus standard care in comparison with standard care alone, results in earlier detection of incident CNV with better present visual acuity. The primary outcome is the decline in visual acuity at CNV diagnosis from baseline. Detection of CNV prior to substantial vision loss is critical as vision outcome following anti-angiogenic therapy is dependent on the visual acuity at initiation of treatment. HOME Study is the first large scale study to test the use of home tele-monitoring system in the management of AMD patients. Published by Elsevier Inc.

  18. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Science.gov (United States)

    2010-07-01

    ... recorder b Combustion temperature Continuous. Condenser Temperature monitoring device installed at condenser exit and equipped with continuous recorder b Condenser exit (product side) temperature Continuous... intervals no greater than 20 percent of the design carbon replacement interval, whichever is greater...

  19. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2{prime}-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM{close_quote}s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM{close_quote}s on the Ag surface potential. {ital Ab} {ital initio} Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. {copyright} {ital 1996 The American Physical Society.}

  20. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    International Nuclear Information System (INIS)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L.; Barashkov, N.N.; Ferraris, J.P.

    1996-01-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM close-quote s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM close-quote s on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. copyright 1996 The American Physical Society

  1. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  2. 40 CFR 63.497 - Back-end process provisions-monitoring provisions for control and recovery devices.

    Science.gov (United States)

    2010-07-01

    ... flame is required. (3) Where a boiler or process heater of less than 44 megawatts design heat input... continuous recorder. (5) For a condenser, a condenser exit (product side) temperature monitoring device...

  3. See I told you I was taking it! - attitudes of adolescents with asthma towards a device monitoring their inhaler use: Implications for future design

    OpenAIRE

    Howard, Sam; Lang, Alexandra. R.; Sharples, Sarah; Shaw, Dominick E.

    2016-01-01

    Adherence to treatment in asthma is often poor, particularly in adolescents and children where the condition is most prevalent. Electronic monitoring devices have shown potential for improving inhaler use, yet little research has considered the attitudes of patients towards these devices. We gave seven adolescents with asthma an electronic monitoring device to use for one month and collected their views on important issues including monitoring and data sharing. Our results showed that partici...

  4. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  5. Desgin of On-line Monitoring Device for MOA (Metal Oxide Arrestor Based on FPGA and C8051F

    Directory of Open Access Journals (Sweden)

    Xiaotong YAO

    2014-10-01

    Full Text Available Monitoring of metal oxide surge arresters (MOA due to aging, moisture and other components cause increased resistive current. Through a lot of practices, it has been proved that in the early days, MOA insulation damage and current increase is not obvious. The accurate working conditions of the MOA are also not obvious but it can reflect the aging or moisture of MOA. When the resistive current of the fundamental component increases, there is no increment in the harmonic components that is the general performance of a serious or moisture contamination. In the same way when the resistive current of harmonic components increases, the fundamental component is not increased and it is the general performance of aging. Therefore, this paper designed an experiment-based FPGA and C8051F-line monitoring device. This device uses resistive current as a detection target. The main monitoring parameters are the fundamental and peak value of resistive current, third harmonic content of the leakage current, phase angle difference and power consumption. Through laboratory tests, the device can be used with a network arrester line monitoring, maintenance, reduce the economic losses caused by power outages and improve the distribution network reliability.

  6. Extreme Energy Events Monitoring report

    CERN Document Server

    Baimukhamedova, Nigina

    2015-01-01

    Following paper reflects the progress I made on Summer Student Program within Extreme Energy Events Monitor project I was working on. During 8 week period I managed to build a simple detector system that is capable of triggering events similar to explosions (sudden change in sound levels) and measuring approximate location of the event. Source codes are available upon request and settings described further.

  7. Design of high efficiency and energy saving aeration device for aquaculture

    Science.gov (United States)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  8. PENGARUH PENGGUNAAN ENERGY SAVING DEVICE PADA PROPELLER B4 55 DENGAN METODE CFD

    Directory of Open Access Journals (Sweden)

    Andi Trimulyono

    2013-10-01

    Full Text Available Tingginya harga bahan bakar semakin mendorong pelaku industri khususnya pemilik kapal melakukan penghematan konsumsi bahan bakar dan cara yang cukup efektif untuk mengurangi konsumsi bahan bakar tersebut adalah dengan menambah instalasi alat yang disebut Energy Saving Device (ESD pada propeller dengan tujuan meningkatkan efisiensi propulsi.   Beberapa desain  ESD propeller yang telah dikembangkan yakni Ducted Propellers (Kort Nozzel propeller, dan Propeller Boss Cap Fins (PBCF. Perbedaan jenis Energy Saving Device (ESD mengindikasikan perubahan gaya torque dan thrust yang berbeda sehingga penulis disini ingin menganalisa pengaruh instalasi Energy Saving Device (ESD  pada propeller terhadap torque dan thrust yang dihasilkan sehingga dapat diketahui jenis ESD dengan performa paling optimal dengan bantuan paket program CAD (Computer Aided Design serta CFD (Computational Fluid Dynamics. Hasil analisa dengan menggunakan RANS software CFD menunjukkan akibat penambahan instalasi Energy Saving Device (ESD  pada propeller, terjadi perubahan bentuk aliran fluida, yang berpengaruh pula terhadap nilai thrust dan torque yang dihasilkan. Gaya thrust yang terjadi pada pada PBCF Propeller adalah sebesar 8.70E+05 N, dengan Torque 7.18E+05, sedangkan thrust pada Nozzle Propeller adalah sebesar 1.18E+06 dengan Torque 9.86E+05

  9. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    Science.gov (United States)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  10. Real time monitoring of electron processors

    International Nuclear Information System (INIS)

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  11. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography

    Directory of Open Access Journals (Sweden)

    Janna Mantua

    2016-05-01

    Full Text Available Polysomnography (PSG is the “gold standard” for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2 for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  12. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  13. 40 CFR 63.3350 - If I use a control device to comply with the emission standards, what monitoring must I do?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true If I use a control device to comply with the emission standards, what monitoring must I do? 63.3350 Section 63.3350 Protection of... for Monitoring and Performance Tests § 63.3350 If I use a control device to comply with the emission...

