WorldWideScience

Sample records for energy mixed waste

  1. Mixed Waste Focus Area: Department of Energy complex needs report

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.A.

    1995-11-16

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  2. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  3. Zero Waste; Energy Recovery From Non-recyclable Mixed Municipal Waste

    Directory of Open Access Journals (Sweden)

    Igor Laštůvka

    2016-01-01

    Full Text Available Zero Waste is a strategy offering waste management solutions for today’s businesses. The Zero Waste strategy has been created with the objective of stimulating sustainable utilisation of resources, production and consumption with the highest possible level of recycling of generated waste. Due to the fact that currently there is very little information and only few relevant data available as a base for the implementation of the Zero Waste strategy, waste management specialists approach and apply such a strategy in different manners. On the other hand, there are areas of waste management where such a strategy has already been applied on a long-term basis in spite of non-existing relevant legislative tools. Indicators determined in the Zero Waste strategy may be achieved only if the individual countries clearly define legislative environment and adopt a national Zero Waste strategy with achievable objectives unambiguously determined. The area of waste separation, or handling of fractions of waste non-utilisable as secondary materials after separation, is one of the areas directly connected to the Zero Waste strategy. The objective of this paper is the evaluation of the usage of fractions of waste non-utilisable as secondary materials for energy recovery, providing thus valuable knowledge and information for the implementation of the Zero Waste strategy.

  4. Mixed Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  5. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland.

    Science.gov (United States)

    Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M

    2013-12-01

    For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  7. Mixed waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  8. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  9. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

  10. Determination of renewable energy yield from mixed waste material from the use of novel image analysis methods.

    Science.gov (United States)

    Wagland, S T; Dudley, R; Naftaly, M; Longhurst, P J

    2013-11-01

    Two novel techniques are presented in this study which together aim to provide a system able to determine the renewable energy potential of mixed waste materials. An image analysis tool was applied to two waste samples prepared using known quantities of source-segregated recyclable materials. The technique was used to determine the composition of the wastes, where through the use of waste component properties the biogenic content of the samples was calculated. The percentage renewable energy determined by image analysis for each sample was accurate to within 5% of the actual values calculated. Microwave-based multiple-point imaging (AutoHarvest) was used to demonstrate the ability of such a technique to determine the moisture content of mixed samples. This proof-of-concept experiment was shown to produce moisture measurement accurate to within 10%. Overall, the image analysis tool was able to determine the renewable energy potential of the mixed samples, and the AutoHarvest should enable the net calorific value calculations through the provision of moisture content measurements. The proposed system is suitable for combustion facilities, and enables the operator to understand the renewable energy potential of the waste prior to combustion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Modeling the Mixing of Components in a Rotary Kiln While Burning Municipal Waste to Ensure Rational Use of Energy

    Directory of Open Access Journals (Sweden)

    Krot O.P.

    2017-08-01

    Full Text Available In Ukraine municipal waste is collected and delivered to a landfill. Municipal waste can be used as fuel to generate additional heat and electricity. The primary advantages of incineration are that waste volumes are reduced by an estimated, and the need for land and landfill space is greatly reduced. The plant has been designed by North–East Scientific Center using a thermocatalytic waste gas purification system with highly efficient dioxins reduction and heat energy recovery system. The technology of waste neutralization includes: a rotary kiln, an afterburner chamber, a new catalytic technologies for the treatment, a heat exchanger for heating combustion air, supply of alkali solution into the gas-escape channel, a carbon fiber adsorption filter. The organization of the right process of waste mixing in the rotary kiln allows increasing the efficiency of combustion, to equalize the combustion temperatures of the components of the waste and the completeness of the burning out of hazardous substances, which reduces the risk of their getting into the ash. The goal of the research is to build an analytical mathematical model of mixing of components in a rotary kiln. The model is based on the mathematical apparatus of Markov chains. The model allows to determine the concentration of the key component in any elementary volume of material circulating in the rotary kiln at any time and to calculate the statistical characteristics of the homogeneity of the mixture. The model will be used to research new designs of the equipment with rotary kilns.

  12. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP.

