WorldWideScience

Sample records for energy model based

  1. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  2. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  3. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  4. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  5. An agent-based model for energy service companies

    International Nuclear Information System (INIS)

    Robinson, Marguerite; Varga, Liz; Allen, Peter

    2015-01-01

    Highlights: • An agent-based model for household energy efficiency upgrades is considered. • Energy service companies provide an alternative to traditional utility providers. • Household self-financing is a limiting factor to widespread efficiency upgrading. • Longer term service contracts can lead to reduced household energy costs. • Future energy price increases enable service providers to retain their customer base. - Abstract: The residential housing sector is a major consumer of energy accounting for approximately one third of carbon emissions in the United Kingdom. Achieving a sustainable, low-carbon infrastructure necessitates a reduced and more efficient use of domestic energy supplies. Energy service companies offer an alternative to traditional providers, which supply a single utility product to satisfy the unconstrained demand of end users, and have been identified as a potentially important actor in sustainable future economies. An agent-based model is developed to examine the potential of energy service companies to contribute to the large scale upgrading of household energy efficiency, which would ultimately lead to a more sustainable and secure energy infrastructure. The migration of households towards energy service companies is described by an attractiveness array, through which potential customers can evaluate the future benefits, in terms of household energy costs, of changing provider. It is shown that self-financing is a limiting factor to the widespread upgrading of residential energy efficiency. Greater reductions in household energy costs could be achieved by committing to longer term contracts, allowing upgrade costs to be distributed over greater time intervals. A steadily increasing cost of future energy usage lends an element of stability to the market, with energy service companies displaying the ability to retain customers on contract expiration. The model highlights how a greater focus on the provision of energy services, as

  6. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  7. Energy-based ferromagnetic material model with magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Steentjes, Simon, E-mail: simon.steentjes@iem.rwth-aachen.de [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany); Henrotte, François, E-mail: francois.henrotte@uclouvain.be [Institute of Mechanics Materials and Civil Engineering - UCL, Av. G. Lemaître 4-6, B-1348 Louvain-la-Neuve (Belgium); Hameyer, Kay [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany)

    2017-03-01

    Non-oriented soft magnetic materials are commonly assumed to be magnetically isotropic. However, due to the rolling process a preferred direction exists along the rolling direction. This uniaxial magnetic anisotropy, and the related magnetostriction effect, are critical to the accurate calculation of iron losses and magnetic forces in rotating electrical machines. This paper proposes an extension of an isotropic energy-based vector hysteresis model to account for these two effects. - Highlights: • Energy-based vector hysteresis model with magnetic anisotropy. • Two-scale model to account for pinning field distribution. • Pinning force and reluctivity are extended to anisotropic case.

  8. Technology assessment in energy landscapes. Agent-based modeling of energy conflicts

    International Nuclear Information System (INIS)

    Scheffran, Juergen; Link, P. Michael; Shaaban, Mostafa; Suesser, Diana

    2017-01-01

    The risks and conflicts of the fossil-nuclear age are in contrast to the effects of renewable energies which appear in a largely positive light. However, the transformation towards a low-carbon energy supply creates new energy landscapes with a high demand for suitable land areas - which may also provoke energy conflicts. Technology assessment can contribute to reducing such energy conflicts and increasing public acceptance by using spatial agent-based models that represent dynamic decisions and interactions of stakeholders regarding energy alternatives and land-use options. Northern Germany serves as a case study region where farmers and communities are local actors of the energy transition.

  9. Agent-based modelling of consumer energy choices

    Science.gov (United States)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  10. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  11. A supply and demand based volatility model for energy prices

    International Nuclear Information System (INIS)

    Kanamura, Takashi

    2009-01-01

    This paper proposes a new volatility model for energy prices using the supply-demand relationship, which we call a supply and demand based volatility model. We show that the supply curve shape in the model determines the characteristics of the volatility in energy prices. It is found that the inverse Box-Cox transformation supply curve reflecting energy markets causes the inverse leverage effect, i.e., positive correlation between energy prices and volatility. The model is also used to show that an existing (G)ARCH-M model has the foundations on the supply-demand relationship. Additionally, we conduct the empirical studies analyzing the volatility in the U.S. natural gas prices. (author)

  12. A supply and demand based volatility model for energy prices

    Energy Technology Data Exchange (ETDEWEB)

    Kanamura, Takashi [J-POWER, 15-1, Ginza 6-Chome, Chuo-ku, Tokyo 104-8165 (Japan)

    2009-09-15

    This paper proposes a new volatility model for energy prices using the supply-demand relationship, which we call a supply and demand based volatility model. We show that the supply curve shape in the model determines the characteristics of the volatility in energy prices. It is found that the inverse Box-Cox transformation supply curve reflecting energy markets causes the inverse leverage effect, i.e., positive correlation between energy prices and volatility. The model is also used to show that an existing (G)ARCH-M model has the foundations on the supply-demand relationship. Additionally, we conduct the empirical studies analyzing the volatility in the U.S. natural gas prices. (author)

  13. A novel cost based model for energy consumption in cloud computing.

    Science.gov (United States)

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  14. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  15. Energy-based numerical models for assessment of soil liquefaction

    Directory of Open Access Journals (Sweden)

    Amir Hossein Alavi

    2012-07-01

    Full Text Available This study presents promising variants of genetic programming (GP, namely linear genetic programming (LGP and multi expression programming (MEP to evaluate the liquefaction resistance of sandy soils. Generalized LGP and MEP-based relationships were developed between the strain energy density required to trigger liquefaction (capacity energy and the factors affecting the liquefaction characteristics of sands. The correlations were established based on well established and widely dispersed experimental results obtained from the literature. To verify the applicability of the derived models, they were employed to estimate the capacity energy values of parts of the test results that were not included in the analysis. The external validation of the models was verified using statistical criteria recommended by researchers. Sensitivity and parametric analyses were performed for further verification of the correlations. The results indicate that the proposed correlations are effectively capable of capturing the liquefaction resistance of a number of sandy soils. The developed correlations provide a significantly better prediction performance than the models found in the literature. Furthermore, the best LGP and MEP models perform superior than the optimal traditional GP model. The verification phases confirm the efficiency of the derived correlations for their general application to the assessment of the strain energy at the onset of liquefaction.

  16. Agent-based modeling of the energy network for hybrid cars

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2015-01-01

    Highlights: • An approach to represent and calculate multicarrier energy networks has been developed. • It provides a modeling method based on agents, for multicarrier energy networks. • It allows the system representation on a single sheet. • Energy flows circulating in the system can be observed dynamically during simulation. • The method is technology independent. - Abstract: Studies in complex energy networks devoted to the modeling of electrical power grids, were extended in previous work, where a computational multi-layered ontology, implemented using agent-based methods, was adopted. This structure is compatible with recently introduced Multiplex Networks which using Multi-linear Algebra generalize some of classical results for single-layer networks, to multilayer networks in steady state. Static results do not assist overly in understanding dynamic networks in which the values of the variables in the nodes and edges can change suddenly, driven by events, and even where new nodes or edges may appear or disappear, also because of other events. To address this gap, a computational agent-based model is developed to extend the multi-layer and multiplex approaches. In order to demonstrate the benefits of a dynamical extension, a model of the energy network in a hybrid car is presented as a case study

  17. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  18. Dynamic model based on Bayesian method for energy security assessment

    International Nuclear Information System (INIS)

    Augutis, Juozas; Krikštolaitis, Ričardas; Pečiulytė, Sigita; Žutautaitė, Inga

    2015-01-01

    Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method

  19. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana

    2011-01-01

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  20. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  1. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  2. Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction

    Directory of Open Access Journals (Sweden)

    Chengdong Li

    2018-01-01

    Full Text Available To enhance the prediction performance for building energy consumption, this paper presents a modified deep belief network (DBN based hybrid model. The proposed hybrid model combines the outputs from the DBN model with the energy-consuming pattern to yield the final prediction results. The energy-consuming pattern in this study represents the periodicity property of building energy consumption and can be extracted from the observed historical energy consumption data. The residual data generated by removing the energy-consuming pattern from the original data are utilized to train the modified DBN model. The training of the modified DBN includes two steps, the first one of which adopts the contrastive divergence (CD algorithm to optimize the hidden parameters in a pre-train way, while the second one determines the output weighting vector by the least squares method. The proposed hybrid model is applied to two kinds of building energy consumption data sets that have different energy-consuming patterns (daily-periodicity and weekly-periodicity. In order to examine the advantages of the proposed model, four popular artificial intelligence methods—the backward propagation neural network (BPNN, the generalized radial basis function neural network (GRBFNN, the extreme learning machine (ELM, and the support vector regressor (SVR are chosen as the comparative approaches. Experimental results demonstrate that the proposed DBN based hybrid model has the best performance compared with the comparative techniques. Another thing to be mentioned is that all the predictors constructed by utilizing the energy-consuming patterns perform better than those designed only by the original data. This verifies the usefulness of the incorporation of the energy-consuming patterns. The proposed approach can also be extended and applied to some other similar prediction problems that have periodicity patterns, e.g., the traffic flow forecasting and the electricity consumption

  3. Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators

    Science.gov (United States)

    Nesarajah, Marco; Frey, Georg

    This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.

  4. Robust Building Energy Load Forecasting Using Physically-Based Kernel Models

    Directory of Open Access Journals (Sweden)

    Anand Krishnan Prakash

    2018-04-01

    Full Text Available Robust and accurate building energy load forecasting is important for helping building managers and utilities to plan, budget, and strategize energy resources in advance. With recent prevalent adoption of smart-meters in buildings, a significant amount of building energy consumption data became available. Many studies have developed physics-based white box models and data-driven black box models to predict building energy consumption; however, they require extensive prior knowledge about building system, need a large set of training data, or lack robustness to different forecasting scenarios. In this paper, we introduce a new building energy forecasting method based on Gaussian Process Regression (GPR that incorporates physical insights about load data characteristics to improve accuracy while reducing training requirements. The GPR is a non-parametric regression method that models the data as a joint Gaussian distribution with mean and covariance functions and forecast using the Bayesian updating. We model the covariance function of the GPR to reflect the data patterns in different forecasting horizon scenarios, as prior knowledge. Our method takes advantage of the modeling flexibility and computational efficiency of the GPR while benefiting from the physical insights to further improve the training efficiency and accuracy. We evaluate our method with three field datasets from two university campuses (Carnegie Mellon University and Stanford University for both short- and long-term load forecasting. The results show that our method performs more accurately, especially when the training dataset is small, compared to other state-of-the-art forecasting models (up to 2.95 times smaller prediction error.

  5. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  6. Power-based electric vehicle energy consumption model: Model development and validation

    International Nuclear Information System (INIS)

    Fiori, Chiara; Ahn, Kyoungho; Rakha, Hesham A.

    2016-01-01

    Highlights: • The study developed an instantaneous energy consumption model (VT-CPEM) for EVs. • The model captures instantaneous braking energy regeneration. • The model can be used for transportation modeling and vehicle applications (e.g. eco-routing). • The proposed model can be easily calibrated using publically available EV data. • Usages of air conditioning and heating systems reduce EV energy consumption by up to 10% and 24%, respectively. - Abstract: The limited drive range (The maximum distance that an EV can travel.) of Electric Vehicles (EVs) is one of the major challenges that EV manufacturers are attempting to overcome. To this end, a simple, accurate, and efficient energy consumption model is needed to develop real-time eco-driving and eco-routing systems that can enhance the energy efficiency of EVs and thus extend their travel range. Although numerous publications have focused on the modeling of EV energy consumption levels, these studies are limited to measuring energy consumption of an EV’s control algorithm, macro-project evaluations, or simplified well-to-wheels analyses. Consequently, this paper addresses this need by developing a simple EV energy model that computes an EV’s instantaneous energy consumption using second-by-second vehicle speed, acceleration and roadway grade data as input variables. In doing so, the model estimates the instantaneous braking energy regeneration. The proposed model can be easily implemented in the following applications: in-vehicle, Smartphone eco-driving, eco-routing and transportation simulation software to quantify the network-wide energy consumption levels for a fleet of EVs. One of the main advantages of EVs is their ability to recover energy while braking using a regenerative braking system. State-of-the-art vehicle energy consumption models consider an average constant regenerative braking energy efficiency or regenerative braking factors that are mainly dependent on the vehicle’s average

  7. NEMO. Netherlands Energy demand MOdel. A top-down model based on bottom-up information

    International Nuclear Information System (INIS)

    Koopmans, C.C.; Te Velde, D.W.; Groot, W.; Hendriks, J.H.A.

    1999-06-01

    The title model links energy use to other production factors, (physical) production, energy prices, technological trends and government policies. It uses a 'putty-semiputty' vintage production structure, in which new investments, adaptations to existing capital goods (retrofit) and 'good-housekeeping' are discerned. Price elasticities are relatively large in the long term and small in the short term. Most predictions of energy use are based on either econometric models or on 'bottom-up information', i.e. disaggregated lists of technical possibilities for and costs of saving energy. Typically, one predicts more energy-efficiency improvements using bottom-up information than using econometric ('top-down') models. We bridged this so-called 'energy-efficiency gap' by designing our macro/meso model NEMO in such a way that we can use bottom-up (micro) information to estimate most model parameters. In our view, reflected in NEMO, the energy-efficiency gap arises for two reasons. The first is that firms and households use a fairly high discount rate of 15% when evaluating the profitability of energy-efficiency improvements. The second is that our bottom-up information ('ICARUS') for most economic sectors does not (as NEMO does) take account of the fact that implementation of new, energy-efficient technology in capital stock takes place only gradually. Parameter estimates for 19 sectors point at a long-term technological energy efficiency improvement trend in Netherlands final energy use of 0.8% per year. The long-term price elasticity is estimated to be 0.29. These values are comparable to other studies based on time series data. Simulations of the effects of the oil price shocks in the seventies and the subsequent fall of oil prices show that the NEMO's price elasticities are consistent with historical data. However, the present pace at which new technologies become available (reflected in NEMO) appears to be lower than in the seventies and eighties. This suggests that it

  8. Energy, mass, model-based displays, and memory recall

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1989-01-01

    The operation of a pressurized water reactor in the context of the conservation laws for energy and mass is discussed. These conservation laws are the basis of the Rankine heat engine cycle. Computer graphic implementation of the heat engine cycle, in terms of temperature-entropy coordinates for water, serves as a model-based display of the plant process. A human user of this display, trained in first principles of the process, may exercise a monitoring strategy based on the conservation laws

  9. Energy demand projections based on an uncertain dynamic system modeling approach

    International Nuclear Information System (INIS)

    Dong, S.

    2000-01-01

    Today, China has become the world's second largest pollution source of CO 2 . Owing to coal-based energy consumption, it is estimated that 85--90% of the SO 2 and CO 2 emission of China results from coal use. With high economic growth and increasing environmental concerns, China's energy consumption in the next few decades has become an issue of active concern. Forecasting of energy demand over long periods, however, is getting more complex and uncertain. It is believed that the economic and energy systems are chaotic and nonlinear. Traditional linear system modeling, used mostly in energy demand forecasts, therefore, is not a useful approach. In view of uncertainty and imperfect information about future economic growth and energy development, an uncertain dynamic system model, which has the ability to incorporate and absorb the nature of an uncertain system with imperfect or incomplete information, is developed. Using the model, the forecasting of energy demand in the next 25 years is provided. The model predicts that China's energy demand in 2020 will be about 2,700--3,000 Mtce, coal demand 3,500 Mt, increasing by 128% and 154%, respectively, compared with that of 1995

  10. Model-based and model-free “plug-and-play” building energy efficient control

    International Nuclear Information System (INIS)

    Baldi, Simone; Michailidis, Iakovos; Ravanis, Christos; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • “Plug-and-play” Building Optimization and Control (BOC) driven by building data. • Ability to handle the large-scale and complex nature of the BOC problem. • Adaptation to learn the optimal BOC policy when no building model is available. • Comparisons with rule-based and advanced BOC strategies. • Simulation and real-life experiments in a ten-office building. - Abstract: Considerable research efforts in Building Optimization and Control (BOC) have been directed toward the development of “plug-and-play” BOC systems that can achieve energy efficiency without compromising thermal comfort and without the need of qualified personnel engaged in a tedious and time-consuming manual fine-tuning phase. In this paper, we report on how a recently introduced Parametrized Cognitive Adaptive Optimization – abbreviated as PCAO – can be used toward the design of both model-based and model-free “plug-and-play” BOC systems, with minimum human effort required to accomplish the design. In the model-based case, PCAO assesses the performance of its control strategy via a simulation model of the building dynamics; in the model-free case, PCAO optimizes its control strategy without relying on any model of the building dynamics. Extensive simulation and real-life experiments performed on a 10-office building demonstrate the effectiveness of the PCAO–BOC system in providing significant energy efficiency and improved thermal comfort. The mechanisms embedded within PCAO render it capable of automatically and quickly learning an efficient BOC strategy either in the presence of complex nonlinear simulation models of the building dynamics (model-based) or when no model for the building dynamics is available (model-free). Comparative studies with alternative state-of-the-art BOC systems show the effectiveness of the PCAO–BOC solution

  11. Analyzing energy consumption of wireless networks. A model-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haidi

    2013-03-04

    During the last decades, wireless networking has been continuously a hot topic both in academy and in industry. Many different wireless networks have been introduced like wireless local area networks, wireless personal networks, wireless ad hoc networks, and wireless sensor networks. If these networks want to have a long term usability, the power consumed by the wireless devices in each of these networks needs to be managed efficiently. Hence, a lot of effort has been carried out for the analysis and improvement of energy efficiency, either for a specific network layer (protocol), or new cross-layer designs. In this thesis, we apply model-based approach for the analysis of energy consumption of different wireless protocols. The protocols under consideration are: one leader election protocol, one routing protocol, and two medium access control protocols. By model-based approach we mean that all these four protocols are formalized as some formal models, more precisely, as discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), or stochastic timed automata (STA). For the first two models, DTMCs and MDPs, we model them in PRISM, a prominent model checker for probabilistic model checking, and apply model checking technique to analyze them. Model checking belongs to the family of formal methods. It discovers exhaustively all possible (reachable) states of the models, and checks whether these models meet a given specification. Specifications are system properties that we want to study, usually expressed by some logics, for instance, probabilistic computer tree logic (PCTL). However, while model checking relies on rigorous mathematical foundations and automatically explores the entire state space of a model, its applicability is also limited by the so-called state space explosion problem -- even systems of moderate size often yield models with an exponentially larger state space that thwart their analysis. Hence for the STA models in this thesis, since there

  12. A method for state of energy estimation of lithium-ion batteries based on neural network model

    International Nuclear Information System (INIS)

    Dong, Guangzhong; Zhang, Xu; Zhang, Chenbin; Chen, Zonghai

    2015-01-01

    The state-of-energy is an important evaluation index for energy optimization and management of power battery systems in electric vehicles. Unlike the state-of-charge which represents the residual energy of the battery in traditional applications, state-of-energy is integral result of battery power, which is the product of current and terminal voltage. On the other hand, like state-of-charge, the state-of-energy has an effect on terminal voltage. Therefore, it is hard to solve the nonlinear problems between state-of-energy and terminal voltage, which will complicate the estimation of a battery's state-of-energy. To address this issue, a method based on wavelet-neural-network-based battery model and particle filter estimator is presented for the state-of-energy estimation. The wavelet-neural-network based battery model is used to simulate the entire dynamic electrical characteristics of batteries. The temperature and discharge rate are also taken into account to improve model accuracy. Besides, in order to suppress the measurement noises of current and voltage, a particle filter estimator is applied to estimate cell state-of-energy. Experimental results on LiFePO_4 batteries indicate that the wavelet-neural-network based battery model simulates battery dynamics robustly with high accuracy and the estimation value based on the particle filter estimator converges to the real state-of-energy within an error of ±4%. - Highlights: • State-of-charge is replaced by state-of-energy to determine cells residual energy. • The battery state-space model is established based on a neural network. • Temperature and current influence are considered to improve the model accuracy. • The particle filter is used for state-of-energy estimation to improve accuracy. • The robustness of new method is validated under dynamic experimental conditions.

  13. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues

    Directory of Open Access Journals (Sweden)

    Bernd Resch

    2014-05-01

    Full Text Available In the face of the broad political call for an “energy turnaround”, we are currently witnessing three essential trends with regard to energy infrastructure planning, energy generation and storage: from planned production towards fluctuating production on the basis of renewable energy sources, from centralized generation towards decentralized generation and from expensive energy carriers towards cost-free energy carriers. These changes necessitate considerable modifications of the energy infrastructure. Even though most of these modifications are inherently motivated by geospatial questions and challenges, the integration of energy system models and Geographic Information Systems (GIS is still in its infancy. This paper analyzes the shortcomings of previous approaches in using GIS in renewable energy-related projects, extracts distinct challenges from these previous efforts and, finally, defines a set of core future research avenues for GIS-based energy infrastructure planning with a focus on the use of renewable energy. These future research avenues comprise the availability base data and their “geospatial awareness”, the development of a generic and unified data model, the usage of volunteered geographic information (VGI and crowdsourced data in analysis processes, the integration of 3D building models and 3D data analysis, the incorporation of network topologies into GIS, the harmonization of the heterogeneous views on aggregation issues in the fields of energy and GIS, fine-grained energy demand estimation from freely-available data sources, decentralized storage facility planning, the investigation of GIS-based public participation mechanisms, the transition from purely structural to operational planning, data privacy aspects and, finally, the development of a new dynamic power market design.

  14. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    Science.gov (United States)

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  15. Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Kok B.C.

    2016-01-01

    Full Text Available Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d and Piezoelectric Voltage Constant (g values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.12 mW and 13 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.

  16. Modelling domestic stock energy use and heat-related health risk : a GIS-based bottom-up modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Mavrogianni, A.; Davies, M. [Univ. College London, London (United Kingdom). Bartlett School of Graduate Studies; Chalabi, Z.; Wilkinson, P. [London School of Hygiene and Tropical Medecine, London (United Kingdom); Kolokotroni, M. [Brunel Univ., London (United Kingdom). School of Engineering Design

    2009-07-01

    Approximately 8 per cent of the carbon dioxide (CO{sub 2}) emissions produced in the United Kingdom are produced in London, one of the fastest growing cities worldwide. Based on the projected rates of population and economic growth, a 15 per cent increase of emissions is predicted. In addition to the national target to cut emissions by 80 per cent by 2050, the Mayor of London Climate Change Action Plan set a target to reduce London's CO{sub 2} emissions by 60 per cent by 2025. Significant carbon savings can be achieved in the building sector, particularly since 38 per cent of the total delivered energy in London is associated with domestic energy use. This paper demonstrated a systematic approach towards exploring the impact of urban built form and the combined effect of climate change and the urban heat island (UHI) phenomenon on the levels of domestic energy consumption and heat-related health risk in London. It presented work in progress on the development of a GIS-based energy consumption model and heat vulnerability index of the Greater London Area domestic stock. Comparison of the model output for 10 case study areas with topdown energy statistics revealed that the model successfully ranks areas based on their domestic space heating demand. The health module can be used to determine environments prone to higher risk of heat stress by investigating urban texture factors. A newly developed epidemiological model will be feed into the health module to examine the influence on risk of heat-related mortality of local urban built form characteristics. The epidemiological model is based on multi-variable analysis of deaths during heat wave and non-heat wave days. 29 refs., 1 tab., 7 figs.

  17. Integrated Model-Based Decisions for Water, Energy and Food Nexus

    Science.gov (United States)

    Zhang, X.; Vesselinov, V. V.

    2015-12-01

    Energy, water and food are critical resources for sustaining social development and human lives; human beings cannot survive without any one of them. Energy crises, water shortages and food security are crucial worldwide problems. The nexus of energy, water and food has received more and more attention in the past decade. Energy, water and food are closely interrelated; water is required in energy development such as electricity generation; energy is indispensable for collecting, treating, and transporting water; both energy and water are crucial inputs for food production. Changes of either of them can lead to substantial impacts on other two resources, and vice versa. Effective decisions should be based on thorough research efforts for better understanding of their complex nexus. Rapid increase of population has significantly intensified the pressures on energy, water and food. Addressing and quantifying their interactive relationships are important for making robust and cost-effective strategies for managing the three resources simultaneously. In addition, greenhouse gases (GHGs) are emitted in energy, water, food production, consequently making contributions to growing climate change. Reflecting environmental impacts of GHGs is also desired (especially, on the quality and quantity of fresh water resources). Thus, a socio-economic model is developed in this study to quantitatively address the complex connections among energy, water and food production. A synthetic problem is proposed to demonstrate the model's applicability and feasibility. Preliminary results related to integrated decisions on energy supply management, water use planning, electricity generation planning, energy facility capacity expansion, food production, and associated GHG emission control are generated for providing cost-effective supports for decision makers.

  18. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  19. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  20. Energy saving and prediction modeling of petrochemical industries: A novel ELM based on FAHP

    International Nuclear Information System (INIS)

    Geng, ZhiQiang; Qin, Lin; Han, YongMing; Zhu, QunXiong

    2017-01-01

    Extreme learning machine (ELM), which is a simple single-hidden-layer feed-forward neural network with fast implementation, has been widely applied in many engineering fields. However, it is difficult to enhance the modeling ability of extreme learning in disposing the high-dimensional noisy data. And the predictive modeling method based on the ELM integrated fuzzy C-Means integrating analytic hierarchy process (FAHP) (FAHP-ELM) is proposed. The fuzzy C-Means algorithm is used to cluster the input attributes of the high-dimensional data. The Analytic Hierarchy Process (AHP) based on the entropy weights is proposed to filter the redundant information and extracts characteristic components. Then, the fusion data is used as the input of the ELM. Compared with the back-propagation (BP) neural network and the ELM, the proposed model has better performance in terms of the speed of convergence, generalization and modeling accuracy based on University of California Irvine (UCI) benchmark datasets. Finally, the proposed method was applied to build the energy saving and predictive model of the purified terephthalic acid (PTA) solvent system and the ethylene production system. The experimental results demonstrated the validity of the proposed method. Meanwhile, it could enhance the efficiency of energy utilization and achieve energy conservation and emission reduction. - Highlights: • The ELM integrated FAHP approach is proposed. • The FAHP-ELM prediction model is effectively verified through UCI datasets. • The energy saving and prediction model of petrochemical industries is obtained. • The method is efficient in improvement of energy efficiency and emission reduction.

  1. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the

  2. Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1 (GM (1, 1, back propagation (BP and LSSVM, in terms of prediction accuracy and forecasting risk.

  3. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  4. A meta model-based methodology for an energy savings uncertainty assessment of building retrofitting

    Directory of Open Access Journals (Sweden)

    Caucheteux Antoine

    2016-01-01

    Full Text Available To reduce greenhouse gas emissions, energy retrofitting of building stock presents significant potential for energy savings. In the design stage, energy savings are usually assessed through Building Energy Simulation (BES. The main difficulty is to first assess the energy efficiency of the existing buildings, in other words, to calibrate the model. As calibration is an under determined problem, there is many solutions for building representation in simulation tools. In this paper, a method is proposed to assess not only energy savings but also their uncertainty. Meta models, using experimental designs, are used to identify many acceptable calibrations: sets of parameters that provide the most accurate representation of the building are retained to calculate energy savings. The method was applied on an existing office building modeled with the TRNsys BES. The meta model, using 13 parameters, is built with no more than 105 simulations. The evaluation of the meta model on thousands of new simulations gives a normalized mean bias error between the meta model and BES of <4%. Energy savings are assessed based on six energy savings concepts, which indicate savings of 2–45% with a standard deviation ranging between 1.3% and 2.5%.

  5. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  6. Modeling Energy & Reliability of a CNT based WSN on an HPC Setup

    Directory of Open Access Journals (Sweden)

    Rohit Pathak

    2010-07-01

    Full Text Available We have analyzed the effect of innovations in Nanotechnology on Wireless Sensor Networks (WSN and have modeled Carbon Nanotube (CNT based sensor nodes from a device prospective. A WSN model has been programmed in Simulink-MATLAB and a library has been developed. Integration of CNT in WSN for various modules such as sensors, microprocessors, batteries etc has been shown. Also average energy consumption for the system has been formulated and its reliability has been shown holistically. A proposition has been put forward on the changes needed in existing sensor node structure to improve its efficiency and to facilitate as well as enhance the assimilation of CNT based devices in a WSN. Finally we have commented on the challenges that exist in this technology and described the important factors that need to be considered for calculating reliability. This research will help in practical implementation of CNT based devices and analysis of their key effects on the WSN environment. The work has been executed on Simulink and Distributive Computing toolbox of MATLAB. The proposal has been compared to the recent developments and past experimental results reported in this field. This attempt to derieve the energy consumption and reliability implications will help in development of real devices using CNT which is a major hurdle in bringing the success from lab to commercial market. Recent research in CNT has been used to model an energy efficient model which will also lead to the development CAD tools. Library for Reliability and Energy consumption includes analysis of various parts of a WSN system which is being constructed from CNT. Nano routing in a CNT system is also implemented with its dependencies. Finally the computations were executed on a HPC setup and the model showed remarkable speedup.

  7. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2009-01-01

    Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance

  8. Residential-energy-demand modeling and the NIECS data base: an evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  9. A model-based combinatorial optimisation approach for energy-efficient processing of microalgae

    NARCIS (Netherlands)

    Slegers, P.M.; Koetzier, B.J.; Fasaei, F.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2014-01-01

    The analyses of algae biorefinery performance are commonly based on fixed performance data for each processing step. In this work, we demonstrate a model-based combinatorial approach to derive the design-specific upstream energy consumption and biodiesel yield in the production of biodiesel from

  10. Dynamic Energy Consumption and Emission Modelling of Container Terminal based on Multi Agents

    Directory of Open Access Journals (Sweden)

    Hou Jue

    2017-01-01

    Full Text Available Environmental protection and energy saving pressure press the increasing attention of container terminal operators. In order to comply with the more and more strict environmental regulation, reducing energy consumption and air pollution emissions, meanwhile, optimizing the operation efficiency, which, is an urgent problem to container terminal operator of China. This paper based on the characteristic of Container Terminal Operation System (CTOS, which includes several sections of container product processes, consist of berth allocation problem, truck dispatching problem, yard allocation problem and auxiliary process. Dynamic energy consumption and emissions characteristic of each equipment and process is modelled, this paper presents the architecture of CTOS based on the multi agent system with early-warning model, which is based on multi-class support vector machines (SVM. A simulation on container terminal is built on the JADE platform to support the decision-making of container terminal, which can reduce energy consumption and air pollution emissions, allows the container terminal operator to be more flexible in their decision to meet the Emission Control Area regulation and Green Port Plan of China.

  11. Life cycle cost-based risk model for energy performance contracting retrofits

    Science.gov (United States)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  12. Technological change of the energy innovation system: From oil-based to bio-based energy

    International Nuclear Information System (INIS)

    Wonglimpiyarat, Jarunee

    2010-01-01

    This paper concerns the structural developments and the direction of technological change of the energy innovation system, based on the studies of Kuhn's model of scientific change and Schumpeter's model of technological change. The paper uses the case study of Thai government agencies for understanding the way governments can facilitate technological innovation. The analyses are based on a pre-foresight exercise to examine the potential of the bio-based energy and investigate a set of development policies necessary for the direction of energy system development. The results have shown that bio-based energy is seen as the next new wave for future businesses and one of the solutions to the problem of high oil prices to improve the world's economic security and sustainable development. (author)

  13. Modeling Innovative Power Take-Off Based on Double-Acting Hydraulic Cylinders Array for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Juan Carlos Antolín-Urbaneja

    2015-03-01

    Full Text Available One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.

  14. Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Auke Hoekstra

    2017-01-01

    Full Text Available The energy domain is still dominated by equilibrium models that underestimate both the dangers and opportunities related to climate change. In reality, climate and energy systems contain tipping points, feedback loops, and exponential developments. This paper describes how to create realistic energy transition management models: quantitative models that can discover profitable pathways from fossil fuels to renewable energy. We review the literature regarding agent-based economics, disruptive innovation, and transition management and determine the following requirements. Actors must be detailed, heterogeneous, interacting, learning, and strategizing. Technology should be represented as a detailed and heterogeneous portfolio that can develop in a bottom-up manner, using endogenous feedback loops. Assumptions about discount rates and the social cost of carbon should be configurable. The model should contain interactions between the global, national, local, and individual level. A review of modelling techniques shows that equilibrium models are unsuitable and that system dynamics and discrete event simulation are too limited. The agent-based approach is found to be uniquely suited for the complex adaptive sociotechnical systems that must be modelled. But the choice for agent-based models does not mean a rejection of other approaches because they can be accommodated within the agent-based framework. We conclude with practical guidelines.

  15. A decision model for cost effective design of biomass based green energy supply chains.

    Science.gov (United States)

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The evaluation model of the enterprise energy efficiency based on DPSR.

    Science.gov (United States)

    Wei, Jin-Yu; Zhao, Xiao-Yu; Sun, Xue-Shan

    2017-05-08

    The reasonable evaluation of the enterprise energy efficiency is an important work in order to reduce the energy consumption. In this paper, an effective energy efficiency evaluation index system is proposed based on DPSR (Driving forces-Pressure-State-Response) with the consideration of the actual situation of enterprises. This index system which covers multi-dimensional indexes of the enterprise energy efficiency can reveal the complete causal chain which includes the "driver forces" and "pressure" of the enterprise energy efficiency "state" caused by the internal and external environment, and the ultimate enterprise energy-saving "response" measures. Furthermore, the ANP (Analytic Network Process) and cloud model are used to calculate the weight of each index and evaluate the energy efficiency level. The analysis of BL Company verifies the feasibility of this index system and also provides an effective way to improve the energy efficiency at last.

  17. Improving the Xin'anjiang hydrological model based on mass–energy balance

    Directory of Open Access Journals (Sweden)

    Y.-H. Fang

    2017-07-01

    Full Text Available Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET and soil moisture content (SMC in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass–energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET, which is comparable to land surface temperature (LST. The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS-retrieved LST, which further confirms that the model is able to simulate the mass–energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.

  18. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  19. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)

    International Nuclear Information System (INIS)

    Gao, Hao; Osher, Stanley; Yu, Hengyong; Wang, Ge

    2011-01-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. (papers)

  20. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Rickerson, Wilson H. [Meister Consultants Group, Inc., Boston, MA (United States)

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  1. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Qu, Ming [ORNL

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  2. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    Science.gov (United States)

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  4. Inventory of data bases, graphics packages, and models in Department of Energy laboratories

    International Nuclear Information System (INIS)

    Shriner, C.R.; Peck, L.J.