  14. Time–energy high-dimensional one-side device-independent quantum key distribution

    International Nuclear Information System (INIS)

    Bao Hai-Ze; Bao Wan-Su; Wang Yang; Chen Rui-Ke; Ma Hong-Xin; Zhou Chun; Li Hong-Wei

    2017-01-01

    Compared with full device-independent quantum key distribution (DI-QKD), one-side device-independent QKD (1sDI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time–energy entropic uncertainty relations, we present a time–energy high-dimensional one-side device-independent quantum key distribution (HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice’s different detection efficiencies. The results show that our protocol can performance much better than the original 1sDI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice’s detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel. (paper)

  15. Flexible Graphene-based Energy Storage Devices for Space Application Project

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  16. The design of an energy harvesting device for prolonging the working time of DC equipment

    Science.gov (United States)

    Wen, Yayuan; Deng, Huaxia; Zhang, Jin; Yu, Liandong

    2016-01-01

    Energy harvesting (EH) derives from the idea of converting the ambient energy into electric energy, which can solve the problem of DC supply for some electronic equipment. PZT is a typical piezoelectric material of inorganic, which has been developed as EH devices to transfer ambient vibration energy into electric energy. However, these PZT devices require relatively violent excitation, and easy to be fatigue fracture under the resonance condition. In this paper, PVDF, which is a kind of soft piezoelectric polymer, is adopted for developing transducer. The PVDF devices are flexible and have longer life time than PZT devices under the harmonic environment. The EH researches are mainly focused on the development of energy transfer efficiency either by the mechanical structure of transducer or the improvement of circuit. However, the practicality and stability of the EH devices are important in the practical engineering applications. In this paper, a charge amplifier is introduced in the circuit in order to guarantee the stability of the battery charging under small ambient vibration conditions. The model of the mechanical structure of PVDF and the electric performance of circuit are developed. The experimental results and simulation show that the stability of battery charging is improved and the working time of DC equipment is prolonged.

  17. Preliminary Finding from a New Device for Monitoring Performance and Environmental Factors in the Field

    National Research Council Canada - National Science Library

    Lieberman, Harris

    2000-01-01

    .... This paper will introduce a new device, the U.S. Army Research Institute of Environmental Medicine vigilance monitor, which was developed for assessment of human performance in an automated, continuous manner in the field...

  18. Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices.

    Science.gov (United States)

    Bleszynski, Peter A; Luc, Jessica G Y; Schade, Peter; PhilLips, Steven J; Tchantchaleishvili, Vakhtang

    There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.

  19. Energy Monitor of the Dutch horticulture 2011; Energiemonitor van de Nederlandse glastuinbouw 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velden, N.J.A.; Smit, P.X.

    2012-12-15

    The Energy Monitor for Greenhouse Horticulture charts the energy efficiency, CO2 emissions, the share of sustainable energy and the transition paths of the Greenhouse as Energy Source programme up to and including 2011 [Dutch] Om het energieverbruik in de glastuinbouw in beeld te krijgen en te volgen, is al in 1990 de Energiemonitor in het leven geroepen. Deze monitor publiceert jaarlijks het energieverbruik van de glastuinbouw en de voortgang van de energie-indicatoren energie-efficientie, de CO2-emissie en het aandeel duurzame energie. Voor de monitor wordt gebruik gemaakt van een reeks verschillende databronnen.

  20. Energy Monitor of the Dutch horticulture 2012; Energiemonitor van de Nederlandse glastuinbouw 2012

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velden, N.J.A.; Smit, P.X.

    2013-12-15

    The Energy Monitor for Greenhouse Horticulture charts the energy efficiency, CO2 emissions, the share of sustainable energy and the transition paths of the Greenhouse as Energy Source programme up to and including 2012 [Dutch] Om het energieverbruik in de glastuinbouw in beeld te krijgen en te volgen, is al in 1990 de Energiemonitor in het leven geroepen. Deze monitor publiceert jaarlijks het energieverbruik van de glastuinbouw en de voortgang van de energie-indicatoren energie-efficientie, de CO2-emissie en het aandeel duurzame energie. Voor de monitor wordt gebruik gemaakt van een reeks verschillende databronnen.

  1. Monitoring system of energy characteristics of electron beam during shaping process of power bremsstrahlung pulses

    International Nuclear Information System (INIS)

    Mordasov, N.G.; Ulimov, V.N.; Bryksin, V.A.; Shiyan, V.D.

    2005-01-01

    One proposes a procedure and a device to monitor dynamic and integral characteristics of electron power beams of high-current pulsed accelerators (HCPA) operating under Bremsstrahlung radiation mode. One obtained static and dynamic transfer characteristics for various types of heterogenous targets-converters under operation of UIN-10 HCPA with up to 4 MeV energy electrons, up to 60 kA current and 6 x 10 -8 -2 x 10 -6 s pulse efficient duration. One demonstrated the capabilities of the complex diagnostics of acceleration of electron beams by HCPA with simultaneous determination of parameters of the Bremsstrahlung radiation at the local point of the field behind the target-converter [ru

  2. Fast broad-band photon detector based on quantum well devices and charge-integrating electronics for non-invasive FEL monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M., E-mail: matias.antonelli@elettra.eu; Cautero, G.; Sergo, R.; Castellaro, C.; Menk, R. H. [Elettra – Sincrotrone Trieste S.C.p.A., Trieste (Italy); Ganbold, T. [School in Nanotechnology, University of Trieste, Trieste (Italy); IOM CNR, Laboratorio TASC, Trieste (Italy); Biasiol, G. [IOM CNR, Laboratorio TASC, Trieste (Italy)

    2016-07-27

    The recent evolution of free-electron lasers has not been matched by the development of adequate beam-monitoring instrumentation. However, for both experimental and diagnostics purposes, it is crucial to keep such photon beams under control, avoiding at the same time the absorption of the beam and the possible destruction of the detector. These requirements can be fulfilled by utilizing fast and non-invasive photon detectors operated in situ, upstream from the experimental station. From this perspective, sensors based on Quantum Well (QW) devices can be the key to detecting ultra-short light pulses. In fact, owing to their high electron mobility, InGaAs/InAlAs QW devices operated at room temperature exhibit sub-nanosecond response times. Their direct, low-energy band gap renders them capable of detecting photons ranging from visible to X-ray. Furthermore, the 2D electron gas forming inside the QW is responsible for a charge amplification mechanism, which increases the charge collection efficiency of these devices. In order to acquire the signals produced by these QW sensors, a novel readout electronics has been developed. It is based on a high-speed charge integrator, which allows short, low-intensity current pulses to be read within a 50-ns window. The integrated signal is acquired through an ADC and the entire process can be performed at a 10-MHz repetition rate. This work provides a detailed description of the development of the QW detectors and the acquisition electronics, as well as reporting the main experimental results, which show how these tools are well suited for the realization of fast, broad-band beam monitors.