  13. Treatment of Slaughterhouse Waste Water Mixed with Serum from Lacteal Industry of Extremadura in Spain to Produce Clean Energy

    OpenAIRE

    A.C. Marcos; A. Al-Kassir; Francisco Cuadros; Talal Yusaf

    2017-01-01

    The problem of slaughterhouse waste water can be resolved by mixing it with serum from lacteal industry to produce a biogas. The effect of serum addition on the anaerobic co-digestion of solid and liquid slaughterhouse waste has been studied. The experimental device consisted of a continuous digester by recirculation of biogas produced in the anaerobic digestion. The input effluent was a mixture of slaughterhouse waste from Badajoz city (Spain) and animal serum in a proportion of 20%. The ana...

  14. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  15. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  16. DOE acceptance of commercial mixed waste -- Studies are under way

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L. [Dept. of Energy, Washington, DC (United States). Technical Support Program; Owens, C.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  17. Treatment of Slaughterhouse Waste Water Mixed with Serum from Lacteal Industry of Extremadura in Spain to Produce Clean Energy

    Directory of Open Access Journals (Sweden)

    A. C. Marcos

    2017-05-01

    Full Text Available The problem of slaughterhouse waste water can be resolved by mixing it with serum from lacteal industry to produce a biogas. The effect of serum addition on the anaerobic co-digestion of solid and liquid slaughterhouse waste has been studied. The experimental device consisted of a continuous digester by recirculation of biogas produced in the anaerobic digestion. The input effluent was a mixture of slaughterhouse waste from Badajoz city (Spain and animal serum in a proportion of 20%. The anaerobic digestion was developed in a complete mixing continuous digester with a capacity of 6.2 L at 37 °C and a feed rate of 350 mL/day. From the results obtained for the co-digestion of the feeding effluent of the slaughterhouse waste, without and with serum added, in the same operating conditions, comparative data about the biological depuration and biogas production have been obtained. A 10 L biogas production was obtained with the slaughterhouse waste and 18 L with the slaughterhouse waste with serum added. In conclusion, the highest energetic yield (97.52% higher was obtained in the second case, due to the positive action of catalytic enzymes present in the animal serum.

  18. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  19. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  20. Waste to energy

    CERN Document Server

    Syngellakis, S

    2014-01-01

    Waste to Energy deals with the very topical subject of converting the calorific content of waste material into useful forms of energy. Topics included cover: Biochemical Processes; Conversions by Thermochemical Processes; Computational Fluid Dynamics Modelling; Combustion; Pyrolysis; Gasification; Biofuels; Management and Policies.

  1. Processing of Oak Ridge Mixed Waste Labpacks

    Energy Technology Data Exchange (ETDEWEB)

    Estes, C. H.; Franco, P.; Bisaria, A.

    2002-02-26

    The Oak Ridge Site Treatment Plan (STP) issued under a Tennessee Commissioner's Order includes a compliance milestone related to treatment of mixed waste labpacks on the Oak Ridge sites. The treatment plan was written and approved in Fiscal Year 1997. The plan involved approximately 1,100 labpacks and 7,400 on-the-shelf labpackable items stored at three Department of Energy (DOE) sites on the Oak Ridge Reservation (ORR). The labpacks and labpack items consist of liquids and solids with various chemical constituents and radiological concerns. The waste must be processed for shipment to a commercial hazardous waste treatment facility or treatment utilizing a Broad Spectrum mixed waste treatment contract. This paper will describe the labpack treatment plan that was developed as required by the Site Treatment Plan and the operations implemented to process the labpack waste. The paper will discuss the labpack inventory in the treatment plan, treatment and disposal options, processing strategies, project risk assessment, and current project status.

  2. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  3. Tribal and public involvement in the U.S. Department of Energy Mixed Waste Focus Area -- First quarter status report for the period ending December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Owens, K.J.