    1978-11-01

    A central inventory of energy-related environmental bibliographic and numeric data bases, graphics packages, integrated hardware/software systems, and models was established at Oak Ridge National Laboratory in an effort to make these resources at Department of Energy (DOE) laboratories better known and available to researchers and managers. This inventory will also serve to identify and avoid duplication among laboratories. The data were collected at each DOE laboratory, then sent to ORNL and merged into a single file. This document contains the data from the merged file. The data descriptions are organized under major data types: data bases, graphics packages, integrated hardware/software systems, and models. The data include descriptions of subject content, documentation, and contact persons. Also provided are computer data such as media on which the item is available, size of the item, computer on which the item executes, minimum hardware configuration necessary to execute the item, software language(s) and/or data base management system utilized, and character set used. For the models, additional data are provided to define the model more accurately. These data include a general statement of algorithms, computational methods, and theories used by the model; organizations currently using the model; the general application area of the model; sources of data utilized by the model; model validation methods, sensitivity analysis, and procedures; and general model classification. Data in this inventory will be available for on-line data retrieval on the DOE/RECON system

  5. Design, modeling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester

    NARCIS (Netherlands)

    Altena, G.; Hohlfeld, D.; Elfrink, R.; Goedbloed, M.H.; Schaijk, R. van

    2011-01-01

    This paper reports on the design, modelling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester with an elegant and robust process flow. The fabrication is based on a SOI wafer with self-aligned electrodes of the variable capacitor. The output current of the

  6. A study on the energy management in domestic micro-grids based on Model Predictive Control strategies

    International Nuclear Information System (INIS)

    Bruni, G.; Cordiner, S.; Mulone, V.; Rocco, V.; Spagnolo, F.

    2015-01-01

    Highlights: • Development of a domestic microgrid and house thermal model. • Model Predictive Control for simultaneous management of power flow and thermal comfort. • Modeling of summer and winter typical conditions. • Comparison with standard rule based controller results. • Fuel cell downsizing potential of output is up to 60%. - Abstract: In this paper a Model Predictive Control (MPC) logic, based on weather forecasts, has been applied to the analysis of power management in a domestic off-grid system. The system is laid out as the integration of renewable energy conversion devices (Photovoltaic, PV), a high efficiency energy conversion programmable system (a Fuel Cell, FC) and an electrochemical energy storage (batteries). The control strategy has the objective of minimizing energy costs, while maintaining the optimal environmental comfort in the house, thus optimizing the use of renewable sources. To that aim, a validated numerical model of the whole system has been developed, and simulations have been carried out for winter and summer periods. Performances attainable with a MPC-based logic have been evaluated in comparison with a standard Rule Based Control logic, by means of costs and efficiency parameters of the micro-grid. Temperature violations have been taken into account to represent the impact of the control on comfort. Results show an improvement of the house comfort conditions and a lower use (on average 14.5%) of primary fossil energy. This is due both to a reduction of required energy, and to an increased use of renewable energy sources. Moreover, the modulation of the HVAC load and of the FC operation gives a reduction of requested power by approximately 40%. Smoother battery pack charge and discharge processes are also obtained. As a main positive effect, a reduction of the FC powerplant size and an increase of its durability seems feasible, leading to an overall reduction of capital costs

  7. A model for water discharge based on energy consumption data (WATEN).

    Science.gov (United States)

    Moyano, María Carmen; Tornos, Lucía; Juana, Luis

    2014-05-01

    As the need for water conservation is becoming a major water concern, a lumped model entitled WATEN has been proposed to analyse the water balance in the B-XII Irrigation Sector of the Lower Guadalquivir Irrigated Area, one of the largest irrigated areas in Spain. The aim of this work is to approach the hydrological study of an irrigation district lacking of robust data in such a manner that the water balance is performed from less to more process complexity. WATEN parameters are the total and readily available moisture in the soil, a fix percentage for effective precipitation, and the irrigation efficiency. The Sector presents six different drainage pumping stations, with particular pumping groups and with no water flow measurement devices. Energy consumption depends on the working pumping stations and groups, and on the variable water level to discharge. Energy consumed in the drainage pumping stations has been used for calibration The study has relied on two monthly series of data: the volume of drainage obtained from the model and the energy consumed in the pumping stations. A double mass analysis has permitted the detection of data tendencies. The two resulting series of data have been compared to assess model performance, particularly the Pearson's product moment correlation coefficient and the Nash-Sutcliffe coefficient of efficiency, e2, determined for monthly data and for annual and monthly average data. For model calibration, we have followed a classical approach based on objective functions optimization, and a robust approach based on Markov chain Monte Carlo simulation process, driven in a similar manner to genetic algorithms, entitled Parameters Estimation on Driven Trials (PEDT), and aiming to reduce computational requirements. WATEN has been parameterised maintaining its physical and conceptual rationality. The study approach is outlined as a progressive introduction of data. In this manner, we can observe its effect on the studied objective

  8. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A local-community-level, physically-based model of end-use energy consumption by Australian housing stock

    International Nuclear Information System (INIS)

    Ren Zhengen; Paevere, Phillip; McNamara, Cheryl

    2012-01-01

    We developed a physics based bottom-up model to estimate annual housing stock energy consumption at a local community level (Census Collection District—CCD) with an hourly resolution. Total energy consumption, including space heating and cooling, water heating, lighting and other household appliances, was simulated by considering building construction and materials, equipment and appliances, local climates and occupancy patterns. The model was used to analyse energy use by private dwellings in more than five thousand CCDs in the state of New South Wales (NSW), Australia. The predicted results focus on electricity consumption (natural gas and other fuel sources were excluded as the data are not available) and track the actual electricity consumption at CCD level with an error of 9.2% when summed to state level. For NSW and Victoria 2006, the predicted state electricity consumption is close to the published model (within 6%) and statistical data (within 10%). A key feature of the model is that it can be used to predict hourly electricity consumption and peak demand at fine geographic scales, which is important for grid planning and designing local energy efficiency or demand response strategies. - Highlights: ► We developed a physics-based model to estimate housing stock energy consumption. ► House type and vintage, family type and occupancy time were considered. ► The model results are close to actual energy consumption at local community level. ► Its’ results agree well with the published model and statistical data at state level. ► It shows the model could provide from hourly to annual residential energy consumption.

  10. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  11. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  12. Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Aye, Goodness C.; Barros, Carlos Pestana; Gupta, Rangan; Wanke, Peter

    2015-01-01

    This paper presents an efficiency assessment of selected OECD countries using a Slacks Based Model with undesirable or bad outputs (SBM-Undesirable). In this research, SBM-Undesirable is used first in a two-stage approach to assess the relative efficiency of OECD countries using the most frequent indicators adopted by the literature on energy efficiency. Besides, in the second stage, GLMM–MCMC methods are combined with SBM-Undesirable results as part of an attempt to produce a model for energy performance with effective predictive ability. The results reveal different impacts of contextual variables, such as economic blocks and capital–labor ratio, on energy efficiency levels. - Highlights: • We analyze the energy efficiency of selected OECD countries. • SBM-Undesirable and MCMC–GLMM are combined for this purpose. • Find that efficiency levels are high but declining over time. • Analysis with contextual variables shows varying efficiency levels across groups. • Capital-intensive countries are more energy efficient than labor-intensive countries.

  13. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  14. A Novel Clustering Model Based on Set Pair Analysis for the Energy Consumption Forecast in China

    Directory of Open Access Journals (Sweden)

    Mingwu Wang

    2014-01-01

    Full Text Available The energy consumption forecast is important for the decision-making of national economic and energy policies. But it is a complex and uncertainty system problem affected by the outer environment and various uncertainty factors. Herein, a novel clustering model based on set pair analysis (SPA was introduced to analyze and predict energy consumption. The annual dynamic relative indicator (DRI of historical energy consumption was adopted to conduct a cluster analysis with Fisher’s optimal partition method. Combined with indicator weights, group centroids of DRIs for influence factors were transferred into aggregating connection numbers in order to interpret uncertainty by identity-discrepancy-contrary (IDC analysis. Moreover, a forecasting model based on similarity to group centroid was discussed to forecast energy consumption of a certain year on the basis of measured values of influence factors. Finally, a case study predicting China’s future energy consumption as well as comparison with the grey method was conducted to confirm the reliability and validity of the model. The results indicate that the method presented here is more feasible and easier to use and can interpret certainty and uncertainty of development speed of energy consumption and influence factors as a whole.

  15. Energy saving behaviours: Development of a practice-based model

    International Nuclear Information System (INIS)

    Sweeney, Jillian C.; Kresling, Johannes; Webb, Dave; Soutar, Geoffrey N.; Mazzarol, Tim

    2013-01-01

    Financial pressure and concern for the environment has meant many consumers are aware of the need to reduce their consumption of many resources, including energy, which is the focus of the present study. While potential energy use deterrents in the form of access constraints and price increases are forms of extrinsic control, it is not clear how effective these are at reducing consumption and, indeed, it is not clear if such measures are consistent with people's underlying energy saving motivations. Beyond behavioural motivations, people's desires to reduce energy can be thwarted (barriers) and/or supported by a variety of factors, some within their control, while others are perhaps less so. Using a practice-based framework and a qualitative focus group approach, this study presents an exploratory study of these issues. Policy suggestions for overcoming barriers, as well suggestions as to how energy saving behaviours can be supported are offered. - Highlights: • We obtained consumers views about energy saving motivations, barriers and support. • Attitudes towards energy saving are not sufficient to change behaviours. • A practice-based approach to understanding energy saving behaviours is applied. • A practice-based energy-cultures framework (PBECF) is developed. • Barriers and support factors are identified that can be conceptualised within a PBECF

  16. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model

    International Nuclear Information System (INIS)

    Chen, Jiaoliao; Xu, Fang; Tan, Dapeng; Shen, Zheng; Zhang, Libin; Ai, Qinglin

    2015-01-01

    Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system

  17. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting

    International Nuclear Information System (INIS)

    Lv, Song; He, Wei; Zhang, Aifeng; Li, Guiqiang; Luo, Bingqing; Liu, Xianghua

    2017-01-01

    Highlights: • A new CAES system for trigeneration based on electrical peak load shifting is proposed. • The theoretical models and the thermodynamics process are established and analyzed. • The relevant parameters influencing its performance have been discussed and optimized. • A novel energy and economic evaluation methods is proposed to evaluate the performance of the system. - Abstract: The compressed air energy storage (CAES) has made great contribution to both electricity and renewable energy. In the pursuit of reduced energy consumption and relieving power utility pressure effectively, a novel trigeneration system based on CAES for cooling, heating and electricity generation by electrical energy peak load shifting is proposed in this paper. The cooling power is generated by the direct expansion of compressed air, and the heating power is recovered in the process of compression and storage. Based on the working principle of the typical CAES, the theoretical analysis of the thermodynamic system models are established and the characteristics of the system are analyzed. A novel method used to evaluate energy and economic performance is proposed. A case study is conducted, and the economic-social and technical feasibility of the proposed system are discussed. The results show that the trigeneration system works efficiently at relatively low pressure, and the efficiency is expected to reach about 76.3% when air is compressed and released by 15 bar. The annual monetary cost saving annually is about 53.9%. Moreover, general considerations about the proposed system are also presented.

  18. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  19. Natural Aggregation Approach based Home Energy Manage System with User Satisfaction Modelling

    Science.gov (United States)

    Luo, F. J.; Ranzi, G.; Dong, Z. Y.; Murata, J.

    2017-07-01

    With the prevalence of advanced sensing and two-way communication technologies, Home Energy Management System (HEMS) has attracted lots of attentions in recent years. This paper proposes a HEMS that optimally schedules the controllable Residential Energy Resources (RERs) in a Time-of-Use (TOU) pricing and high solar power penetrated environment. The HEMS aims to minimize the overall operational cost of the home, and the user’s satisfactions and requirements on the operation of different household appliances are modelled and considered in the HEMS. Further, a new biological self-aggregation intelligence based optimization technique previously proposed by the authors, i.e., Natural Aggregation Algorithm (NAA), is applied to solve the proposed HEMS optimization model. Simulations are conducted to validate the proposed method.

  20. Energy-economic policy modeling

    Science.gov (United States)

    Sanstad, Alan H.

    2018-01-01

    Computational models based on economic principles and methods are powerful tools for understanding and analyzing problems in energy and the environment and for designing policies to address them. Among their other features, some current models of this type incorporate information on sustainable energy technologies and can be used to examine their potential role in addressing the problem of global climate change. The underlying principles and the characteristics of the models are summarized, and examples of this class of model and their applications are presented. Modeling epistemology and related issues are discussed, as well as critiques of the models. The paper concludes with remarks on the evolution of the models and possibilities for their continued development.

  1. Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China

    Directory of Open Access Journals (Sweden)

    Siqi Li

    2017-11-01

    Full Text Available Energy sustainability is of vital importance to regional sustainability, because energy sustainability is closely related to both regional economic growth and social stability. The existing energy sustainability evaluation methods lack a unified system to determine the relevant influencing factors, are relatively weak in quantitative analysis, and do not fully describe the ‘paradoxical’ characteristics of energy sustainability. To solve those problems and to reasonably and objectively evaluate energy sustainability, we propose an energy sustainability evaluation model based on the matter-element extension method. We first select energy sustainability evaluation indexes based on previous research and experience. Then, a variation coefficient method is used to determine the weights of these indexes. Finally, the study establishes the classical domain, joint domain, and the matter-element relationship to evaluate energy sustainability through matter-element extension. Data from Shandong Province is used as a case study to evaluate the region’s energy sustainability. The case study shows that the proposed energy sustainability evaluation model, based on the matter-element extension method, can effectively evaluate regional energy sustainability.

  2. Impact of Germany's energy transition on the Nordic power market – A market-based multi-region energy system model

    International Nuclear Information System (INIS)

    Zakeri, Behnam; Virasjoki, Vilma; Syri, Sanna; Connolly, David; Mathiesen, Brian V.; Welsch, Manuel

    2016-01-01

    The EU energy policy aims at creating a single European electricity market through market couplings and grid expansions. To analyse the implications of such power market couplings, we propose a market-based multi-region energy system model. The model simulates a multi-region power market (by applying market optimization and network theory), with detailed representation of each region as an energy system (by simulation of both heat and power sectors). We examine the impact of further integration of variable renewable energy (VRE) in Germany on the Nordic power market. The results indicate that the average electricity price slightly grows in the Nordic power market after Germany's Energy Transition (Energiewende). Hence, the economic surplus of Nordic consumers diminishes while Nordic producers improve their gain under new market conditions. Considering the gird congestion income, the overall system-level benefits (social welfare) will improve in the Nordic region after Germany's Energiewende. However, this gain is not equally distributed among different Nordic countries and across different stakeholders. Furthermore, the Energiewende slightly increases carbon emissions from power and district heating (DH) sectors, and reduces the flexibility in integration of VRE in some Nordic countries like Denmark. The direct interconnection of Norway and Germany through NordLink will contribute to the flexibility in wind integration in other Nordic countries, such as Denmark and Finland. - Highlights: • By an integrated hourly analysis, we model the energy systems of several networked countries and their common electricity market. • The proposed model can inform energy policy on implications of renewable energy integration in an international power market. • Among Nordic countries, Norway gains the highest economic benefits from Germany's energy transition. • Germany's energy transition constrains the flexibility of the Nordic countries in wind integration. • Nord

  3. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  4. Incorporating technology buying behaviour into UK-based long term domestic stock energy models to provide improved policy analysis

    International Nuclear Information System (INIS)

    Lee, Timothy; Yao, Runming

    2013-01-01

    The UK has a target for an 80% reduction in CO 2 emissions by 2050 from a 1990 base. Domestic energy use accounts for around 30% of total emissions. This paper presents a comprehensive review of existing models and modelling techniques and indicates how they might be improved by considering individual buying behaviour. Macro (top-down) and micro (bottom-up) models have been reviewed and analysed. It is found that bottom-up models can project technology diffusion due to their higher resolution. The weakness of existing bottom-up models at capturing individual green technology buying behaviour has been identified. Consequently, Markov chains, neural networks and agent-based modelling are proposed as possible methods to incorporate buying behaviour within a domestic energy forecast model. Among the three methods, agent-based models are found to be the most promising, although a successful agent approach requires large amounts of input data. A prototype agent-based model has been developed and tested, which demonstrates the feasibility of an agent approach. This model shows that an agent-based approach is promising as a means to predict the effectiveness of various policy measures. - Highlights: ► Long term energy models are reviewed with a focus on UK domestic stock models. ► Existing models are found weak in modelling green technology buying behaviour. ► Agent models, Markov chains and neural networks are considered as solutions. ► Agent-based modelling (ABM) is found to be the most promising approach. ► A prototype ABM is developed and testing indicates a lot of potential.

  5. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Anderson, M.C.; Kustas, W.P.

    2013-01-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature...... agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish Hydrological ObsErvatory (HOBE) in western Denmark, indicating realistic patterns based on land use....

  6. One-dimensional energy flow model for poroelastic material

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kang, Yeon June

    2009-01-01

    This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.

  7. A simulation model for reliability-based appraisal of an energy policy: The case of Lebanon

    International Nuclear Information System (INIS)

    Hamdan, H.A.; Ghajar, R.F.; Chedid, R.B.

    2012-01-01

    The Lebanese Electric Power System (LEPS) has been suffering from technical and financial deficiencies for decades and mirrors the problems encountered in many developing countries suffering from inadequate or no power systems planning resulting in incomplete and ill-operating infrastructure, and suffering from effects of political instability, huge debts, unavailability of financing desired projects and inefficiency in operation. The upgrade and development of the system necessitate the adoption of a comprehensive energy policy that introduces solutions to a diversity of problems addressing the technical, financial, administrative and governance aspects of the system. In this paper, an energy policy for Lebanon is proposed and evaluated based on integration between energy modeling and financial modeling. The paper utilizes the Load Modification Technique (LMT) as a probabilistic tool to assess the impact of policy implementation on energy production, overall cost, technical/commercial losses and reliability. Scenarios reflecting implementation of policy projects are assessed and their impacts are compared with business-as-usual scenarios which assume no new investment is to take place in the sector. Conclusions are drawn on the usefulness of the proposed evaluation methodology and the effectiveness of the adopted energy policy for Lebanon and other developing countries suffering from similar power system problems. - Highlights: ► Evaluation methodology based on a probabilistic simulation tool is proposed. ► A business-as-usual scenario for a given study period of the LEPS was modeled. ► Mitigation scenarios reflecting implementation of the energy policy are modeled. ► Policy simulated and compared with business-as-usual scenarios of the LEPS. ► Results reflect usefulness of proposed methodology and the adopted energy policy.

  8. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)

    2010-04-15

    This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)

  9. DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses

    Science.gov (United States)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2015-10-01

    Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.

  10. FloorspaceJS - A New, Open Source, Web-Based Geometry Editor for Building Energy Modeling (BEM): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Macumber, Daniel L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, Scott G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schott, Marjorie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nolan, Katie [Devetry; Schiller, Brian [Devetry

    2018-03-19

    Across most industries, desktop applications are being rapidly migrated to web applications for a variety of reasons. Web applications are inherently cross platform, mobile, and easier to distribute than desktop applications. Fueling this trend are a wide range of free, open source libraries and frameworks that make it incredibly easy to develop powerful web applications. The building energy modeling community is just beginning to pick up on these larger trends, with a small but growing number of building energy modeling applications starting on or moving to the web. This paper presents a new, open source, web based geometry editor for Building Energy Modeling (BEM). The editor is written completely in JavaScript and runs in a modern web browser. The editor works on a custom JSON file format and is designed to be integrated into a variety of web and desktop applications. The web based editor is available to use as a standalone web application at: https://nrel.github.io/openstudio-geometry-editor/. An example integration is demonstrated with the OpenStudio desktop application. Finally, the editor can be easily integrated with a wide range of possible building energy modeling web applications.

  11. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  12. Long term energy system analysis of Japan based on 'options for energy and environment' by the energy and environmental council

    International Nuclear Information System (INIS)

    Hagiwara, Naoto; Kurosawa, Atsushi

    2013-01-01

    Implications to Japanese energy system are discussed especially in terms of primary energy supply and power generation portfolio, using sensitivity analysis results by an optimization type energy model based on TIMES modeling framework. We updated energy service demand, efficiency in energy conversion and consumption, and power generation costs based on the recent energy policy document called 'Options for Energy and Environment'. The time horizon of the model is 2050. The sensitivity analysis results are presented for 'Three scenarios for 2030' including nuclear phase out scenarios with/without CO 2 emission constraint. The results are compared with 'Options for Energy and Environment'. (author)

  13. Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory

    Science.gov (United States)

    Yan, Zhi

    2018-01-01

    This work presents a two dimensional theory for a piezoelectric/piezomagnetic bilayer nanoplate in coupled extensional and flexural vibrations with both flexoelectric and surface effects. The magneto-electro-elastic (MEE) coupling equations are derived from three-dimensional equations and Kirchhoff plate theory. Based on the developed theory, a piezoelectric/piezomagnetic nano energy harvester is proposed, which can generate electricity under time-harmonic applied magnetic field. The approximate solutions for the mechanical responses and voltage of the energy harvester are obtained using the weighted residual method. Results show that the properties of the proposed energy harvester are size-dependent due to the flexoelectric and surface effects, and such effects are more pronounced when the bilayer thickness is reduced to dozens of nanometers. It is also found that the magnetoelectric coupling coefficient and power density of the energy harvester are sensitive to the load resistance, the thickness fraction of the piezoelectric or the piezomagnetic layer and damping ratios. Moreover, results indicate that the flexoelectric effect could be made use to build a dielectric/piezomagnetic nano energy harvester. This work provides modeling techniques and numerical methods for investigating the size-dependent properties of MEE nanoplate-based energy harvester and could be helpful for designing nano energy harvesters using the principle of flexoelectricity.

  14. Origin of holographic dark energy models

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Seo, Min-Gyun

    2009-01-01

    We investigate the origin of holographic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we introduce the spacetime foam uncertainty of δl≥l p α l α-1 . It was argued that the case of α=2/3 could describe the dark energy with infinite statistics, while the case of α=1/2 can describe the ordinary matter with Bose-Fermi statistics. However, two cases may lead to the holographic energy density if the latter recovers from the geometric mean of UV and IR scales. Hence the dark energy with infinite statistics based on the entropy bound is not an ingredient for deriving the holographic dark energy model. Furthermore, it is shown that the agegraphic dark energy models are the holographic dark energy model with different IR length scales

  15. Comprehensive Forecast of Urban Water-Energy Demand Based on a Neural Network Model

    Directory of Open Access Journals (Sweden)

    Ziyi Yin

    2018-03-01

    Full Text Available Water-energy nexus has been a popular topic of rese arch in recent years. The relationships between the demand for water resources and energy are intense and closely connected in urban areas. The primary, secondary, and tertiary industry gross domestic product (GDP, the total population, the urban population, annual precipitation, agricultural and industrial water consumption, tap water supply, the total discharge of industrial wastewater, the daily sewage treatment capacity, total and domestic electricity consumption, and the consumption of coal in industrial enterprises above the designed size were chosen as input indicators. A feedforward artificial neural network model (ANN based on a back-propagation algorithm with two hidden layers was constructed to combine urban water resources with energy demand. This model used historical data from 1991 to 2016 from Wuxi City, eastern China. Furthermore, a multiple linear regression model (MLR was introduced for comparison with the ANN. The results show the following: (a The mean relative error values of the forecast and historical urban water-energy demands are 1.58 % and 2.71%, respectively; (b The predicted water-energy demand value for 2020 is 4.843 billion cubic meters and 47.561 million tons of standard coal equivalent; (c The predicted water-energy demand value in the year 2030 is 5.887 billion cubic meters and 60.355 million tons of standard coal equivalent; (d Compared with the MLR, the ANN performed better in fitting training data, which achieved a more satisfactory accuracy and may provide a reference for urban water-energy supply planning decisions.

  16. Evaluating energy saving system of data centers based on AHP and fuzzy comprehensive evaluation model

    Science.gov (United States)

    Jiang, Yingni

    2018-03-01

    Due to the high energy consumption of communication, energy saving of data centers must be enforced. But the lack of evaluation mechanisms has restrained the process on energy saving construction of data centers. In this paper, energy saving evaluation index system of data centers was constructed on the basis of clarifying the influence factors. Based on the evaluation index system, analytical hierarchy process was used to determine the weights of the evaluation indexes. Subsequently, a three-grade fuzzy comprehensive evaluation model was constructed to evaluate the energy saving system of data centers.

  17. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  18. UK energy policy ambition and UK energy modelling-fit for purpose?

    International Nuclear Information System (INIS)

    Strachan, Neil

    2011-01-01

    Aiming to lead amongst other G20 countries, the UK government has classified the twin energy policy priorities of decarbonisation and security of supply as a 'centennial challenge'. This viewpoint discusses the UK's capacity for energy modelling and scenario building as a critical underpinning of iterative decision making to meet these policy ambitions. From a nadir, over the last decade UK modelling expertise has been steadily built up. However extreme challenges remain in the level and consistency of funding of core model teams - critical to ensure a full scope of energy model types and hence insights, and in developing new state-of-the-art models to address evolving uncertainties. Meeting this challenge will facilitate a broad scope of types and geographical scale of UK's analytical tools to responsively deliver the evidence base for a range of public and private sector decision makers, and ensure that the UK contributes to global efforts to advance the field of energy-economic modelling. - Research highlights: → Energy modelling capacity is a critical underpinning for iterative energy policy making. → Full scope of energy models and analytical approaches is required. → Extreme challenges remain in consistent and sustainable funding of energy modelling teams. → National governments that lead in global energy policy also need to invest in modelling capacity.

  19. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  20. Energy centre microgrid model

    Energy Technology Data Exchange (ETDEWEB)

    Pasonen, R.

    2011-09-15

    A simulation model of Energy centre microgrid made with PSCAD simulation software version 4.2.1 has been built in SGEM Smart Grids and Energy Markets (SGEM) work package 6.6. Microgrid is an autonomous electric power system which can operate separate from common distribution system. The idea of energy centre microgrid concept was considered in Master of Science thesis 'Community Microgrid - A Building block of Finnish Smart Grid'. The name of energy centre microgrid comes from a fact that production and storage units are concentrated into a single location, an energy centre. This centre feeds the loads which can be households or industrial loads. Power direction flow on the demand side remains same compared to the current distribution system and allows to the use of standard fuse protection in the system. The model consists of photovoltaic solar array, battery unit, variable frequency boost converter, inverter, isolation transformer and demand side (load) model. The model is capable to automatically switch to islanded mode when there is a fault in outside grid and back to parallel operation mode when fault is removed. The modelled system responses well to load changes and total harmonic distortion related to 50Hz base frequency is kept under 1.5% while operating and feeding passive load. (orig.)

  1. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Design of a dynamic model for nuclear energy management based on European Foundation for Quality Management

    International Nuclear Information System (INIS)

    Fam, I. M.; Shekari, A.

    2008-01-01

    The Business excellence model has been developed to improve and promote business levels. In business excellence model such as European Foundation for Quality Management model, the important role of resource management is emphasizes. In this paper, we have tried with consideration to tendency progressive concepts of nuclear energy management; a dynamic model has been presented for energy management within the scope of European Foundation for Quality Management model. Population growth could cause increasing of the level of energy demands. No doubt, the confidence of this developed phenomenon with the limits of environment will create greater challenges for the world and its inhabitants. Considering the shortage of energy supply all over the world, nuclear energy management has been studied with a view to fourth and fifth criterions included in European Foundation for Quality Management model (Partnership and resource and Process criteria's). In addition to it, a dynamic model has been presented for nuclear energy management within the scope of European Foundation for Quality Management model. In this dynamic model, with differential equation definition for each of the presented communications of defined causal model, input variable impacts on output ones have been determined and considered. They can be reviewed, based on six scenario plans, the importance of nuclear energy management of a business has been properly shown, and similarly the rate of investment on systems as a factor affecting the level of attention paid to the future of business enterprises, has been specified. This paper conceives nuclear energy management as an instrument to contribute to the growth and fall of a business. It is therefore, imperative to attach more importance at nuclear energy demand management in the business and an attempt should be made to keep it under our control

  3. Energy laboratory data and model directory

    Science.gov (United States)

    Lahiri, S.; Carson, J.

    1981-07-01

    Over the past several years M.I.T. faculty, staff, and students have produced a substantial body of research and analysis relating to the production, conversion,, and use of energy in domestic and international markets. Much of this research takes the form of models and associated data bases that have enduring value in policy studies (models) and in supporting related research and modeling efforts (date). For such models and data it is important to ensure that the useful life cycle does not end with the conclusion of the research project. This directory is an important step in extending the usefulness of models and data bases available at the M.I.T. Energy Laboratory. It will be updated from time to time to include new models and data bases that have been developed, or significant changes that have occurred.

  4. An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul

    2016-01-01

    While the building sector has a significant thermodynamic improvement potential, exergy analysis has been shown to provide new insight for the optimisation of building energy systems. This paper presents an exergy-based multi-objective optimisation tool that aims to assess the impact of a diverse range of retrofit measures with a focus on non-domestic buildings. EnergyPlus was used as a dynamic calculation engine for first law analysis, while a Python add-on was developed to link dynamic exergy analysis and a Genetic Algorithm optimisation process with the aforementioned software. Two UK archetype case studies (an office and a primary school) were used to test the feasibility of the proposed framework. Different measures combinations based on retrofitting the envelope insulation levels and the application of different HVAC configurations were assessed. The objective functions in this study are annual energy use, occupants' thermal comfort, and total building exergy destructions. A large range of optimal solutions was achieved highlighting the framework capabilities. The model achieved improvements of 53% in annual energy use, 51% of exergy destructions and 66% of thermal comfort for the school building, and 50%, 33%, and 80% for the office building. This approach can be extended by using exergoeconomic optimisation. - Highlights: • Integration of dynamic exergy analysis into a retrofit-oriented simulation tool. • Two UK non-domestic building archetypes are used as case studies. • The model delivers non-dominated solutions based on energy, exergy and comfort. • Exergy destructions of ERMs are optimised using GA algorithms. • Strengths and limitations of the proposed exergy-based framework are discussed.

  5. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    International Nuclear Information System (INIS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Zhang, Weihong; Van Herpen, Alain

    2016-01-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well. (paper)

  6. Embodied energy of construction materials: integrating human and capital energy into an IO-based hybrid model.

    Science.gov (United States)

    Dixit, Manish K; Culp, Charles H; Fernandez-Solis, Jose L

    2015-02-03

    Buildings alone consume approximately 40% of the annual global energy and contribute indirectly to the increasing concentration of atmospheric carbon. The total life cycle energy use of a building is composed of embodied and operating energy. Embodied energy includes all energy required to manufacture and transport building materials, and construct, maintain, and demolish a building. For a systemic energy and carbon assessment of buildings, it is critical to use a whole life cycle approach, which takes into account the embodied as well as operating energy. Whereas the calculation of a building's operating energy is straightforward, there is a lack of a complete embodied energy calculation method. Although an input-output-based (IO-based) hybrid method could provide a complete and consistent embodied energy calculation, there are unresolved issues, such as an overdependence on price data and exclusion of the energy of human labor and capital inputs. This paper proposes a method for calculating and integrating the energy of labor and capital input into an IO-based hybrid method. The results demonstrate that the IO-based hybrid method can provide relatively complete results. Also, to avoid errors, the total amount of human and capital energy should not be excluded from the calculation.

  7. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  8. Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking

    International Nuclear Information System (INIS)

    Benichou, Léo; Mayr, Sebastian

    2014-01-01

    Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  9. Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking

    Energy Technology Data Exchange (ETDEWEB)

    Benichou, Léo, E-mail: leo.benichou@theshiftproject.org [The Shift Project, Paris (France); Mayr, Sebastian, E-mail: communication@theshiftproject.org [Paris School of International Affairs, Sciences Po., Paris (France)

    2014-01-13

    Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  10. Solar energy prediction and verification using operational model forecasts and ground-based solar measurements

    International Nuclear Information System (INIS)

    Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A.

    2015-01-01

    The present study focuses on the predictions and verification of these predictions of solar energy using ground-based solar measurements from the Hellenic Network for Solar Energy and the National Observatory of Athens network, as well as solar radiation operational forecasts provided by the MM5 mesoscale model. The evaluation was carried out independently for the different networks, for two forecast horizons (1 and 2 days ahead), for the seasons of the year, for varying solar elevation, for the indicative energy potential of the area, and for four classes of cloud cover based on the calculated clearness index (k_t): CS (clear sky), SC (scattered clouds), BC (broken clouds) and OC (overcast). The seasonal dependence presented relative rRMSE (Root Mean Square Error) values ranging from 15% (summer) to 60% (winter), while the solar elevation dependence revealed a high effectiveness and reliability near local noon (rRMSE ∼30%). An increment of the errors with cloudiness was also observed. For CS with mean GHI (global horizontal irradiance) ∼ 650 W/m"2 the errors are 8%, for SC 20% and for BC and OC the errors were greater (>40%) but correspond to much lower radiation levels (<120 W/m"2) of consequently lower energy potential impact. The total energy potential for each ground station ranges from 1.5 to 1.9 MWh/m"2, while the mean monthly forecast error was found to be consistently below 10%. - Highlights: • Long term measurements at different atmospheric cases are needed for energy forecasting model evaluations. • The total energy potential at the Greek sites presented ranges from 1.5 to 1.9 MWh/m"2. • Mean monthly energy forecast errors are within 10% for all cases analyzed. • Cloud presence results of an additional forecast error that varies with the cloud cover.

  11. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  12. Renewable energy: GIS-based mapping and modelling of potentials and demand

    Science.gov (United States)

    Blaschke, Thomas; Biberacher, Markus; Schardinger, Ingrid.; Gadocha, Sabine; Zocher, Daniela

    2010-05-01

    Worldwide demand of energy is growing and will continue to do so for the next decades to come. IEA has estimated that global primary energy demand will increase by 40 - 50% from 2003 to 2030 (IEA, 2005) depending on the fact whether currently contemplated energy policies directed towards energy-saving and fuel-diversification will be effectuated. The demand for Renewable Energy (RE) is undenied but clear figures and spatially disaggregated potentials for the various energy carriers are very rare. Renewable Energies are expected to reduce pressures on the environment and CO2 production. In several studies in Germany (North-Rhine Westphalia and Lower Saxony) and Austria we studied the current and future pattern of energy production and consumption. In this paper we summarize and benchmark different RE carriers, namely wind, biomass (forest and non-forest, geothermal, solar and hydro power. We demonstrate that GIS-based scalable and flexible information delivery sheds new light on the prevailing metaphor of GIS as a processing engine serving needs of users more on demand rather than through ‘maps on stock'. We compare our finding with those of several energy related EU-FP7 projects in Europe where we have been involved - namely GEOBENE, REACCESS, ENERGEO - and demonstrate that more and more spatial data will become available together with tools that allow experts to do their own analyses and to communicate their results in ways which policy makers and the public can readily understand and use as a basis for their own actions. Geoportals in combination with standardised geoprocessing today supports the older vision of an automated presentation of data on maps, and - if user privileges are given - facilities to interactively manipulate these maps. We conclude that the most critical factor in modelling energy supply and demand remain the economic valuation of goods and services, especially the forecast of future end consumer energy costs.

  13. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  14. Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model

    Directory of Open Access Journals (Sweden)

    Changhong Zhao

    2018-01-01

    Full Text Available The Belt and Road Initiative (BRI is showing its great influence and leadership on the international energy cooperation. Based on the three-stage DEA model, total-factor energy efficiency (TFEE in 35 BRI countries in 2015 was measured in this article. It shows that the three-stage DEA model could eliminate errors of environment variable and random, which made the result better than traditional DEA model. When environment variable errors and random errors were eliminated, the mean value of TFEE was declined. It demonstrated that TFEE of the whole sample group was overestimated because of external environment impacts and random errors. The TFEE indicators of high-income countries like South Korea, Singapore, Israel and Turkey are 1, which is in the efficiency frontier. The TFEE indicators of Russia, Saudi Arabia, Poland and China are over 0.8. And the indicators of Uzbekistan, Ukraine, South Africa and Bulgaria are in a low level. The potential of energy-saving and emissions reduction is great in countries with low TFEE indicators. Because of the gap in energy efficiency, it is necessary to distinguish different countries in the energy technology options, development planning and regulation in BRI countries.