  3. A piezoelectric fibre composite based energy harvesting device for potential wearable applications

    International Nuclear Information System (INIS)

    Swallow, L M; Luo, J K; Siores, E; Patel, I; Dodds, D

    2008-01-01

    Rapid technological advances in nanotechnology, microelectronic sensors and systems are becoming increasingly miniaturized to the point where embedded wearable applications are beginning to emerge. A restriction to the widespread application of these microsystems is the power supply of relatively sizable dimensions, weight, and limited lifespan. Emerging micropower sources exploit self-powered generators utilizing the intrinsic energy conversion characteristics of smart materials. 'Energy harvesting' describes the process by which energy is extracted from the environment, converted and stored. Piezoelectric materials have been used to convert mechanical into electrical energy through their inherent piezoelectric effect. This paper focuses on the development of a micropower generator using microcomposite based piezoelectric materials for energy reclamation in glove structures. Devices consist of piezoelectric fibres, 90–250 µm in diameter, aligned in a unidirectional manner and incorporated into a composite structure. The fibres are laid within a single laminate structure with copper interdigitated electrodes assembled on both sides, forming a thin film device. Performances of devices with different fibre diameters and material thicknesses are investigated. Experiments are outlined that detail the performance characteristics of such piezoelectric fibre laminates. Results presented show voltage outputs up to 6 V which is considered enough for potential applications in powering wearable microsystems

  4. Energy monitoring and managing for electromobility purposes

    Science.gov (United States)

    Slanina, Zdenek; Docekal, Tomas

    2016-09-01

    This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.

  5. High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  6. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, R; Yadav, R S [Aligarh Muslim Univ. (India). Dept. of Physics; Naqvi, T H [Z.H. Engineering Coll., Aligarh (India); Ahmed, Rais [National Council of Educational Research and Training, New Delhi (India)

    1975-12-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described.

  7. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  8. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  9. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    International Nuclear Information System (INIS)

    Kumar, S.; Prasad, R.; Yadav, R.S.; Ahmed, Rais

    1975-01-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described. (author)

  10. Medical Device Integrated Vital Signs Monitoring Application with Real-Time Clinical Decision Support.

    Science.gov (United States)

    Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria

    2018-01-01

    This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.

  11. Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices

    Science.gov (United States)

    Cornett, Jane; Chen, Baoxing; Haidar, Samer; Berney, Helen; McGuinness, Pat; Lane, Bill; Gao, Yuan; He, Yifan; Sun, Nian; Dunham, Marc; Asheghi, Mehdi; Goodson, Ken; Yuan, Yi; Najafi, Khalil

    2017-05-01

    Thermoelectric energy harvesters convert otherwise wasted heat into electrical energy. As a result, they have the potential to play a critical role in the autonomous wireless sensor network signal chain. In this paper, we present work carried out on the development of Bi2Te3-based thermoelectric chip-scale energy harvesting devices. Process flow, device demonstration and characterization are highlighted.

  12. Hematological clozapine monitoring with a point-of-care device: A randomized cross-over trial

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Thode, Dorrit; Stenager, Elsebeth

    for several reasons, perhaps most importantly because of the mandatory hematological monitoring. The Chempaq Express Blood Counter (Chempaq XBC) is a point-of-care device providing counts of white blood cells (WBC) and granulocytes based on a capillary blood sampling. A randomized cross-over trial design...

  13. Analysis and Monitoring of Energy Consumption and Indoor Climate in a School Before and After Deep Energy Renovation

    DEFF Research Database (Denmark)

    Rose, Jørgen; Thomsen, Kirsten Engelund; Bergsøe, Niels Christian

    2015-01-01

    kindergartens/institutions -- that will undergo deep energy renovation over the next fewyears.The seven buildings are being energy-renovated and monitored with support from the European Union- CONCERTO initiative as part of the project titled Cost-Effective Low-Energy Advanced Sustainable Solutions -- Class1...... ventilation systems with heat recovery, low-energy lighting, water-saving measures, improved insulation of piping, and improved control using building energy management systems. This paper presents preliminary results of the analysis and monitoring of energy consumption and indoor climate in one public school...

  14. On Improving the Energy Efficiency and Robustness of Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    An important feature of a modern mobile device is that it can position itself and support remote position tracking. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile device. Furthermore, tracking has to robustly deliver...... of different mobile devices....

  15. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Science.gov (United States)

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong

    2012-03-01

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  16. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  17. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices.

    Science.gov (United States)

    Dooley, Erin E; Golaszewski, Natalie M; Bartholomew, John B

    2017-03-16

    Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (PApple Watch, and Garmin Forerunner 225. An advantage and novel approach of the study is the examination of HR and EE at specific physical activity intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss interventions and could impact findings. Future research should investigate why differences between exercise intensities and the devices exist. ©Erin E Dooley, Natalie M Golaszewski, John B Bartholomew. Originally published in JMIR

  18. NASDA technician test real-time radiation monitoring device

    Science.gov (United States)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  19. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Science.gov (United States)

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  1. Endogenous monitoring: a new challenge for the regulation of energy externalities

    International Nuclear Information System (INIS)

    Millock, K.

    1999-11-01

    The present article studies the problem of regulating externalities from energy use, with particular emphasis on the problem of information. A standard economics. The article shows how the optimal choice of instruments used to regulate the externalities from energy use will change with the more widespread adoption of modern monitoring technologies. We will illustrate how the application of incentive policies conditioned on monitoring can contribute to the implementation of flexible mechanisms for greenhouse gas abatement. Section 2 briefly summarises the economic framework for the regulation of externalities resulting from energy use. In Section 3, an illustrative model is presented in which the introduction of monitoring of emissions is endogenous and conditions the best type of instrument used by the regulator to internalize the externalities from energy use. Section 4 then examines the implications of this framework for the application of the flexible incentives introduced in the Kyoto Protocol. It shows how the success of project-based approaches, such as Joint Implementation and the Clean Development Mechanism, depends upon the implementation of appropriate incentives for monitoring. Section 5 concludes. (author)

  2. A validation study comparing self-reported travel diaries and objective data obtained from in-vehicle monitoring devices in older drivers with bilateral cataract.