    1996-02-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) began operations in February 1995 to provide technologies for the design, construction, and operation of implementable mixed waste treatment systems as identified in DOE Site Treatment Plans of the Federal Facilities Compliance Act. Implementable mixed waste treatment systems means that they meet the MWFA success criteria and that potential barriers to implementing those treatment systems have been identified and eliminated through effective communications and meaningful involvement with regulators, stakeholders, and tribal governments. The Regulatory and External Liaison Product Area of the MWFA is responsible for ensuring that possible teaming arrangements are considered and integrated into the MWFA technology development and decision-making processes. The Tribal and Public Involvement Team of the MWFA Regulatory and External Liaison Product Area has initiated a variety of activities to facilitate tribal and stakeholder involvement within the MWFA. This document discusses the status of those activities as of the end of the first quarter of the 1996 fiscal year and describes applicable lessons learned and process improvements.

  4. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  5. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  6. DOE mixed waste treatment capacity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  7. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  8. Bioprocessing of a stored mixed liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Finney, R. [Mound Applied Technologies, Miamisburg, OH (United States)] [and others

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  9. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  10. Mixed waste focus area alternative technologies workshop

    Energy Technology Data Exchange (ETDEWEB)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

    1995-05-24

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  11. The Effect of Urea and Sulphur Level in Mixing of Cassava Waste Fermented and Soybean Cake Waste on Nitrogen Balance and Digestibility of Energy of Local Male Sheep

    OpenAIRE

    Haryanto, Budi; Hidayat, Nur; Bata, M

    2001-01-01

    Cassava waste and soybean cake waste are by - product from home industry that have been used as animal feed. It contain high crude fibber, there fore it must be processed or added with another nutrients before feeding to animal to get a good performance. A research have been conducted in Experimental Farm and Laboratory Animal of Feed and Nutrition, Animal Science Faculty, Jenderal Soedirman University, Purwokerto at October- Nopember 2001. The purpose of the research is to find the effe...

  12. Mixed waste paper to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  13. The Effect of Urea and Sulphur Level in Mixing of Cassava Waste Fermented and Soybean Cake waste on Nitrogen Balance and Digestibility of Energy of Local Male Sheep

    OpenAIRE

    Budi Haryanto; Nur Hidayat; Bata, M

    2001-01-01

    Cassava waste and soybean cake waste are by - product from home industry  that  have been used as animal feed. It contain high crude fibber, there fore it must be processed or added with another nutrients before feeding to animal to get a good performance. A research have been  conducted in Experimental Farm and Laboratory Animal of  Feed and Nutrition, Animal Science Faculty, Jenderal Soedirman University, Purwokerto at October- Nopember 2001. The purpose of  the research is to find the effe...

  14. Mixed low-level waste form evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-03-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

  15. Alternatives sources of energy in the Czech energy mix

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Lisy; Marek, Balas; Zdenek, Skala

    2010-09-15

    The paper features a basic outline of the situation in the energy sector of the Czech Republic. It brings information about the current state of the country's energy mix and indicative targets of the State Energy Policy. Though coal and nuclear energy will remain the country's energy staples, great stress is also put on the growth of share of renewable and alternative energy sources. Out of these, the greatest potential in the Czech Republic is that of biomass and waste. To make the use of these sources cost-effective, it is necessary to put stress on heat and power cogeneration.

  16. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  17. Bioprocessing scenarios for mixed hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-12-31

    The potential of biological processing of mixed hazardous waste has not been determined. However, the use of selected microorganisms for the degradation and/or detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. The isolation of a unique strain of Pseudomonas Putida Idaho seems well adapted to withstand the demands of the input stream comprised of liquid scintillation waste. This paper describes the results from the continuous processing of a mixture comprised of p-xylene and surfactant as well as commercial liquid scintillation formulations. The two formulations tested contained xylene and pseudocumene as the solvent base. The process is now at the demonstration phase at one of DOE`s facilities which has a substantial amount of stored waste of this type. The system at the DOE facility is comprised of two CSTR units in series.

  18. Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-21

    The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

  19. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhongtang [The Ohio State Univ., Columbus, OH (United States); Hitzhusen, Fredrick [The Ohio State Univ., Columbus, OH (United States)

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  20. Treatment technology analysis for mixed waste containers and debris

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, R.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Brown, C.H. [Oak Ridge National Lab., TN (United States); Langton, C.A.; Askew, N.M. [Savannah River Lab., Aiken, SC (United States); Kan, T. [Lawrence Livermore National Lab., CA (United States); Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States)

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  1. Mixed Waste Management Facility Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  2. Energy content of municipal solid waste bales.