  15. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    Science.gov (United States)

    Duan, Zheng; Bastiaanssen, W. G. M.

    2017-02-01

    The heat storage changes (Q t) can be a significant component of the energy balance in lakes, and it is important to account for Q t for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Q t has been often neglected in many studies due to the lack of required water temperature data. A simple hysteresis model (Q t = a*Rn + b + c* dRn/dt) has been demonstrated to reasonably estimate Q t from the readily available net all wave radiation (Rn) and three locally calibrated coefficients (a-c) for lakes and reservoirs. As a follow-up study, we evaluated whether this hysteresis model could enable energy balance-based evaporation models to yield good evaporation estimates. The representative monthly evaporation data were compiled from published literature and used as ground-truth to evaluate three energy balance-based evaporation models for five lakes. The three models in different complexity are De Bruin-Keijman (DK), Penman, and a new model referred to as Duan-Bastiaanssen (DB). All three models require Q t as input. Each model was run in three scenarios differing in the input Q t (S1: measured Q t; S2: modelled Q t from the hysteresis model; S3: neglecting Q t) to evaluate the impact of Q t on the modelled evaporation. Evaluation showed that the modelled Q t agreed well with measured counterparts for all five lakes. It was confirmed that the hysteresis model with locally calibrated coefficients can predict Q t with good accuracy for the same lake. Using modelled Q t as inputs all three evaporation models yielded comparably good monthly evaporation to those using measured Q t as inputs and significantly better than those neglecting Q t for the five lakes. The DK model requiring minimum data generally performed the best, followed by the Penman and DB model. This study demonstrated that once three coefficients are locally calibrated using historical data the simple hysteresis model can offer

  16. Review of high energy data and model codes for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-01-01

    After reviewing the most important data needs for accelerator-based transmutation, the present status of the collection of experimental data for high energies is investigated by scanning the two databases NSR and EXFOR for measured cross sections. The most important nuclear theories and some of the associated nuclear model codes that are in use are outlined. Experimental data and simple theories have been used to construct empirical fomulae for the prediction of high-energy cross sections and these parametrizations are listed. A survey is given of the evaluation work that has been done so far, and finally some conclusions and recommendations are presented, with respect to the need of compilation of experimental data. (orig.)

  17. A method to identify energy efficiency measures for factory systems based on qualitative modeling

    CERN Document Server

    Krones, Manuela

    2017-01-01

    Manuela Krones develops a method that supports factory planners in generating energy-efficient planning solutions. The method provides qualitative description concepts for factory planning tasks and energy efficiency knowledge as well as an algorithm-based linkage between these measures and the respective planning tasks. Its application is guided by a procedure model which allows a general applicability in the manufacturing sector. The results contain energy efficiency measures that are suitable for a specific planning task and reveal the roles of various actors for the measures’ implementation. Contents Driving Concerns for and Barriers against Energy Efficiency Approaches to Increase Energy Efficiency in Factories Socio-Technical Description of Factory Planning Tasks Description of Energy Efficiency Measures Case Studies on Welding Processes and Logistics Systems Target Groups Lecturers and Students of Industrial Engineering, Production Engineering, Environmental Engineering, Mechanical Engineering Practi...

  18. Rogeaulito: a world energy scenario modeling tool for transparent energy system thinking

    Directory of Open Access Journals (Sweden)

    Léo eBenichou

    2014-01-01

    Full Text Available Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  19. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  20. Integrated modelling of module behavior and energy aspects in mechatronics. Energy optimization of production facilities based on model information; Modellintegration von Verhaltens- und energetischen Aspekten fuer mechatronische Module. Energieoptimierung von Produktionsanlagen auf Grundlage von Modellinformationen

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Daniel; Vogel-Heuser, Birgit [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Informationstechnik im Maschinenwesen

    2011-01-15

    In this Paper a modelling approach is presented that merges the operation characteristics and the energy aspects of automation modules into one model. A characteristic of this approach is the state-based behavior model. An example is used to demonstrate how the information in the model can be used for an energy-optimized operation controlled by software agents. (orig.)

  1. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  2. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  3. Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    International Nuclear Information System (INIS)

    Busch, Jonathan; Roelich, Katy; Bale, Catherine S.E.; Knoeri, Christof

    2017-01-01

    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Techno-economic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure. - Highlights: • Energy policy should account for diverse actor motivations and capabilities. • Project development is a multi-stage process, not a one-off event. • Participatory agent-based modelling can inform policy that accounts for complexity. • Policy should take a portfolio approach to providing support. • Local authorities have an important strategic role in local infrastructure.

  4. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    Science.gov (United States)

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  5. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  6. Research on potential user identification model for electric energy substitution

    Science.gov (United States)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  7. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  8. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  9. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  10. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  11. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  12. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2014-01-01

    Full Text Available This paper presents a new approach to translate between Building Information Modeling (BIM and Building Energy Modeling (BEM that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1 the BIM-based Modelica models generated from Revit2Modelica and (2 BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1 enables BIM models to be translated into ModelicaBEM models, (2 enables system interface development based on the MVD for thermal simulation, and (3 facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  13. Towards a 3d Spatial Urban Energy Modelling Approach

    Science.gov (United States)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  14. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  15. Communication strategies for two models of discrete energy harvesting

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Popovski, Petar

    2014-01-01

    Energy harvesting is becoming a viable option for powering small wireless devices. Energy for data transmission is supplied by the nature, such that when a transmission is about to take place in an arbitrary instant, the amount of available energy is a random quantity. The arrived energy is stored...... in a battery and transmissions are interrupted if the battery runs out of energy. We address communication in slot-based energy harvesting systems, where the transmitter communicates with ON-OFF signaling: in each slot it can either choose to transmit (ON) or stay silent (OFF). Two different models...... strategies and compare the slot- with the frame-based model in the case of an errorless transmission channel. Additionally, for the slot-based model and channel with errors, we provide a new proof of the capacity achieved by the save-and-transmit scheme....

  16. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    Science.gov (United States)

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  17. Derivation of the mean annual water-energy balance model based on an Ohms-type law

    Science.gov (United States)

    Li, X.; Shan, X.; Yang, H.

    2017-12-01

    The Budyko Hypothesis is used to describe the water partition and energy partition. Many empirical and analytical solutions have been proposed to evaluate the general solution which can be described as E/P = F(E0/P, c), where c is a parameter. And previous studies have given a derivation of Mezentsev-Choudhruy-Yang (MCY) model, based on dimensional analysis and mathematic reasoning, however, little hydrological process. Thus further hydrological meaning is limited to the boundary conditions which are difficult to explore. Note that hydrologic cycle is always forced by the energy conversions and atmospheric transportation, and the parallel in the electric circuits and the atmospheric motions, therefore we try to give a new derivation of MCY model from a conceptual model, considering hydrologic fluxes and atmospheric motions. Here an analogy of Ohms Law and the atmospheric cycle is used to aim at describing the partition of water in a long-term timescale. Then MCY model is derived in a new form, which is based on more physical explanation than mathematic reasoning proposed in previous studies. The implications of this derivation are also explored.

  18. Model of Nordic energy market

    International Nuclear Information System (INIS)

    Gjelsvik, E.; Johnsen, T.; Mysen, H.T.

    1992-01-01

    Simulation results are given of the consumption of electricity and oil in Denmark, Norway and Sweden based on the demand section of a Nordic energy market model which is in the process of being developed in Oslo under the auspices of the Nordic Council of Ministers. The model incorporates supply, and trade between countries so that it can be analyzed how trading can contribute to goals within energy and environmental policies and to cost effective activities aimed at reducing pollution. The article deals in some detail with the subject of how taxation on carbon dioxide emission can influence pollution abatement and with energy consumption development within individual sectors in individual Northern countries. The model of energy demand is described with emphasis on the individual sectors of industry, transport, service and private households. Simulation results giving the effects of energy consumption and increased taxation on fossil fuels are given. On this background the consequences of the adaption of power plants is discussed and a sketch is given of a Nordic electric power market incorporating trading. (AB) (15 refs.)

  19. Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration

    Directory of Open Access Journals (Sweden)

    Marc Deissenroth

    2017-01-01

    Full Text Available The ongoing deployment of renewable energy sources (RES calls for an enhanced integration of RES into energy markets, accompanied by a new set of regulations. In Germany, for instance, the feed-in tariff legislation for renewables has been successively replaced by first optional and then obligatory marketing of RES on competitive wholesale markets. This paper introduces an agent-based model that allows studying the impact of changing energy policy instruments on the economic performance of RES operators and marketers. The model structure, its components, and linkages are presented in detail; an additional case study demonstrates the capability of our sociotechnical model. We find that changes in the political framework cannot be mapped directly to RES operators as behaviour of intermediary market actors has to be considered as well. Characteristics and strategies of intermediaries are thus an important factor for successful RES marketing and further deployment. It is shown that the model is able to assess the emergence and stability of market niches.

  20. MOBE: Final report; Modelling and Optimization of Biomass-based Energy production

    Energy Technology Data Exchange (ETDEWEB)

    Trangbaek, K [Aalborg Univ., Institut for Elektroniske Systemer, Aalborg (Denmark); Elmegaard, B [Danmarks Tekniske Univ., Institut for Mekanisk Teknologi, Kgs. Lyngby (Denmark)

    2008-07-01

    The present report is the documentation of the work in the PSO-project MOBE, ''Modelling and Optimization of biomass-based Energy production''. The aim of the project is to develop better control methods for boilers in central power plant units, so the plant will achieve better controllability with respect to load changes. in particular focus is on the low load operation near and below the Benson point. The introduction of the report includes a description of the challenges the central power stations see in the modern electricity market where wind power delivers a significant prioritized production, and thus, in connection with consumption variations, contributes to the load requirements of the central units. The report documents the work on development of a common simulation platform for the partners in the project and for future model work. The result of this is an integration between the DTU simulation code DNA and Matlab. Other possible tools are suggested. The modelling work in the project has resulted in preliminary studies of time constants of evaporator tubes, an analysis that shows that Ledinegg instabilities do not occur in modern boilers even at low load, development of a validated evaporator model that can be coupled to tools for control system development, and an analysis of two different configurations at the low load system of Benson boilers. Based in a validated power plant model different control strategies have been studied. Because constraints on control signals and temperature gradients are dominating, it is recommended to use model predictive control. It is demonstrated, how such a simulator can handle large low gradients without violating the constraints. By switching between different linearized models the whole load range may be covered. The project indicates that Model predictive control can improve the control in low low significantly. This should be studied further in future projects by realistic tests. At first these should be done with

  1. MOBE: Final report; Modelling and Optimization of Biomass-based Energy production

    Energy Technology Data Exchange (ETDEWEB)

    Trangbaek, K. (Aalborg Univ., Institut for Elektroniske Systemer, Aalborg (Denmark)); Elmegaard, B. (Danmarks Tekniske Univ., Institut for Mekanisk Teknologi, Kgs. Lyngby (Denmark))

    2008-07-01

    The present report is the documentation of the work in the PSO-project MOBE, ''Modelling and Optimization of biomass-based Energy production''. The aim of the project is to develop better control methods for boilers in central power plant units, so the plant will achieve better controllability with respect to load changes. in particular focus is on the low load operation near and below the Benson point. The introduction of the report includes a description of the challenges the central power stations see in the modern electricity market where wind power delivers a significant prioritized production, and thus, in connection with consumption variations, contributes to the load requirements of the central units. The report documents the work on development of a common simulation platform for the partners in the project and for future model work. The result of this is an integration between the DTU simulation code DNA and Matlab. Other possible tools are suggested. The modelling work in the project has resulted in preliminary studies of time constants of evaporator tubes, an analysis that shows that Ledinegg instabilities do not occur in modern boilers even at low load, development of a validated evaporator model that can be coupled to tools for control system development, and an analysis of two different configurations at the low load system of Benson boilers. Based in a validated power plant model different control strategies have been studied. Because constraints on control signals and temperature gradients are dominating, it is recommended to use model predictive control. It is demonstrated, how such a simulator can handle large low gradients without violating the constraints. By switching between different linearized models the whole load range may be covered. The project indicates that Model predictive control can improve the control in low low significantly. This should be studied further in future projects by realistic tests. At first these

  2. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    2005-01-01

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  3. An integrated framework of agent-based modelling and robust optimization for microgrid energy management

    International Nuclear Information System (INIS)

    Kuznetsova, Elizaveta; Li, Yan-Fu; Ruiz, Carlos; Zio, Enrico

    2014-01-01

    Highlights: • Microgrid composed of a train station, wind power plant and district is investigated. • Each player is modeled as an individual agent aiming at a particular goal. • Prediction Intervals quantify the uncertain operational and environmental parameters. • Optimal goal-directed actions planning is achieved with robust optimization. • Optimization framework improves system reliability and decreases power imbalances. - Abstract: A microgrid energy management framework for the optimization of individual objectives of microgrid stakeholders is proposed. The framework is exemplified by way of a microgrid that is connected to an external grid via a transformer and includes the following players: a middle-size train station with integrated photovoltaic power production system, a small energy production plant composed of urban wind turbines, and a surrounding district including residences and small businesses. The system is described by Agent-Based Modelling (ABM), in which each player is modelled as an individual agent aiming at a particular goal, (i) decreasing its expenses for power purchase or (ii) increasing its revenues from power selling. The context in which the agents operate is uncertain due to the stochasticity of operational and environmental parameters, and the technical failures of the renewable power generators. The uncertain operational and environmental parameters of the microgrid are quantified in terms of Prediction Intervals (PIs) by a Non-dominated Sorting Genetic Algorithm (NSGA-II) – trained Neural Network (NN). Under these uncertainties, each agent is seeking for optimal goal-directed actions planning by Robust Optimization (RO). The developed framework is shown to lead to an increase in system performance, evaluated in terms of typical reliability (adequacy) indicators for energy systems, such as Loss of Load Expectation (LOLE) and Loss of Expected Energy (LOEE), in comparison with optimal planning based on expected values of

  4. Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes

    International Nuclear Information System (INIS)

    Geng, ZhiQiang; Dong, JunGen; Han, YongMing; Zhu, QunXiong

    2017-01-01

    Highlights: •An improved environment DEA cross-model method is proposed. •Energy and environment efficiency analysis framework of complex chemical processes is obtained. •This proposed method is efficient in energy-saving and emission reduction of complex chemical processes. -- Abstract: The complex chemical process is a high pollution and high energy consumption industrial process. Therefore, it is very important to analyze and evaluate the energy and environment efficiency of the complex chemical process. Data Envelopment Analysis (DEA) is used to evaluate the relative effectiveness of decision-making units (DMUs). However, the traditional DEA method usually cannot genuinely distinguish the effective and inefficient DMU due to its extreme or unreasonable weight distribution of input and output variables. Therefore, this paper proposes an energy and environment efficiency analysis method based on an improved environment DEA cross-model (DEACM) method. The inputs of the complex chemical process are divided into energy and non-energy inputs. Meanwhile, the outputs are divided into desirable and undesirable outputs. And then the energy and environment performance index (EEPI) based on the cross evaluation is used to represent the overall performance of each DMU. Moreover, the improvement direction of energy-saving and carbon emission reduction of each inefficiency DMU is quantitatively obtained based on the self-evaluation model of the improved environment DEACM. The results show that the improved environment DEACM method has a better effective discrimination than the original DEA method by analyzing the energy and environment efficiency of the ethylene production process in complex chemical processes, and it can obtain the potential of energy-saving and carbon emission reduction of ethylene plants, especially the improvement direction of inefficient DMUs to improve energy efficiency and reduce carbon emission.

  5. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    Science.gov (United States)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  6. Forecasting Energy CO2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model

    Directory of Open Access Journals (Sweden)

    Xingsheng Gu

    2013-03-01

    Full Text Available he accurate forecasting of carbon dioxide (CO2 emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS algorithm-based discounted mean square forecast error (DMSFE combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the discounting factor (β arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and forecasting periods. The original method doesn’t consider the influences of the individual model and the forecasting period. This work contributes by changing β from one value to a matrix taking the different model and the forecasting period into consideration and presenting a way of searching for the optimal β values by using the QHS algorithm through optimizing the mean absolute percent error (MAPE objective function. The QHS algorithm-based optimization DMSFE combination forecasting model is established and tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation indexes such as MAPE, root mean squared error (RMSE and mean absolute error (MAE are employed to test the performance of the presented approach. The empirical analyses confirm the validity of the presented method and the forecasting accuracy can be increased in a certain degree.

  7. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  8. Energy and carbon emissions analysis and prediction of complex petrochemical systems based on an improved extreme learning machine integrated interpretative structural model

    International Nuclear Information System (INIS)

    Han, Yongming; Zhu, Qunxiong; Geng, Zhiqiang; Xu, Yuan

    2017-01-01

    Highlights: • The ELM integrated ISM (ISM-ELM) method is proposed. • The proposed method is more efficient and accurate than the ELM through the UCI data set. • Energy and carbon emissions analysis and prediction of petrochemical industries based ISM-ELM is obtained. • The proposed method is valid in improving energy efficiency and reducing carbon emissions of ethylene plants. - Abstract: Energy saving and carbon emissions reduction of the petrochemical industry are affected by many factors. Thus, it is difficult to analyze and optimize the energy of complex petrochemical systems accurately. This paper proposes an energy and carbon emissions analysis and prediction approach based on an improved extreme learning machine (ELM) integrated interpretative structural model (ISM) (ISM-ELM). ISM based the partial correlation coefficient is utilized to analyze key parameters that affect the energy and carbon emissions of the complex petrochemical system, and can denoise and reduce dimensions of data to decrease the training time and errors of the ELM prediction model. Meanwhile, in terms of the model accuracy and the training time, the robustness and effectiveness of the ISM-ELM model are better than the ELM through standard data sets from the University of California Irvine (UCI) repository. Moreover, a multi-inputs and single-output (MISO) model of energy and carbon emissions of complex ethylene systems is established based on the ISM-ELM. Finally, detailed analyses and simulations using the real ethylene plant data demonstrate the effectiveness of the ISM-ELM and can guide the improvement direction of energy saving and carbon emissions reduction in complex petrochemical systems.

  9. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  10. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle

    International Nuclear Information System (INIS)

    He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam

    2006-01-01

    The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation

  11. Investment preferences for wood-based energy initiatives in the US

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Francisco X. [Department of Forestry, School of Natural Resources, 203L Anheuser-Busch Natural Resources Building, University of Missouri, Columbia, MO 65211 (United States)

    2009-06-15

    The forest sector is poised to become a major supplier of wood-based energy in the US. Prospects for growth in energy demand and higher prices can create opportunities for private investments in renewable energy industries. A conjoint analysis examined individuals' willingness to invest in wood-based energies following a random utility model. The study design included three investment attributes: annual returns on investment, type of investment, and location of investment. Three ordinal models that also included demographic and attitudinal characteristics indicate that wood-based energy is less preferred among potential investors compared to the stock market and solar/wind renewable energy investments. Expected returns and location of energy investments within the US are also major drivers of investment preferences. Favorable attitudes towards forestry and wood-based energy could enhance prospects for a greater number of potential investors. (author)

  12. Investment preferences for wood-based energy initiatives in the US

    International Nuclear Information System (INIS)

    Aguilar, Francisco X.

    2009-01-01

    The forest sector is poised to become a major supplier of wood-based energy in the US. Prospects for growth in energy demand and higher prices can create opportunities for private investments in renewable energy industries. A conjoint analysis examined individuals' willingness to invest in wood-based energies following a random utility model. The study design included three investment attributes: annual returns on investment, type of investment, and location of investment. Three ordinal models that also included demographic and attitudinal characteristics indicate that wood-based energy is less preferred among potential investors compared to the stock market and solar/wind renewable energy investments. Expected returns and location of energy investments within the US are also major drivers of investment preferences. Favorable attitudes towards forestry and wood-based energy could enhance prospects for a greater number of potential investors.

  13. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna Ecosystem Using a Thermal Based Two-Source Energy Balance Model (TSEB I

    Directory of Open Access Journals (Sweden)

    Ana Andreu

    2018-04-01

    Full Text Available Savannas are among the most variable, complex and extensive biomes on Earth, supporting livestock and rural livelihoods. These water-limited ecosystems are highly sensitive to changes in both climatic conditions, and land-use/management practices. The integration of Earth Observation (EO data into process-based land models enables monitoring ecosystems status, improving its management and conservation. In this paper, the use of the Two-Source Energy Balance (TSEB model for estimating surface energy fluxes is evaluated over a Mediterranean oak savanna (dehesa. A detailed analysis of TSEB formulation is conducted, evaluating how the vegetation architecture (multiple layers affects the roughness parameters and wind profile, as well as the reliability of EO data to estimate the ecosystem parameters. The results suggest that the assumption of a constant oak leaf area index is acceptable for the purposes of the study and the use of spectral information to derive vegetation indices is sufficiently accurate, although green fraction index may not reflect phenological conditions during the dry period. Although the hypothesis for a separate wind speed extinction coefficient for each layer is partially addressed, the results show that taking a single oak coefficient is more precise than using bulk system coefficient. The accuracy of energy flux estimations, with an adjusted Priestley–Taylor coefficient (0.9 reflecting the conservative water-use tendencies of this semiarid vegetation and a roughness length formulation which integrates tree structure and the low fractional cover, is considered adequate for monitoring the ecosystem water use (RMSD ~40 W m−2.

  14. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  15. Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters

    International Nuclear Information System (INIS)

    Abdelkefi, Abdessattar; Nuhait, Abdullah O

    2013-01-01

    We investigate the effects of aerodynamic loads on the performance of wing-based piezoaeroelastic energy harvesters. The rigid airfoil consists of pitch and plunge degrees of freedom supported by flexural and torsional springs with a piezoelectric coupling attached to the plunge degree of freedom. The effects of aerodynamic loads are investigated by considering a camber in the airfoil. A two-dimensional unsteady vortex-lattice method (UVLM) is used to model the unsteady aerodynamic loads. An iterative scheme based on Hamming’s fourth-order predictor–corrector method is employed to solve the governing equations simultaneously and interactively. The effects of varying the camber, its location, and the nonlinear torsional spring coefficient are determined. The results show that, for small values of the camber location, the flutter speed changes greatly on increasing the camber of the airfoil. On the other hand, for large values of the camber location, the variation of the flutter speed when changing the camber is very negligible. We demonstrate that the symmetric airfoil case is the best configuration to design enhanced wing-based piezoaeroelastic energy harvesters. Furthermore, the results show that an increase in the camber results in a decrease in the level of the harvested power. For cambered airfoils, we demonstrate that an increase in the camber location leads to an increase in the level of the harvested power. The results show that an increase in the airfoil camber delays the appearance of a secondary Hopf bifurcation. (paper)

  16. A Unified Model of Phantom Energy and Dark Matter

    Science.gov (United States)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  17. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  18. Validation of Energy Expenditure Prediction Models Using Real-Time Shoe-Based Motion Detectors.

    Science.gov (United States)

    Lin, Shih-Yun; Lai, Ying-Chih; Hsia, Chi-Chun; Su, Pei-Fang; Chang, Chih-Han

    2017-09-01

    This study aimed to verify and compare the accuracy of energy expenditure (EE) prediction models using shoe-based motion detectors with embedded accelerometers. Three physical activity (PA) datasets (unclassified, recognition, and intensity segmentation) were used to develop three prediction models. A multiple classification flow and these models were used to estimate EE. The "unclassified" dataset was defined as the data without PA recognition, the "recognition" as the data classified with PA recognition, and the "intensity segmentation" as the data with intensity segmentation. The three datasets contained accelerometer signals (quantified as signal magnitude area (SMA)) and net heart rate (HR net ). The accuracy of these models was assessed according to the deviation between physically measured EE and model-estimated EE. The variance between physically measured EE and model-estimated EE expressed by simple linear regressions was increased by 63% and 13% using SMA and HR net , respectively. The accuracy of the EE predicted from accelerometer signals is influenced by the different activities that exhibit different count-EE relationships within the same prediction model. The recognition model provides a better estimation and lower variability of EE compared with the unclassified and intensity segmentation models. The proposed shoe-based motion detectors can improve the accuracy of EE estimation and has great potential to be used to manage everyday exercise in real time.

  19. Policy modeling for industrial energy use

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the

  20. A Unified Model of Phantom Energy and Dark Matter

    Directory of Open Access Journals (Sweden)

    Douglas Singleton

    2008-01-01

    Full Text Available To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys $w=p/ ho <-1/3$. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has $w=p/ ho <-1$. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann vector fields which act as a form of two component dark matter. Thus from a gauge theory based on a graded algebra we naturally obtained both phantom energy and dark matter.

  1. Modelling energy demand for a fleet of hydrogen-electric vehicles interacting with a clean energy hub

    International Nuclear Information System (INIS)

    Syed, F.; Fowler, M.; Wan, D.; Maniyali, Y.

    2009-01-01

    This paper details the development of an energy demand model for a hydrogen-electric vehicle fleet and the modelling of the fleet interactions with a clean energy hub. The approach taken is to model the architecture and daily operation of every individual vehicle in the fleet. A generic architecture was developed based on understanding gained from existing detailed models used in vehicle powertrain design, with daily operation divided into two periods: charging and travelling. During the charging period, the vehicle charges its Electricity Storage System (ESS) and refills its Hydrogen Storage System (HSS), and during the travelling period, the vehicle depletes the ESS and HSS based on distance travelled. Daily travel distance is generated by a stochastic model and is considered an input to the fleet model. The modelling of a clean energy hub is also presented. The clean energy hub functions as an interface between electricity supply and the energy demand (i.e. hydrogen and electricity) of the vehicle fleet. Finally, a sample case is presented to demonstrate the use of the fleet model and its implications on clean energy hub sizing. (author)

  2. Forecast of useful energy for the TIMES-Norway model

    International Nuclear Information System (INIS)

    Rosenberg, Eva

    2012-01-01

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  3. Forecast of useful energy for the TIMES-Norway model

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-25

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  4. HOW TO PINPOINT ENERGY-INEFFICIENT BUILDINGS? AN APPROACH BASED ON THE 3D CITY MODEL OF VIENNA

    Directory of Open Access Journals (Sweden)

    B. Skarbal

    2017-09-01

    Full Text Available This paper describes a methodology to assess the energy performance of residential buildings starting from the semantic 3D city model of Vienna. Space heating, domestic hot water and electricity demand are taken into account. The paper deals with aspects related to urban data modelling, with particular attention to the energy-related topics, and with issues related to interactive data exploration/visualisation and management from a plugin-free web-browser, e.g. based on Cesium, a WebGL virtual globe and map engine. While providing references to existing previous works, only some general and introductory information is given about the data collection, harmonisation and integration process necessary to create the CityGML-based 3D city model, which serves as the central information hub for the different applications developed and described more in detail in this paper. The work aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. The results obtained so far, as well as some comments about their quality and limitations, are presented, together with the discussion regarding the next steps and some planned improvements.

  5. How to Pinpoint Energy-Inefficient Buildings? AN Approach Based on the 3d City Model of Vienna

    Science.gov (United States)

    Skarbal, B.; Peters-Anders, J.; Faizan Malik, A.; Agugiaro, G.

    2017-09-01

    This paper describes a methodology to assess the energy performance of residential buildings starting from the semantic 3D city model of Vienna. Space heating, domestic hot water and electricity demand are taken into account. The paper deals with aspects related to urban data modelling, with particular attention to the energy-related topics, and with issues related to interactive data exploration/visualisation and management from a plugin-free web-browser, e.g. based on Cesium, a WebGL virtual globe and map engine. While providing references to existing previous works, only some general and introductory information is given about the data collection, harmonisation and integration process necessary to create the CityGML-based 3D city model, which serves as the central information hub for the different applications developed and described more in detail in this paper. The work aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. The results obtained so far, as well as some comments about their quality and limitations, are presented, together with the discussion regarding the next steps and some planned improvements.

  6. Bayesian Multi-Energy Computed Tomography reconstruction approaches based on decomposition models

    International Nuclear Information System (INIS)

    Cai, Caifang

    2013-01-01

    Multi-Energy Computed Tomography (MECT) makes it possible to get multiple fractions of basis materials without segmentation. In medical application, one is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical MECT measurements are usually obtained with polychromatic X-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam poly-chromaticity fail to estimate the correct decomposition fractions and result in Beam-Hardening Artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log pre-processing and the water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on non-linear forward models counting the beam poly-chromaticity show great potential for giving accurate fraction images.This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint Maximum A Posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a non-quadratic cost function. To solve it, the use of a monotone Conjugate Gradient (CG) algorithm with suboptimal descent steps is proposed.The performances of the proposed approach are analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  7. Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model

    International Nuclear Information System (INIS)

    Wu, Y.J.; Rosen, M.A.

    1999-01-01

    Energy equilibrium models can be valuable aids in energy planning and decision-making. In such models, supply is represented by a cost-minimizing linear submodel and demand by a smooth vector-valued function of prices. In this paper, we use the energy equilibrium model to study conventional systems and cogeneration-based district energy (DE) systems for providing heating, cooling and electrical services, not only to assess the potential economic and environmental benefits of cogeneration-based DE systems, but also to develop optimal configurations while accounting for such factors as economics and environmental impact. The energy equilibrium model is formulated and solved with software called WATEMS, which uses sequential non-linear programming to calculate the intertemporal equilibrium of energy supplies and demands. The methods of analysis and evaluation for the economic and environmental impacts are carefully explored. An illustrative energy equilibrium model of conventional and cogeneration-based DE systems is developed within WATEMS to compare quantitatively the economic and environmental impacts of those systems for various scenarios. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  9. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  10. Modelling energy spot prices by Lévy semistationary processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    This paper introduces a new modelling framework for energy spot prices based on Lévy semistationary processes. Lévy semistationary processes are special cases of the general class of ambit processes. We provide a detailed analysis of the probabilistic properties of such models and we show how...... they are able to capture many of the stylised facts observed in energy markets. Furthermore, we derive forward prices based on our spot price model. As it turns out, many of the classical spot models can be embedded into our novel modelling framework....

  11. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs

    International Nuclear Information System (INIS)

    Shi, G.-M.; Bi Jun; Wang Jinnan

    2010-01-01

    Data envelopment analysis (DEA) has recently become a popular method in measuring energy efficiency at the macro-economy level. However, previous studies are limited in that they failed to consider the issues of undesirable outputs and minimisation of energy consumption. Thus, this study considers both factors in measuring Chinese industrial energy efficiency and investigates the maximum energy-saving potential in 28 administrative regions in China. The results show that industries in the east area have the best average energy efficiency for the period 2000-2006, followed by the central area. Further, after comparing the industrial energy overall efficiency, pure technical efficiency (IEPTE), and scale efficiency of the 28 administrative regions examined, the study finds that in most regions of this study, the two main reasons causing the wastage of a large amount of energy during the industrial production process are that the industrial structure of most regions still relies on the massive use of energy in order to support the industrial-based economy and the IEPTE is too low. Based on these findings, this paper correspondingly proposes some policies to improve regional industrial energy efficiency.

  12. Energy-economy interactions revisited within a comprehensive sectoral model

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D. A.; Laitner, J. A.

    2000-07-24

    This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

  13. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  14. Energy-Independent Architectural Models for Residential Complex Plans through Solar Energy in Daegu Metropolitan City, South Korea

    Directory of Open Access Journals (Sweden)

    Sung-Yul Kim

    2018-02-01

    Full Text Available This study suggests energy-independent architectural models for residential complexes through the production of solar-energy-based renewable energy. Daegu Metropolitan City, South Korea, was selected as the target area for the residential complex. An optimal location in the area was selected to maximize the production of solar-energy-based renewable energy. Then, several architectural design models were developed. Next, after analyzing the energy-use patterns of each design model, economic analyses were conducted considering the profits generated from renewable-energy use. In this way, the optimum residential building model was identified. For this site, optimal solar power generation efficiency was obtained when solar panels were installed at 25° angles. Thus, the sloped roof angles were set to 25°, and the average height of the internal space of the highest floor was set to 1.8 m. Based on this model, analyses were performed regarding energy self-sufficiency improvement and economics. It was verified that connecting solar power generation capacity from a zero-energy perspective considering the consumer’s amount of power consumption was more effective than connecting maximum solar power generation capacity according to building structure. Moreover, it was verified that selecting a subsidizable solar power generation capacity according to the residential solar power facility connection can maximize operational benefits.

  15. Short term decisions for long term problems - The effect of foresight on model based energy systems analysis

    International Nuclear Information System (INIS)

    Keppo, Ilkka; Strubegger, Manfred

    2010-01-01

    This paper presents the development and demonstration of a limited foresight energy system model. The presented model is implemented as an extension to a large, linear optimization model, MESSAGE. The motivation behind changing the model is to provide an alternative decision framework, where information for the full time frame is not available immediately and sequential decision making under incomplete information is implied. While the traditional optimization framework provides the globally optimal decisions for the modeled problem, the framework presented here may offer a better description of the decision environment, under which decision makers must operate. We further modify the model to accommodate flexible dynamic constraints, which give an option to implement investments faster, albeit with a higher cost. Finally, the operation of the model is demonstrated using a moving window of foresight, with which decisions are taken for the next 30 years, but can be reconsidered later, when more information becomes available. We find that the results demonstrate some of the pitfalls of short term planning, e.g. lagging investments during earlier periods lead to higher requirements later during the century. Furthermore, the energy system remains more reliant on fossil based energy carriers, leading to higher greenhouse gas emissions.

  16. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    Science.gov (United States)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input

  17. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    International Nuclear Information System (INIS)

    Zhang Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e., economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of residential energy consumers in the UK have been identified. They are: pioneer greens, follower greens, concerned greens, home stayers, unconscientious wasters, regular wasters, daytime wasters, and disengaged wasters. Using a case study, these archetypes of residential energy consumers demonstrate the robustness of the 3-D model in aiding local energy policy/intervention design in the UK. - Highlights: ► This paper reviews the three traditional lines of research in residential energy consumption in the UK. ► Based on the literature review, the paper proposes a 3-D conceptual model for archetyping UK residential energy consumers. ► The 3-D archetype model can aid local energy policy/intervention design in the UK.

  18. Energy modeling issues in quick service restaurants

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.A.; Johnson, K.F.

    1997-03-01

    The complexity of monitoring and modeling the energy performance of food-service facilities was discussed. Usually, less than one third of the energy consumed in a commercial food-service facility is used by equipment and systems typically modeled in building simulation software such as DOE-2. Algorithms have not yet been developed to handle independent makeup air units and the kitchen and dining room HVAC systems. The energy used by food process equipment and water heating is based on customer-volume and operation-hours. Monitoring projects have been undertaken to provide detailed energy use profiles of individual appliances and whole restaurants. Some technical issues that are unique to food-service modeling in current versions of DOE-2.1E software in the context of quick service restaurants, such as difficulties in modelling internal heat gains of hooded cooking appliances and walk-in refrigeration, and system and zone limitations on tracking energy consumption, were discussed. 1 fig.