    Science.gov (United States)

    Agramunt, Seraina; Meuleners, Lynn; Chow, Kyle Chi; Ng, Jonathon Q; Morlet, Nigel

    2017-09-01

    Advances in technology have made it possible to examine real-world driving using naturalistic data obtained from in-vehicle monitoring devices. These devices overcome the weaknesses of self-report methods and can provide comprehensive insights into driving exposure, habits and practices of older drivers. The aim of this study is to compare self-reported and objectively measured driving exposure, habits and practices using a travel diary and an in-vehicle driver monitoring device in older drivers with bilateral cataract. A cross-sectional study was undertaken. Forty seven participants aged 58-89 years old (mean=74.1; S.D.=7.73) were recruited from three eye clinics over a one year period. Data collection consisted of a cognitive test, a researcher-administered questionnaire, a travel diary and an in-vehicle monitoring device. Participants' driving exposure and patterns were recorded for one week using in-vehicle monitoring devices. They also completed a travel diary each time they drove a motor vehicle as the driver. Paired t-tests were used to examine differences/agreement between the two instruments under different driving circumstances. The data from the older drivers' travel diaries significantly underestimated the number of overall trips (ptravel diaries also significantly overestimated overall driving duration (ptravelled under any of the driving circumstances. The results of this study found that relying solely on self-reported travel diaries to assess driving outcomes may not be accurate, particularly for estimates of the number of trips made and duration of trips. The clear advantages of using in-vehicle monitoring devices over travel diaries to monitor driving habits and exposure among an older population are evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design, modeling and utilization of thermoelectrical materials and devices in energy systems

    DEFF Research Database (Denmark)

    Chen, Min

    Thermoelectric generators can convert waste heat that abounds in modern societies into electricity in an environmentally-friendly and reliable manner, and many applications of thermoelectric devices can be envisaged. The research of this PhD dissertation focuses thermoelectric generator modeling...... at a device level as well as its applications in energy systems. The purpose is to introduce the use of thermoelectric generator into energy systems, and to indicate the impact of implementing thermoelectric generator on the design and operation of energy systems. For this purpose, this dissertation produces...... numerical models as versatile simulation tools to identify speci c optimum design criteria for thermoelectric generators used in various associated thermal and electrical systems, so that the generation performance can be improved due to the optimum system design....

  4. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  5. A New Pricing Scheme for Controlling Energy Storage Devices in Future Smart Grid

    Directory of Open Access Journals (Sweden)

    Jingwei Zhu

    2014-01-01

    Full Text Available Improvement of the overall efficiency of energy infrastructure is one of the main anticipated benefits of the deployment of smart grid technology. Advancement in energy storage technology and two-way communication in the electric network are indispensable components to achieve such a vision, while efficient pricing schemes and appropriate storage management are also essential. In this paper, we propose a universal pricing scheme which permits one to indirectly control the energy storage devices in the grid to achieve a more desirable aggregate demand profile that meets a particular target of the grid operator such as energy generation cost minimization and carbon emission reduction. Such a pricing scheme can potentially be applied to control the behavior of energy storage devices installed for integration of intermittent renewable energy sources that have permission to grid connection and will have broader applications as an increasing number of novel and low-cost energy storage technologies emerge.

  6. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water

    NARCIS (Netherlands)

    Lohmann, R.; Booij, K.; Smedes, F.; Vrana, B.

    2012-01-01

    The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent

  7. A wireless intraocular pressure monitoring device with a solder-filled microchannel antenna

    International Nuclear Information System (INIS)

    Varel, Çağdaş; Shih, Yi-Chun; Otis, Brian P; Böhringer, Karl F; Shen, Tueng S

    2014-01-01

    This paper presents the prototype of an intraocular pressure sensor as a major step toward building a device that can be permanently implanted during cataract surgery. The implantation will proceed through an incision of 2–3 mm using an injector, during which the complete device must be folded into a cross-section of 2 mm × 1 mm. The device uses radio frequency (RF) for wireless power and data transfer. The prototype includes an antenna, an RF chip and a pressure sensor assembled on a printed circuit board with several circuit components used for testing and calibration. The antenna is fabricated and integrated with the circuit using a fabrication method employing solder-filled microchannels embedded in an elastomer. The monitoring device is powered at 2.716 GHz from a distance of 1–2 cm. The prototype has undergone electrical and mechanical tests for antenna and sensor performance. The flexible antenna can withstand a stress of 33.4 kPa without any electrical disconnection. It did not show a significant increase in electrical resistance after 50 bending cycles with a maximum applied stress of 116 kPa. Transmitted pressure data shows an averaged sensitivity of 16.66 Hz (mm-Hg) –1 . (paper)

  8. Methodological differences behind energy statistics for steel production – Implications when monitoring energy efficiency

    International Nuclear Information System (INIS)

    Morfeldt, Johannes; Silveira, Semida

    2014-01-01

    Energy efficiency indicators used for evaluating industrial activities at the national level are often based on statistics reported in international databases. In the case of the Swedish iron and steel sector, energy consumption statistics published by Odyssee, Eurostat, the IEA (International Energy Agency), and the United Nations differ, resulting in diverging energy efficiency indicators. For certain years, the specific energy consumption for steel is twice as high if based on Odyssee statistics instead of statistics from the IEA. The analysis revealed that the assumptions behind the allocation of coal and coke used in blast furnaces as energy consumption or energy transformation are the major cause for these differences. Furthermore, the differences are also related to errors in the statistical data resulting from two different surveys that support the data. The allocation of coal and coke has implications when promoting resource as well as energy efficiency at the systems level. Eurostat's definition of energy consumption is more robust compared to the definitions proposed by other organisations. Nevertheless, additional data and improved energy efficiency indicators are needed to fully monitor the iron and steel sector's energy system and promote improvements towards a greener economy at large. - Highlights: • Energy statistics for the iron and steel sector diverge in international databases. • Varying methods have implications when monitoring energy and resource efficiency. • Allocation of blast furnaces as transformation activities is behind the differences. • Different statistical surveys and human error also contribute to diverging results

  9. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices.

    Science.gov (United States)

    Wen, Lei; Li, Feng; Cheng, Hui-Ming

    2016-06-01

    Flexible electrochemical energy storage (FEES) devices have received great attention as a promising power source for the emerging field of flexible and wearable electronic devices. Carbon nanotubes (CNTs) and graphene have many excellent properties that make them ideally suited for use in FEES devices. A brief definition of FEES devices is provided, followed by a detailed overview of various structural models for achieving different FEES devices. The latest research developments on the use of CNTs and graphene in FEES devices are summarized. Finally, future prospects and important research directions in the areas of CNT- and graphene-based flexible electrode synthesis and device integration are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cutting device for a local power range monitor tube

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Tsuji, Teruaki.

    1976-01-01

    Object: To provide a combination of a lifting device for a local power range monitor (LPRM) tube, a cutter and a transfer machine to safely and securely cut the LPRM tube under water. Structure: An LPRM tube is gripped by an LPRM tube gripper, which is moved up and down by a chain drive, through a flexture corrector, and the tip of the LPRM tube is held and released from the LPRM tube gripper so as to be threaded into an LPRM tube cutter to grip it by a transfer gripper of an LPRM tube transfer machine, after which the LPRM tube cutter is operated under pressure water to cut the LPRM tube with a cutter edge so that a cut portion is closed. (Yoshino, Y.)

  11. Assessment of Current Practice for Tank Testing of Small Marine Energy Devices

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Discussion Report. Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact. The report is a contribution by Aalborg University (AAU) to the deliverable on Assessment of current practice for tank testing of small marine energy...