    Science.gov (United States)

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  3. From Solid Waste to Energy.

    Science.gov (United States)

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  4. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  5. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  6. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  7. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    Science.gov (United States)

    2012-05-23

    Introduction to Bioreactor Sampling Gas Production Solids Destruction Wasting to Waste Tank Sampling Sampling Disposal MIX TANK...Measurement Summary Mix Tank Reactor Waste Tank pH Methane Load Cell Data Temperature Gas flow Load Cell Data Torque Feedstock Density Motor... Mix Tank Bioreactor Waste Tank Collection Biosolids Addition Waste/ Recycle Waste Solids Storage Preparation Mixing Biogas Production Sampling

  8. Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins

    Energy Technology Data Exchange (ETDEWEB)

    Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

    1997-07-07

    Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

  9. Solid Waste/Energy Curriculum.

    Science.gov (United States)

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  10. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  11. Proposed research and development plan for mixed low-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

    1996-12-01

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

  12. Waste to energy the carbon perspective

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders; Astrup, Thomas Fruergaard

    2015-01-01

    Waste to energy plants are key treatment facilities for municipal solid waste in Europe. The technology provides efficient volume reduction, mass reduction and hygienisation of the waste. However, the technology is highly disputed in some countries. It is crucial to understand the role of waste...... to energy with respect to potential contributions to CO2 emissions and savings....

  13. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  14. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  15. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  16. Mixed waste focus area technical baseline report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1.

  17. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  18. Preliminary plan for treating mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Nunez, L.; Sedlet, J.; Wygmans, D.G.

    1993-06-01

    A preliminary waste treatment plan was developed for disposing of radioactive inorganic liquid wastes that contain hazardous metals and/or hazardous acid concentrations at Argonne National Laboratory. This plan, which involves neutralization and sulfide precipitation followed by filtration, reduces the concentration of hazardous metals and the acidity so that the filtrate liquid is simply a low-level radioactive waste that can be fed to a low-level waste evaporator.

  19. Recycling of mixed wastes using Quantum-CEP{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Sameski, B.

    1997-02-01

    The author describes the process that M4 Environmental Management, Inc., is commercializing for the treatment of mixed wastes. He summarizes the types of wastes which the process can be applied to, the products which come out of the process, and examples of various waste streams which have been processed. The process is presently licensed to treat mixed wastes and the company has in place contracts for such services. The process uses a molten metal bath to catalyze reactions which break the incoming products down to an atomic level, and allow different process steams to be tapped at the output end.

  20. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  1. Energy recovery from distillery wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, M.

    1981-01-01

    Energy and inorganic substances, principally K in the form of dry ash, are recovered from distillery wastes by evaporation of the water content of the wastes followed by combustion. At the same time, the serious pollution problem associated with molasses distilleries is eliminated. A typical stillage from a 60,000 L molasses/day distillery of conventional design consists of 31.2 tons liquid with 8% dry solids (DS) content/h. To concentrate this to 60% DS, 27.0 tons water/h must be evaporated which requires 6.2 tons steam/h. Subsequent combustion generates 9.6 tons steam/h, and additional K/sub 2/O-containing dry ash suitable for fertilizer is recovered. Approximately 2/3 of the K assimilated by sugarcane during its growth can be recycled in this way.

  2. Microbial Transformation of TRU and Mixed Waste: Actinide Speciation and Waste Volume

    Energy Technology Data Exchange (ETDEWEB)