  19. Energy Models

    Science.gov (United States)

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  20. New statistical methodology, mathematical models, and data bases relevant to the assessment of health impacts of energy technologies

    International Nuclear Information System (INIS)

    Ginevan, M.E.; Collins, J.J.; Brown, C.D.; Carnes, B.A.; Curtiss, J.B.; Devine, N.

    1981-01-01

    The present research develops new statistical methodology, mathematical models, and data bases of relevance to the assessment of health impacts of energy technologies, and uses these to identify, quantify, and pedict adverse health effects of energy related pollutants. Efforts are in five related areas including: (1) evaluation and development of statistical procedures for the analysis of death rate data, disease incidence data, and large scale data sets; (2) development of dose response and demographic models useful in the prediction of the health effects of energy technologies; (3) application of our method and models to analyses of the health risks of energy production; (4) a reanalysis of the Tri-State leukemia survey data, focusing on the relationship between myelogenous leukemia risk and diagnostic x-ray exposure; and (5) investigation of human birth weights as a possible early warning system for the effects of environmental pollution

  1. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  2. Model-based performance and energy analyses of reverse osmosis to reuse wastewater in a PVC production site.

    Science.gov (United States)

    Hu, Kang; Fiedler, Thorsten; Blanco, Laura; Geissen, Sven-Uwe; Zander, Simon; Prieto, David; Blanco, Angeles; Negro, Carlos; Swinnen, Nathalie

    2017-11-10

    A pilot-scale reverse osmosis (RO) followed behind a membrane bioreactor (MBR) was developed for the desalination to reuse wastewater in a PVC production site. The solution-diffusion-film model (SDFM) based on the solution-diffusion model (SDM) and the film theory was proposed to describe rejections of electrolyte mixtures in the MBR effluent which consists of dominant ions (Na + and Cl - ) and several trace ions (Ca 2+ , Mg 2+ , K + and SO 4 2- ). The universal global optimisation method was used to estimate the ion permeability coefficients (B) and mass transfer coefficients (K) in SDFM. Then, the membrane performance was evaluated based on the estimated parameters which demonstrated that the theoretical simulations were in line with the experimental results for the dominant ions. Moreover, an energy analysis model with the consideration of limitation imposed by the thermodynamic restriction was proposed to analyse the specific energy consumption of the pilot-scale RO system in various scenarios.

  3. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    J.C. Brezet

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  4. Modeling urban building energy use: A review of modeling approaches and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; Eom, Jiyong; Wang, Yu; Chen, Gang; Zhang, Xuesong

    2017-12-01

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-date review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.

  5. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  6. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  7. Energy infrastructure modeling for the oil sands industry: Current situation

    International Nuclear Information System (INIS)

    Lazzaroni, Edoardo Filippo; Elsholkami, Mohamed; Arbiv, Itai; Martelli, Emanuele; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • A simulation-based modelling of energy demands of oil sands operations is proposed. • Aspen simulations used to simulate delayed coking-based upgrading of bitumen. • The energy infrastructure is simulated using Aspen Plus achieving self-sufficiency. • Various scenarios affecting energy demand intensities are investigated. • Energy and CO_2 emission intensities of integrated SAGD/upgrading are estimated. - Abstract: In this study, the total energy requirements associated with the production of bitumen from oil sands and its upgrading to synthetic crude oil (SCO) are modeled and quantified. The production scheme considered is based on the commercially applied steam assisted gravity drainage (SAGD) for bitumen extraction and delayed coking for bitumen upgrading. In addition, the model quantifies the greenhouse gas (GHG) emissions associated with the production of energy required for these operations from technologies utilized in the currently existing oil sands energy infrastructure. The model is based on fundamental engineering principles, and Aspen HYSYS and Aspen Plus simulations. The energy demand results are expressed in terms of heat, power, hydrogen, and process fuel consumption rates for SAGD extraction and bitumen upgrading. Based on the model’s output, a range of overall energy and emission intensity factors are estimated for a bitumen production rate of 112,500 BPD (or 93,272 BPD of SCO), which were determined to be 262.5–368.5 MJ/GJ_S_C_O and 14.17–19.84 gCO_2/MJ_S_C_O, respectively. The results of the model indicate that the majority of GHG emissions are generated during SAGD extraction (up to 60% of total emissions) due to the combustion of natural gas for steam production, and the steam-to-oil ratio is a major parameter affecting total GHG emissions. The developed model can be utilized as a tool to predict the energy demand requirements for integrated SAGD/upgrading projects under different operating conditions, and

  8. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments

    International Nuclear Information System (INIS)

    Ahn, Jonghoon; Cho, Soolyeon

    2017-01-01

    Highlights: •Integrated energy control model improves thermal comfort and mitigates an increase of energy consumption. •Communication between heating and cooling, thermal comfort, and decision making models optimizes energy supply. •PMV model effectively rectifies set-point temperature to reduce thermal dissatisfaction in various conditions. •Five-step decision making model properly responds to abnormal situations derived from human anti-logic or common sense. •Integrated model can be extended for managing risks caused by fire or disasters. -- Abstract: In spite of the remarkable development of technology, most studies for building energy controls to evaluate or estimate the energy performance have not accurately reflected actual building’s energy consumption patterns. For this issue, several techniques, such as simulation and calibration, comprehensive survey system, smart metering, and commissioning, have been attempted. However, in most studies, some factors in thermal systems derived from occupant behavior were perceived as fixed objects, and the factors were converted into simple numbers as parts of inputs into simulation templates. There was lack of studies on considerations that unpredictable responses derived from human anti-logic or common sense could deteriorate energy efficiency in theoretical analyses even though the systems were properly operated. This research proposes integrated energy supply models based on artificial intelligence responding to anti-logic or common sense that can reduce machine’s energy saving effects. By use of design scenarios assuming some unusual situations, a decision making model determines the extent to which the cause of the abnormal situations are associated with the occupant behavior. After the five-step phases in the decision making model, the actual outputs of the energy supply model for the buildings are determined, and the reciprocal communication between the thermal and decision making models mitigates

  9. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  10. Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model

    International Nuclear Information System (INIS)

    Lee, Duk Hee; Park, Sang Yong; Hong, Jong Chul; Choi, Sang Jin; Kim, Jong Wook

    2013-01-01

    Highlights: ► A new methodology for improving energy system analysis models was proposed. ► The MARKAL model was integrated with the diffusion model. ► The new methodology was applied to green car technology. ► The ripple effect of green car technology on the energy system can be analyzed. -- Abstract: By 2020, Korea has set itself the challenging target of reducing nationwide greenhouse gas emissions by 30%, more than the BAU (Business as Usual) scenario, as the implementation goal required to achieve the new national development paradigm of green growth. To achieve such a target, it is necessary to diffuse innovative technologies with the capacity to drastically reduce greenhouse gas emissions. To that end, the ripple effect of diffusing innovative technologies on the energy and environment must be quantitatively analyzed using an energy system analysis model such as the MARKAL (Market Allocation) model. However, energy system analysis models based on an optimization methodology have certain limitations in that a technology with superior cost competitiveness dominates the whole market and non-cost factors cannot be considered. Therefore, this study proposes a new methodology for overcoming problems associated with the use of MARKAL models, by interfacing with a forecasting model based on the discrete-choice model. The new methodology was applied to green car technology to verify its usefulness and to study the ripple effects of green car technology on greenhouse gas reduction. The results of this study can be used as a reference when establishing a strategy for effectively reducing greenhouse gas emissions in the transportation sector, and could be of assistance to future studies using the energy system analysis model.

  11. Natural gas transmission and distribution model of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA's modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes

  12. Natural gas transmission and distribution model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  13. Virtual vs. real: Modeling the energy performance of a quick service restaurant

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.A.; Young, R.; Spata, A.J.; Fisher, D.

    1999-07-01

    This paper describes the process of modeling a number of energy conservation measures used in constructing a new quick service restaurant. An hour-by-hour energy simulation model was used to predict energy savings for each energy conservation measure. The initial model was based on the design drawings and assumptions about operating conditions and energy use by the food service equipment. Based on a year's worth of measured energy and environmental data, the model inputs were calibrated and the model outputs were validated. The modifications to initial model conditions required for calibration and validation are discussed for each energy end use: lighting, water heating, HVAC, food processing, and building envelope. Differences between the measured data and the predicted results of the final model are summarized. The strengths and shortcomings of building energy modeling in the context of food service applications and the potential for future application of the model during restaurant design are discussed.

  14. Energy-Water Modeling and Analysis | Energy Analysis | NREL

    Science.gov (United States)

    Generation (ReEDS Model Analysis) U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather Modeling and Analysis Energy-Water Modeling and Analysis NREL's energy-water modeling and analysis vulnerabilities from various factors, including water. Example Projects Renewable Electricity Futures Study

  15. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  16. A real option-based model to valuate CDM projects under uncertain energy policies for emission trading

    International Nuclear Information System (INIS)

    Park, Taeil; Kim, Changyoon; Kim, Hyoungkwan

    2014-01-01

    Highlights: • A real option-based model for the valuation of CDM projects is proposed. • This study investigates the impact of energy policies on the value of CDM projects. • Level of target emission and its schedule should be carefully designed. • Government subsidy facilitates the implementation of CDM projects. • Period for free emission allowance prevents promoting CDM projects. - Abstract: Emission trading has been considered a primary policy tool for emission reduction. Governments establish national targets for emission reduction and assign emission reduction goals to private entities to accomplish the targets. To attain the goal, private entities should perform offset projects that can produce emission credits or buy emission credits from the market. However, it is not easy for private entities to decide to implement the projects because energy policies associated with emission trading keep changing; thus, the future benefits of the offset projects are quite uncertain. This study presents a real option-based model to investigate how uncertain energy policies affect the financial viability of an offset project. A case study showed that the establishment of a target emission was attractive to the government because it could make the CDM project financially viable with a small amount of government subsidy. In addition, the level of the government subsidy could determine the investment timing for the CDM project. In this context, governments should be cautious in designing energy policies, because even the same energy policies could have different impacts on private entities. Overall, this study is expected to assist private entities in establishing proper investment strategies for CDM projects under uncertain energy policies

  17. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells.

    Science.gov (United States)

    Shenoy, Vivek B; Wang, Hailong; Wang, Xiao

    2016-02-06

    We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the

  18. Implementation of a web-based energy audit

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, E.; Sansregret, S. [Hydro-Quebec, Montreal, PQ (Canada); Trumble, D. [Enernex Corp., Knoxville, TN (United States)

    2008-04-15

    Utility customers are increasingly interested in identifying cost-effective solutions to reduce energy costs. This article provided details of a diagnostic tool designed to reduce energy consumption. Designed by Hydro-Quebec, the tool used multiple mathematical models in order to customize recommendations for individual customers. The tool was based on the Residential Energy Bill Analyzer (REBA) as well as on the results of a detailed questionnaire. The initial diagnostic report provided a breakdown of the customer's electrical consumption and identified 3 top savings recommendations. Sections in the report were organized by end use categories, and recommendations were customized to include savings estimates that considered fuel use estimates and savings calculations for all fuels. The tool used an engineering model and a statistical thermal load model to provide estimates of heating energy based on dwelling type, square footage, age, and hourly weather data. A statistical model used thermal load specifications to include other seasonal usages for water heating and air conditioning. Cooling consumption was specified as a function of time used and power capacity. Total end-use estimates for billing periods were then compared to actual energy consumption on a bill-by-bill basis. If consumption levels exceeded reasonable limits, a warning message was then added to the recommendation report. Over 835,000 diagnostic surveys have been completed by Hydro-Quebec customers. It was concluded that electrical savings of 270 GWh have been achieved as a result of the program. 4 refs., 1 tab., 5 figs.

  19. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  20. A Meta Model for Domestic Energy Consumption

    Directory of Open Access Journals (Sweden)

    K.,J SREEKANTH

    2011-01-01

    Full Text Available Prediction of energy consumption particularly in micro level is of vital importance in terms of energy planning and also implementation of any Clean Development Mechanism (CDM activities that has become the order of the world today. It may be difficult to model household energy consumption using conventional methods such as time series forecasting due to many influencing factors. This paper presents a step wise regression model for forecasting domestic energy consumption based on micro level household survey data collected from Kerala, a state in southern part of India. The analysis of the data reveals significant influence of socio-economic, demographic, geographic, and family attributes upon total household energy requirements. While a wide variation in the pattern of energy requirements across the domestic sector belonging to different expenditure classes, per capita income level can be identified as the most important explanatory variable influencing variation in energy requirements. The models developed also demonstrates the influence of per capita land area, residential area among the higher income group while average age and literacy forms significant variables among the lower income group.

  1. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  2. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  3. An energy system model for Hong Kong in 2020

    International Nuclear Information System (INIS)

    Ma, Tao; Østergaard, Poul Alberg; Lund, Henrik; Yang, Hongxing; Lu, Lin

    2014-01-01

    Climate change and energy security are forcing Hong Kong to shift from a fossil fuel-based to a clean and low-carbon energy structure. In this article, a simulation model for Hong Kong's energy system is developed to examine the present energy structure and analyse alternative future sustainable energy strategies. First, a reference model is established and validated based on year 2009 data. Secondly, three scenarios are modelled. The BAU (business-as-usual) scenario for Hong Kong's energy system in 2020 is presented and simulated. To address the energy security and environmental sustainability challenges posed by the BAU outcomes, two alternative scenarios are then studied. The first alternative is a fuel mix for 2020 proposed by the government which is characterized by importing more nuclear power from the mainland. As a result of the Fukushima nuclear incident, however, this proposal has been held in abeyance. Therefore, a second alternative for Hong Kong in 2020 is proposed in this study, using more RE (renewable energy) to replace nuclear power. The results show that both the governmentally proposed scenario and the RE scenario can achieve the carbon reduction target. However, the RE scenario would be much better than the government scenario in terms of environmental, social benefits and long-term sustainability. - Highlights: • A reference model is established and validated based on year 2009 data. • The business-as-usual scenario for Hong Kong's energy system in 2020 is examined. • The governmentally proposed fuel mix for 2020 is analysed. • The renewable energy scenario to replace nuclear power in 2020 is studied. • Carbon reduction target of Hong Kong is examined in the three scenarios

  4. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  5. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  6. Model for Analysis of Energy Demand (MAED-2)

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  7. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  8. Quantitative model of New Zealand's energy supply industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. R. [Victoria Univ., Wellington, (New Zealand); Lucas, P. D. [Ministry of Energy Resources (New Zealand)

    1977-10-15

    A mathematical model is presented to assist in an analysis of energy policy options available. The model is based on an engineering orientated description of New Zealand's energy supply and distribution system. The system is cast as a linear program, in which energy demand is satisfied at least cost. The capacities and operating modes of process plant (such as power stations, oil refinery units, and LP-gas extraction plants) are determined by the model, as well as the optimal mix of fuels supplied to the final consumers. Policy analysis with the model enables a wide ranging assessment of the alternatives and uncertainties within a consistent quantitative framework. It is intended that the model be used as a tool to investigate the relative effects of various policy options, rather than to present a definitive plan for satisfying the nation's energy requirements.

  9. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  10. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  11. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  12. An object-oriented approach to energy-economic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M.A.; Fox, J.A.; Sands, R.D.

    1993-12-01

    In this paper, the authors discuss the experiences in creating an object-oriented economic model of the U.S. energy and agriculture markets. After a discussion of some central concepts, they provide an overview of the model, focusing on the methodology of designing an object-oriented class hierarchy specification based on standard microeconomic production functions. The evolution of the model from the class definition stage to programming it in C++, a standard object-oriented programming language, will be detailed. The authors then discuss the main differences between writing the object-oriented program versus a procedure-oriented program of the same model. Finally, they conclude with a discussion of the advantages and limitations of the object-oriented approach based on the experience in building energy-economic models with procedure-oriented approaches and languages.

  13. Statistical models describing the energy signature of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Thavlov, Anders

    2010-01-01

    Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA......-values, time constants of the building, and other parameters related to the heat dynamics. A method for selecting the most appropriate model for a given building is outlined and finally a perspective of the applications is given. Aknowledgements to the Danish Energy Saving Trust and the Interreg IV ``Vind i...

  14. A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network

    Directory of Open Access Journals (Sweden)

    Jae-Dong Hong

    2014-10-01

    Full Text Available Purpose: The purpose of this paper is to propose a simulation-based robust biofuel facility location model for solving an integrated bio-energy logistics network (IBLN problem, where biomass yield is often uncertain or difficult to determine.Design/methodology/approach: The IBLN considered in this paper consists of four different facilities: farm or harvest site (HS, collection facility (CF, biorefinery (BR, and blending station (BS. Authors propose a mixed integer quadratic modeling approach to simultaneously determine the optimal CF and BR locations and corresponding biomass and bio-energy transportation plans. The authors randomly generate biomass yield of each HS and find the optimal locations of CFs and BRs for each generated biomass yield, and select the robust locations of CFs and BRs to show the effects of biomass yield uncertainty on the optimality of CF and BR locations. Case studies using data from the State of South Carolina in the United State are conducted to demonstrate the developed model’s capability to better handle the impact of uncertainty of biomass yield.Findings: The results illustrate that the robust location model for BRs and CFs works very well in terms of the total logistics costs. The proposed model would help decision-makers find the most robust locations for biorefineries and collection facilities, which usually require huge investments, and would assist potential investors in identifying the least cost or important facilities to invest in the biomass and bio-energy industry.Originality/value: An optimal biofuel facility location model is formulated for the case of deterministic biomass yield. To improve the robustness of the model for cases with probabilistic biomass yield, the model is evaluated by a simulation approach using case studies. The proposed model and robustness concept would be a very useful tool that helps potential biofuel investors minimize their investment risk.

  15. Net energy analysis in a Ramsey–Hotelling growth model

    International Nuclear Information System (INIS)

    Macías, Arturo; Matilla-García, Mariano

    2015-01-01

    This article presents a dynamic growth model with energy as an input in the production function. The available stock of energy resources is ordered by a quality parameter based on energy accounting: the “Energy Return on Energy Invested” (EROI). In our knowledge this is the first paper where EROI fits in a neoclassical growth model (with individual utility maximization and market equilibrium), establishing the economic use of “net energy analysis” on a firmer theoretical ground. All necessary concepts to link neoclassical economics and EROI are discussed before their use in the model, and a comparative static analysis of the steady states of a simplified version of the model is presented. - Highlights: • A neoclassical growth model with EROI (“Energy Return on Energy Invested”) is shown • All concepts linking neoclassical economics and net energy analysis are discussed • Any EROI decline can be compensated increasing gross activity in the energy sector. • The economic impact of EROI depends on some non-energy cost in the energy sector. • Comparative steady-state statics for different EROI levels is performed and discussed. • Policy implications are suggested.

  16. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    International Nuclear Information System (INIS)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-01-01

    Highlights: •Developed methods and used data models to integrate city’s public building records. •Shading from neighborhood buildings strongly influences urban building performance. •A case study demonstrated the workflow, simulation and analysis of building retrofits. •CityBES retrofit analysis feature provides actionable information for decision making. •Discussed significance and challenges of urban building energy modeling. -- Abstract: Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details of using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city’s mild

  17. Modelling energy utilisation in broiler breeder hens.

    Science.gov (United States)

    Rabello, C B V; Sakomura, N K; Longo, F A; Couto, H P; Pacheco, C R; Fernandes, J B K

    2006-10-01

    1. The objective of this study was to determine a metabolisable energy (ME) requirement model for broiler breeder hens. The influence of temperature on ME requirements for maintenance was determined in experiments conducted in three environmental rooms with temperatures kept constant at 13, 21 and 30 degrees C using a comparative slaughter technique. The energy requirements for weight gain were determined based upon body energy content and efficiency of energy utilisation for weight gain. The energy requirements for egg production were determined on the basis of egg energy content and efficiency of energy deposition in the eggs. 2. The following model was developed using these results: ME = kgW0.75(806.53-26.45T + 0.50T2) + 31.90G + 10.04EM, where kgW0.75 is body weight (kg) raised to the power 0.75, T is temperature ( degrees C), G is weight gain (g) and EM is egg mass (g). 3. A feeding trial was conducted using 400 Hubbard Hi-Yield broiler breeder hens and 40 Peterson males from 31 to 46 weeks of age in order to compare use of the model with a recommended feeding programme for this strain of bird. The application of the model in breeder hens provided good productive and reproductive performance and better results in feed and energy conversion than in hens fed according to strain recommendation. In conclusion, the model evaluated predicted an ME intake which matched breeder hens' requirements.

  18. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  19. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  20. A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model

    Directory of Open Access Journals (Sweden)

    Ping-Huan Kuo

    2018-04-01

    Full Text Available The photovoltaic (PV systems generate green energy from the sunlight without any pollution or noise. The PV systems are simple, convenient to install, and seldom malfunction. Unfortunately, the energy generated by PV systems depends on climatic conditions, location, and system design. The solar radiation forecasting is important to the smooth operation of PV systems. However, solar radiation detected by a pyranometer sensor is strongly nonlinear and highly unstable. The PV energy generation makes a considerable contribution to the smart grids via a large number of relatively small PV systems. In this paper, a high-precision deep convolutional neural network model (SolarNet is proposed to facilitate the solar radiation forecasting. The proposed model is verified by experiments. The experimental results demonstrate that SolarNet outperforms other benchmark models in forecasting accuracy as well as in predicting complex time series with a high degree of volatility and irregularity.

  1. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...

  2. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  3. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  4. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2010-01-01

    In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO 2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries. (author)

  5. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  6. Optimal modeling and forecasting of the energy consumption and production in China

    International Nuclear Information System (INIS)

    Xiong, Ping-ping; Dang, Yao-guo; Yao, Tian-xiang; Wang, Zheng-xin

    2014-01-01

    Energy is of fundamental importance to a nation's economy. Accurate prediction of the energy consumption and production in China can play a guiding role in making the energy consumption plan, and facilitate timely and effective decision making of energy policy. This article proposes a novel GM (gray model) (1,1) model based on optimizing initial condition according to the principle of new information priority. The optimized model and five other GM (1,1) models are applied in the modeling of China's energy consumption and production. Both the simulation and prediction accuracy of the models are compared and analyzed. We obtain the result that the optimized model has higher prediction accuracy than the other five models. Therefore, the presented optimized model is further utilized to predict China's energy consumption and production from 2013 to 2017. The result indicates that China's energy consumption and production will keep increasing and the gap between the energy production and consumption will also be increasing. Finally, we predict Iran's and Argentina's energy consumption to further prove the effectiveness of the proposed model. - Highlights: • We proposed a novel GM (1,1) model based on optimizing initial condition. • The prediction accuracy of the proposed model is better than the other models. • We used the proposed model to predict China's energy consumption and production. • The proposed model can be used to predict other countries' energy consumption

  7. ADAPTIVE GOSSIP BASED PROTOCOL FOR ENERGY EFFICIENT MOBILE ADHOC NETWORK

    Directory of Open Access Journals (Sweden)

    S. Rajeswari

    2012-03-01

    Full Text Available In Gossip Sleep Protocol, network performance is enhanced based on energy resource. But energy conservation is achieved with the reduced throughput. In this paper, it has been proposed a new Protocol for Mobile Ad hoc Network to achieve reliability with energy conservation. Based on the probability (p values, the value of sleep nodes is fixed initially. The probability value can be adaptively adjusted by Remote Activated Switch during the transmission process. The adaptiveness of gossiping probability is determined by the Packet Delivery Ratio. For performance comparison, we have taken Routing overhead, Packet Delivery Ratio, Number of dropped packets and Energy consumption with the increasing number of forwarding nodes. We used UDP based traffic models to analyze the performance of this protocol. We analyzed TCP based traffic models for average end to end delay. We have used the NS-2 simulator.

  8. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  9. Exploration of agent of change’s role in biodiesel energy transition process using agent-based model

    Science.gov (United States)

    Hidayatno, A.; Vicky, L. R.; Destyanto, A. R.

    2017-11-01

    As the world’s largest Crude Palm Oil (CPO) producer, Indonesia uses CPO as raw material for biodiesel. A number of policies have been designed by the Indonesian government to support adoption of biodiesel. However, the role of energy alternatives faced complex problems. Agent-based modeling can be applied to predict the impact of policies on the actors in the business process to acquire a rich discernment of the behavior and decision making by the biodiesel industries. This study evaluates government policy by attending at the adoption of the biodiesel industry in the tender run by a government with the intervention of two policy options biodiesel energy utilization by developing an agent-based model. The simulation result show that the policy of adding the biodiesel plant installed capacity has a good impact in increasing the production capacity and vendor adoption in the tender. Even so, the government should consider the cost to be incurred and the profits for vendors, so the biodiesel production targets can be successfully fulfilled.

  10. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    Science.gov (United States)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development

  11. Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model

    Science.gov (United States)

    Tripathi, Vinay S.

    2017-01-01

    This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases. PMID:28178318

  12. Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model.

    Science.gov (United States)

    Tripathi, Vinay S; Brandt, Adam R

    2017-01-01

    This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases.

  13. Estimating decades-long trends in petroleum field energy return on investment (EROI with an engineering-based model.

    Directory of Open Access Journals (Sweden)

    Vinay S Tripathi

    Full Text Available This paper estimates changes in the energy return on investment (EROI for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE. The modeled fields include Cantarell (Mexico, Forties (U.K., Midway-Sunset (U.S., Prudhoe Bay (U.S., and Wilmington (U.S.. Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER and external energy ratio (EER are calculated, each using two measures of energy outputs, (1 oil-only and (2 all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy. All fields display significant declines in NER over the modeling period driven by a combination of (1 reduced petroleum production and (2 increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs. The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases.

  14. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  15. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Zhao, Jia, E-mail: zhao62@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Wang, Qi, E-mail: qwang@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Beijing Computational Science Research Center, Beijing (China); School of Materials Science and Engineering, Nankai University, Tianjin (China)

    2017-03-15

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg–Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the “Invariant Energy Quadratization” (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  16. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    and/or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  17. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types

  18. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  19. Analysis of recent type Ia supernova data based on evolving dark energy models

    International Nuclear Information System (INIS)

    Park, Jaehong; Park, Chan-Gyung; Hwang, Jai-chan

    2011-01-01

    We study characters of recent type Ia supernova data using evolving dark energy models with changing equation-of-state parameter w. We consider a sudden-jump approximation of w for some chosen redshift spans with double transitions and constrain these models based on the Markov chain Monte Carlo method using the type Ia supernova data (Constitution, Union, Union2), together with the baryon acoustic oscillation A parameter and the cosmic microwave background shift parameter in a flat background. In the double-transition model, the Constitution data shows deviation outside 1σ from the Λ cold dark matter (ΛCDM) model at low (z < or approx. 0.2) and middle (0.2 < or approx. z < or approx. 0.4) redshift bins, whereas no such deviations are noticeable in the Union and Union2 data. By analyzing the Union members in the Constitution set, however, we show that the same difference is actually due to different calibration of the same Union sample in the Constitution set and is not due to new data added in the Constitution set. All detected deviations are within 2σ from the ΛCDM world model. From the ΛCDM mock data analysis, we quantify biases in the dark energy equation-of-state parameters induced by insufficient data with inhomogeneous distribution of data points in the redshift space and distance modulus errors. We demonstrate that the location of the peak in the distribution of arithmetic means (computed from the Markov chain Monte Carlo chain for each mock data) behaves as an unbiased estimator for the average bias, which is valid even for nonsymmetric likelihood distributions.

  20. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  1. Energy models for the FRG

    International Nuclear Information System (INIS)

    Voss, A.

    1976-01-01

    The development and application of energy models as helping factors in planning and decision making has gained more importance in all regions of energy economy and energy policy in recent times. This development not only covered models for the single branches and companies like, for example, for improving power plant systems, but also models showing the whole energy system. These models aim at analizing the possibilities of developing the energy supply with regard to aspects of the entire system, paying special attention to the integration of the energy system into economic and ecological side conditions. The following essay briefly explains the energy models developed for the Federal Republic of Germany after analizing the set of problems of energy and the demands on the energy planning methods arising from them. The energy model system developed by the programming team 'Systems research and technological development' of the nuclear research plant in Juelich is dealt with very intensively, explaining some model results as examples. Finally, the author gives his opinion on the problem of the integration and conversion of model studies in the process of decision making. (orig.) [de

  2. Modelling Electrical Energy Consumption in Automotive Paint Shop

    Science.gov (United States)

    Oktaviandri, Muchamad; Safiee, Aidil Shafiza Bin

    2018-03-01

    Industry players are seeking ways to reduce operational cost to sustain in a challenging economic trend. One key aspect is an energy cost reduction. However, implementing energy reduction strategy often struggle with obstructions, which slow down their realization and implementation. Discrete event simulation method is an approach actively discussed in current research trend to overcome such obstructions because of its flexibility and comprehensiveness. Meanwhile, in automotive industry, paint shop is considered the most energy consumer area which is reported consuming about 50%-70% of overall automotive plant consumption. Hence, this project aims at providing a tool to model and simulate energy consumption at paint shop area by conducting a case study at XYZ Company, one of the automotive companies located at Pekan, Pahang. The simulation model was developed using Tecnomatix Plant Simulation software version 13. From the simulation result, the model was accurately within ±5% for energy consumption and ±15% for maximum demand after validation with real system. Two different energy saving scenarios were tested. Scenario 1 was based on production scheduling approach under low demand situation which results energy saving up to 30% on the consumption. Meanwhile scenario 2 was based on substituting high power compressor with the lower power compressor. The results were energy consumption saving of approximately 1.42% and maximum demand reduction about 1.27%. This approach would help managers and engineers to justify worthiness of investment for implementing the reduction strategies.

  3. Dynamic energy conservation model REDUCE. Extension with experience curves, energy efficiency indicators and user's guide

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Rijkers, F.A.M.

    1999-12-01

    The main objective of the energy conservation model REDUCE (Reduction of Energy Demand by Utilization of Conservation of Energy) is the evaluation of the effectiveness of economical, financial, institutional, and regulatory measures for improving the rational use of energy in end-use sectors. This report presents the results of additional model development activities, partly based on the first experiences in a previous project. Energy efficiency indicators have been added as an extra tool for output analysis in REDUCE. The methodology is described and some examples are given. The model has been extended with a method for modelling the effects of technical development on production costs, by means of an experience curve. Finally, the report provides a 'users guide', by describing in more detail the input data specification as well as all menus and buttons. 19 refs

  4. Economic performance indicators of wind energy based on wind speed stochastic modeling

    International Nuclear Information System (INIS)

    D’Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    Highlights: • We propose a new and different wind energy production indicator. • We compute financial profitability of potential wind power sites. • The wind speed process is modeled as an indexed semi-Markov chain. • We check if the wind energy is a good investment with and without incentives. - Abstract: We propose the computation of different wind energy production indicators and financial profitability of potential wind power sites. The computation is performed by modeling the wind speed process as an indexed semi-Markov chain to predict and simulate the wind speed dynamics. We demonstrate that the indexed semi-Markov chain approach enables reproducing the indicators calculated on real data. Two different time horizons of 15 and 30 years are analyzed. In the first case we consider the government incentives on the energy price now present in Italy, while in the second case the incentives have not been taken into account

  5. Local and regional energy companies offering energy services: Key activities and implications for the business model

    International Nuclear Information System (INIS)

    Kindström, Daniel; Ottosson, Mikael

    2016-01-01

    Highlights: • Many companies providing energy services are experiencing difficulties. • This research identifies key activities for the provision of energy services. • Findings are aggregated to the business-model level providing managerial insights. • This research identifies two different business model innovation paths. • Energy companies may need to renew parts of, or the entire, business model. - Abstract: Energy services play a key role in increasing energy efficiency in the industry. The key actors in these services are the local and regional energy companies that are increasingly implementing energy services as part of their market offering and developing service portfolios. Although expectations for energy services have been high, progress has so far been limited, and many companies offering energy services, including energy companies, are experiencing difficulties in implementing energy services and providing them to the market. Overall, this research examines what is needed for local and regional energy companies to successfully implement energy services (and consequently provide them to the market). In doing this, a two-stage process is used: first, we identify key activities for the successful implementation of energy services, and second, we aggregate the findings to the business model level. This research demonstrates that to succeed in implementing energy services, an energy company may need to renew parts or all of its existing product-based business model, formulate a new business model, or develop coexisting multiple business models. By discussing two distinct business model innovation processes, this research demonstrates that there can be different paths to success.

  6. A distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory

    Science.gov (United States)

    Chen, Chung-De

    2018-04-01

    In this paper, a distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory (RZT) is developed. In this model, the zigzag function is incorporated into the axial displacement, and the zigzag distribution of the displacement between the adjacent layers of the bimorph structure can be considered. The governing equations, including three equations of motions and one equation of circuit, are derived using Hamilton’s principle. The natural frequency, its corresponding modal function and the steady state response of the base excitation motion are given in exact forms. The presented results are benchmarked with the finite element method and two beam theories, the first-order shear deformation theory and the classical beam theory. Comparing examples shows that the RZT provides predictions of output voltage and generated power at high accuracy, especially for the case of a soft middle layer. Variation of the parameters, such as the beam thickness, excitation frequencies and the external electrical loads, is investigated and its effects on the performance of the energy harvesters are studied by using the RZT developed in this paper. Based on this refined theory, analysts and engineers can capture more details on the electromechanical behavior of piezoelectric harvesters.

  7. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  8. Cosmological models with Gurzadyan-Xue dark energy

    International Nuclear Information System (INIS)

    Vereshchagin, G V; Yegorian, G

    2006-01-01

    The formula for dark energy density derived by Gurzadyan and Xue is the only formula which provides (without a free parameter) a value for dark energy density in remarkable agreement with current cosmological datasets, unlike numerous phenomenological scenarios where the corresponding value is postulated. This formula suggests the possibility of variation of physical constants such as the speed of light and the gravitational constant. Considering several cosmological models based on that formula and deriving the cosmological equations for each case, we show that in all models source terms appear in the continuity equation. So, on one hand, GX models make up a rich set covering a lot of currently proposed models of dark energy; on the other hand, they reveal hidden symmetries, with a particular role of the separatrix Ω m = 2/3, and link with the issue of the content of physical constants

  9. Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of Anaesthesia.

    Science.gov (United States)

    Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P

    2018-01-01

    The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.

  10. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically

  11. Model-based predictive control applied to multi-carrier energy systems

    NARCIS (Netherlands)

    Arnold, M.; Negenborn, R.R.; Andersson, G.; De Schutter, B.

    2009-01-01

    The optimal operation of an integrated electricity and natural gas infrastructure is investigated. The couplings between the electricity system and the gas system are modeled by so-called energy hubs, which represent the interface between the loads on the one hand and the transmission

  12. Consideration of environmental pollution in MESSAGE-type energy models

    International Nuclear Information System (INIS)

    Rentz, O.; Hanicke, T.; Hempelmann, R.

    1981-10-01

    Macroeconomic and microeconomic data are acquired and processed to obtain a model-adequate data base. The MESSAGE model is adapted and implemented. Modifications for specific problems are described. Aspects of environmental pollution are considered for the various energy supply concepts. The model conception is flexible with regard to new technologies, in particular in the field of primary and secondary energy sources, and to cogeneration products (district heat, electric power). (HP) [de

  13. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  14. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K T [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1997-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  15. Management of a power system based on renewable energy

    Directory of Open Access Journals (Sweden)

    Ronay Karoly

    2012-06-01

    Full Text Available This article main purpose is to highlight the main advantage of the hardware and software implementation for an energy management system based on renewable energy sources. By using implemented and dedicated hardware and software the evolution of energy production and consumption can be monitored. The advantages of such system are highlighted by the results obtained from experimental simulations. An experimental model for the power system based on renewable energy sources was implemented, where the actual status of the system in different situations when the equipments change their own statuses can be shown.