  12. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  13. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2014-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices formed by a four wafer stack are batch fabricated and fully packaged at wafer scale. A spin coated CYTOP polymer is used both...... as an electret material and an adhesive layer for low temperature wafer bonding. The overall size of the device is about 1.1 cm × 1.3 cm. At an external load resistance of 13.4 MΩ, a power output of 0.15 μW is achieved when vibration at an acceleration amplitude of 1 g (∼9.8 m/s2) is applied at a low frequency...... of 96 Hz. The frequency response of the device is also measured and a broader bandwidth is observed at higher acceleration amplitude....

  14. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices with a four wafer stack are batch fabricated and fully packaged at wafer scale. CYTOP polymer is used both as an electret material...... and an adhesive layer for low temperature wafer bonding. The overall size of the device is about 1.1×1.3 cm2. With an external load of 13.4 MΩ, a power output of 0.15 μW is achieved when vibration at an acceleration amplitude of 1 g (9.8 m/s2) is applied at a low frequency of 96 Hz. The frequency response...... of the device is also measured and a broader bandwidth is observed at higher acceleration amplitude. © 2013 IEEE....

  15. Laser, light, and energy devices for cellulite and lipodystrophy.

    Science.gov (United States)

    Peterson, Jennifer D; Goldman, Mitchel P

    2011-07-01

    Cellulite affects all races, and it is estimated that 85% of women older than 20 years have some degree of cellulite. Many currently accepted cellulite therapies target deficiencies in lymphatic drainage and microvascular circulation. Devices using radiofrequency, laser, and light-based energies, alone or in combination and coupled frequently with tissue manipulation, are available for improving cellulite. Laser assisted liposuction may improve cellulite appearance. Although improvement using these devices is temporary, it may last several months. Patients who want smoother skin with less visible cellulite can undergo a series of treatments and then return for additional treatments as necessary. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  17. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    Science.gov (United States)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  18. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  19. A Cs2LiYCl6:Ce-based advanced radiation monitoring device

    International Nuclear Information System (INIS)

    Budden, B.S.; Stonehill, L.C.; Dallmann, N.; Baginski, M.J.; Best, D.J.; Smith, M.B.; Graham, S.A.; Dathy, C.; Frank, J.M.; McClish, M.

    2015-01-01

    Cs 2 LiYCl 6 :Ce 3+ (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups

  20. Improvement of a device for monitoring the contamination of surfaces

    International Nuclear Information System (INIS)

    Barbier, Albert.

    1981-01-01

    The purpose of this invention is to make it possible to monitor the contamination of surfaces by a light weight portable device and enabling the alpha, beta and gamma radiation contamination to be detected. The detection probe which is connected by a single lead to the box is adapted, in each particular case, to the radiation mode emitted by the contaminated surfaces and the box is provided with a special leak-proof socket for connecting the probe and includes means for assessing the counting rate of the radiation given off, depending on the mode of the radiations emitted by the contaminated surfaces and the intensity of the count rate [fr

  1. Feeding back about eco-feedback: How do consumers use and respond to energy monitors?

    International Nuclear Information System (INIS)

    Buchanan, Kathryn; Russo, Riccardo; Anderson, Ben

    2014-01-01

    To date, a multitude of studies have examined the empirical effect of feedback on energy consumption yet very few have examined how feedback might work and the processes it involves. Moreover, it remains to be seen if the theoretical claims made concerning how feedback works can be substantiated using empirical data. To start to address this knowledge gap, the present research used qualitative data analysis to examine how consumers use and respond to energy monitors. The findings suggest feedback may increase both the physical and conscious visibility of consumption as well as knowledge about consumption. Accordingly, support was evident for the theoretical assertions that feedback transforms energy from invisible to visible, prompts motivated users to learn about their energy habits, and helps address information deficits about energy usage. We conclude by evaluating the feasibility of feedback to substantially reduce consumption and discuss ways in which feedback could be improved to aid its effectiveness in the long term before discussing the implication our findings may have for government policy. - Highlights: • We conduct qualitative analysis using online reviews about energy monitors. • We examine how consumers use and respond to energy monitors. • Energy monitors are used to increase awareness and knowledge of consumption. • Consumers report that the monitors lead them to engage in energy saving behaviours. • Disadvantages of the monitors raise questions about their long-term sustainability

  2. Monitoring the Vulnerability of Energy Supply System

    International Nuclear Information System (INIS)

    Gnansonounou, E.

    2006-01-01

    Due to the increasing complexity of the world evolution, the public decision makers, the energy supply industry and the consumers in industrialised countries are more and more sensitive to the vulnerability of energy supply. The emergence of new big consumer countries and the perspective of oil and gas depletion at the end of the current century raise the concerns about how to share fairly the remaining resources for the common and sustainable development of the mankind. Erratic energy prices discourage investment and delay the energy transition. Voluntary measures are needed mainly in industrialised countries in order to develop alternative and sustainable energy sources and to avoid world struggle for energy procurement. In this contribution a synthetic energy vulnerability index is defined for monitoring energy supply vulnerability. The proposed index is based on energy intensity, oil and gas import dependency, CO 2 content of primary energy supply, electricity supply vulnerability and non-diversity in transport fuels. The preliminary assessment of this synthetic index for selected industrialised countries provides promising results that need however further refinement.(author)

  3. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    Directory of Open Access Journals (Sweden)

    Daejin Park

    2014-01-01

    Full Text Available A specially designed sensor processor used as a main processor in IoT (internet-of-thing device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG. Using an event signal processing unit (EPU as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio- based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  4. Evaluating Effects of Marine Energy Devices on the Marine Environment - A Risk-Based and In-Water Testing Approach

    Science.gov (United States)

    Harker-Klimes, G.; Copping, A. E.

    2016-02-01

    The portfolio of emerging renewables includes generating power from offshore winds, tides, waves, and ocean currents, as well as seawater temperature and salinity differentials. These new systems are collectively known as marine renewable energy (MRE). MRE development worldwide is in the early stages of design, deployment, and commercialization. A major barrier to bringing these systems into commercial use is the need to overcome uncertainties in environmental effects that slow siting and permitting of devices. Using a risk-based approach, this paper will discuss pathways for evaluating potential effects of tidal turbines and wave energy converters (WECs) on marine animals, habitats, and ecosystem processes. Using basic biological principles and knowledge of specific MRE technologies, the Environmental Risk Evaluation System has been used to narrow pertinent risks from devices, enabling laboratory and field studies to focus on the most important interactions. These interactions, include: potential collisions and behavioral disturbances of marine mammals, fish and other organisms; effects of underwater sound on animal communication and navigation; changes in sediment transport, benthic habitats, and water quality constituents; and effects of electromagnetic fields on animals. It is then necessary to apply these findings to the projects themselves. Another uncertainty is how to measure these key interactions in high-energy locations where MRE deployment is desirable. Consequently, new systems are being developed: instrumentation, innovative platforms for deployment, and new management strategies for collecting and analyzing very large data streams. Inherent in this development pathway is the need to test, deploy, and calibrate these monitoring systems. The Triton initiative is designed to enable this development, and has initiated testing of devices in Washington State to move the MRE industry forward while protecting marine animals, habitats and processes.