    Halada, Gary P

    2008-04-10

    In order to understand the susceptibility of transuranic and mixed waste to microbial degradation (as well as any mechanism which depends upon either complexation and/or redox of metal ions), it is essential to understand the association of metal ions with organic ligands present in mixed wastes. These ligands have been found in our previous EMSP study to limit electron transfer reactions and strongly affect transport and the eventual fate of radionuclides in the environment. As transuranic waste (and especially mixed waste) will be retained in burial sites and in legacy containment for (potentially) many years while awaiting treatment and removal (or remaining in place under stewardship agreements at government subsurface waste sites), it is also essential to understand the aging of mixed wastes and its implications for remediation and fate of radionuclides. Mixed waste containing actinides and organic materials are especially complex and require extensive study. The EMSP program described in this report is part of a joint program with the Environmental Sciences Department at Brookhaven National Laboratory. The Stony Brook University portion of this award has focused on the association of uranium (U(VI)) and transuranic analogs (Ce(III) and Eu(III)) with cellulosic materials and related compounds, with development of implications for microbial transformation of mixed wastes. The elucidation of the chemical nature of mixed waste is essential for the formulation of remediation and encapsulation technologies, for understanding the fate of contaminant exposed to the environment, and for development of meaningful models for contaminant storage and recovery.

  3. Anaerobic digestion of animal waste: waste strength versus impact of mixing.

    Science.gov (United States)

    Karim, Khursheed; Hoffmann, Rebecca; Klasson, Thomas; Al-Dahhan, M H

    2005-11-01

    We studied the effect of mode of mixing (biogas recirculation, impeller mixing, and slurry recirculation) and waste strength on the performance of laboratory scale digesters. The digesters were fed with 5% and 10% manure slurry, at a constant energy supply per unit volume (8 W/m3). The experiments were conducted in eight laboratory scale digesters, each having a working volume of 3.73 L, at a controlled temperature of 35+/-2 degrees C. Hydraulic retention time (HRT) was kept constant at 16.2 days, resulting in a total solids (TS) loading rate of 3.08 g/Ld and 6.2 g/Ld for 5% and 10% manure slurry feeds, respectively. Results showed that the unmixed and mixed digesters performed quite similarly when fed with 5% manure slurry and produced biogas at a rate of 0.84-0.94 L/Ld with a methane yield of 0.26-0.31 L CH4/g volatile solids (VS) loaded. This was possibly because of the low solids concentration in the case of 5% manure slurry, where mixing created by the naturally produced gas might be sufficient to provide adequate mixing. However, the effect of mixing and the mode of mixing became prominent in the case of the digesters fed with thicker manure slurry (10%). Digesters fed with 10% manure slurry and mixed by slurry recirculation, impeller, and biogas recirculation produced approximately 29%, 22% and 15% more biogas than unmixed digester, respectively. Deposition of solids inside the digesters was not observed in the case of 5% manure slurry, but it became significant in the case of 10% manure slurry. Therefore, mixing issue becomes more critical with thicker manure slurry.

  4. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  5. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  7. Treatment of M-area mixed wastes at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  8. Low level mixed waste thermal treatment technical basis report

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  9. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  10. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  11. Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

  12. Effect of Mix Parameters on the Strength Performance of Waste Plastics Incorporated Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Santhosh M. Malkapur

    2014-01-01

    Full Text Available Disposal of solid wastes has been a major problem all over the world. Out of all the different types of solid wastes, the major challenge of disposal is posed by the ever increasing volumes of plastic wastes. While several methods are in practice, producing newer useful materials by recycling of such plastic wastes is, by far, the best method of their disposal. One such possible method is to use the waste plastics as an ingredient in the production of the concrete mixes in the construction industry. The present study aims to investigate the relative contributions of the various mix parameters to the mechanical properties of concrete mixes produced with waste plastics as partial replacement (10–30% by volume to coarse aggregates. Initially, strength test results of a set of trial mixes, selected based on Taguchi’s design of experiments (DOE method are obtained. A detailed analysis of the experimental results is carried out to study the effect of using waste plastics as a partial replacement to coarse aggregates on the strength parameters of these concrete mixes. It is found that all these trial mixes have performed satisfactorily in terms of workability in the fresh state and strength properties in their hardened state.