  16. A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building

    Directory of Open Access Journals (Sweden)

    Hamid R. Khosravani

    2016-01-01

    Full Text Available Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings are responsible for the biggest proportion of energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. In order to control energy consumption in buildings, different policies have been proposed, from utilizing bioclimatic architectures to the use of predictive models within control approaches. There are mainly three groups of predictive models including engineering, statistical and artificial intelligence models. Nowadays, artificial intelligence models such as neural networks and support vector machines have also been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not free of noise. The main objective of this paper is to compare a neural network model which was designed utilizing statistical and analytical methods, with a group of neural network models designed benefiting from a multi objective genetic algorithm. Moreover, the neural network models were compared to a naïve autoregressive baseline model. The models are intended to predict electric power demand at the Solar Energy Research Center (Centro de Investigación en Energía SOLar or CIESOL in Spanish bioclimatic building located at the University of Almeria, Spain. Experimental results show that the models obtained from the multi objective genetic algorithm (MOGA perform comparably to the model obtained through a statistical and analytical approach, but they use only 0.8% of data samples and have lower model complexity.

  17. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    OpenAIRE

    Zhang, Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential\\ud energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of...

  18. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  19. Damage Analysis and Evaluation of High Strength Concrete Frame Based on Deformation-Energy Damage Model

    Directory of Open Access Journals (Sweden)

    Huang-bin Lin

    2015-01-01

    Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.

  20. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    Science.gov (United States)

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. China’s primary energy demands in 2020: Predictions from an MPSO–RBF estimation model

    International Nuclear Information System (INIS)

    Yu Shiwei; Wei Yiming; Wang Ke

    2012-01-01

    Highlights: ► A Mix-encoding PSO and RBF network-based energy demand forecasting model is proposed. ► The proposed model has simpler structure and smaller estimated errors than other ANN models. ► China’s energy demand could reach 6.25 billion, 4.16 billion, and 5.29 billion tons tce. ► China’s energy efficiency in 2020 will increase by more than 30% compared with 2009. - Abstract: In the present study, a Mix-encoding Particle Swarm Optimization and Radial Basis Function (MPSO–RBF) network-based energy demand forecasting model is proposed and applied to forecast China’s energy consumption until 2020. The energy demand is analyzed for the period from 1980 to 2009 based on GDP, population, proportion of industry in GDP, urbanization rate, and share of coal energy. The results reveal that the proposed MPSO–RBF based model has fewer hidden nodes and smaller estimated errors compared with other ANN-based estimation models. The average annual growth of China’s energy demand will be 6.70%, 2.81%, and 5.08% for the period between 2010 and 2020 in three scenarios and could reach 6.25 billion, 4.16 billion, and 5.29 billion tons coal equivalent in 2020. Regardless of future scenarios, China’s energy efficiency in 2020 will increase by more than 30% compared with 2009.

  2. Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis

    International Nuclear Information System (INIS)

    Yao, Jian

    2014-01-01

    Highlights: • Driving factor for adjustment of manually controlled solar shades was determined. • A stochastic model for manual solar shades was constructed using Markov method. • Co-simulation with Energyplus was carried out in BCVTB. • External shading even manually controlled should be used prior to LOW-E windows. • Previous studies on manual solar shades may overestimate energy savings. - Abstract: Solar shading devices play a significant role in reducing building energy consumption and maintaining a comfortable indoor condition. In this paper, a typical office building with internal roller shades in hot summer and cold winter zone was selected to determine the driving factor of control behavior of manual solar shades. Solar radiation was determined as the major factor in driving solar shading adjustment based on field measurements and logit analysis and then a stochastic model for manually adjusted solar shades was constructed by using Markov method. This model was used in BCVTB for further co-simulation with Energyplus to determine the impact of the control behavior of solar shades on energy performance. The results show that manually adjusted solar shades, whatever located inside or outside, have a relatively high energy saving performance than clear-pane windows while only external shades perform better than regularly used LOW-E windows. Simulation also indicates that using an ideal assumption of solar shade adjustment as most studies do in building simulation may lead to an overestimation of energy saving by about 16–30%. There is a need to improve occupants’ actions on shades to more effectively respond to outdoor conditions in order to lower energy consumption, and this improvement can be easily achieved by using simple strategies as a guide to control manual solar shades

  3. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    Science.gov (United States)

    Guzinski, R.; Anderson, M. C.; Kustas, W. P.; Nieto, H.; Sandholt, I.

    2013-07-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise) when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish

  4. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night MODIS observations

    Directory of Open Access Journals (Sweden)

    R. Guzinski

    2013-07-01

    Full Text Available The Dual Temperature Difference (DTD model, introduced by Norman et al. (2000, uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the

  5. Modelling household responses to energy efficiency interventions ...

    African Journals Online (AJOL)

    2010-11-01

    Nov 1, 2010 ... to interventions aimed at reducing energy consumption (specifically the use of .... 4 A system dynamics model of electricity consumption ...... to base comparisons on overly detailed quantitative predictions of behaviour.

  6. Energy saving approaches for video streaming on smartphone based on QoE modeling

    DEFF Research Database (Denmark)

    Ballesteros, Luis Guillermo Martinez; Ickin, Selim; Fiedler, Markus

    2016-01-01

    In this paper, we study the influence of video stalling on QoE. We provide QoE models that are obtained in realistic scenarios on the smartphone, and provide energy-saving approaches for smartphone by leveraging the proposed QoE models in relation to energy. Results show that approximately 5J...... is saved in a 3 minutes video clip with an acceptable Mean Opinion Score (MOS) level when the video frames are skipped. If the video frames are not skipped, then it is suggested to avoid freezes during a video stream as the freezes highly increase the energy waste on the smartphones....

  7. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    Science.gov (United States)

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were

  8. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  9. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  10. Application of the strain energy for fatigue life prediction (LCF) of metals by the energy-based criterion

    International Nuclear Information System (INIS)

    Shahram Shahrooi; Ibrahim Henk Metselaar; Zainul Huda; Ghezavati, H.R.

    2009-01-01

    Full text: In this study, the plastic strain energy under multiaxial fatigue condition has been calculated in the cyclic plasticity models by the stress-strain hysteresis loops. Then, using the results of these models, the fatigue lives in energy-based fatigue model is predicted and compared to experimental data. Moreover, a weighting factor on shear plastic work is presented to decrease the life factors in the model fatigue. (author)

  11. Energy models: methods and trends

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, A [Division of Energy Management and Planning, Verbundplan, Klagenfurt (Austria); Kuehner, R [IER Institute for Energy Economics and the Rational Use of Energy, University of Stuttgart, Stuttgart (Germany); Wohlgemuth, N [Department of Economy, University of Klagenfurt, Klagenfurt (Austria)

    1997-12-31

    Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of `energy models`, computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning. 2 figs., 19 refs.

  12. Energy models: methods and trends

    International Nuclear Information System (INIS)

    Reuter, A.; Kuehner, R.; Wohlgemuth, N.

    1996-01-01

    Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of 'energy models', computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning

  13. Smart and Green Energy (SAGE) for Base Camps Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.; Goel, Supriya; Sisk, Daniel R.; Hatley, Darrel D.; Mendon, Vrushali V.; Hail, John C.

    2014-02-11

    The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.

  14. A novel Gaussian model based battery state estimation approach: State-of-Energy

    International Nuclear Information System (INIS)

    He, HongWen; Zhang, YongZhi; Xiong, Rui; Wang, Chun

    2015-01-01

    Highlights: • The Gaussian model is employed to construct a novel battery model. • The genetic algorithm is used to implement model parameter identification. • The AIC is used to decide the best hysteresis order of the battery model. • A novel battery SoE estimator is proposed and verified by two kinds of batteries. - Abstract: State-of-energy (SoE) is a very important index for battery management system (BMS) used in electric vehicles (EVs), it is indispensable for ensuring safety and reliable operation of batteries. For achieving battery SoE accurately, the main work can be summarized in three aspects. (1) In considering that different kinds of batteries show different open circuit voltage behaviors, the Gaussian model is employed to construct the battery model. What is more, the genetic algorithm is employed to locate the optimal parameter for the selecting battery model. (2) To determine an optimal tradeoff between battery model complexity and prediction precision, the Akaike information criterion (AIC) is used to determine the best hysteresis order of the combined battery model. Results from a comparative analysis show that the first-order hysteresis battery model is thought of being the best based on the AIC values. (3) The central difference Kalman filter (CDKF) is used to estimate the real-time SoE and an erroneous initial SoE is considered to evaluate the robustness of the SoE estimator. Lastly, two kinds of lithium-ion batteries are used to verify the proposed SoE estimation approach. The results show that the maximum SoE estimation error is within 1% for both LiFePO 4 and LiMn 2 O 4 battery datasets

  15. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  16. Fine-Grained Energy Modeling for the Source Code of a Mobile Application

    DEFF Research Database (Denmark)

    Li, Xueliang; Gallagher, John Patrick

    2016-01-01

    The goal of an energy model for source code is to lay a foundation for the application of energy-aware programming techniques. State of the art solutions are based on source-line energy information. In this paper, we present an approach to constructing a fine-grained energy model which is able...

  17. Parametric modeling of energy filtering by energy barriers in thermoelectric nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zianni, Xanthippi, E-mail: xzianni@teiste.gr, E-mail: xzianni@gmail.com [Department of Aircraft Technology, Technological Educational Institution of Sterea Ellada, 34400 Psachna (Greece); Department of Microelectronics, INN, NCSR “Demokritos,” 15310 Athens (Greece); Narducci, Dario [Department of Materials Science, University of Milano Bicocca, 20125 Milano (Italy)

    2015-01-21

    We present a parametric modeling of the thermoelectric transport coefficients based on a model previously used to interpret experimental measurements on the conductivity, σ, and Seebeck coefficient, S, in highly Boron-doped polycrystalline Si, where a very significant thermoelectric power factor (TPF) enhancement was observed. We have derived analytical formalism for the transport coefficients in the presence of an energy barrier assuming thermionic emission over the barrier for (i) non-degenerate and (ii) degenerate one-band semiconductor. Simple generic parametric equations are found that are in agreement with the exact Boltzmann transport formalism in a wide range of parameters. Moreover, we explore the effect of energy barriers in 1-d composite semiconductors in the presence of two phases: (a) the bulk-like phase and (b) the barrier phase. It is pointed out that significant TPF enhancement can be achieved in the composite structure of two phases with different thermal conductivities. The TPF enhancement is estimated as a function of temperature, the Fermi energy position, the type of scattering, and the barrier height. The derived modeling provides guidance for experiments and device design.

  18. Energy-efficiency based classification of the manufacturing workstation

    Science.gov (United States)

    Frumuşanu, G.; Afteni, C.; Badea, N.; Epureanu, A.

    2017-08-01

    EU Directive 92/75/EC established for the first time an energy consumption labelling scheme, further implemented by several other directives. As consequence, nowadays many products (e.g. home appliances, tyres, light bulbs, houses) have an EU Energy Label when offered for sale or rent. Several energy consumption models of manufacturing equipments have been also developed. This paper proposes an energy efficiency - based classification of the manufacturing workstation, aiming to characterize its energetic behaviour. The concept of energy efficiency of the manufacturing workstation is defined. On this base, a classification methodology has been developed. It refers to specific criteria and their evaluation modalities, together to the definition & delimitation of energy efficiency classes. The energy class position is defined after the amount of energy needed by the workstation in the middle point of its operating domain, while its extension is determined by the value of the first coefficient from the Taylor series that approximates the dependence between the energy consume and the chosen parameter of the working regime. The main domain of interest for this classification looks to be the optimization of the manufacturing activities planning and programming. A case-study regarding an actual lathe classification from energy efficiency point of view, based on two different approaches (analytical and numerical) is also included.

  19. Numerical model and analysis of an energy-based system using microwaves for vision correction

    Science.gov (United States)

    Pertaub, Radha; Ryan, Thomas P.

    2009-02-01

    A treatment system was developed utilizing a microwave-based procedure capable of treating myopia and offering a less invasive alternative to laser vision correction without cutting the eye. Microwave thermal treatment elevates the temperature of the paracentral stroma of the cornea to create a predictable refractive change while preserving the epithelium and deeper structures of the eye. A pattern of shrinkage outside of the optical zone may be sufficient to flatten the central cornea. A numerical model was set up to investigate both the electromagnetic field and the resultant transient temperature distribution. A finite element model of the eye was created and the axisymmetric distribution of temperature calculated to characterize the combination of controlled power deposition combined with surface cooling to spare the epithelium, yet shrink the cornea, in a circularly symmetric fashion. The model variables included microwave power levels and pulse width, cooling timing, dielectric material and thickness, and electrode configuration and gap. Results showed that power is totally contained within the cornea and no significant temperature rise was found outside the anterior cornea, due to the near-field design of the applicator and limited thermal conduction with the short on-time. Target isothermal regions were plotted as a result of common energy parameters along with a variety of electrode shapes and sizes, which were compared. Dose plots showed the relationship between energy and target isothermic regions.

  20. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  1. Vulnerability of the economy to the potential disturbances of energy supply: A logic-based model with application to the case of China

    International Nuclear Information System (INIS)

    Gnansounou, Edgard; Dong Jun

    2010-01-01

    The disturbances of energy supply that may result from both external and domestic events create a significant threat for national economy due to potential impacts on the productivity, employment and overall economic growth. Building scenarios of the economy's vulnerability to these disturbances is delicate because of the significant number of interrelated factors that should be taken into consideration. In this paper, a logic-based model (LBM) is developed, which allows for defining, exploring and assessing the determinants and the indicators of the economy's vulnerability related to the energy supply disturbances within a coherent scenarios assessment framework. The proposed model is illustrated with the case of China. After developing the general framework, three particular scenarios are investigated. Based on the case study, the performance and limitations of the model are analyzed, and its ability to evaluate national energy policies is discussed. Finally, some recommendations for further improvements are made.

  2. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  3. Modelling of capital requirements in the energy sector: capital market access. Final memorandum

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Formal modelling techniques for analyzing the capital requirements of energy industries have been performed at DOE. A survey has been undertaken of a number of models which forecast energy-sector capital requirements or which detail the interactions of the energy sector and the economy. Models are identified which can be useful as prototypes for some portion of DOE's modelling needs. The models are examined to determine any useful data bases which could serve as inputs to an original DOE model. A selected group of models are examined which can comply with the stated capabilities. The data sources being used by these models are covered and a catalog of the relevant data bases is provided. The models covered are: capital markets and capital availability models (Fossil 1, Bankers Trust Co., DRI Macro Model); models of physical capital requirements (Bechtel Supply Planning Model, ICF Oil and Gas Model and Coal Model, Stanford Research Institute National Energy Model); macroeconomic forecasting models with input-output analysis capabilities (Wharton Annual Long-Term Forecasting Model, Brookhaven/University of Illinois Model, Hudson-Jorgenson/Brookhaven Model); utility models (MIT Regional Electricity Model-Baughman Joskow, Teknekron Electric Utility Simulation Model); and others (DRI Energy Model, DRI/Zimmerman Coal Model, and Oak Ridge Residential Energy Use Model).

  4. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  5. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  6. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.

    2011-01-01

    Since the world's energy demand increases every year, the oil & gas industry makes a continuous effort to improve fossil fuel recovery. Physics-based petroleum reservoir modeling and closed-loop model-based reservoir management concept can play an important role here. In this concept measured data

  7. Integration of renewable energy plants based on generic data models in the energy management of a virtual power plant; Integration von erneuerbaren Energieanlagen auf Basis generischer Datenmodelle in das Energiemanagement eines virtuellen Kraftwerks

    Energy Technology Data Exchange (ETDEWEB)

    Wickert, Manuel; Slaby, Wolfgang; Hochloff, Patrick [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany); Winter, Martin [Siemens AG, Muenchen (Germany). Corporate Technology

    2012-07-01

    The integration of different types of energy resources manufactured by different vendors is one of the main challenges for virtual power plants. One of the important problems is a highly heterogeneous standardization environment for decentralized renewable energy resources. On the one hand proprietary solutions are implemented for some types of energy resources. In a future smart grid it is getting more and more important to handle decentralized energy generation. The project RegModHarz researched the dynamic integration of energy resources in virtual power plants based on generic data models. This paper introduces a concept for the integration of heterogeneous energy resources into the energy management of a virtual power plant using a uniform data model. On the assumption of a market-oriented virtual power plant the main attributes of this data model are generally identified and afterwards explained by examples. The capability of this data model is shown in a comprehensive field test with different renewable energy resources. (orig.)

  8. Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester

    Directory of Open Access Journals (Sweden)

    X.Z. Jiang

    2014-07-01

    Full Text Available Over the past few decades, wireless sensor networks have been widely used in the field of structure health monitoring of civil, mechanical, and aerospace systems. Currently, most wireless sensor networks are battery-powered and it is costly and unsustainable for maintenance because of the requirement for frequent battery replacements. As an attempt to address such issue, this article theoretically and experimentally studies a compression-based piezoelectric energy harvester using a multilayer stack configuration, which is suitable for civil infrastructure system applications where large compressive loads occur, such as heavily vehicular loading acting on pavements. In this article, we firstly present analytical and numerical modeling of the piezoelectric multilayer stack under axial compressive loading, which is based on the linear theory of piezoelectricity. A two-degree-of-freedom electromechanical model, considering both the mechanical and electrical aspects of the proposed harvester, was developed to characterize the harvested electrical power under the external electrical load. Exact closed-form expressions of the electromechanical models have been derived to analyze the mechanical and electrical properties of the proposed harvester. The theoretical analyses are validated through several experiments for a test prototype under harmonic excitations. The test results exhibit very good agreement with the analytical analyses and numerical simulations for a range of resistive loads and input excitation levels.

  9. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  10. Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure

    International Nuclear Information System (INIS)

    Xu, Xin; Cui, Qiang

    2017-01-01

    This paper focuses on evaluating airline energy efficiency, which is firstly divided into four stages: Operations Stage, Fleet Maintenance Stage, Services Stage and Sales Stage. The new four-stage network structure of airline energy efficiency is a modification of existing models. A new approach, integrated with Network Epsilon-based Measure and Network Slacks-based Measure, is applied to assess the overall energy efficiency and divisional efficiency of 19 international airlines from 2008 to 2014. The influencing factors of airline energy efficiency are analyzed through the regression analysis. The results indicate the followings: 1. The integrated model can identify the benchmarking airlines in the overall system and stages. 2. Most airlines' energy efficiencies keep steady during the period, except for some sharply fluctuations. The efficiency decreases mainly centralized in the year 2008–2011, affected by the financial crisis in the USA. 3. The average age of fleet is positively correlated with the overall energy efficiency, and each divisional efficiency has different significant influencing factors. - Highlights: • An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure is developed. • 19 airlines' energy efficiencies are evaluated. • Garuda Indonesia has the highest overall energy efficiency.

  11. Brazilian energy model

    Science.gov (United States)

    1981-05-01

    A summary of the energy situation in Brazil is presented. Energy consumption rates, reserves of primary energy, and the basic needs and strategies for meeting energy self sufficiency are discussed. Conserving energy, increasing petroleum production, and utilizing other domestic energy products and petroleum by-products are discussed. Specific programs are described for the development and use of alcohol fuels, wood and charcoal, coal, schist, solar and geothermal energy, power from the sea, fresh biomass, special batteries, hydrogen, vegetable oil, and electric energy from water power, nuclear, and coal. Details of the energy model for 1985 are given. Attention is also given to the energy demands and the structure of global energy from 1975 to 1985.

  12. Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach

    International Nuclear Information System (INIS)

    Lü, Xiaoshu; Lu, Tao; Kibert, Charles J.; Viljanen, Martti

    2015-01-01

    Highlights: • This paper presents a new modeling method to forecast energy demands. • The model is based on physical–statistical approach to improving forecast accuracy. • A new method is proposed to address the heterogeneity challenge. • Comparison with measurements shows accurate forecasts of the model. • The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated. - Abstract: Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the random nature of weather conditions, energy consumption and loads are stochastic and difficult to predict. This paper presents a new methodology for energy demand forecasting that addresses the heterogeneity challenges in energy modeling of buildings. The new method is based on a physical–statistical approach designed to account for building heterogeneity to improve forecast accuracy. The physical model provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then stochastic parameters are introduced into the physical model and the statistical time series model is formulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model generalization based on a convex hull technique is further derived to parameterize the individual-level model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy for heterogeneous buildings. The proposed method and its validation are presented in detail for four different sports buildings with field measurements. The results show that the proposed methodology and model can provide a considerable improvement in forecasting accuracy

  13. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    determination. The model was verified and showed a good agreement with billed and measured data from a base case study. In a next phase, a supplemental computational tool can be created for conducting plant energy design comparisons and plant energy and emissions parameters assessments. The main conclusions drawn from this research is that current approaches are severely limited, not covering plant's design phase and not fully considering the balance of energy consumed (EC), energy produced (EP) and the resulting CO2 e emission integration. Finally their results are not representative. This makes reported governmental and institutional national energy consumption figures incomplete and/or misleading, since they are mainly considering energy consumptions from electricity and some fuels or certain processes only. The distinction of the energy trilogy model over existing approaches is based on the following: (1) the ET energy model is unprecedented, prepared to fit WWTP energy assessment during the design and rehabilitation phases, (2) links the energy trilogy eliminating the need for using several models or tools, (3) removes the need for on-site expensive energy measurements or audits, (4) offers alternatives for energy optimization during plant's life-cycle, and (5) ensures reliable GHG emissions inventory reporting for permitting and regulatory compliance.

  14. Decisions on Energy Demand Response Option Contracts in Smart Grids Based on Activity-Based Costing and Stochastic Programming

    Directory of Open Access Journals (Sweden)

    Alfred J. Hildreth

    2013-01-01

    Full Text Available Smart grids enable a two-way energy demand response capability through which a utility company offers its industrial customers various call options for energy load curtailment. If a customer has the capability to accurately determine whether to accept an offer or not, then in the case of accepting an offer, the customer can earn both an option premium to participate, and a strike price for load curtailments if requested. However, today most manufacturing companies lack the capability to make the correct contract decisions for given offers. This paper proposes a novel decision model based on activity-based costing (ABC and stochastic programming, developed to accurately evaluate the impact of load curtailments and determine as to whether or not to accept an energy load curtailment offer. The proposed model specifically targets state-transition flexible and Quality-of-Service (QoS flexible energy use activities to reduce the peak energy demand rate. An illustrative example with the proposed decision model under a call-option based energy demand response scenario is presented. As shown from the example results, the proposed decision model can be used with emerging smart grid opportunities to provide a competitive advantage to the manufacturing industry.

  15. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  16. Analysis of the interrelationship of energy, economy, and environment: A model of a sustainable energy future for Korea

    Science.gov (United States)

    Boo, Kyung-Jin

    The primary purpose of this dissertation is to provide the groundwork for a sustainable energy future in Korea. For this purpose, a conceptual framework of sustainable energy development was developed to provide a deeper understanding of interrelationships between energy, the economy, and the environment (E 3). Based on this theoretical work, an empirical simulation model was developed to investigate the ways in which E3 interact. This dissertation attempts to develop a unified concept of sustainable energy development by surveying multiple efforts to integrate various definitions of sustainability. Sustainable energy development should be built on the basis of three principles: ecological carrying capacity, economic efficiency, and socio-political equity. Ecological carrying capacity delineates the earth's resource constraints as well as its ability to assimilate wastes. Socio-political equity implies an equitable distribution of the benefits and costs of energy consumption and an equitable distribution of environmental burdens. Economic efficiency dictates efficient allocation of scarce resources. The simulation model is composed of three modules: an energy module, an environmental module and an economic module. Because the model is grounded on economic structural behaviorism, the dynamic nature of the current economy is effectively depicted and simulated through manipulating exogenous policy variables. This macro-economic model is used to simulate six major policy intervention scenarios. Major findings from these policy simulations were: (1) carbon taxes are the most effective means of reducing air-pollutant emissions; (2) sustainable energy development can be achieved through reinvestment of carbon taxes into energy efficiency and renewable energy programs; and (3) carbon taxes would increase a nation's welfare if reinvested in relevant areas. The policy simulation model, because it is based on neoclassical economics, has limitations such that it cannot fully

  17. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A

  18. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  19. A parametric costing model for wave energy technology

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)

  20. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    of the industry could be split up into energy intensive subsectors where single production processes dominate the energy consumption, and non-energy intensive subsectors. Ways to reduce the energy consumption in the industrial sector are the use of alternative or improved production or cross cutting technologies and the use of energy saving measures to reduce the demand for useable energy. Based on the analysis within this study, 21 % of the current energy consumption of the industrial sector of the EU and 17 % in Germany could be reduced. Based on the extended understanding of energy efficiency, the model based scenario analysis of the European energy system with the further developed energy system model TIMES PanEU shows that the efficient use of energy at an emission reduction level of 75 % is a slightly increasing primary energy consumption. The primary energy consumption is characterised by a diversified energy carrier and technology mix. Renewable energy sources, nuclear energy and CCS play a key role in the long term. In addition the electricity demand in combination with a strong decarbonisation of the electricity generation is increasing constantly. In the industrial sector the emission reduction is driven by the extended use of electricity, CCS and renewables as well as by the use of improved or alternative process and supply technologies with lower specific energy consumption. Thereby the final energy consumption stays almost on a constant level with increasing importance of electricity and biomass. Both regulatory interventions in the electricity sector and energy saving targets on the primary energy demand lead to higher energy system costs and therewith to a decrease of efficiency based on the extended understanding. The energy demand is reduced stronger than it is efficient and the saving targets lead to the extended use of other resources resulting in totally higher costs. The integrated system analysis in this study points out the interactions

  1. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  2. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  3. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  4. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  5. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

  6. Technical reference book for the Energy Economic Data Base (EEDB) Program

    International Nuclear Information System (INIS)

    1985-08-01

    The Energy Economic Data Base (EEDB) Program is sponsored by the US Department of Energy (DOE) for the purpose of developing current technical and cost information for nuclear and comparison electric power generating stations. The data base was first assembled in 1978 from an initial update of the technical/cost data models developed for the predecessor studies. Seven updates of the data base have been performed between 1978 and 1984, in which various technical/cost data models have been updated, added, superceded or discontinued

  7. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    Science.gov (United States)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  8. Vulnerability of the economy to the potential disturbances of energy supply. A logic-based model with application to the case of China

    Energy Technology Data Exchange (ETDEWEB)

    Gnansounou, Edgard [Ecole Polytechnique Federale de Lausanne (EPFL), Station 18, CH-1015, Lausanne (Switzerland); Dong, Jun [North China Electric Power University, 102206 Beijing (China)

    2010-06-15

    The disturbances of energy supply that may result from both external and domestic events create a significant threat for national economy due to potential impacts on the productivity, employment and overall economic growth. Building scenarios of the economy's vulnerability to these disturbances is delicate because of the significant number of interrelated factors that should be taken into consideration. In this paper, a logic-based model (LBM) is developed, which allows for defining, exploring and assessing the determinants and the indicators of the economy's vulnerability related to the energy supply disturbances within a coherent scenarios assessment framework. The proposed model is illustrated with the case of China. After developing the general framework, three particular scenarios are investigated. Based on the case study, the performance and limitations of the model are analyzed, and its ability to evaluate national energy policies is discussed. Finally, some recommendations for further improvements are made. (author)

  9. Vulnerability of the economy to the potential disturbances of energy supply: A logic-based model with application to the case of China

    Energy Technology Data Exchange (ETDEWEB)

    Gnansounou, Edgard, E-mail: edgard.gnansounou@epfl.c [Ecole Polytechnique Federale de Lausanne (EPFL), Station 18, CH-1015, Lausanne (Switzerland); Dong Jun [North China Electric Power University, 102206 Beijing (China)

    2010-06-15

    The disturbances of energy supply that may result from both external and domestic events create a significant threat for national economy due to potential impacts on the productivity, employment and overall economic growth. Building scenarios of the economy's vulnerability to these disturbances is delicate because of the significant number of interrelated factors that should be taken into consideration. In this paper, a logic-based model (LBM) is developed, which allows for defining, exploring and assessing the determinants and the indicators of the economy's vulnerability related to the energy supply disturbances within a coherent scenarios assessment framework. The proposed model is illustrated with the case of China. After developing the general framework, three particular scenarios are investigated. Based on the case study, the performance and limitations of the model are analyzed, and its ability to evaluate national energy policies is discussed. Finally, some recommendations for further improvements are made.

  10. International codes and model intercomparison for intermediate energy activation yields

    International Nuclear Information System (INIS)

    Rolf, M.; Nagel, P.

    1997-01-01

    The motivation for this intercomparison came from data needs of accelerator-based waste transmutation, energy amplification and medical therapy. The aim of this exercise is to determine the degree of reliability of current nuclear reaction models and codes when calculating activation yields in the intermediate energy range up to 5000 MeV. Emphasis has been placed for a wide range of target elements ( O, Al, Fe, Co, Zr and Au). This work is mainly based on calculation of (P,xPyN) integral cross section for incident proton. A qualitative description of some of the nuclear models and code options employed is made. The systematics of graphical presentation of the results allows a quick quantitative measure of agreement or deviation. This code intercomparison highlights the fact that modeling calculations of energy activation yields may at best have uncertainties of a factor of two. The causes of such discrepancies are multi-factorial. Problems are encountered which are connected with the calculation of nuclear masses, binding energies, Q-values, shell effects, medium energy fission and Fermi break-up. (A.C.)

  11. Modeling and simulation of grid connected permanent magnet generator based small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Arifujjaman, Md.

    2011-07-01

    In order to recover the maximum energy from small scale wind turbine systems many parameters have to be controlled. The aim of this paper is to propose a control strategy for the grid connected PMG-based small wind turbine systems. A mathematical model of small wind turbine systems was developed and the system simulated. Results show demonstrated that the control strategy is highly efficient. Sure enough it reduces the dependence on system variables, diminishes the system complexity, its furling and maximum power point controllers are efficient and it provides a stable operation for multiple wind speeds. This study developed a modeling and control strategy which was proved to be feasible by simulation results.

  12. An Energy Oriented Model and Simulator for Wireless Sensor etworks

    African Journals Online (AJOL)

    Nafiisah

    Wireless Sensor Network, Energy Modeling, Simulation, Energy. Efficiency ..... xMBCR: This scheme is based on the MBCR strategy, but improves the battery ... Moreover WSNs require large scale deployment (smart dusts) in remote and.

  13. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  14. Energy Management for Community Energy Network with CHP Based on Cooperative Game

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2018-04-01

    Full Text Available Integrated energy system (IES has received increasing attention in micro grid due to the high energy efficiency and low emission of carbon dioxide. Based on the technology of combined heat and power (CHP, this paper develops a novel operation mechanism with community micro turbine and shared energy storage system (ESS for energy management of prosumers. In the proposed framework, micro-grid operator (MGO equipped with micro turbine and ESS provides energy selling business and ESS leasing business for prosumers. Prosumers can make energy trading with public grid and MGO, and ESS will be shared among prosumers when they pay for the rent to MGO. Based on such framework, we adopt a cooperative game for prosumers to determine optimal energy trading strategies from MGO and public grid for the next day. Concretely, a cooperative game model is formulated to search the optimal strategies aiming at minimizing the daily cost of coalition, and then a bilateral Shapley value (BSV is proposed to solve the allocation problem of coalition’s cost among prosumers. To verify the effectiveness of proposed energy management framework, a practical example is conducted with a community energy network containing MGO and 10 residential buildings. Simulation results show that the proposed scheme is able to provide financial benefits to all prosumers, while providing peak load leveling for the grid.

  15. Developing energy forecasting model using hybrid artificial intelligence method

    Institute of Scientific and Technical Information of China (English)

    Shahram Mollaiy-Berneti

    2015-01-01

    An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

  16. Nonlinear modeling, strength-based design, and testing of flexible piezoelectric energy harvesters under large dynamic loads for rotorcraft applications

    Science.gov (United States)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no

  17. Modeling and analysis of doubly fed induction generator wind energy systems

    CERN Document Server

    Fan, Lingling

    2015-01-01

    Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study

  18. New models intensify the purchase of energy

    International Nuclear Information System (INIS)

    Vesimaeki, P.; Lampinen, J.

    2001-01-01

    Models, designed for planning and optimisation of the purchase of energy, combined with high-quality expertise have an impact on the costs of energy companies. Optimisation has a significant role in power plant investments and in planning the power distribution of wholesale electric power. After the liberation of the electricity markets, the planning of the electricity purchase and the optimisation have obtained totally new roles in estimating the cost effects of present and new customers. Electrowatt-Ekono has developed a windows-based COPSIM software for planning of electric power purchase. The software is in active use in Electrowatt-Ekono. The energy purchase is optimised on yearly basis or on a shorter period by one hour steps based on hourly variation of energy purchase, power plant characteristics, power consumption rates and the prices of the fuels, power and heat. COPSIM takes the effect of external temperature on the power generation of backpressure and gas turbine plants into account. The software optimises also the power distribution of wholesale power. By the software it is possible to model different types of power plants, purchase of power, power sales, different power plant shares, thermal power stations, purchase and sales of heat, heat storage and heat transfer between different heating networks

  19. Simple implementation of general dark energy models

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon K.; Pearson, Jonathan A.

    2014-01-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data

  20. Development of nuclear models for higher energy calculations

    International Nuclear Information System (INIS)

    Bozoian, M.; Siciliano, E.R.; Smith, R.D.

    1988-01-01

    Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs

  1. Measurement and decomposition of energy efficiency of Northeast China-based on super efficiency DEA model and Malmquist index.

    Science.gov (United States)

    Ma, Xiaojun; Liu, Yan; Wei, Xiaoxue; Li, Yifan; Zheng, Mengchen; Li, Yudong; Cheng, Chaochao; Wu, Yumei; Liu, Zhaonan; Yu, Yuanbo

    2017-08-01

    Nowadays, environment problem has become the international hot issue. Experts and scholars pay more and more attention to the energy efficiency. Unlike most studies, which analyze the changes of TFEE in inter-provincial or regional cities, TFEE is calculated with the ratio of target energy value and actual energy input based on data in cities of prefecture levels, which would be more accurate. Many researches regard TFP as TFEE to do analysis from the provincial perspective. This paper is intended to calculate more reliably by super efficiency DEA, observe the changes of TFEE, and analyze its relation with TFP, and it proves that TFP is not equal to TFEE. Additionally, the internal influences of the TFEE are obtained via the Malmquist index decomposition. The external influences of the TFFE are analyzed afterward based on the Tobit models. Analysis results demonstrate that Heilongjiang has the highest TFEE followed by Jilin, and Liaoning has the lowest TFEE. Eventually, some policy suggestions are proposed for the influences of energy efficiency and study results.