  5. Possible applications of a hybrid thermonuclear energy source based on a DPF device in modern energy complexes

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Tyagunov, M.G.

    1983-01-01

    A source of thermonuclear energy based on the dense plasma focus (DPF) device in a hybrid fusion-fission version is proposed. In its initial operating phase such a facility would be a net energy consumer and would breed fissile material; as the fissile content in the blanket increases, the installation would become a net energy producer. Under the proposed scheme of blanket operation, up to 50% of the uranium could be burned while maintaining electrical output and without refabrication of fuel elements. If desired, operation could continue after the fuel is almost completely exhausted to burn the nuclear waste. It is thought that the new source could become both technologically and economically feasible in the near future. Smooth control should present no problem and the speed at which the device could be brought up to full load should greatly improve the flexibility of the overall electrical supply system

  6. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    Science.gov (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  7. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    International Nuclear Information System (INIS)

    Ferin, G; Bantignies, C; Khanh, H Le; Flesch, E; Nguyen-Dinh, A

    2015-01-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations. (paper)

  8. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter

    Directory of Open Access Journals (Sweden)

    Akimchenko Alina

    2017-01-01

    Full Text Available The miniature and low-power devices with long service life in hard operating conditions like the Carbon-14 beta-decay energy converters indeed as eternal resource for integrated MEMS and NEMS are considered. Authors discuss how to create the power supply for MEMS/NEMS devices, based on porous SiC/Si structure, which are tested to be used as the beta-decay energy converters of radioactive C-14 into electrical energy. This is based on the silicon carbide obtaining by self-organizing mono 3C-SiC endotaxy on the Si substrate. The new idea is the C-14 atoms including in molecules in the silicon carbide porous structure by this technology, which will increase the efficiency of the converter due to the greater intensity of electron-hole pairs generation rate in the space charge region. The synthesis of C-14 can be also performed by using the electronically controlled magneto-optic chamber.

  9. Model-based energy efficiency monitoring of gas-fired furnaces; Modellgestuetztes Energieeffizienz-Monitoring an Industriefeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Gose, Sven; Schult, Stefan; Sternberg, Jost [SAACKE GmbH, Bremen (Germany)

    2011-09-15

    This paper first describes the losses and the saving potential of heat generation plants and contrasts the usual characteristic numbers for assessing the energy efficiency. As these numbers describe a discontinuous process often only insufficiently, the characteristic number ''fuel efficiency'' is introduced. This number can only be calculated through a continuous monitoring system. The benefits of such a monitoring system are demonstrated by an example. (orig.)

  10. Investigation on the actual energy consumption by office automation devices used in offices; Office ni okeru OA kiki no energy shohi jittai chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    With an objective to further improve efficiency of power demand by office automation devices and suppress increase in the power demand, investigations were carried out on the actual power consumption by office automation devices, and discussions were given on energy saving effects in the office automation devices. In the investigations, measurements were conducted for small offices as the subject thereof with regard to electric power consumed by such presentation tools and their peripheral devices as personal computers, word processors, copying machines, facsimile machines, electronic whiteboards and overhead projectors. Power consumption particularly in a standby condition was also investigated. As a result of the investigations, the following characteristics were revealed: the number of office automation devices used to deal with the Energy Star is increasing rapidly; power consumption believed to have been reduced by the Energy Star transferring to lower power consumption is estimated to be 3% in average for personal computers, 26% for copying machines, and 68% for facsimile machines; and while facsimile machines are left in operating condition for 24 hours, their operation rate at night is very low, wherein there is a large room for saving energy in this time band. 65 figs., 21 tabs.

  11. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    Science.gov (United States)

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  12. Method for the manufacture of a thin film electrochemical energy source and device

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method for the manuf. of a thin film electrochem. energy source. The invention also relates to a thin film electrochem. energy source. The invention also relates to an elec. device comprising such a thin film electrochem. energy source. The invention enables a more rapid

  13. Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Deng, Ruiping; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2016-02-15

    In this study, we aim to further enhance the electroluminescence (EL) performances of trivalent europium complex Eu(TTA){sub 3}phen (TTA=thenoyltrifluoroacetone and phen=1,10-phenanthroline) by designing the device structure with stepwise energy levels. The widely used bipolar material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) was chosen as host material, while the doping concentration of Eu(TTA){sub 3}phen was optimized to be 4%. To facilitate the injection and transport of holes, MoO{sub 3} anode modification layer and 4,4′,4′′-Tris(carbazole-9-yl)triphenylamine (TcTa) hole transport layer were inserted in sequence. Efficient pure red emission with suppressed efficiency roll-off was obtained attributed to the reduction of accumulation holes, the broadening of recombination zone, and the improved balance of holes and electrons on Eu(TTA){sub 3}phen molecules. Finally, the device with 3 nm MoO{sub 3} and 5 nm TcTa obtained the highest brightness of 3278 cd/m{sup 2}, current efficiency of 12.45 cd/A, power efficiency of 11.50 lm/W, and external quantum efficiency of 6.60%. Such a device design strategy helps to improve the EL performances of emitters with low-lying energy levels and provides a chance to simplify device fabrication processes. - Highlights: • Electroluminescent performances of europium complex were further improved. • Device structure with stepwise energy levels was designed. • Better carriers' balance was realized by improving the injection and transport of holes. • The selection of bipolar host caused the broadening of recombination zone.

  14. Estimation of the energy efficiency of cryogenic filled tank use in different systems and devices

    International Nuclear Information System (INIS)

    Blagin, E.V.; Dovgyallo, A.I.; Nekrasova, S.O.; Sarmin, D.V.; Uglanov, D.A.

    2016-01-01

    Highlights: • The cryogenic fueling tank is a device for storage and gasification of working fluid. • Potential energy of pressure can be converted to electricity by circuit of turbines. • It is possible to compensate up to 8% of energy consumed for liquefaction. - Abstract: This article presents a device for storage and gasification of cryogenic working fluid. This device is called cryogenic fueling tank. Working fluid pressure increases during the gasification and potential energy of this pressure can be used in different ways. The ways of integrating the cryogenic fueling tank into existing energy plants are described in this article. The estimation of the cryogenic fueling tank application in the gasification facility as well as in the onboard power system was carried out. This estimation shows that application of such tank as well as a circuit of turbines allows generating up to near 8% of energy which was consumed during gas liquefaction. The estimation of the additionally generated electric energy value was also carried out for each of the cases.