  13. Polyethylene encapsulation of mixed wastes: Scale-up feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-12-31

    A polyethylene process for the improved encapsulation of radioactive, hazardous, and mixed wastes have been developed at Brookhaven National Laboratory (BNL). Improvements in waste loading and waste form performance have been demonstrated through bench-scale development and testing. Maximum waste loadings of up to 70 dry wt % mixed waste nitrate salt were achieved, compared with 13--20 dry wt % using conventional cement processes. Stability under anticipated storage and disposal conditions and compliance with applicable hazardous waste regulations were demonstrated through a series of lab-scale waste form performance tests. Full-scale demonstration of this process using actual or surrogate waste is currently planned. A scale-up feasibility test was successfully conducted, demonstrating the ability to process nitrate salts at production rates (up to 450 kg/hr) and the close agreement between bench- and full-scale process parameters. Cored samples from the resulting pilot-scale (114 liter) waste form were used to verify homogeneity and to provide additional specimens for confirmatory performance testing.

  14. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    of waste wood combustion in a 13 MW grate-fired boiler in a WtE plant is presented. As a validation effort, the temperature profiles at a number of ports in the furnace are measured and the experimental results are compared with the CFD predictions. In the simulation, a 1D model is developed to simulate...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design......Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...

  15. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  16. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste.

    Science.gov (United States)

    Komilis, Dimitris P; Ham, Robert K

    2006-01-01

    The objective of the work was to provide a method to predict CO2 and NH3 yields during composting of the biodegradable fraction of municipal solid wastes (MSW). The compostable portion of MSW was simulated using three principal biodegradable components, namely mixed paper wastes, yard wastes and food wastes. Twelve laboratory runs were carried out at thermophilic temperatures based on the principles of mixture experimental and full factorial designs. Seeded mixed paper (MXP), seeded yard waste (YW) and seeded food waste (FW), each composted individually, produced 150, 220 and 370 g CO2-C, and 2.0, 4.4 and 34 g NH3-N per dry kg of initial substrate, respectively. Several experimental runs were also carried out with different mixtures of these three substrates. The effect of seeding was insignificant during composting of food wastes and yard wastes, while seeding was necessary for composting of mixed paper. Polynomial equations were developed to predict CO2 and NH3 (in amounts of mass per dry kg of MSW) from mixtures of MSW. No interactions among components were found to be significant when predicting CO2 yields, while the interaction of food wastes and mixed paper was found to be significant when predicting NH3 yields.

  17. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  18. Protein and energy value of maize and millet milling wastes for rabbits

    African Journals Online (AJOL)

    Thirty-six mixed rabbits were utilized to determine the protein and energy value s of maize milling waste (MZMW) and millet waste (MLMW). Parts of these wastes were autoclaved (AMZMW and AMLMW) and also fed to test rabbits. There was a significant higher (P<0.05) feed intake by rabbits on the MLMW and AMLMW ...

  19. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  20. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  1. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  2. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  3. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  4. Integrated process analyses studies on mixed low level and transuranic wastes. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Options for integrated thermal and nonthermal treatment systems for mixed low-level waste (MLLW) are compared such as total life cycle cost (TLCC), cost sensitivities, risk, energy requirements, final waste volume, and aqueous and gaseous effluents. The comparisons were derived by requiring all conceptual systems to treat the same composition of waste with the same operating efficiency. Thus, results can be used as a general guideline for the selection of treatment and disposal concepts. However, specific applications of individual systems will require further analysis. The potential for cost saving options and the research and development opportunities are summarized.

  5. Mixing Processes in High-Level Waste Tanks - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  6. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  7. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  8. RCRA closure of mixed waste impoundments

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, F.J. [Doty and Associates (United States); Greengard, T.C.; Arndt, M.B. [Rockwell International (United States)

    1989-11-01

    A case study of a RCRA closure action at the Rocky Flats Plant is presented. Closure of the solar evaporation ponds involves removal and immobilization of a mixed hazardous/radioactive sludge, treatment of impounded water, groundwater monitoring, plume delineation, and collection and treatment of contaminated groundwater. The site closure is described within the context of regulatory negotiations, project schedules, risk assessment, clean versus dirty closure, cleanup levels, and approval of closure plans and reports. Lessons learned at Rocky Flats are summarized.