  2. Towards the petascale in electromagnetic modeling of plasma-based accelerators for high-energy physics

    International Nuclear Information System (INIS)

    Bruhwiler, D L; Antonsen, T; Cary, J R; Cooley, J; Decyk, V K; Esarey, E; Geddes, C G R; Huang, C; Hakim, A; Katsouleas, T; Messmer, P; Mori, W B; Tsung, F S; Vieira, J; Zhou, M

    2006-01-01

    Plasma-based lepton acceleration concepts are a key element of the long-term R and D portfolio for the U.S. Office of High Energy Physics. There are many such concepts, but we consider only the laser (LWFA) and plasma (PWFA) wakefield accelerators. We present a summary of electromagnetic particle-in-cell (PIC) simulations for recent LWFA and PWFA experiments. These simulations, including both time explicit algorithms and reduced models, have effectively used terascale computing resources to support and guide experiments in this rapidly developing field. We briefly discuss the challenges and opportunities posed by the near-term availability of petascale computing hardware

  3. Design of Graphic Aggregation Model for Evaluation of Energy Systems

    International Nuclear Information System (INIS)

    An, Sang Ha; Jeong, Yong Hoon; Chang, Won Joon; Chang, Soon Heung; Kim, Sung Ho; Kim, Tae Woon

    2006-01-01

    Korea is meeting the growing electric power needs by mix of nuclear, fossil, hydro energy and so on. But we can not depend on fossil energy forever, and the people's concern about environment has been changed. So it is time to plan future energy mix considering multiple parameters such as economics, environment, social, energy security, etc. A multiple aggregation model has been used for decision making process in which multiple variables should be considered like energy mix. In this context, we designed Graphic Aggregation Model for Evaluation of energy systems (GAME) for the dynamic analysis of decision on the energy systems. It can support Analytic Hierarchy Process (AHP) analysis based on Graphic User Interface

  4. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  5. RESRO: A spatio-temporal model to optimise regional energy systems emphasising renewable energies

    Directory of Open Access Journals (Sweden)

    Gadocha S.

    2012-10-01

    Full Text Available RESRO (Reference Energy System Regional Optimization optimises the simultaneous fulfilment of the heat and power demand in regional energy systems. It is a mixed-integer program realised in the modelling language GAMS. The model handles information on geographically disaggregated data describing heat demand and renewable energy potentials (e.g. biomass, solar energy, ambient heat. Power demand is handled spatially aggregated in an hourly time resolution within 8 type days. The major idea is to use a high-spatial, low-temporal heat resolution and a low-spatial, hightemporal power resolution with both demand levels linked with each other. Due to high transport losses the possibilities for heat transport over long distances are unsatisfying. Thus, the spatial, raster-based approach is used to identify and utilise renewable energy resources for heat generation close to the customers as well as to optimize district heating grids and related energy flows fed by heating plants or combined heat and power (CHP plants fuelled by renewables. By combining the heat and electricity sector within the model, it is possible to evaluate relationships between these energy fields such as the use of CHP or heat pump technologies and also to examine relationships between technologies such as solar thermal and photovoltaic facilities, which are in competition for available, suitable roof or ground areas.

  6. DOD low energy model installation program

    International Nuclear Information System (INIS)

    Fournier, D.F. Jr.

    1993-01-01

    The Model Low Energy Installation Program is a demonstration of an installation-wide, comprehensive energy conservation program that meets the Department of Defense (DoD) energy management goals of reducing energy usage and costs by at least 20%. It employs the required strategies for meeting these goals, quantifies the environmental compliance benefits resulting from energy conservation and serves as a prototype for DoD wide application. This project will develop both analysis tools and implementation procedures as well as demonstrate the effectiveness of a comprehensive, coordinated energy conservation program based on state-of-the-art technologies. A military installation is in reality a small to medium sized city. It generally has a complete utilities infrastructure including water supply and distribution, sewage collection and treatment, electrical supply and distribution, central heating and cooling plants with thermal distribution, and a natural gas distribution system. These utilities are quite extensive and actually consume about 10-15% of the energy on the facility not counting the energy going into the central plants

  7. Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations.

    Science.gov (United States)

    Kopka, Ryszard

    2017-12-22

    In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.

  8. Model-Based Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mobed, Parham [Texas Tech Univ., Lubbock, TX (United States); Pednekar, Pratik [West Virginia Univ., Morgantown, WV (United States); Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); Turton, Richard [West Virginia Univ., Morgantown, WV (United States); Rengaswamy, Raghunathan [Texas Tech Univ., Lubbock, TX (United States)

    2016-01-29

    Design and operation of energy producing, near “zero-emission” coal plants has become a national imperative. This report on model-based sensor placement describes a transformative two-tier approach to identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail, and the level of resolution desired for any specific failure. Because of the presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island, including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level. Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition monitoring. This work could have a major impact on the design and operation of future fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the same algorithms developed in this report can be further enhanced to be used in retrofits, where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors.

  9. Development of a Comprehensive Energy Service Business Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    particular, has a promising future of various businesses in terms of designing, auditing, and consulting related to efficient use of energy sources. Integrated energy service business models might undergo a process of rearrangement based on functions between energy sources. Areas expected to be integrated include production sectors, whole-sale as well as retail sectors, and consumer service sectors. First, integration of local distributive pipeline business, gas sales, and small scale district heat business is expected in the production sector, which is a popular type in foreign countries. Second, general energy whole-sale and retail business is a major business model in the whole-sale and retail sectors. Internet-based auction can be included in this category. Third, consumer service businesses such as metering services based on integration of network energy industries for electricity, oil and gas consumption in the consumer service sectors. Eventually, integrated energy service business models will be merged into one model, for integration implies limitless combination of service businesses based on functions regardless of their energy sources. However, as seen in the case of Enron, no clear answer is provided to the question whether integrated energy service business is market-efficient. It is similar to asking which areas can be integrated into a most economically efficient one. There will be an endless process of integration after disintegration in pursuit of profits and business interests. In this context, institutional arrangements relevant to the integrated energy service should be considered in terms of the present individual energy laws and issues in the emerging new business environment. Thus, this study investigates issues such as regulations related to market-exit and -entrance, and business activities in order to introduce and maintain competition in the energy service business sector. However, the current energy business laws which focus on the establishment

  10. Energy flow models for the estimation of technical losses in distribution network

    International Nuclear Information System (INIS)

    Au, Mau Teng; Tan, Chin Hooi

    2013-01-01

    This paper presents energy flow models developed to estimate technical losses in distribution network. Energy flow models applied in this paper is based on input energy and peak demand of distribution network, feeder length and peak demand, transformer loading capacity, and load factor. Two case studies, an urban distribution network and a rural distribution network are used to illustrate application of the energy flow models. Results on technical losses obtained for the two distribution networks are consistent and comparable to network of similar types and characteristics. Hence, the energy flow models are suitable for practical application.

  11. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    Science.gov (United States)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  12. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  13. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  14. Comprehensive optimisation of China’s energy prices, taxes and subsidy policies based on the dynamic computable general equilibrium model

    International Nuclear Information System (INIS)

    He, Y.X.; Liu, Y.Y.; Du, M.; Zhang, J.X.; Pang, Y.X.

    2015-01-01

    Highlights: • Energy policy is defined as a complication of energy price, tax and subsidy policies. • The maximisation of total social benefit is the optimised objective. • A more rational carbon tax ranges from 10 to 20 Yuan/ton under the current situation. • The optimal coefficient pricing is more conducive to maximise total social benefit. - Abstract: Under the condition of increasingly serious environmental pollution, rational energy policy plays an important role in the practical significance of energy conservation and emission reduction. This paper defines energy policies as the compilation of energy prices, taxes and subsidy policies. Moreover, it establishes the optimisation model of China’s energy policy based on the dynamic computable general equilibrium model, which maximises the total social benefit, in order to explore the comprehensive influences of a carbon tax, the sales pricing mechanism and the renewable energy fund policy. The results show that when the change rates of gross domestic product and consumer price index are ±2%, ±5% and the renewable energy supply structure ratio is 7%, the more reasonable carbon tax ranges from 10 to 20 Yuan/ton, and the optimal coefficient pricing mechanism is more conducive to the objective of maximising the total social benefit. From the perspective of optimising the overall energy policies, if the upper limit of change rate in consumer price index is 2.2%, the existing renewable energy fund should be improved

  15. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  16. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  17. Modelling climate change policies : an application of ENERGY2020

    International Nuclear Information System (INIS)

    Timilsina, G.; Bhargava, A.; Backus, G.

    2005-01-01

    Researches and policy-makers are increasingly analyzing the economic impacts of the Kyoto Protocol at national, regional and global levels. The analyses are generally based on numerical models integrating energy, environment and the economy. Most models range from partial equilibrium types to complex multi-sector general equilibrium models, and typically represent the energy sector at an aggregate level, which limits their ability to reflect details of different sectors. In Canada, a model called ENERGY2020 has been widely used by the federal and provincial governments to analyze the sectoral and provincial impacts of implementing the Kyoto Protocol. ENERGY2020 uses stocks and flows simulation that captures the physical aspects of the processes utilizing energy, as well as the qualitative choice theory which captures human behavioural aspects. The model also has a database containing 20 years of time-series on all economic, environmental and energy variables, enabling the model to derive most parameters endogenously through econometric estimations. It has the capacity to analyze consumer and business responses over a wide range of policy initiatives such as energy environment taxes, regulatory standards for buildings, equipment and motor vehicles, grants, rebates and subsidy initiatives, consumer awareness initiatives, technology improvements, moratoriums and mandated cut-backs. It is also capable of producing long-term energy market forecasts as well as analyzing the impacts of policies in the markets. It was concluded that the model's application will serve as a useful analytical tool for a range of issues, and may be useful to developing countries and economies in transition. 6 refs., 5 figs

  18. Model Predictive Control of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...

  19. LIDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling

    Energy Technology Data Exchange (ETDEWEB)

    Christen, A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Geography; Coops, N. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Canada Research Chairs, Ottawa, ON (Canada); Kellet, R. [British Columbia Univ., Vancouver, BC (Canada). School of Architecture and Landscape Architecture

    2010-07-01

    A remote sensing technology was used to model neighbourhood scale energy and carbon emissions in a case study set in Vancouver, British Columbia (BC). The study was used to compile and aggregate atmospheric carbon flux, urban form, and energy and emissions data in a replicable neighbourhood-scale approach. The study illustrated methods of integrating diverse emission and uptake processes on a range of scales and resolutions, and benchmarked comparisons of modelled estimates with measured energy consumption data obtained over a 2-year period from a research tower located in the study area. The study evaluated carbon imports, carbon exports and sequestration, and relevant emissions processes. Fossil fuel emissions produced in the neighbourhood were also estimated. The study demonstrated that remote sensing technologies such as LIDAR and multispectral satellite imagery can be an effective means of generating and extracting urban form and land cover data at fine scales. Data from the study were used to develop several emissions reduction and energy conservation scenarios. 6 refs.

  20. Energy consumption modeling during dairy sewage pretreatment

    Directory of Open Access Journals (Sweden)

    Dąbrowski Wojciech

    2017-01-01

    Full Text Available The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  1. The multi-factor energy input–output model

    International Nuclear Information System (INIS)

    Guevara, Zeus; Domingos, Tiago

    2017-01-01

    Energy input–output analysis (EIO analysis) is a noteworthy tool for the analysis of the role of energy in the economy. However, it has relied on models that provide a limited description of energy flows in the economic system and do not allow an adequate analysis of energy efficiency. This paper introduces a novel energy input–output model, the multi-factor energy input–output model (MF-EIO model), which is obtained from a partitioning of a hybrid-unit input–output system of the economy. This model improves on current models by describing the energy flows according to the processes of energy conversion and the levels of energy use in the economy. It characterizes the vector of total energy output as a function of seven factors: two energy efficiency indicators; two characteristics of end-use energy consumption; and three economic features of the rest of the economy. Moreover, it is consistent with the standard model for EIO analysis, i.e., the hybrid-unit model. This paper also introduces an approximate version of the MF-EIO model, which is equivalent to the former under equal energy prices for industries and final consumers, but requires less data processing. The latter is composed by two linked models: a model of the energy sector in physical units, and a model of the rest of the economy in monetary units. In conclusion, the proposed modelling framework improves EIO analysis and extends EIO applications to the accounting for energy efficiency of the economy. - Highlights: • A novel energy input–output model is introduced. • It allows a more adequate analysis of energy flows than current models. • It describes energy flows according to processes of energy conversion and use. • It can be used for other environmental applications (material use and emissions). • An approximate version of the model is introduced, simpler and less data intensive.

  2. The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Yongxiu He

    2014-04-01

    Full Text Available In Beijing, China, the rational consumption of energy is affected by the insufficient linkage mechanism of the energy pricing system, the unreasonable price ratio and other issues. This paper combines the characteristics of Beijing’s energy market, putting forward the society-economy equilibrium indicator R maximization taking into consideration the mitigation cost to determine a reasonable price ratio range. Based on the computable general equilibrium (CGE model, and dividing four kinds of energy sources into three groups, the impact of price fluctuations of electricity and natural gas on the Gross Domestic Product (GDP, Consumer Price Index (CPI, energy consumption and CO2 and SO2 emissions can be simulated for various scenarios. On this basis, the integrated effects of electricity and natural gas price shocks on the Beijing economy and environment can be calculated. The results show that relative to the coal prices, the electricity and natural gas prices in Beijing are currently below reasonable levels; the solution to these unreasonable energy price ratios should begin by improving the energy pricing mechanism, through means such as the establishment of a sound dynamic adjustment mechanism between regulated prices and market prices. This provides a new idea for exploring the rationality of energy price ratios in imperfect competitive energy markets.

  3. PRISM -- A tool for modelling proton energy deposition in semiconductor materials

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.

    1996-01-01

    This paper presents a description of, and test results from, a new PC based software simulation tool PRISM (Protons in Semiconductor Materials). The model describes proton energy deposition in complex 3D sensitive volumes of semiconductor materials. PRISM is suitable for simulating energy deposition in surface-barrier detectors and semiconductor memory devices, the latter being susceptible to Single-Event Upset (SEU) and Multiple-Bit Upset (MBU). The design methodology on which PRISM is based, together with the techniques used to simulate ion transport and energy deposition, are described. Preliminary test results used to analyze the PRISM model are presented

  4. A model for stored energy in amorphous silica

    International Nuclear Information System (INIS)

    Tinivella, G.

    1980-12-01

    The observed saturation value of stored energy in irradiated amorphous silica is too big to be explained by the energy of recombined non-grouped defects. The hypothesis that it can be due to a structural change has been tested, and a simple model based on the fluctuation of the atomic distances shows a reasonable agreement with the experimental data. (author)

  5. A simple dynamic energy capacity model

    International Nuclear Information System (INIS)

    Gander, James P.

    2012-01-01

    I develop a simple dynamic model showing how total energy capacity is allocated to two different uses and how these uses and their corresponding energy flows are related and behave through time. The control variable of the model determines the allocation. All the variables of the model are in terms of a composite energy equivalent measured in BTU's. A key focus is on the shadow price of energy capacity and its behavior through time. Another key focus is on the behavior of the control variable that determines the allocation of overall energy capacity. The matching or linking of the model's variables to real world U.S. energy data is undertaken. In spite of some limitations of the data, the model and its behavior fit the data fairly well. Some energy policy implications are discussed. - Highlights: ► The model shows how energy capacity is allocated to current output production versus added energy capacity production. ► Two variables in the allocation are the shadow price of capacity and the control variable that determines the allocation. ► The model was linked to U.S. historical energy data and fit the data quite well. ► In particular, the policy control variable was cyclical and consistent with the model. ► Policy implications relevant to the allocation of energy capacity are discussed briefly.

  6. Modelling of plug and play interface for energy router based on IEC61850

    Science.gov (United States)

    Shi, Y. F.; Yang, F.; Gan, L.; He, H. L.

    2017-11-01

    Under the background of the “Internet Plus”, as the energy internet infrastructure equipment, energy router will be widely developed. The IEC61850 standard is the only universal standard in the field of power system automation which realizes the standardization of engineering operation of intelligent substation. To eliminate the lack of International unified standard for communication of energy router, this paper proposes to apply IEC61850 to plug and play interface and establishes the plug and play interface information model and information transfer services. This paper provides a research approach for the establishment of energy router communication standards, and promotes the development of energy router.

  7. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  8. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    DEFF Research Database (Denmark)

    Sibly, RS; Grimm, Volker; Johnston, Alice S.A.

    2013-01-01

    of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction....... If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical...

  9. Waste Biomass Based Energy Supply Chain Network Design

    Directory of Open Access Journals (Sweden)

    Hatice Güneş Yıldız

    2018-06-01

    Full Text Available Reducing dependence on fossil fuels, alleviating environmental impacts and ensuring sustainable economic growth are among the most promising aspects of utilizing renewable energy resources. Biomass is a major renewable energy resource that has the potential for creating sustainable energy systems that are critical in terms of social welfare. Utilization of biomass for bioenergy production is an efficient alternative for meeting rising energy demands, reducing greenhouse gas emissions and thus alleviating climate change. A supply chain for such an energy source is crucial for assisting deliverance of a competitive end product to end-user markets. Considering the existing constraints, a mixed integer linear programming (MILP model for waste biomass based supply chain was proposed in this study for economic performance optimization. Performance of the proposed modelling approach was demonstrated with a real life application study realized in İstanbul. Moreover, sensitivity analyses were conducted which would serve as a foresight for efficient management of the supply chain as a whole

  10. An Energy Integrated Dispatching Strategy of Multi- energy Based on Energy Internet

    Science.gov (United States)

    Jin, Weixia; Han, Jun

    2018-01-01

    Energy internet is a new way of energy use. Energy internet achieves energy efficiency and low cost by scheduling a variety of different forms of energy. Particle Swarm Optimization (PSO) is an advanced algorithm with few parameters, high computational precision and fast convergence speed. By improving the parameters ω, c1 and c2, PSO can improve the convergence speed and calculation accuracy. The objective of optimizing model is lowest cost of fuel, which can meet the load of electricity, heat and cold after all the renewable energy is received. Due to the different energy structure and price in different regions, the optimization strategy needs to be determined according to the algorithm and model.

  11. Effectiveness of energy renovations : a reassessment based on actual consumption savings

    NARCIS (Netherlands)

    Filippidou, F.; Nieboer, N.E.T.; Visscher, H.J.

    2018-01-01

    Energy renovations offer unique opportunities to increase the energy efficiency of the built environment and for the existing housing stock; they are the most important solution. Usually, energy savings are based on modeling calculations. However, recent research has shown that the predicted

  12. Energy minimization of mobile video devices with a hardware H.264/AVC encoder based on energy-rate-distortion optimization

    Science.gov (United States)

    Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min

    2014-09-01

    In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.

  13. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  14. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  15. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  16. Dynamic energy-demand models. A comparison

    International Nuclear Information System (INIS)

    Yi, Feng

    2000-01-01

    This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs

  17. Regional Scale Modelling for Exploring Energy Strategies for Africa

    International Nuclear Information System (INIS)

    Welsch, M.

    2015-01-01

    KTH Royal Institute of Technology was founded in 1827 and it is the largest technical university in Sweden with five campuses and Around 15,000 students. KTH-dESA combines an outstanding knowledge in the field of energy systems analysis. This is demonstrated by the successful collaborations with many (UN) organizations. Regional Scale Modelling for Exploring Energy Strategies for Africa include Assessing renewable energy potentials; Analysing investment strategies; ) Assessing climate resilience; Comparing electrification options; Providing web-based decision support; and Quantifying energy access. It is conclude that Strategies required to ensure a robust and flexible energy system (-> no-regret choices); Capacity investments should be in line with national & regional strategies; Climate change important to consider, as it may strongly influence the energy flows in a region; Long-term models can help identify robust energy investment strategies and pathways that Can help assess future markets and profitability of individual projects

  18. New Energy Utility Business Models

    International Nuclear Information System (INIS)

    Potocnik, V.

    2016-01-01

    Recently a lot of big changes happened in the power sector: energy efficiency and renewable energy sources are quickly progressing, distributed or decentralised generation of electricity is expanding, climate change requires reduction of greenhouse gas emissions and price volatility and incertitude of fossil fuel supply is common. Those changes have led to obsolescence of vertically integrated business models which have dominated in energy utility organisations for a hundred years and new business models are being introduced. Those models take into account current changes in the power sector and enable a wider application of energy efficiency and renewable energy sources, especially for consumers, with the decentralisation of electricity generation and complying with the requirements of climate and environment preservation. New business models also solve the questions of financial compensations for utilities because of the reduction of centralised energy generation while contributing to local development and employment.(author).

  19. Energy deposition model for low-energy electrons (10-10 000 eV) in air

    International Nuclear Information System (INIS)

    Roldan, A.; Perez, J.M.; Williart, A.; Blanco, F.; Garcia, G.

    2004-01-01

    An energy deposition model for electrons in air that can be useful in microdosimetric applications is presented in this study. The model is based on a Monte Carlo simulation of the single electron scattering processes that can take place with the molecular constituents of the air in the energy range 10-10 000 eV. The input parameters for this procedure have been the electron scattering cross sections, both differential and integral. These parameters were calculated using a model potential method which describes the electron scattering with the molecular constituent of air. The reliability of the calculated integral cross section values has been evaluated by comparison with direct total electron scattering cross-section measurements performed by us in a transmission beam experiment. Experimental energy loss spectra for electrons in air have been used as probability distribution functions to define the electron energy loss in single collision events. The resulting model has been applied to simulate the electron transport through a gas cell containing air at different pressures and the results have been compared with those observed in the experiments. Finally, as an example of its applicability to dosimetric issues, the energy deposition of 10 000 eV by means of successive collisions in a free air chamber has been simulated

  20. Energy-economy models and energy efficiency policy evaluation for the household sector. An analysis of modelling tools and analytical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena

    2009-10-15

    Using the residential sector as a case study, the research presented in this report is separated into five main parts: (1) review of bottom-up methodologies and corresponding energy-economy models; (2) key drivers of energy demand and end-use coverage, (3) choice-determinants for efficient-technologies embedded in modelling methodologies; and (4) the analysis of modelling studies that focus on ex-ante energy efficiency policy evaluation. Based on the findings, (5) several research areas to further advance models are identified and discussed. We first identify four types of methodological categories: simulation, optimisation, accounting and hybrid models. A representative sample of these various methodological categories is reviewed. Technology representation is mostly explicit and technologically rich across all the reviewed models. This is a critical requisite for simulating energy efficiency policy instruments or portfolios that aim to induce ample technological change. Regardless the methodological approach, the explicit and rich technological component allows coverage of numerous energy services. All the reviewed models originate from the OECD region and more than 60 per cent of the identified applications focus mostly on developed countries. To some extent, this finding correlates with the claims about the need for more policy evaluation efforts to assist energy efficiency policy and other GHG mitigation options for the building sector in developing countries. We find that whereas capital and operating costs are relevant for efficient-technology (non-)adoption, they represent only a part of a great variety of determinants that drives consumer's energy-related decisions regarding technology choices. Factors including design, comfort, brand, functionality, reliability, environmental awareness, among others, are likely to influence the decisions of consumers in reality. Whereas economic variables are used as key determinants for technology choice in energy

  1. Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2011-01-01

    The system-level consideration of inter- mittent renewable energy sources and small-scale en- ergy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Non-controllability and energy-constraints are still considered contingent cases...... in market-based operation. The design of operation strategies for up to 100 % renewable energy systems requires an explicit consideration of non-dispatchable generation and stor- age capacities, as well as the evaluation of operational performance in terms of energy eciency, reliability, environmental...... impact and cost. By abstracting from technology-dependent and physical unit properties, the modeling framework presented and extended in this pa- per allows the modeling of a technologically diverse unit portfolio with a unied approach, whilst establishing the feasibility of energy-storage consideration...

  2. Total energy calculations from self-energy models

    International Nuclear Information System (INIS)

    Sanchez-Friera, P.

    2001-06-01

    Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)

  3. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies.

    Science.gov (United States)

    Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad

    2018-02-01

    The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  5. A multi-lateral trading model for coupled gas-heat-power energy networks

    International Nuclear Information System (INIS)

    Chen, Yue; Wei, Wei; Liu, Feng; Mei, Shengwei

    2017-01-01

    Highlights: •Optimal energy flows in the gas, heat, and power systems are modeled in detail. •A multi-lateral trading model for the coupled energy markets is proposed. •A two-phase algorithm for computing the market equilibrium. •Case studies demonstrate that market competition pilots reasonable energy prices. -- Abstract: The proliferation of cogeneration technology and the need for more resilient energy utilization inspire the emerging trend of integration of multi-resource energy systems, in which natural gas, heat, and electricity are produced, delivered, converted, and distributed more efficiently and flexibly. The increasing interactions and interdependencies across heterogenous physical networks impose remarkable challenges on the operation and market organization. This paper envisions the market trading scheme in the network-coupled natural gas system, district heating system, and power system. Based on the physical energy flow models of each system and their interdependency, a multi-lateral trading gas-heat-power (MLT-GHP) model is suggested, and a mixed-integer linear programming based two-phase algorithm is developed to find the market equilibrium. Case studies on two testing systems demonstrate the effectiveness of the proposed model and method, showing that the multi-lateral trading essentially results in market competition that orientates reasonable energy prices. Some prospects for future researches are also summarized.

  6. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  7. A multi-reservoir based water-hydroenergy management model for identifying the risk horizon of regional resources-energy policy under uncertainties

    International Nuclear Information System (INIS)

    Zeng, X.T.; Zhang, S.J.; Feng, J.; Huang, G.H.; Li, Y.P.; Zhang, P.; Chen, J.P.; Li, K.L.

    2017-01-01

    Highlights: • A multi-reservoir system can handle water/energy deficit, flood and sediment damage. • A MWH model is developed for planning a water allocation and energy generation issue. • A mixed fuzzy-stochastic risk analysis method (MFSR) can handle uncertainties in MWH. • A hybrid MWH model can plan human-recourse-energy with a robust and effective manner. • Results can support adjusting water-energy policy to satisfy increasing demands. - Abstract: In this study, a multi-reservoir based water-hydroenergy management (MWH) model is developed for planning water allocation and hydroenergy generation (WAHG) under uncertainties. A mixed fuzzy-stochastic risk analysis method (MFSR) is introduced to handle objective and subjective uncertainties in MWH model, which can couple fuzzy credibility programming and risk management within a general two-stage context, with aim to reflect the infeasibility risks between expected targets and random second-stage recourse costs. The developed MWH model (embedded by MFSR method) can be applied to a practical study of WAHG issue in Jing River Basin (China), which encounters conflicts between human activity and resource/energy crisis. The construction of water-energy nexus (WEN) is built to reflect integrity of economic development and resource/energy conservation, as well as confronting natural and artificial damages such as water deficit, electricity insufficient, floodwater, high sedimentation deposition contemporarily. Meanwhile, the obtained results with various credibility levels and target-violated risk levels can support generating a robust plan associated with risk control for identification of the optimized water-allocation and hydroenergy-generation alternatives, as well as flood controls. Moreover, results can be beneficial for policymakers to discern the optimal water/sediment release routes, reservoirs’ storage variations (impacted by sediment deposition), electricity supply schedules and system benefit

  8. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  9. Cloud-Based Model Calibration Using OpenStudio: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Lisell, L.; Goldwasser, D.; Macumber, D.; Dean, J.; Metzger, I.; Parker, A.; Long, N.; Ball, B.; Schott, M.; Weaver, E.; Brackney, L.

    2014-03-01

    OpenStudio is a free, open source Software Development Kit (SDK) and application suite for performing building energy modeling and analysis. The OpenStudio Parametric Analysis Tool has been extended to allow cloud-based simulation of multiple OpenStudio models parametrically related to a baseline model. This paper describes the new cloud-based simulation functionality and presents a model cali-bration case study. Calibration is initiated by entering actual monthly utility bill data into the baseline model. Multiple parameters are then varied over multiple iterations to reduce the difference between actual energy consumption and model simulation results, as calculated and visualized by billing period and by fuel type. Simulations are per-formed in parallel using the Amazon Elastic Cloud service. This paper highlights model parameterizations (measures) used for calibration, but the same multi-nodal computing architecture is available for other purposes, for example, recommending combinations of retrofit energy saving measures using the calibrated model as the new baseline.

  10. Development of the hard and soft constraints based optimisation model for unit sizing of the hybrid renewable energy system designed for microgrid applications

    Science.gov (United States)

    Sundaramoorthy, Kumaravel

    2017-02-01

    The hybrid energy systems (HESs) based electricity generation system has become a more attractive solution for rural electrification nowadays. Economically feasible and technically reliable HESs are solidly based on an optimisation stage. This article discusses about the optimal unit sizing model with the objective function to minimise the total cost of the HES. Three typical rural sites from southern part of India have been selected for the application of the developed optimisation methodology. Feasibility studies and sensitivity analysis on the optimal HES are discussed elaborately in this article. A comparison has been carried out with the Hybrid Optimization Model for Electric Renewable optimisation model for three sites. The optimal HES is found with less total net present rate and rate of energy compared with the existing method

  11. Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2007-01-01

    The most important theme in this study is to obtain equations based on economic indicators (gross national product-GNP and gross domestic product-GDP) and population increase to predict the net energy consumption of Turkey using artificial neural networks (ANNs) in order to determine future level of the energy consumption and make correct investments in Turkey. In this study, three different models were used in order to train the ANN. In one of them (Model 1), energy indicators such as installed capacity, generation, energy import and energy export, in second (Model 2), GNP was used and in the third (Model 3), GDP was used as the input layer of the network. The net energy consumption (NEC) is in the output layer for all models. In order to train the neural network, economic and energy data for last 37 years (1968-2005) are used in network for all models. The aim of used different models is to demonstrate the effect of economic indicators on the estimation of NEC. The maximum mean absolute percentage error (MAPE) was found to be 2.322732, 1.110525 and 1.122048 for Models 1, 2 and 3, respectively. R 2 values were obtained as 0.999444, 0.999903 and 0.999903 for training data of Models 1, 2 and 3, respectively. The ANN approach shows greater accuracy for evaluating NEC based on economic indicators. Based on the outputs of the study, the ANN model can be used to estimate the NEC from the country's population and economic indicators with high confidence for planing future projections

  12. Neural network model for proton-proton collision at high energy

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.; El-Metwally, K.A.

    2003-01-01

    Developments in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural networks (ANN) have recently been used to design and implement more effective models. The primary purpose of this paper is to model the proton-proton (p-p) collision using the ANN technique. Following a review of the conventional techniques and an introduction to the neural network, the paper presents simulation test results using an p-p based ANN model trained with experimental data. The p-p based ANN model calculates the multiplicity distribution of charged particles and the inelastic cross section of the p-p collision at high energies. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  13. Using net energy output as the base to develop renewable energy

    International Nuclear Information System (INIS)

    Shaw Daigee; Hung Mingfeng; Lin Yihao

    2010-01-01

    In order to increase energy security, production of renewable energies has been highly promoted by governments around the world in recent years. The typical base of various policy instruments used for this purpose is gross energy output of renewable energy. However, we show that basing policy instruments on gross energy output will result in problems associated with energy waste, economic inefficiency, and negative environmental effects. We recommend using net energy output as the base to apply price or quantity measures because it is net energy output, not gross energy output, which contributes to energy security. The promotion of gross energy output does not guarantee a positive amount of net energy output. By basing policy instruments on net energy output, energy security can be enhanced and the above mentioned problems can be avoided.

  14. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  15. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  16. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...... for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally...... renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland’s energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration...

  17. Energy spectra of odd nuclei in the generalized model

    Directory of Open Access Journals (Sweden)

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  18. Economic modelling of energy services: Rectifying misspecified energy demand functions

    International Nuclear Information System (INIS)

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    Although it is well known that energy demand is derived, since energy is required not for its own sake but for the energy services it produces – such as heating, lighting, and motive power – energy demand models, both theoretical and empirical, often fail to take account of this feature. In this paper, we highlight the misspecification that results from ignoring this aspect, and its empirical implications – biased estimates of price elasticities and other measures – and provide a relatively simple and empirically practicable way to rectify it, which has a strong theoretical grounding. To do so, we develop an explicit model of consumer behaviour in which utility derives from consumption of energy services rather than from the energy sources that are used to produce them. As we discuss, this approach opens up the possibility of examining many aspects of energy demand in a theoretically sound way that have not previously been considered on a widespread basis, although some existing empirical work could be interpreted as being consistent with this type of specification. While this formulation yields demand equations for energy services rather than for energy or particular energy sources, these are shown to be readily converted, without added complexity, into the standard type of energy demand equation(s) that is (are) typically estimated. The additional terms that the resulting energy demand equations include, compared to those that are typically estimated, highlight the misspecification that is implicit when typical energy demand equations are estimated. A simple solution for dealing with an apparent drawback of this formulation for empirical purposes, namely that information is required on typically unobserved energy efficiency, indicates how energy efficiency can be captured in the model, such as by including exogenous trends and/or including its possible dependence on past energy prices. The approach is illustrated using an empirical example that involves

  19. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    Science.gov (United States)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  20. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings.

    Science.gov (United States)

    Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M

    2017-12-05

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  1. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

    Directory of Open Access Journals (Sweden)

    Chinmaya Mahapatra

    2017-12-01

    Full Text Available Around the globe, innovation with integrating information and communication technologies (ICT with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  2. Uncertainty analysis of an integrated energy system based on information theory

    International Nuclear Information System (INIS)

    Fu, Xueqian; Sun, Hongbin; Guo, Qinglai; Pan, Zhaoguang; Xiong, Wen; Wang, Li

    2017-01-01

    Currently, a custom-designed configuration of different renewable technologies named the integrated energy system (IES) has become popular due to its high efficiency, benefiting from complementary multi-energy technologies. This paper proposes an information entropy approach to quantify uncertainty in an integrated energy system based on a stochastic model that drives a power system model derived from an actual network on Barry Island. Due to the complexity of co-behaviours between generators, a copula-based approach is utilized to articulate the dependency structure of the generator outputs with regard to such factors as weather conditions. Correlation coefficients and mutual information, which are effective for assessing the dependence relationships, are applied to judge whether the stochastic IES model is correct. The calculated information values can be used to analyse the impacts of the coupling of power and heat on power flows and heat flows, and this approach will be helpful for improving the operation of IES. - Highlights: • The paper explores uncertainty of an integrated energy system. • The dependent weather model is verified from the perspective of correlativity. • The IES model considers the dependence between power and heat. • The information theory helps analyse the complexity of IES operation. • The application of the model is studied using an operational system on Barry Island.

  3. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  4. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  5. Construction and analysis of the model of energy metabolism in E. coli.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Genome-scale models of metabolism have only been analyzed with the constraint-based modelling philosophy and there have been several genome-scale gene-protein-reaction models. But research on the modelling for energy metabolism of organisms just began in recent years and research on metabolic weighted complex network are rare in literature. We have made three research based on the complete model of E. coli's energy metabolism. We first constructed a metabolic weighted network using the rates of free energy consumption within metabolic reactions as the weights. We then analyzed some structural characters of the metabolic weighted network that we constructed. We found that the distribution of the weight values was uneven, that most of the weight values were zero while reactions with abstract large weight values were rare and that the relationship between w (weight values and v (flux values was not of linear correlation. At last, we have done some research on the equilibrium of free energy for the energy metabolism system of E. coli. We found that E(out (free energy rate input from the environment can meet the demand of E(ch(in (free energy rate dissipated by chemical process and that chemical process plays a great role in the dissipation of free energy in cells. By these research and to a certain extend, we can understand more about the energy metabolism of E. coli.