  15. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  16. Vaginal rejuvenation using energy-based devices

    Directory of Open Access Journals (Sweden)

    Cheryl Karcher, MD

    2016-09-01

    Full Text Available Physiologic changes in a woman’s life, such as childbirth, weight fluctuations, and hormonal changes due to aging and menopause, may alter the laxity of the vaginal canal, damage the pelvic floor, and devitalize the mucosal tone of the vaginal wall. These events often lead to the development of genitourinary conditions such as stress urinary incontinence; vaginal atrophy; dryness; and physiologic distress affecting a woman’s quality of life, self-confidence, and sexuality. Various treatment modalities are currently available to manage these indications, varying from invasive vaginal surgery to more benign treatments like topical vaginal hormonal gels or hormone-replacement therapy. A new trend gaining momentum is the advent of energy-based devices for vaginal rejuvenation that apply thermal or nonthermal energy to the various layers of the vaginal tissue, stimulating collagen regeneration contracture of elastin fibers, neovascularization, and improved vaginal lubrication. This review aims to present the available technologies offering vaginal rejuvenation and the scientific evidence that underlines their safety and efficacy for this indication.

  17. Energy management in mobile devices with the cinder operating system

    KAUST Repository

    Roy, Arjun

    2011-01-01

    We argue that controlling energy allocation is an increasingly useful and important feature for operating systems, especially on mobile devices. We present two new low-level abstractions in the Cinder operating system, reserves and taps, which store and distribute energy for application use. We identify three key properties of control - isolation, delegation, and subdivision - and show how using these abstractions can achieve them. We also show how the architecture of the HiStar information-flow control kernel lends itself well to energy control. We prototype and evaluate Cinder on a popular smartphone, the Android G1. Copyright © 2011 ACM.

  18. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    Science.gov (United States)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  19. A versatile passive and active non-destructive device for spent fuel assemblies monitoring

    International Nuclear Information System (INIS)

    Berne, R.; Bignan, G.; Andrieu, G.; Dethan, B.

    1993-01-01

    The monitoring of spent fuel assemblies in reactor pools or in reprocessing plants with NDA methods is interesting (non-destructivity, non-intrusivity) for process control, safety-criticality and/or nuclear material management. In this context, the authors present the results of the development and design of a prototype device (physical methods used, qualification...) called PYTHON. The aim of PYTHON is to check the declared characteristic values of an irradiated assembly before taking it into a transport cask for safety criticality control. The PYTHON device consists of a detector head in two sections and a 252 Cf source if active neutron counting is to be used. Each section of the detection head consists of two detectors: one fission chamber and one ionization chamber

  20. Transcranial Doppler monitoring during stenting of the carotid bifurcation: evaluation of two different distal protection devices in preventing embolization.

    Science.gov (United States)

    Rubartelli, Paolo; Brusa, Giulia; Arrigo, Alessandro; Abbadessa, Francesco; Giachero, Corinna; Vischi, Massimo; Ricca, Maria Maddalena; Ottonello, Gian Andrea

    2006-08-01

    To compare the efficacy of 2 emboli protection devices in preventing embolization during carotid artery stenting (CAS). The GuardWire distal occlusion system (n=19) and the distal FilterWire EX (n=12) were compared in 31 consecutive patients (24 men; mean age 71+/-10 years) monitored with transcranial Doppler for microembolic signals before, during, and after CAS. The choice of the protection device was based on availability and on the patency of the contralateral carotid artery. The baseline characteristics were similar in the patients treated under protection from either device. Placement and retrieval of the protection device, stenting, and postdilation were technically successful in all patients. Two patients suffered a transient ischemic attack shortly after the procedure; no other adverse cardiovascular events occurred at 30 days. Compared to the GuardWire, the use of the FilterWire was associated with more microembolic signals during stent deployment (77.4+/-33.5 versus 1.07+/-1.94, pprotection device (21.4+/-15.4 versus 10.9+/-8.3, p=0.051). Consequently, the total amount of microembolic signals during the procedure was higher when the filter device was employed (183.0+/-42.1 versus 31.7+/-12.0, p<0.0001). The distal occlusion device appears to be more effective than the filter in reducing distal embolization detected by transcranial Doppler monitoring.

  1. River Devices to Recover Energy with Advanced Materials (River DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Daniel P. [Bayer MaterialScience LLC

    2013-07-03

    The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize and model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.

  2. Alpha Beam Energy Determination Using a Range Measuring Device for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Yong; Kim, Byeon Gil; Hong, Seung Pyo; Kim, Ran Young; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    The threshold energy of the {sup 209}Bi(α,3n){sup 210} At reaction is at about 30MeV. Our laboratory suggested an energy measurement method to confirm the proton-beam's energy by using a range measurement device. The experiment was performed energy measurement of alpha beam. The alpha beam of energy 29 MeV has been extracted from the cyclotron for the production of {sup 211}At. This device was composed of four parts: an absorber, a drive shaft, and a servo motor and a Faraday cup. The drive shaft was mounted on the absorber and connects with the axis of the servo motor and rotates linearly and circularly by this servo motor. A Faraday cup is for measuring the beam flux. As this drive shaft rotates, the thickness of the absorber varies depending on the rotation angle of the absorber. The energy of the alpha particle accelerated and extracted from MC-50 cyclotron was calculated with the measurement of the particle range in Al foil and using ASTAR, SRIM, MCNPX software. There were a little discrepancy between the expected energy and the calculated energy within the 0.5MeV error range. We have a plan to make an experiment with various alpha particle energies and another methodology, for example, the cross section measurement of the nuclear reaction.

  3. Design of a bimorph piezoelectric energy harvester for railway monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong [Univ. of Connecticut, Connecticut (United States)

    2012-12-15

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s{sup 2} base excitation compared to stand alone piezoelectric energy harvester without tip mass.

  4. Design of a bimorph piezoelectric energy harvester for railway monitoring

    International Nuclear Information System (INIS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2012-01-01

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s 2 base excitation compared to stand alone piezoelectric energy harvester without tip mass

  5. Using Colony Monitoring Devices to Evaluate the Impacts of Land Use and Nutritional Value of Forage on Honey Bee Health

    Directory of Open Access Journals (Sweden)

    Matthew Smart

    2017-12-01

    Full Text Available Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  6. Using colony monitoring devices to evaluate the impacts of land use and nutritional value of forage on honey bee health

    Science.gov (United States)

    Smart, Matthew; Otto, Clint R.; Cornman, Robert S.; Iwanowicz, Deborah

    2018-01-01

    Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  7. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    Science.gov (United States)

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  8. Research status of wave energy conversion (WEC) device of raft structure

    Science.gov (United States)

    Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng

    2017-10-01

    This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.

  9. Intra-building People Localisation Using Personal Bluetooth Low Energy (BLE Devices

    Directory of Open Access Journals (Sweden)

    Glebs Kuzmics

    2018-04-01

    Full Text Available This paper discusses the conceptual implementation of a system to locate people inside buildings using their personal Bluetooth® low energy device(s in situations of a crisis. Various aspects of BLE technology are covered with regard to their usage for emergency management. Legal, social, ethical and professional issues are also discussed in using this technology, especially in matters of safeguarding information privacy. The plan of the proposed system is then discussed and concluded.

  10. Monitoring device for reactor operation

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To increase the freedom for the power control due to control rod operation and flow rate control, as well as prevent fuel failures by the provision of a power distribution forecasting device for forecasting the changes in the reactor core power distribution and a device for calculating the fuel performance index and judging to display the calculated values. Constitution: The results for the calculation of the reactor core power distribution from a process computer that processes each of measuring signals of a nuclear power plant are used as inputs to a fuel power history calculator to constitute the power history up to the present time for each of the fuels. The date are inputted to a fuel performance index calculator to calculate the fuel performance index at present time for each of the fuels. Changes in the power distribution are forecast in a forecasting device for reactor power distribution relative to the changes in the control variables of a control variable memory unit and the date are inputted to a fuel power history calculator to forecast the power changes for each of the fuels. The amount of the power changes is inputted to a fuel performance index calculator and a fuel performance indicating and judging device judges and displays if they exceed a predetermined value. (Seki, T.)

  11. Can an electronic device with a single cuff be accurate in a wide range of arm size? Validation of the Visomat Comfort 20/40 device for home blood pressure monitoring.

    Science.gov (United States)

    Stergiou, G S; Tzamouranis, D; Nasothimiou, E G; Protogerou, A D

    2008-11-01

    An appropriate cuff according to the individual's arm circumference is recommended with all blood pressure (BP) monitors. An electronic device for home monitoring has been developed (Visomat Comfort 20/40) that estimates the individual's arm circumference by measuring the cuff filing volume and makes an adjustment of measured BP taking into account the estimated arm circumference. Thus the manufacturer recommends the use of a single cuff for arm circumference 23-43 cm. The device accuracy was assessed using the European Society of Hypertension International Protocol. Simultaneous BP measurements were obtained in 33 adults by two observers (connected mercury sphygmomanometers) four times, sequentially with three measurements taken using the tested device. Absolute device-observer BP differences were classified into difference differences differences difference (systolic/diastolic) was 3.7 +/- 5.6/-1.5 +/- 4.7 mm Hg (4.7 +/- 4.9/ - 1.7 +/- 4.3 in arm circumference 23-29 cm [39 readings] and 3.1 +/- 5.9/-1.4 +/- 5.0 in arm 30-34 cm [60 readings], P=NS). In conclusion, the device fulfils the International Protocol requirements and can be recommended for clinical use. Interestingly, the device was accurate using a single cuff in a wide range of arm circumference (23-34 cm). This study provides no information about the device accuracy in larger arms.

  12. Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization

    International Nuclear Information System (INIS)

    Surawanitkun, C.; Kaewrawang, A.; Siritaratiwat, A.; Kruesubthaworn, A.; Sivaratana, R.; Jutong, N.; Mewes, C.K.A.; Mewes, T.

    2015-01-01

    For spin transfer torque (STT), the switching energy and thermal stability of magnetic tunnel junctions (MTJ) bits utilized in memory devices are important factors that have to be considered simultaneously. In this article, we examined the minimum energy for STT induced magnetization switching in MTJ devices for different in-plane angles of the magnetization in the free layer and the pinned layer with respect to the major axis of the elliptical cylinder of the cell. Simulations were performed by comparing the analytical solution with macrospin and full micromagnetic calculations. The results show good agreement of the switching energy calculated by using the three approaches for different initial angles of the magnetization of the free layer. Also, the low-energy location specifies the suitable value of both time and current in order to reduce the heat effect during the switching process. - Highlights: • Switching energy model was firstly examined with tiled magnetization in STT-RAM. • Simulation was performed by analytical solution, macrospin and micromagnetic models. • Low energy results from three models show agreement for tilt angle in free layer. • We also found an optimal tilt angle of the pinned layer. • Low-energy location specifies the suitable switching location to reduce heat effect

  13. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  14. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    Science.gov (United States)

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  15. Energy harvesting for human wearable and implantable bio-sensors.

    Science.gov (United States)

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  16. New ideas for the design of optical devices with applications in solar energy collection

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio; Pereira, Manuel Collares

    2001-07-01

    New ideas for the design of optical devices and some applications to solar energy collection are presented. These are mainly solar concentrators resulting from the combination of known anidoloc (nonimaging) optics devices and known curves such as parabolic, elliptical, hyperbolic, circular arcs or flat mirrors. Other tailored curves are also used in some cases. Two possible applications are in compact high concentration devices for solar energy and ideal concentrators having a gap between the optics and the receiver. Only two dimensional solutions are explored in these cases. Due to the high number of internal reflections, the use of high reflectivity mirrors is mandatory or, alternatively, the use of total internal reflection. Combinations of 3D CPCs and torus are also presented. The obtained devices allow tracking of the sun without the need to move the receiver. An application to solar cooking is presented.

  17. Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies

    Science.gov (United States)

    Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto

    2018-04-01

    In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.

  18. Smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting devices

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza

    2016-04-01

    This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation

  19. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    Science.gov (United States)

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  20. Vibration monitoring of long bridges and their expansion joints and seismic devices

    Directory of Open Access Journals (Sweden)

    Islami Kleidi

    2015-01-01

    Full Text Available This paper presents a number of recently installed Structural Health Monitoring (SHM systems: a on a 2km double suspension bridge; b on a long railway viaduct that has experienced cracking; and c on a steel arch bridge in a seismically active area. Damage detection techniques have been applied based on high-frequency measurements of vibrations, pressure and strain, enabling a proper understanding of the structures’ behaviour to be gained. The diverse range of applications presented, designed in collaboration with structure owners and design engineers, includes damage detection on expansion joints of suspension bridges, crack analysis and correlation with accelerations of high-speed trains, and high-frequency performance monitoring of seismic devices. These case studies, based on both static and dynamic approaches, demonstrate the usefulness and ease of use of such systems, and the enormous gains in efficiency they offer.