  6. Business model innovation for Local Energy Management: a perspective from Swiss utilities

    Directory of Open Access Journals (Sweden)

    Emanuele Facchinetti

    2016-08-01

    Full Text Available The successful deployment of the energy transition relies on a deep reorganization of the energy market. Business model innovation is recognized as a key driver of this process. This work contributes to this topic by providing to potential Local Energy Management stakeholders and policy makers a conceptual framework guiding the Local Energy Management business model innovation. The main determinants characterizing Local Energy Management concepts and impacting its business model innovation are identified through literature reviews on distributed generation typologies and customer/investor preferences related to new business opportunities emerging with the energy transition. Afterwards, the relation between the identified determinants and the Local Energy Management business model solution space is analyzed based on semi-structured interviews with managers of Swiss utilities companies. The collected managers’ preferences serve as explorative indicators supporting the business model innovation process and provide insights to policy makers on challenges and opportunities related to Local Energy Management.

  7. Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets

    International Nuclear Information System (INIS)

    Cerezo Davila, Carlos; Reinhart, Christoph F.; Bemis, Jamie L.

    2016-01-01

    City governments and energy utilities are increasingly focusing on the development of energy efficiency strategies for buildings as a key component in emission reduction plans and energy supply strategies. To support these diverse needs, a new generation of Urban Building Energy Models (UBEM) is currently being developed and validated to estimate citywide hourly energy demands at the building level. However, in order for cities to rely on UBEMs, effective model generation and maintenance workflows are needed based on existing urban data structures. Within this context, the authors collaborated with the Boston Redevelopment Authority to develop a citywide UBEM based on official GIS datasets and a custom building archetype library. Energy models for 83,541 buildings were generated and assigned one of 52 use/age archetypes, within the CAD modelling environment Rhinoceros3D. The buildings were then simulated using the US DOE EnergyPlus simulation program, and results for buildings of the same archetype were crosschecked against data from the US national energy consumption surveys. A district-level intervention combining photovoltaics with demand side management is presented to demonstrate the ability of UBEM to provide actionable information. Lack of widely available archetype templates and metered energy data, were identified as key barriers within existing workflows that may impede cities from effectively applying UBEM to guide energy policy. - Highlights: • Data requirements for Urban Building Energy Models are reviewed. • A workflow for UBEM generation from available GIS datasets is developed. • A citywide demand simulation model for Boston is generated and tested. • Limitations for UBEM in current urban data systems are identified and discussed. • Model application for energy management policy is shown in an urban PV scenario.

  8. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  9. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  10. A modeling method for hybrid energy behaviors in flexible machining systems

    International Nuclear Information System (INIS)

    Li, Yufeng; He, Yan; Wang, Yan; Wang, Yulin; Yan, Ping; Lin, Shenlong

    2015-01-01

    Increasingly environmental and economic pressures have led to great concerns regarding the energy consumption of machining systems. Understanding energy behaviors of flexible machining systems is a prerequisite for improving energy efficiency of these systems. This paper proposes a modeling method to predict energy behaviors in flexible machining systems. The hybrid energy behaviors not only depend on the technical specification related of machine tools and workpieces, but are significantly affected by individual production scenarios. In the method, hybrid energy behaviors are decomposed into Structure-related energy behaviors, State-related energy behaviors, Process-related energy behaviors and Assignment-related energy behaviors. The modeling method for the hybrid energy behaviors is proposed based on Colored Timed Object-oriented Petri Net (CTOPN). The former two types of energy behaviors are modeled by constructing the structure of CTOPN, whist the latter two types of behaviors are simulated by applying colored tokens and associated attributes. Machining on two workpieces in the experimental workshop were undertaken to verify the proposed modeling method. The results showed that the method can provide multi-perspective transparency on energy consumption related to machine tools, workpieces as well as production management, and is particularly suitable for flexible manufacturing system when frequent changes in machining systems are often encountered. - Highlights: • Energy behaviors in flexible machining systems are modeled in this paper. • Hybrid characteristics of energy behaviors are examined from multiple viewpoints. • Flexible modeling method CTOPN is used to predict the hybrid energy behaviors. • This work offers a multi-perspective transparency on energy consumption

  11. Models for the energy performance of low-energy houses

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff

    of buildings, the first topic analyzed is the variation of presence of occupants. As buildings get more energy-effcient, internal loads and user-behavior increasingly influence the energy consumption. Most simulation tools use deterministic occupancy profiles to simulate internal loads. However, such occupancy......The aim of this thesis is data-driven modeling of heat dynamics of buildings. Traditionally, thermal modeling of buildings is done using simulation tools which take information about the construction, weather data, occupancy etc. as inputs and generate deterministic energy profiles of the buildings....... The approach to modeling occupants’ presence provides a flexible method where no assumptions in the application. The rest of the thesis deals with statistical modeling of heat dynamics of buildings. First, discrete-time models are applied. Discrete-time models are computationally relatively simple and provide...

  12. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    Science.gov (United States)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  13. Model Based Control of Reefer Container Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær

    This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together with the Da......This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together...

  14. Italian energy scenarios: Markal model

    International Nuclear Information System (INIS)

    Gracceva, Francesco

    2005-01-01

    Energy scenarios carried out through formal models comply with scientific criteria such as internal coherence and transparency. Besides, Markal methodology allows a good understanding of the complex nature of the energy system. The business-as-usual scenario carried out through the Markal-Italy model shows that structural changes occurring in end-use sectors will continue to drive up energy consumption, in spite of the slow economic growth and the quite high energy prices [it

  15. Experience in Modelling Nuclear Energy Systems with MESSAGE: Country Case Studies

    International Nuclear Information System (INIS)

    2018-01-01

    Member States have recognized the increasing need to model future nuclear power scenarios in order to develop strategies for sustainable nuclear energy systems. The IAEA model for energy supply strategy alternatives and their general environmental impacts (MESSAGE) code is a tool that supports energy analysis and planning in Member States. This publication documents the experience gained on modelling and scenario analysis of nuclear energy systems (NES) using the MESSAGE code through various case studies performed by the participating Member States on evaluation and planning for nuclear energy sustainability at the regional or national level. The publication also elaborates on experience gained in modelling of global nuclear energy systems with a focus on specific aspects of collaboration among technology holder and technology user countries and the introduction of innovative nuclear technologies. It presents country case studies covering a variety of nuclear energy systems based on a once-through fuel cycle and a closed fuel cycle for thermal reactors, fast reactors and advanced systems. The feedback from case studies proves the analytical capabilities of the MESSAGE model and highlight the path forward for further advancements in the MESSAGE code and NES modelling.

  16. Towards an energy management maturity model

    International Nuclear Information System (INIS)

    Antunes, Pedro; Carreira, Paulo; Mira da Silva, Miguel

    2014-01-01

    Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001. - Highlights: • Real-world energy management activities are not aligned with the literature. • An Energy Management Maturity Model is proposed to overcome this alignment gap. • The completeness and relevance of proposed model are validated

  17. Energy Information Augmented Community-Based Energy Reduction

    Directory of Open Access Journals (Sweden)

    Mark Rembert

    2012-06-01

    Full Text Available More than one-half of all U.S. states have instituted energy efficiency mandates requiring utilities to reduce energy use. To achieve these goals, utilities have been permitted rate structures to help them incentivize energy reduction projects. This strategy is proving to be only modestly successful in stemming energy consumption growth. By the same token, community energy reduction programs have achieved moderate to very significant energy reduction. The research described here offers an important tool to strengthen the community energy reduction efforts—by providing such efforts energy information tailored to the energy use patterns of each building occupant. The information provided most importantly helps each individual energy customer understand their potential for energy savings and what reduction measures are most important to them. This information can be leveraged by the leading community organization to prompt greater action in its community. A number of case studies of this model are shown. Early results are promising.

  18. A study of pricing and trading model of Blockchain & Big data-based Energy-Internet electricity

    Science.gov (United States)

    Fan, Tao; He, Qingsu; Nie, Erbao; Chen, Shaozhen

    2018-01-01

    The development of Energy-Internet is currently suffering from a series of issues, such as the conflicts among high capital requirement, low-cost, high efficiency, the spreading gap between capital demand and supply, as well as the lagged trading & valuation mechanism, any of which would hinder Energy-Internet's evolution. However, with the development of Blockchain and big-data technology, it is possible to work out solutions for these issues. Based on current situation of Energy-Internet and its requirements for future progress, this paper demonstrates the validity of employing blockchain technology to solve the problems encountered by Energy-Internet during its development. It proposes applying the blockchain and big-data technologies to pricing and trading energy products through Energy-Internet and to accomplish cyber-based energy or power's transformation from physic products to financial assets.

  19. Using Leaf Chlorophyll to Parameterize Light-Use-Efficiency Within a Thermal-Based Carbon, Water and Energy Exchange Model

    Science.gov (United States)

    Houlborg, Rasmus; Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.; Rodell, Matthew

    2010-01-01

    Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C(sub ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C(sub ab) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from a nominal (species-dependent) value (LUE(sub n)) in response to short term variations in environmental conditions, However LUE(sub n) may need adjustment on a daily timescale to accommodate changes in plant phenology, physiological condition and nutrient status. Day to day variations in LUE(sub n) were assessed for a heterogeneous corn crop field in Maryland, U,S.A. through model calibration with eddy covariance CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. The time continuous maps of daily C(sub ab) over the study field were generated by focusing in-situ measurements with retrievals generated with an integrated radiative transfer modeling tool (accurate to within +/-10%) using at-sensor radiances in green, red and near-infrared wavelengths acquired with an aircraft imaging system. The resultant daily changes in C(sub ab) within the tower flux source area generally correlated well with corresponding changes in daily calibrated LUE(sub n) derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio

  20. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    OpenAIRE

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical d...

  1. Energy information data base: subject thesaurus

    International Nuclear Information System (INIS)

    1979-10-01

    The technical staff of the DOE Technical Information Center, during its subject indexing activities, develops and structures a vocabulary that allows consistent machine storage and retrieval of information necessary to the accomplishment of the DOE mission. This thesaurus incorporates that structured vocabulary. The terminology of this thesaurus is used for the subject control of information announced in DOE Energy Research Abstracts, Energy Abstracts for Policy Analysis, Solar Energy Update, Geothermal Energy Update, Fossil Energy Update, Fusion Energy Update, and Energy Conservation Update. This terminology also facilitates subject searching of the DOE energy information data base, a research in progress data base, a general and practical energy information data base, power reactor docket information data base, nuclear science abstracts data base, and the federal energy information data base on the DOE on-line retrieval system, RECON. The rapid expansion of the DOE's activities will result in a concomitant thesaurus expansion as information relating to new activities is indexed. Only the terms used in the indexing of documents at the Technical Information Center to date are included

  2. Agent-based modelling to improve comfort and save energy in the built environment

    NARCIS (Netherlands)

    Zeiler, W.; Boxem, G.; Houten, van M.A.; Velden, van der J.A.J.; Wortel, W.; Kamphuis, I.G.; Rangan, R; Proctor, F

    2008-01-01

    In Europe comfort in buildings needs 40% of the total energy. With effects of Global warming becoming more and more apparent there is a need to reduce this energy demand by comfort within the built environment. In comfort control strategy there is an exciting development based on inclusive design:

  3. An objective decision model of power grid environmental protection based on environmental influence index and energy-saving and emission-reducing index

    Science.gov (United States)

    Feng, Jun-shu; Jin, Yan-ming; Hao, Wei-hua

    2017-01-01

    Based on modelling the environmental influence index of power transmission and transformation project and energy-saving and emission-reducing index of source-grid-load of power system, this paper establishes an objective decision model of power grid environmental protection, with constraints of power grid environmental protection objectives being legal and economical, and considering both positive and negative influences of grid on the environmental in all-life grid cycle. This model can be used to guide the programming work of power grid environmental protection. A numerical simulation of Jiangsu province’s power grid environmental protection objective decision model has been operated, and the results shows that the maximum goal of energy-saving and emission-reducing benefits would be reached firstly as investment increasing, and then the minimum goal of environmental influence.

  4. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  5. Energy saving analysis and management modeling based on index decomposition analysis integrated energy saving potential method: Application to complex chemical processes

    International Nuclear Information System (INIS)

    Geng, Zhiqiang; Gao, Huachao; Wang, Yanqing; Han, Yongming; Zhu, Qunxiong

    2017-01-01

    Highlights: • The integrated framework that combines IDA with energy-saving potential method is proposed. • Energy saving analysis and management framework of complex chemical processes is obtained. • This proposed method is efficient in energy optimization and carbon emissions of complex chemical processes. - Abstract: Energy saving and management of complex chemical processes play a crucial role in the sustainable development procedure. In order to analyze the effect of the technology, management level, and production structure having on energy efficiency and energy saving potential, this paper proposed a novel integrated framework that combines index decomposition analysis (IDA) with energy saving potential method. The IDA method can obtain the level of energy activity, energy hierarchy and energy intensity effectively based on data-drive to reflect the impact of energy usage. The energy saving potential method can verify the correctness of the improvement direction proposed by the IDA method. Meanwhile, energy efficiency improvement, energy consumption reduction and energy savings can be visually discovered by the proposed framework. The demonstration analysis of ethylene production has verified the practicality of the proposed method. Moreover, we can obtain the corresponding improvement for the ethylene production based on the demonstration analysis. The energy efficiency index and the energy saving potential of these worst months can be increased by 6.7% and 7.4%, respectively. And the carbon emissions can be reduced by 7.4–8.2%.

  6. Modeling and optimization of energy consumption in multipurpose batch plants - 2006 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Szijjarto, A.

    2006-12-15

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2006 on the development of a model that is able to make prognoses concerning the energy consumption of chemical batch processes and thus enable these to be optimised. In the year under review, reliable models and software modelling tools were developed. The tools are based on commercially available simulation software. The authors note that the bottom-up model presented in the previous reports is powerful and robust enough to treat a significant amount of the process data in reasonable time. The model was tested for the modelling of energy consumption in the case-study plant during a period of two months. Up to 30 batches of 9 different products were produced in this period. The resolution of the model is discussed, which is very useful for identification of the process steps with the highest energy consumption. Energy-saving potential is noted. Based on these results, one product was chosen which is to be investigated in the final stage of the project in order to optimise the energy consumption of the case-study plant. The authors note that the methodology and software tools developed can be later applied for other products or chemical batch plants.

  7. A Three-Box Model of Thermohaline Circulation under the Energy Constraint

    International Nuclear Information System (INIS)

    Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke

    2011-01-01

    The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)

  8. Upcrowding energy co-operatives - Evaluating the potential of crowdfunding for business model innovation of energy co-operatives.

    Science.gov (United States)

    Dilger, Mathias Georg; Jovanović, Tanja; Voigt, Kai-Ingo

    2017-08-01

    Practice and theory have proven the relevance of energy co-operatives for civic participation in the energy turnaround. However, due to a still low awareness and changing regulation, there seems an unexploited potential of utilizing the legal form 'co-operative' in this context. The aim of this study is therefore to investigate the crowdfunding implementation in the business model of energy co-operatives in order to cope with the mentioned challenges. Based on a theoretical framework, we derive a Business Model Innovation (BMI) through crowdfunding including synergies and differences. A qualitative study design, particularly a multiple-case study of energy co-operatives, was chosen to prove the BMI and to reveal barriers. The results show that although most co-operatives are not familiar with crowdfunding, there is strong potential in opening up predominantly local structures to a broader group of members. Building on this, equity-based crowdfunding is revealed to be suitable for energy co-operatives as BMI and to accompany other challenges in the same way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Energy Storage in Power System Operation: The Power Nodes Modeling Framework

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2010-01-01

    for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization......In this paper, a novel concept for the description of energy storage in power systems with dispatchable and non-dispatchable generators and loads is presented. It is based on a system-perspective consideration of energy storage, generation and consumption. This means that grid-relevant aspects...

  10. Energy modelling towards low carbon development of Beijing in 2030

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Jiang, Kejun

    2017-01-01

    Beijing, as the capacity capital of China, is under the pressure of climate change and pollution. Nonrenewable energy generation and consumption is one of the most important sources of CO2 emissions, which cause climate changes. This paper presents a study on the energy system modeling towards...... scenario 2030, (ii) BAU (business as usual) scenario 2030 and (iii) RES (renewable energies) scenario 2030. The results shows that the share of renewables can increase to 100% of electricity and heat production in the RE scenario. The primary fuel consumption is reduced to 155.9 TWh, which is 72 % of fuel...... renewable energy and low carbon development for the city of Beijing. The analysis of energy system modeling is organized in two steps to explore the potential renewable energy alternative in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The Energy...

  11. Sharing economy as a new business model for energy storage systems

    International Nuclear Information System (INIS)

    Lombardi, P.; Schwabe, F.

    2017-01-01

    Highlights: • Sharing economy as new business model for Energy Storage Operators. • More attractiveness of Battery Storage Systems. • Optimal Dimensioning of Battery Storage Systems for sharing economy application. - Abstract: Energy storage systems (ESS) are the candidate solution to integrate the high amount of electric power generated by volatile renewable energy sources into the electric grid. However, even though the investment costs of some ESS technologies have decreased over the last few years, few business models seem to be attractive for investors. In most of these models, ESS are applied only for one use case, such as primary control reserve. In this study, a business model based on the sharing economy principle has been developed and analyzed. In this model, the energy storage operator offers its storage system to different kinds of customers. Each customer uses the ESS for their single use case. A set of different use cases has been identified to make the operation of the ESS profitable (e.g. peak shaving, self-consumption and day-ahead market participation). Different kinds of stationary batteries (lithium-ion, sodium-sulfur and vanadium redox-flow) have been considered as energy storage technologies, which differ both in their investment costs and their technical properties, such as round-trip efficiency. The simulation of the business model developed showed that a sharing economy-based model may increase the profitability of operating a battery storage system compared to the single use case business model. Additionally, larger battery dimensions regarding power and capacity were found to be profitable and resulted in an increased revenue stream.

  12. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  13. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems

    Directory of Open Access Journals (Sweden)

    Hegazy Rezk

    2015-09-01

    Full Text Available This paper presents a new Matlab/Simulink model of a PV module and a maximum power point tracking (MPPT system for high efficiency InGaP/InGaAs/Ge triple-junction solar cell. The proposed technique is based on Artificial Neural Network. The equivalent circuit model of the triple-junction solar cell includes the parameters of each sub-cell. It is also include the effect of the temperature variations on the energy gap of each sub-cell as well as the diode reverse saturation currents. The implementation of a PV model is based on the triple-junction solar cell in the form of masked block in Matlab/Simulink software package that has a user-friendly icon and dialog. It is fast and accurate technique to follow the maximum power point. The simulation results of the proposed MPPT technique are compared with Perturb and Observe MPPT technique. The output power and energy of the proposed technique are higher than that of the Perturb and Observe MPPT technique. The proposed technique increases the output energy per day for a one PV module from 3.37 kW h to 3.75 kW h, i.e. a percentage of 11.28%.

  14. Modeling and energy efficiency optimization of belt conveyors

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2011-01-01

    Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.

  15. Balancing energy development and conservation: A method utilizing species distribution models

    Science.gov (United States)

    Jarnevich, C.S.; Laubhan, M.K.

    2011-01-01

    Alternative energy development is increasing, potentially leading to negative impacts on wildlife populations already stressed by other factors. Resource managers require a scientifically based methodology to balance energy development and species conservation, so we investigated modeling habitat suitability using Maximum Entropy to develop maps that could be used with other information to help site energy developments. We selected one species of concern, the Lesser Prairie-Chicken (LPCH; Tympanuchus pallidicinctus) found on the southern Great Plains of North America, as our case study. LPCH populations have been declining and are potentially further impacted by energy development. We used LPCH lek locations in the state of Kansas along with several environmental and anthropogenic parameters to develop models that predict the probability of lek occurrence across the landscape. The models all performed well as indicated by the high test area under the curve (AUC) scores (all >0.9). The inclusion of anthropogenic parameters in models resulted in slightly better performance based on AUC values, indicating that anthropogenic features may impact LPCH lek habitat suitability. Given the positive model results, this methodology may provide additional guidance in designing future survey protocols, as well as siting of energy development in areas of marginal or unsuitable habitat for species of concern. This technique could help to standardize and quantify the impacts various developments have upon at-risk species. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  16. An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring

    International Nuclear Information System (INIS)

    Giri, Suman; Bergés, Mario

    2015-01-01

    Highlights: • Energy estimation is NILM has not yet accounted for complexity of appliance models. • We present a data-driven framework for appliance modeling in supervised NILM. • We test the framework on 3 houses and report average accuracies of 5.9–22.4%. • Appliance models facilitate the estimation of energy consumed by the appliance. - Abstract: Non-Intrusive Load Monitoring (NILM) is a set of techniques used to estimate the electricity consumed by individual appliances in a building from measurements of the total electrical consumption. Most commonly, NILM works by first attributing any significant change in the total power consumption (also known as an event) to a specific load and subsequently using these attributions (i.e. the labels for the events) to estimate energy for each load. For this last step, most published work in the field makes simplifying assumptions to make the problem more tractable. In this paper, we present a framework for creating appliance models based on classification labels and aggregate power measurements that can help to relax many of these assumptions. Our framework automatically builds models for appliances to perform energy estimation. The model relies on feature extraction, clustering via affinity propagation, perturbation of extracted states to ensure that they mimic appliance behavior, creation of finite state models, correction of any errors in classification that might violate the model, and estimation of energy based on corrected labels. We evaluate our framework on 3 houses from standard datasets in the field and show that the framework can learn data-driven models based on event labels and use that to estimate energy with lower error margins (e.g., 1.1–42.3%) than when using the heuristic models used by others

  17. An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-11-01

    Full Text Available In this study, an interval fuzzy-stochastic chance-constrained programming based energy-water nexus (IFSCP-WEN model is developed for planning electric power system (EPS. The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability distributions, as well as interval values. Different credibility (i.e., γ levels and probability (i.e., qi levels are set to reflect relationships among water supply, electricity generation, system cost, and constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system cost, imported electricity, electricity generation, and water supply. Results also disclose that the study EPS would tend to the transition from coal-dominated into clean energy-dominated. Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper bound of interval value, respectively of the total electricity generation. Correspondingly, water allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total water supply. The ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by co-optimizing energy and water resources.

  18. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.

    Science.gov (United States)

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-10-14

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  19. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    Science.gov (United States)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  20. Studies on nuclear fusion energy potential based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Fujino, J.; Asaoka, Y.

    2001-01-01

    This study investigates introduction conditions and potential of nuclear fusion energy as energy supply and CO 2 mitigation technologies in the 21st century. Time horizon of the 21st century, 10 regionally allocated world energy/environment model (Linearized Dynamic New Earth 21) is used for this study. Following nuclear fusion technological data are taken into consideration: cost of electricity (COE) in nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and maximum regional plant capacity constraints by maximum plant construction speed. We made simulation under a constraint of atmospheric CO 2 concentration of 550 parts per million by volume (ppmv) targeted at year 2100, assuming that sequestration technologies and unknown innovative technologies for CO 2 reduction are available. The results indicate that under the 550ppm scenario with nuclear fusion within maximum construction speed, 66mill/kWh is required for introducing nuclear fusion in 2050, 92 mill/kWh in 2060, and 106 mill/kWh in 2070. Therefore, tokamak type nuclear fusion reactors of present several reactor cost estimates are expected to be introduced between 2060 and 2070, and electricity generation fraction by nuclear fusion will go around 20% in 2100 if nuclear fusion energy growth is limited only by the maximum construction speed. CO 2 reduction by nuclear fusion introduced in 2050 from business-as-usual (BAU) scenario without nuclear fusion is about 20% of total reduction amount in 2100. In conclusion, nuclear fusion energy is revealed to be one of the candidates of energy supply technologies and CO 2 mitigation technologies. Cost competitiveness and removal of capacity constraint factors are desired for use of nuclear fusion energy in a large scale. (author)

  1. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  2. Trip Energy Estimation Methodology and Model Based on Real-World Driving Data for Green Routing Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Til, Harrison J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    A data-informed model to predict energy use for a proposed vehicle trip has been developed in this paper. The methodology leverages nearly 1 million miles of real-world driving data to generate the estimation model. Driving is categorized at the sub-trip level by average speed, road gradient, and road network geometry, then aggregated by category. An average energy consumption rate is determined for each category, creating an energy rates look-up table. Proposed vehicle trips are then categorized in the same manner, and estimated energy rates are appended from the look-up table. The methodology is robust and applicable to almost any type of driving data. The model has been trained on vehicle global positioning system data from the Transportation Secure Data Center at the National Renewable Energy Laboratory and validated against on-road fuel consumption data from testing in Phoenix, Arizona. The estimation model has demonstrated an error range of 8.6% to 13.8%. The model results can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations to reduce energy consumption. This work provides a highly extensible framework that allows the model to be tuned to a specific driver or vehicle type.

  3. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  4. Macroeconomic models and energy transition

    International Nuclear Information System (INIS)

    Douillard, Pierre; Le Hir, Boris; Epaulard, Anne

    2016-02-01

    As a new policy for energy transition has just been adopted, several questions emerge about the best way to reduce CO 2 emissions, about policies which enable this reduction, and about their costs and opportunities. This note discusses the contribution macro-economic models may have in this respect, notably in the definition of policies which trigger behaviour changes, and those which support energy transition. The authors first discuss the stakes of the assessment of energy transition, and then describe macro-economic models which can be used for such an assessment, give and comment some results of simulations performed for France by using four of these models (Mesange, Numesis, ThreeME, and Imaclim-R France). The authors finally draw lessons about the way to use these models and to interpret their results within the frame of energy transition

  5. Prediction model of energy consumption in Jiangsu Province based on constraint condition of carbon emission

    Science.gov (United States)

    Chang, Z. G.; Xue, T. T.; Chen, Y. J.; Chao, X. H.

    2017-11-01

    In order to achieve the targets for energy conservation and economic development goals in Jiangsu Province under the constraint of carbon emission, this paper uses the gray GM (1,1) model to predict and optimize the consumption structure of major energy sources (coal, oil, natural gas, etc.) in Jiangsu province in the "13th Five-Year" period and the next seven years. The predictions meet the requirement of reducing carbon dioxide emissions per unit GDP of China by 50%. The results show that the proposed approach and model is effective. Finally, we put forward opinions and suggestions on the way of energy-saving and emission-reduction, the adjustment of energy structure and the policy of coal consumption in Jiangsu Province.

  6. Characteristics of particle production in high energy nuclear collisions a model-based analysis

    CERN Document Server

    Guptaroy, P; Bhattacharya, S; Bhattacharya, D P

    2002-01-01

    The present work pertains to the production of some very important negatively charged secondaries in lead-lead and gold-gold collisions at AGS, SPS and RHIC energies. We would like to examine here the role of the particular version of sequential chain model (SCM), which was applied widely in the past in analysing data on various high-energy hadronic collisions, in explaining now the latest findings on the features of particle production in the relativistic nucleus-nucleus collisions. The agreement between the model of our choice and the measured data is found to be modestly satisfactory in cases of the most prominent and abundantly produced varieties of the secondaries in the above-stated two nuclear collisions. (25 refs).

  7. Low-energy limit of the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)

    2018-01-15

    The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)

  8. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    International Nuclear Information System (INIS)

    Zukowska, Barbara; Breivik, Knut; Wania, Frank

    2006-01-01

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties

  9. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Barbara [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Breivik, Knut [NILU- Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway)]. E-mail: knut.breivik@nilu.no; Wania, Frank [Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4 (Canada)

    2006-04-15

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.

  10. Analysis of pilgrim dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Jawad, Abdul [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2013-04-15

    The proposal of pilgrim dark energy is based on the idea that phantom dark energy possesses enough resistive force to preclude black hole formation. We work on this proposal by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble as well as event horizon and conformal age of the universe. We present a graphical analysis and focus our study on the pilgrim dark energy as well as interacting parameters. It is found that these parameters play an effective role on the equation of state parameter for exploring the phantom region of the universe. We also make the analysis of {omega}-{omega}' and point out freezing region in the {omega}-{omega}' plane. Finally, it turns out that the {Lambda}CDM is achieved in the statefinders plane for all models. (orig.)

  11. Model documentation, Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook 1998 (AEO98) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. For AEO98, the RFM was modified in three principal ways, introducing capital cost elasticities of supply for new renewable energy technologies, modifying biomass supply curves, and revising assumptions for use of landfill gas from municipal solid waste (MSW). In addition, the RFM was modified in general to accommodate projections beyond 2015 through 2020. Two supply elasticities were introduced, the first reflecting short-term (annual) cost increases from manufacturing, siting, and installation bottlenecks incurred under conditions of rapid growth, and the second reflecting longer term natural resource, transmission and distribution upgrade, and market limitations increasing costs as more and more of the overall resource is used. Biomass supply curves were also modified, basing forest products supplies on production rather than on inventory, and expanding energy crop estimates to include states west of the Mississippi River using information developed by the Oak Ridge National Laboratory. Finally, for MSW, several assumptions for the use of landfill gas were revised and extended.

  12. Empirical Study on Total Factor Productive Energy Efficiency in Beijing-Tianjin-Hebei Region-Analysis based on Malmquist Index and Window Model

    Science.gov (United States)

    Xu, Qiang; Ding, Shuai; An, Jingwen

    2017-12-01

    This paper studies the energy efficiency of Beijing-Tianjin-Hebei region and to finds out the trend of energy efficiency in order to improve the economic development quality of Beijing-Tianjin-Hebei region. Based on Malmquist index and window analysis model, this paper estimates the total factor energy efficiency in Beijing-Tianjin-Hebei region empirically by using panel data in this region from 1991 to 2014, and provides the corresponding political recommendations. The empirical result shows that, the total factor energy efficiency in Beijing-Tianjin-Hebei region increased from 1991 to 2014, mainly relies on advances in energy technology or innovation, and obvious regional differences in energy efficiency to exist. Throughout the window period of 24 years, the regional differences of energy efficiency in Beijing-Tianjin-Hebei region shrank. There has been significant convergent trend in energy efficiency after 2000, mainly depends on the diffusion and spillover of energy technologies.

  13. Economy-Energy-Climate Interaction. The Model Wiagem

    International Nuclear Information System (INIS)

    Kemfert, C.

    2001-09-01

    This paper presents an integrated economy-energy-climate model WIAGEM (World Integrated Assessment General Equilibrium Model) which incorporates economic, energetic and climatic modules in an integrated assessment approach. In order to evaluate market and non-market costs and benefits of climate change WIAGEM combines an economic approach with a special focus on the international energy market and integrates climate interrelations by temperature changes and sea level variations. WIAGEM bases on 25 world regions which are aggregated to 11 trading regions and 14 sectors within each region. The representation of the economic relations is based on an intertemporal general equilibrium approach and contains the international markets for oil, coal and gas. The model incorporates all greenhouse gases (GHG) which influence the potential global temperature, the sea level variation and the assessed probable impacts in terms of costs and benefits of climate change. Market and non market damages are evaluated due to the damage costs approaches of Tol (2001). Additionally, this model includes net changes in GHG emissions from sources and removals by sinks resulting from land use change and forest activities. This paper describes the model structure in detail and outlines some general results, especially the impacts of climate change. As a result, climate change impacts do matter within the next 50 years, developing regions face high economic losses in terms of welfare and GDP losses. The inclusion of sinks and other GHG changes results significantly

  14. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    Directory of Open Access Journals (Sweden)

    Hahnbeom Park

    Full Text Available Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  15. The ESRI Energy Model

    OpenAIRE

    Di Cosmo, Valeri; Hyland, Marie

    2012-01-01

    PUBLISHED In Ireland, the energy sector has undergone significant change in the last forty years. In this period, there has been a significant increase in the demand for energy. This increase has been driven by economic and demographic factors. Although the current deep recession has quelled the upward trend in the demand for energy, a future economic recovery will bring these issues back into focus. This paper documents a model of the Irish energy sector which relates energy demand to re...

  16. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  17. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  18. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  19. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM

    Directory of Open Access Journals (Sweden)

    Egwunatum Samuel

    2016-09-01

    Full Text Available Given the ability of a Building Information Model (BIM to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1 building energy consumption, (2 building energy performance and analysis, and (3 building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world’s first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise or its size.

  20. Vibration energy harvesting system for railroad safety based on running vehicles

    International Nuclear Information System (INIS)

    Tianchen, Yuan; Jian, Yang; Ruigang, Song; Xiaowei, Liu

    2014-01-01

    This research is focused on energy harvesting from track vibration in order to provide power for the wireless sensors which monitor railroad health. Considering that track vibration has vibration energy, a new method is proposed in the paper to harvest energy based on the piezoelectric effect. The piezoelectric generator called drum transducer is the key part for track vibration energy harvesting. The model of drum transducer is established and the simulation results show that it can generate 100 mW in real track situation. In addition, an experiment rig is developed and its vibration model is also established. The simulation and experiment results show that peak open-circuit voltage of piezoelectric generator is about 50–70 V at the full load of the train. The whole track vibration energy harvesting system is analytically modeled, numerically simulated, and experimentally realized to demonstrate the feasibility and the reliability of the theoretical model. This paper is the theoretical basis of harvesting, recovering and recycling of the track vibration energy for track safety. (paper)

  1. Energy modelling platforms for policy and strategy support

    International Nuclear Information System (INIS)

    Dyner, I.

    2000-01-01

    The energy field has been dominated by 'hard' modelling approaches by researchers from engineering and economics discipline. The recent trend towards a more liberalised environment moves away from central planning to market-based resource allocation, leading to the creation and use of strategic tools, with much 'softer' specifications, in the 'system-thinking' tradition. This paper presents the use of system dynamics in a generalised way, to provide a platform for integrated energy analysis. Issues of modularity and policy evolution are important in the design of the modelling platform to facilitate its use, and reuse. Hence the concepts of a platform, rather than a model, has to be implemented in a coherent way if it is to provide sustained value for ongoing support to both government policy and corporate strategy. (author)

  2. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    Science.gov (United States)

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  3. A decision support model for reducing electric energy consumption in elementary school facilities

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok

    2012-01-01

    Highlights: ► Decision support model is developed to reduce CO 2 emission in elementary schools. ► The model can select the school to be the most effective in energy savings. ► Decision tree improved the prediction accuracy by 1.83–3.88%. ► Using the model, decision-maker can save the electric-energy consumption by 16.58%. ► The model can make the educational-facility improvement program more effective. -- Abstract: The South Korean government has been actively promoting an educational-facility improvement program as part of its energy-saving efforts. This research seeks to develop a decision support model for selecting the facility expected to be effective in generating energy savings and making the facility improvement program more effective. In this research, project characteristics and electric-energy consumption data for the year 2009 were collected from 6282 elementary schools located in seven metropolitan cities in South Korea. In this research, the following were carried out: (i) a group of educational facilities was established based on electric-energy consumption, using a decision tree; (ii) a number of similar projects were retrieved from the same group of facilities, using case-based reasoning; and (iii) the accuracy of prediction was improved, using the combination of genetic algorithms, the artificial neural network, and multiple regression analysis. The results of this research can be useful for the following purposes: (i) preliminary research on the systematic and continuous management of educational facilities’ electric-energy consumption; (ii) basic research on electric-energy consumption prediction based on the project characteristics; and (iii) practical research for selecting an optimum facility that can more effectively apply an educational-facility improvement program as a decision support model.

  4. A Belleville-spring-based electromagnetic energy harvester

    International Nuclear Information System (INIS)

    Castagnetti, Davide

    2015-01-01

    Energy harvesting from kinetic ambient energy is particularly effective to power autonomous sensors. This work proposes an innovative energy converter based on two counteracting Belleville springs and exploiting their peculiarity, for a height to thickness ratio equal to 1.414, of nearly zero stiffness over a wide deflection range. After analytical and numerical modelling a prototype is developed and experimentally investigated. The sub-optimal geometry of the commercial springs used in the prototype, together with a non-ideal response, makes the operating frequency for the prototype higher than in analytical and numerical predictions. Nevertheless, the harvester exhibits a significantly large bandwidth, together with a high output power, compared to similar solutions in the literature, for all the examined configurations and input excitations. (paper)

  5. Comparing holographic dark energy models with statefinder

    International Nuclear Information System (INIS)

    Cui, Jing-Lei; Zhang, Jing-Fei

    2014-01-01

    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)

  6. Estimation of energy saving thanks to a reduced-model-based approach: Example of bread baking by jet impingement

    International Nuclear Information System (INIS)

    Alamir, M.; Witrant, E.; Della Valle, G.; Rouaud, O.; Josset, Ch.; Boillereaux, L.

    2013-01-01

    In this paper, a reduced order mechanistic model is proposed for the evolution of temperature and humidity during French bread baking. The model parameters are identified using experimental data. The resulting model is then used to estimate the potential energy saving that can be obtained using jet impingement technology when used to increase the heat transfer efficiency. Results show up to 16% potential energy saving under certain assumptions. - Highlights: ► We developed a mechanistic model of heat and mass transfer in bread including different and multiple energy sources. ► An optimal control system permits to track references trajectories with a minimization of energy consuming. ► The methodology is evaluated with jet impingement technique. ► Results show a significant energy saving of about 17% of energy with reasonable actuator variations

  7. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen

    2012-05-01

    Maximizing the optical network unit’s (ONU) sleep time is an effective approach for achieving maximum energy conservation in green Ethernet passive optical networks (EPONs). While overlapping downstream and upstream ONU transmissions can maximize the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green EPONs under the limited service discipline and the upstream-based overlapped time window. Specifically, we first derive the expected mean packet delay, and then present a closed-form expression of the ONU sleep time, setting identical upstream/downstream transmission cycle times based on a maximum downstream traffic delay re-quirement. With the proposed system model, we present a novel downstream bandwidth allocation scheme for energy conservation in green EPONs. Simulation results verify the proposed model and highlight the advantages of our scheme over conventional approaches.

  8. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...

  9. Modeling international trends in energy efficiency

    International Nuclear Information System (INIS)

    Stern, David I.

    2012-01-01

    I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period. Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on technological change over time. Energy efficiency is measured using a new energy distance function approach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the global production frontier. A country's relative energy efficiency is given by its distance from the frontier—the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil fuel reserves and it converges over time across countries. Globally, technological change was the most important factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.

  10. Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization

    Science.gov (United States)

    Langenfeld, K.; Junker, P.; Mosler, J.

    2018-05-01

    This paper deals with a constitutive model suitable for the analysis of quasi-brittle damage in structures. The model is based on incremental energy relaxation combined with a viscous-type regularization. A similar approach—which also represents the inspiration for the improved model presented in this paper—was recently proposed in Junker et al. (Contin Mech Thermodyn 29(1):291-310, 2017). Within this work, the model introduced in Junker et al. (2017) is critically analyzed first. This analysis leads to an improved model which shows the same features as that in Junker et al. (2017), but which (i) eliminates unnecessary model parameters, (ii) can be better interpreted from a physics point of view, (iii) can capture a fully softened state (zero stresses), and (iv) is characterized by a very simple evolution equation. In contrast to the cited work, this evolution equation is (v) integrated fully implicitly and (vi) the resulting time-discrete evolution equation can be solved analytically providing a numerically efficient closed-form solution. It is shown that the final model is indeed well-posed (i.e., its tangent is positive definite). Explicit conditions guaranteeing this well-posedness are derived. Furthermore, by additively decomposing the stress rate into deformation- and purely time-dependent terms, the functionality of the model is explained. Illustrative numerical examples confirm the theoretical findings.

  11. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  12. Multi-agent based distributed control architecture for microgrid energy management and optimization

    International Nuclear Information System (INIS)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-01-01

    Highlights: • A new multi-agent based distributed control architecture for energy management. • Multi-agent coordination based on non-cooperative game theory. • A microgrid model comprised of renewable energy generation systems. • Performance comparison of distributed with conventional centralized control. - Abstract: Most energy management systems are based on a centralized controller that is difficult to satisfy criteria such as fault tolerance and adaptability. Therefore, a new multi-agent based distributed energy management system architecture is proposed in this paper. The distributed generation system is composed of several distributed energy resources and a group of loads. A multi-agent system based decentralized control architecture was developed in order to provide control for the complex energy management of the distributed generation system. Then, non-cooperative game theory was used for the multi-agent coordination in the system. The distributed generation system was assessed by simulation under renewable resource fluctuations, seasonal load demand and grid disturbances. The simulation results show that the implementation of the new energy management system proved to provide more robust and high performance controls than conventional centralized energy management systems.

  13. Evaluation of an energy-based fatigue approach considering mean stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae In [University of Ulsan, Ulsan (Korea, Republic of)

    2014-04-15

    In this paper, an attempt is made to extend the total strain energy approach for predicting the fatigue life subjected to mean stress under uniaxial state. The effects of means stress on the fatigue failure of a ferritic stainless steel and high pressure tube steel are studied under strain-controlled low cycle fatigue condition. Based on the fatigue results from different strain ratios, modified total strain energy density approach is proposed to account for the mean stress effects. The proposed damage parameter provides convenient means of evaluating fatigue life with mean stress effects considering the fact that the definitions used for measuring strain energies are the same as in the fully-reversed cycling (R = -1). A good agreement is observed between experimental life and predicted life using proposed approach. Two other mean stress models (Smith-Watson-Topper model and Morrow model) are also used to evaluate the low cycle fatigue data. Based on a simple statistical estimator, the proposed approach is compared with these models and is found realistic.

  14. Evaluation of an energy-based fatigue approach considering mean stress effects

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae In

    2014-01-01

    In this paper, an attempt is made to extend the total strain energy approach for predicting the fatigue life subjected to mean stress under uniaxial state. The effects of means stress on the fatigue failure of a ferritic stainless steel and high pressure tube steel are studied under strain-controlled low cycle fatigue condition. Based on the fatigue results from different strain ratios, modified total strain energy density approach is proposed to account for the mean stress effects. The proposed damage parameter provides convenient means of evaluating fatigue life with mean stress effects considering the fact that the definitions used for measuring strain energies are the same as in the fully-reversed cycling (R = -1). A good agreement is observed between experimental life and predicted life using proposed approach. Two other mean stress models (Smith-Watson-Topper model and Morrow model) are also used to evaluate the low cycle fatigue data. Based on a simple statistical estimator, the proposed approach is compared with these models and is found realistic.

  15. Modelling piezoelectric energy harvesting potential in an educational building

    International Nuclear Information System (INIS)

    Li, Xiaofeng; Strezov, Vladimir

    2014-01-01

    Highlights: • Energy harvesting potential of commercialized piezoelectric tiles is analyzed. • The parameters which will affect the energy harvesting efficiency are determined. • The potential could cover 0.5% of the total energy usage of the library building. • A simplified evaluation indicator is proposed to test the considered paving area. - Abstract: In this paper, potential application of a commercial piezoelectric energy harvester in a central hub building at Macquarie University in Sydney, Australia is examined and discussed. Optimization of the piezoelectric tile deployment is presented according to the frequency of pedestrian mobility and a model is developed where 3.1% of the total floor area with the highest pedestrian mobility is paved with piezoelectric tiles. The modelling results indicate that the total annual energy harvesting potential for the proposed optimized tile pavement model is estimated at 1.1 MW h/year. This potential energy generation may be further increased to 9.9 MW h/year with a possible improvement in piezoelectric energy conversion efficiency integrated into the system. This energy harvesting potential would be sufficient to meet close to 0.5% of the annual energy needs of the building. The study confirms that locating high traffic areas is critical for optimization of the energy harvesting efficiency, as well as the orientation of the tile pavement significantly affects the total amount of the harvested energy. A Density Flow evaluation is recommended in this study to qualitatively evaluate the piezoelectric power harvesting potential of the considered area based on the number of pedestrian crossings per unit time

  16. Energy and Development. A Modelling Approach

    International Nuclear Information System (INIS)

    Van Ruijven, B.J.

    2008-01-01

    Rapid economic growth of developing countries like India and China implies that these countries become important actors in the global energy system. Examples of this impact are the present day oil shortages and rapidly increasing emissions of greenhouse gases. Global energy models are used to explore possible future developments of the global energy system and identify policies to prevent potential problems. Such estimations of future energy use in developing countries are very uncertain. Crucial factors in the future energy use of these regions are electrification, urbanisation and income distribution, issues that are generally not included in present day global energy models. Model simulations in this thesis show that current insight in developments in low-income regions lead to a wide range of expected energy use in 2030 of the residential and transport sectors. This is mainly caused by many different model calibration options that result from the limited data availability for model development and calibration. We developed a method to identify the impact of model calibration uncertainty on future projections. We developed a new model for residential energy use in India, in collaboration with the Indian Institute of Science. Experiments with this model show that the impact of electrification and income distribution is less univocal than often assumed. The use of fuelwood, with related health risks, can decrease rapidly if the income of poor groups increases. However, there is a trade off in terms of CO2 emissions because these groups gain access to electricity and the ownership of appliances increases. Another issue is the potential role of new technologies in developing countries: will they use the opportunities of leapfrogging? We explored the potential role of hydrogen, an energy carrier that might play a central role in a sustainable energy system. We found that hydrogen only plays a role before 2050 under very optimistic assumptions. Regional energy

  17. Market Mechanism Design for Renewable Energy based on Risk Theory

    Science.gov (United States)

    Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi

    2018-02-01

    Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.

  18. Development of multicriteria models to classify energy efficiency alternatives

    International Nuclear Information System (INIS)

    Neves, Luis Pires; Antunes, Carlos Henggeler; Dias, Luis Candido; Martins, Antonio Gomes

    2005-01-01

    This paper aims at describing a novel constructive approach to develop decision support models to classify energy efficiency initiatives, including traditional Demand-Side Management and Market Transformation initiatives, overcoming the limitations and drawbacks of Cost-Benefit Analysis. A multicriteria approach based on the ELECTRE-TRI method is used, focusing on four perspectives: - an independent Agency with the aim of promoting energy efficiency; - Distribution-only utilities under a regulated framework; - the Regulator; - Supply companies in a competitive liberalized market. These perspectives were chosen after a system analysis of the decision situation regarding the implementation of energy efficiency initiatives, looking for the main roles and power relations, with the purpose of structuring the decision problem by identifying the actors, the decision makers, the decision paradigm, and the relevant criteria. The multicriteria models developed allow considering different kinds of impacts, but avoiding difficult measurements and unit conversions due to the nature of the multicriteria method chosen. The decision is then based on all the significant effects of the initiative, both positive and negative ones, including ancillary effects often forgotten in cost-benefit analysis. The ELECTRE-TRI, as most multicriteria methods, provides to the Decision Maker the ability of controlling the relevance each impact can have on the final decision. The decision support process encompasses a robustness analysis, which, together with a good documentation of the parameters supplied into the model, should support sound decisions. The models were tested with a set of real-world initiatives and compared with possible decisions based on Cost-Benefit analysis

  19. Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Yun-Tao Shi

    2018-01-01

    Full Text Available Wind energy has been drawing considerable attention in recent years. However, due to the random nature of wind and high failure rate of wind energy conversion systems (WECSs, how to implement fault-tolerant WECS control is becoming a significant issue. This paper addresses the fault-tolerant control problem of a WECS with a probable actuator fault. A new stochastic model predictive control (SMPC fault-tolerant controller with the Conditional Value at Risk (CVaR objective function is proposed in this paper. First, the Markov jump linear model is used to describe the WECS dynamics, which are affected by many stochastic factors, like the wind. The Markov jump linear model can precisely model the random WECS properties. Second, the scenario-based SMPC is used as the controller to address the control problem of the WECS. With this controller, all the possible realizations of the disturbance in prediction horizon are enumerated by scenario trees so that an uncertain SMPC problem can be transformed into a deterministic model predictive control (MPC problem. Finally, the CVaR object function is adopted to improve the fault-tolerant control performance of the SMPC controller. CVaR can provide a balance between the performance and random failure risks of the system. The Min-Max performance index is introduced to compare the fault-tolerant control performance with the proposed controller. The comparison results show that the proposed method has better fault-tolerant control performance.

  20. Basic features of proton-proton interactions at ultra-relativistic energies and RFT-based quark-gluon string model

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2017-01-01

    Full Text Available Proton-proton collisions at energies from √s = 200 GeV up to √s = 14 TeV are studied within the microscopic quark-gluon string model. The model is based on Gribov’s Reggeon Field Theory accomplished by string phenomenology. Comparison with experimental data shows that QGSM describes well particle yields, rapidity - and transverse momentum spectra, rise of mean 〈 pT 〉 and forward-backward multiplicity correlations. The latter arise in QGSM because of the addition of various processes with different mean multiplicities. The model also indicates fulfillment of extended longitudinal scaling and violation of Koba-Nielsen-Olesen scaling at LHC. The origin of both features is traced to short-range particle correlations in the strings. Predictions are made for √s = 14 TeV.

  1. Recovery Act. Development of a Model Energy Conservation Training Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  2. An Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations

    DEFF Research Database (Denmark)

    Krenk, S.; Nielsen, Søren R. K.

    A model consisting of two couple oscillators is developed for the representation of vortex-induced oscillations of structural elements. The mutual forcing terms are different from previous models and based on exact transfer of energy from the fluid to the structural oscillator. This leads...

  3. Teaching Sustainable Design Using BIM and Project-Based Energy Simulations

    Directory of Open Access Journals (Sweden)

    Zhigang Shen

    2012-08-01

    Full Text Available The cross-disciplinary nature of energy-efficient building design has created many challenges for architecture, engineering and construction instructors. One of the technical challenges in teaching sustainable building design is enabling students to quantitatively understand how different building designs affect a building’s energy performance. Concept based instructional methods fall short in evaluating the impact of different design choices on a buildings’ energy consumption. Building Information Modeling (BIM with energy performance software provides a feasible tool to evaluate building design parameters. One notable advantage of this tool is its ability to couple 3D visualization of the structure with energy performance analysis without requiring detailed mathematical and thermodynamic calculations. Project-based Learning (PBL utilizing BIM tools coupled with energy analysis software was incorporated into a senior level undergraduate class. Student perceptions and feedback were analyzed to gauge the effectiveness of these techniques as instructional tools. The findings indicated that BIM-PBL can be used to effectively teach energy-efficient building design and construction.

  4. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS Occupational Health and Safety (OHS Risk

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2016-01-01

    Full Text Available Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.

  5. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-06-01

    Full Text Available In this paper, demand response modeling scheme is proposed for residential consumers using game theory algorithm as Generalized Tit for Tat (GTFT Dominant Game based Energy Scheduler. The methodology is established as a work flow domain model between the utility and the user considering the smart grid framework. It exhibits an algorithm which schedules load usage by creating several possible tariffs for consumers such that demand is never raised. This can be done both individually and among multiple users of a community. The uniqueness behind the demand response proposed is that, the tariff is calculated for all hours and the load during the peak hours which can be rescheduled is shifted based on the Peak Average Ratio. To enable the vitality of the work simulation results of a general case of three domestic consumers are modeled extended to a comparative performance and evaluation with other algorithms and inference is analyzed.

  6. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  7. Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs.

    Science.gov (United States)

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2017-07-20

    Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction "LINE-P", a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P's accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways.

  8. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  9. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  10. An Aggregation Model for Energy Resources Management and Market Negotiations

    Directory of Open Access Journals (Sweden)

    Omid Abrishambaf

    2018-03-01

    Full Text Available Currently the use of distributed energy resources, especially renewable generation, and demand response programs are widely discussed in scientific contexts, since they are a reality in nowadays electricity markets and distribution networks. In order to benefit from these concepts, an efficient energy management system is needed to prevent energy wasting and increase profits. In this paper, an optimization based aggregation model is presented for distributed energy resources and demand response program management. This aggregation model allows different types of customers to participate in electricity market through several tariffs based demand response programs. The optimization algorithm is a mixed-integer linear problem, which focuses on minimizing operational costs of the aggregator. Moreover, the aggregation process has been done via K-Means clustering algorithm, which obtains the aggregated costs and energy of resources for remuneration. By this way, the aggregator is aware of energy available and minimum selling price in order to participate in the market with profit. A realistic low voltage distribution network has been proposed as a case study in order to test and validate the proposed methodology. This distribution network consists of 25 distributed generation units, including photovoltaic, wind and biomass generation, and 20 consumers, including residential, commercial, and industrial buildings.

  11. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  12. Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

    KAUST Repository

    Choi, Yun Seok

    2017-05-26

    Full waveform inversion (FWI) using an energy-based objective function has the potential to provide long wavelength model information even without low frequency in the data. However, without the back-propagation method (adjoint-state method), its implementation is impractical for the model size of general seismic survey. We derive the gradient of the energy-based objective function using the back-propagation method to make its FWI feasible. We also raise the energy signal to the power of a small positive number to properly handle the energy signal imbalance as a function of offset. Examples demonstrate that the proposed FWI algorithm provides a convergent long wavelength structure model even without low-frequency information, which can be used as a good starting model for the subsequent conventional FWI.

  13. Electrical Supply System for the Experimental Zero-Energy Building (of 300 m2 Based on Renewable and Alternative Energy Sources

    Directory of Open Access Journals (Sweden)

    Basok, B.I.

    2015-11-01

    Full Text Available The results of the development and implementation of the power supply system of the experimental zero-energy building based on renewable and alternative energy sources are presented. CDF-model to determine the optimal conditions for the deployment of wind energy installations within the building limits is developed.

  14. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  15. The long-run forecasting of energy prices using the model of shifting trend

    International Nuclear Information System (INIS)

    Radchenko, Stanislav

    2005-01-01

    Developing models for accurate long-term energy price forecasting is an important problem because these forecasts should be useful in determining both supply and demand of energy. On the supply side, long-term forecasts determine investment decisions of energy-related companies. On the demand side, investments in physical capital and durable goods depend on price forecasts of a particular energy type. Forecasting long-run rend movements in energy prices is very important on the macroeconomic level for several developing countries because energy prices have large impacts on their real output, the balance of payments, fiscal policy, etc. Pindyck (1999) argues that the dynamics of real energy prices is mean-reverting to trend lines with slopes and levels that are shifting unpredictably over time. The hypothesis of shifting long-term trend lines was statistically tested by Benard et al. (2004). The authors find statistically significant instabilities for coal and natural gas prices. I continue the research of energy prices in the framework of continuously shifting levels and slopes of trend lines started by Pindyck (1999). The examined model offers both parsimonious approach and perspective on the developments in energy markets. Using the model of depletable resource production, Pindyck (1999) argued that the forecast of energy prices in the model is based on the long-run total marginal cost. Because the model of a shifting trend is based on the competitive behavior, one may examine deviations of oil producers from the competitive behavior by studying the difference between actual prices and long-term forecasts. To construct the long-run forecasts (10-year-ahead and 15-year-ahead) of energy prices, I modify the univariate shifting trends model of Pindyck (1999). I relax some assumptions on model parameters, the assumption of white noise error term, and propose a new Bayesian approach utilizing a Gibbs sampling algorithm to estimate the model with autocorrelation. To

  16. Modeling and analysis of a biomorph piezoelectric energy harvester for railway bridge monitoring

    Science.gov (United States)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2012-04-01

    Wireless sensor network is one of prospective methods for railway bridge health monitoring. It has drawn much attention due to the long-term operation and low-maintenance performances. However, how to provide power to wireless sensors is a big issue. In railway health monitoring, the idea of converting ambient vibration energy from the vibration of railway track induced by passing train to electric energy has made it an efficient way for powering the wireless sensor networks. In this paper, a bimorph piezoelectric energy harvester from base excitation was investigated in the laboratory, and the energy output of the bimorph energy harvester was predicted by an equivalent single-degree-of-freedom (SDOF) model. Reasonable results have been found between the tested and predicted data. Based on the theoretical model, further works on optimization of the bimorph piezoelectric energy harvester will be performed in future.

  17. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  18. Model documentation report: Transportation sector model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  19. Modelling of hybrid energy system - Part I: Problem formulation and model development

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ajai; Saini, R.P.; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2011-02-15

    A well designed hybrid energy system can be cost effective, has a high reliability and can improve the quality of life in remote rural areas. The economic constraints can be met, if these systems are fundamentally well designed, use appropriate technology and make use effective dispatch control techniques. The first paper of this tri-series paper, presents the analysis and design of a mixed integer linear mathematical programming model (time series) to determine the optimal operation and cost optimization for a hybrid energy generation system consisting of a photovoltaic array, biomass (fuelwood), biogas, small/micro-hydro, a battery bank and a fossil fuel generator. The optimization is aimed at minimizing the cost function based on demand and potential constraints. Further, mathematical models of all other components of hybrid energy system are also developed. This is the generation mix of the remote rural of India; it may be applied to other rural areas also. (author)

  20. Creating agent-based energy transition management models that can uncover profitable pathways to climate change mitigation

    NARCIS (Netherlands)

    Hoekstra, A.E.; Steinbuch, M.; Verbong, G.P.J.

    2017-01-01

    The energy domain is still dominated by equilibrium models that underestimate both the dangers and opportunities related to climate change. In reality, climate and energy systems contain tipping points, feedback loops, and exponential developments. This paper describes how to create realistic energy

  1. Modeling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020

    International Nuclear Information System (INIS)

    Adams, F. Gerard; Shachmurove, Yochanan

    2008-01-01

    The Chinese economy is in a stage of energy transition: from low efficiency solid fuels to oil, gas, and electric power, from agriculture to urbanization and industrialization, from heavy industry to lighter and high tech industry, from low motorization to rapid growth of the motor vehicle population. Experts fear that continued rapid economic growth in China will translate into a massive need to expand imports of oil, coal, and gas. We build an econometric model of the Chinese energy economy based on the energy balance. We use that model to forecast Chinese energy consumption and imports to 2020. The study suggests that China will, indeed, require rapidly growing imports of oil, coal, and gas. This growth is not so sensitive to the rate of economic growth as to increases in motorization. It can be offset, but probably only in small part, by increasing domestic energy production or by improvements in the efficiency of use, particularly in the production of electric power. (author)

  2. Model for calculating regional energy use, industrial production and greenhouse gas emissions for evaluating global climate scenarios

    International Nuclear Information System (INIS)

    Vries, H.J.M. de; Olivier, J.G.J.; Wijngaart, R.A. van den; Kreileman, G.J.J.; Toet, A.M.C.

    1994-01-01

    In the integrated IMAGE 2.0 model the 'Energy-Industry System' is implemented as a set of models to develop global scenarios for energy use and industrial processes and for the related emissions of greenhouse gases on a region specific basis. The Energy-Economy model computes total energy use, with a focus on final energy consumption in end-use sectors, based on economic activity levels and the energy conservation potential (end-use approach). The Industrial Production and Consumption model computes the future levels of activities other than energy use, which lead to greenhouse gas emissions, based on relations with activities defined in the Energy-Economy model. These two models are complemented by two emissions models, to compute the associated emissions by using emission factors per compound and per activity defined. For investigating energy conservation and emissions control strategy scenarios various techno-economic coefficients in the model can be modified. In this paper the methodology and implementation of the 'Energy-Industry System' models is described as well as results from their testing against data for the period 1970-1990. In addition, the application of the models is presented for a specific scenario calculation. Future extensions of the models are in preparation. 59 refs., 17 figs., 21 tabs

  3. Modeling and forecasting energy flow between national power grid and a solar–wind–pumped-hydroelectricity (PV–WT–PSH) energy source

    International Nuclear Information System (INIS)

    Jurasz, Jakub

    2017-01-01

    Highlights: • A MINLP model for grid connected PV-WT-PSH is proposed. • A method for simulating and forecasting energy flow has been developed. • A probabilistic model is compared to artificial neural network approach. - Abstract: The structure of modern energy systems has evolved based on the assumption that it is the demand side which is variable, whilst the supply side must adjust to forecasted (or unforecasted) changes. But the increasing role of variable renewable energy sources (VRES) has led to a situation in which the supply side is also becoming more and more unpredictable. To date, various approaches have been proposed to overcome this impediment. This paper aims to combine mixed integer modeling with an Artificial Neural Networks (ANN) forecasting method in order to predict the volume of energy flow between a local balancing area which is using PV–WT–PSH and the national power system (NPS). Calculations has been performed based on the hourly time series of wind speed, irradiation and energy demand. The results indicate that both probabilistic and ANN models generate comparably accurate forecasts; however, the opportunity for improvement in the former appears to be significantly greater. The mean prediction error (for a one hour ahead forecasts) for the best model was 0.15 MW h, which amounts to less than 0.2% of a mean hourly energy demand of the considered energy consumer. The proposed approach has huge potential to reduce the impact of VRES on the NPS operation as well as can be used to facilitate the process of their integration and increase their share in covering energy demand.

  4. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    Science.gov (United States)

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network. PMID:27754405

  5. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Binbin Shi

    2016-10-01

    Full Text Available In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  6. Energy Consumption Prediction for Electric Vehicles Based on Real-World Data

    Directory of Open Access Journals (Sweden)

    Cedric De Cauwer

    2015-08-01

    Full Text Available Electric vehicle (EV energy consumption is variable and dependent on a number of external factors such as road topology, traffic, driving style, ambient temperature, etc. The goal of this paper is to detect and quantify correlations between the kinematic parameters of the vehicle and its energy consumption. Real-world data of EV energy consumption are used to construct the energy consumption calculation models. Based on the vehicle dynamics equation as underlying physical model, multiple linear regression is used to construct three models. Each model uses a different level of aggregation of the input parameters, allowing predictions using different types of available input parameters. One model uses aggregated values of the kinematic parameters of trips. This model allows prediction with basic, easily available input parameters such as travel distance, travel time, and temperature. The second model extends this by including detailed acceleration data. The third model uses the raw data of the kinematic parameters as input parameters to predict the energy consumption. Using detailed values of kinematic parameters for the prediction in theory increases the link between the statistical model and its underlying physical principles, but requires these parameters to be available as input in order to make predictions. The first two models show similar results. The third model shows a worse fit than the first two, but has a similar accuracy. This model has great potential for future improvement.

  7. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  8. [Decomposition model of energy-related carbon emissions in tertiary industry for China].

    Science.gov (United States)

    Lu, Yuan-Qing; Shi, Jun

    2012-07-01

    Tertiary industry has been developed in recent years. And it is very important to find the factors influenced the energy-related carbon emissions in tertiary industry. A decomposition model of energy-related carbon emissions for China is set up by adopting logarithmic mean weight Divisia method based on the identity of carbon emissions. The model is adopted to analyze the influence of energy structure, energy efficiency, tertiary industry structure and economic output to energy-related carbon emissions in China from 2000 to 2009. Results show that the contribution rate of economic output and energy structure to energy-related carbon emissions increases year by year. Either is the contribution rate of energy efficiency or the tertiary industry restraining to energy-related carbon emissions. However, the restrain effect is weakening.

  9. TU-FG-BRB-03: Basis Vector Model Based Method for Proton Stopping Power Estimation From Experimental Dual Energy CT Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S; Politte, D; O’Sullivan, J [Washington University in St. Louis, St. Louis, MO (United States); Han, D; Porras-Chaverri, M; Williamson, J [Virginia Commonwealth University, Richmond, VA (United States); Whiting, B [University of Pittsburgh, Pittsburgh, PA (United States)

    2016-06-15

    Purpose: This work aims at reducing the uncertainty in proton stopping power (SP) estimation by a novel combination of a linear, separable basis vector model (BVM) for stopping power calculation (Med Phys 43:600) and a statistical, model-based dual-energy CT (DECT) image reconstruction algorithm (TMI 35:685). The method was applied to experimental data. Methods: BVM assumes the photon attenuation coefficients, electron densities, and mean excitation energies (I-values) of unknown materials can be approximated by a combination of the corresponding quantities of two reference materials. The DECT projection data for a phantom with 5 different known materials was collected on a Philips Brilliance scanner using two scans at 90 kVp and 140 kVp. The line integral alternating minimization (LIAM) algorithm was used to recover the two BVM coefficient images using the measured source spectra. The proton stopping powers are then estimated from the Bethe-Bloch equation using electron densities and I-values derived from the BVM coefficients. The proton stopping powers and proton ranges for the phantom materials estimated via our BVM based DECT method are compared to ICRU reference values and a post-processing DECT analysis (Yang PMB 55:1343) applied to vendorreconstructed images using the Torikoshi parametric fit model (tPFM). Results: For the phantom materials, the average stopping power estimations for 175 MeV protons derived from our method are within 1% of the ICRU reference values (except for Teflon with a 1.48% error), with an average standard deviation of 0.46% over pixels. The resultant proton ranges agree with the reference values within 2 mm. Conclusion: Our principled DECT iterative reconstruction algorithm, incorporating optimal beam hardening and scatter corrections, in conjunction with a simple linear BVM model, achieves more accurate and robust proton stopping power maps than the post-processing, nonlinear tPFM based DECT analysis applied to conventional

  10. Simplified life cycle assessment models: methodological framework and applications to energy pathways

    International Nuclear Information System (INIS)

    Padey, Pierryves

    2013-01-01

    The energy transition debate is a key issue for today and the coming years. One of the challenges is to limit the environmental impacts of electricity production. Decision support tools, sufficiently accurate, simple to use, accounting for environmental aspects and favoring future energetic choices, must be implemented. However, the environmental assessment of the energy pathways is complex, and it means considering a two levels characterization. The 'energy pathway' is the first level and corresponds to its environmental distribution, to compare overall pathways. The 'system pathway' is the 2. level and compares environmental impacts of systems within each pathway. We have devised a generic methodology covering both necessary characterization levels by estimating the energy pathways environmental profiles while allowing a simple comparison of its systems environmental impacts. This methodology is based on the definition of a parameterized Life Cycle Assessment model and considers, through a Global Sensitivity Analysis, the environmental impacts of a large sample of systems representative of an energy pathway. As a second step, this methodology defines simplified models based on few key parameters identified as inducing the largest variability in the energy pathway environmental impacts. These models assess in a simple way the systems environmental impacts, avoiding any complex LCAs. This reduction methodology has been applied to the onshore wind power energy pathway in Europe and the photovoltaic energy pathway in France. (author)

  11. Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms

    Directory of Open Access Journals (Sweden)

    Jiaoliao Chen

    2015-01-01

    Full Text Available Modeling of energy demand in agricultural greenhouse is very important to maintain optimum inside environment for plant growth and energy consumption decreasing. This paper deals with the identification parameters for physical model of energy demand in the greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA. HPSO-GA is developed to estimate the indistinct internal parameters of greenhouse energy model, which is built based on thermal balance. Experiments were conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system, which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias and heat transfer constants. The performance of HPSO-GA on the parameter estimation is better than GA and PSO. This algorithm can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand in the greenhouse.

  12. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    OpenAIRE

    Yuefei Wang; Hao Hu; Li Zhang; Nan Zhang; Xuhui Sun

    2016-01-01

    As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as ...

  13. Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network

    Science.gov (United States)

    Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan

    2018-01-01

    In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.

  14. Rapid Energy Modeling Workflow Demonstration Project

    Science.gov (United States)

    2014-01-01

    app FormIt for conceptual modeling with further refinement available in Revit or Vasari. Modeling can also be done in Revit (detailed and conceptual...referenced building model while in the field. • Autodesk® Revit is a BIM software application with integrated energy and carbon analyses driven by Green...FormIt, Revit and Vasari, and (3) comparative analysis. The energy results of these building analyses are represented as annual energy use for natural

  15. Predicting energy performance of a net-zero energy building: A statistical approach

    International Nuclear Information System (INIS)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these

  16. Promotion of renewable energy resources with a focus on cost-based feed-in tariffs

    International Nuclear Information System (INIS)

    Schweighofer, M.; Tretter, H.; Veigl, A.

    2006-01-01

    This final report published by the Swiss Federal Office of Energy (SFOE) presents a review of possible systems that could be used to promote power production in Switzerland using renewable energy sources. Promotional models on both the provider and consumer sides that use both price and quantity as control factors are examined. Three models are compared: the submission-to-tender model, the quota model with certificates and a model that uses cost-based feed-in tariffs. On the basis of a comparison with Austria, interaction between increasing the proportion of renewable forms of energy and the realisation of energy-efficiency goals is discussed. A further part of the report deals with various options for the use of biomass as a source of energy

  17. Timing-based business models for flexibility creation in the electric power sector

    International Nuclear Information System (INIS)

    Helms, Thorsten; Loock, Moritz; Bohnsack, René

    2016-01-01

    Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy. - Highlights: •Explores timing-based business models providing flexibility in the energy industry. •Timing-based business models can be classified on two dimensions. •Timing-based business models offer ‘coupled services’. • ‘Coupled services’ couple timing as a service with supply- or demand side valuables. •Policy and managerial implications for energy market design.

  18. Model error assessment of burst capacity models for energy pipelines containing surface cracks

    International Nuclear Information System (INIS)

    Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing

    2014-01-01

    This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines

  19. Stochastic volatility and multi-dimensional modeling in the European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Linda

    2012-07-01

    In energy prices there is evidence for stochastic volatility. Stochastic volatility has effect on the price of path-dependent options and therefore has to be modeled properly. We introduced a multi-dimensional non-Gaussian stochastic volatility model with leverage which can be used in energy pricing. It captures special features of energy prices like price spikes, mean-reversion, stochastic volatility and inverse leverage. Moreover it allows modeling dependencies between different commodities.The derived forward price dynamics based on this multi-variate spot price model, provides a very flexible structure. It includes cotango, backwardation and hump shape forward curves.Alternatively energy prices could be modeled by a 2-factor model consisting of a non-Gaussian stable CARMA process and a non-stationary trend models by a Levy process. Also this model is able to capture special features like price spikes, mean reversion and the low frequency dynamics in the market. An robust L1-filter is introduced to filter out the states of the CARMA process. When applying to German electricity EEX exchange data an overall negative risk-premium is found. However close to delivery a positive risk-premium is observed.(Author)

  20. Economic models for battery energy storage

    International Nuclear Information System (INIS)

    Reckrodt, R.C.; Anderson, M.D.; Kluczny, R.M.

    1990-01-01

    While the technology required to produce viable Battery Energy Storage System exists, the economic feasibility (cost vs. benefits) of building these systems requires justification. First, a generalized decision diagram was developed to ensure that all of the economic factors were considered and properly related for the customer-side-of-the meter. Next, two economic models that had consistently given differing results were compared. One was the McKinney model developed at UM-Rolla in 1987; the second was the SYSPLAN model developed by Battelle. Differences were resolved on a point by point basis with reference to the current economic environment. The economic model was upgraded to include the best of both models based on the resolution of these differences. The upgrades were implemented as modifications to the original SYSPLAN (1986 version) to preserve user friendliness. In this paper four specific cases are evaluated and compared. The results are as predicted, since comparison was made with two known models