  9. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  10. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  11. Steam Reforming of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  12. Mercury emissions control technologies for mixed waste thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Roberts, D.; Broderick, T. [ADA Technologies, Englewood, CO (United States)

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  13. Recycling Mixed Plastics Waste as Reductant in Ironmaking*

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... One of the major obstacles to the implementation of an appropriate plastics recycling scheme is the inhomogeneity of many plastics ... work, the reduction of reagent grade iron oxide by mixed plastic waste (MPW) has been investigated through experiments ..... (equation 2) or carbon gasification reaction.

  14. Environmental Protection Agency update on mixed waste regulations

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, A. [Environmental Protection Agency (United States)

    1989-11-01

    This paper is divided into discussion of the following four basic areas: (1) dual regulation; (2) the state role; (3) an overview of current agency activities; and (4) current issues. The first area, dual regulation of mixed waste, requires the cooperation between regulatory agencies, whether federal or state, for managing the chemical and radioactive aspects of mixed waste. Dual or joint regulation of mixed waste is now a well established fact. The second area is state involvement. Dual regulation involves not only the EPA, DOE, and NRC, but also state authorities. The Resource Conservation and Recovery Act (RCRA) is implemented for the most part by the individual states. Congress intended that the states be the primary implementers of RCRA and created provisions in the Act to authorize state programs. The third area discussed in this paper is concerned with EPA`s progress on current issues. EPA has progressed on several promises to create strong centralized guidance. Fourth and finally, there are many issues outstanding and some may have direct specific significant impact on DOE facility operations. Perhaps the biggest outstanding issue is how the land disposal restrictions will affect the treatment, storage, and disposal of mixed waste at DOE facilities.

  15. The mixed waste management facility, FY95 plan

    Energy Technology Data Exchange (ETDEWEB)

    Streit, R.

    1994-12-01

    This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

  16. Production of Caproic Acid from Mixed Organic Waste

    NARCIS (Netherlands)

    Chen, Wei Shan; Strik, David P.B.T.B.; Buisman, Cees J.N.; Kroeze, Carolien

    2017-01-01

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and

  17. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  18. Mixed Waste Management Facility groundwater monitoring report, First quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  19. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    Science.gov (United States)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  20. Evaluation of waste-to-energy potential of domestic solid wastes in ...

    African Journals Online (AJOL)

    The aim of this paper was to investigate the waste-to-energy potentials of domestic solid wastes in Benin metropolis, Nigeria using a three-phase study plan - study of current waste management activities, characterization of domestic solid waste and determination of the waste-to-energy potentials of domestic solid waste.

  1. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  2. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  3. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, the U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.

  4. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    Science.gov (United States)

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Waste to energy--key element for sustainable waste management.

    Science.gov (United States)

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Wind, hydro or mixed renewable energy source

    DEFF Research Database (Denmark)

    Yang, Yingkui; Solgaard, Hans Stubbe; Haider, Wolfgang

    2016-01-01

    a discrete choice experiment to infer consumers' preferences when the share of renewable energy increases. The study results indicate that consumers are generally willing to pay extra for an increasing share of renewable energy, but the renewable energy should come from a mixture of renewable energy sources......While the share of renewable energy, especially wind power, increases in the energy mix, the risk of temporary energy shortage increases as well. Thus, it is important to understand consumers' preference for the renewable energy towards the continuous growing renewable energy society. We use....... We also found that consumers prefer to trade with their current supplier rather than another well-known supplier. This study contributes to the energy portfolio theories and the theory of energy diversification in a consumer perspective. The managerial implications of this study are also discussed....

  7. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  8. VAC*TRAX - thermal desorption for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    McElwee, M.J.; Palmer, C.R. [RUST-Clemson Technical Center, Anderson, SC (United States)

    1995-10-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 2600{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost.

  9. MARKETING MIX IN OLTENIA ENERGY COMPLEX

    Directory of Open Access Journals (Sweden)

    Păunescu Alberto Nicolae

    2012-12-01

    Full Text Available Electricity generation in Romania it’s realized in percentage 30 % in OLTENIA ENERGY COMPLEX. This is the biggest producer of energy, end coal in the country. Therefore Marketing mix is very important to ensure that the company grows. The final objective is that the volume of sales, market share and growth.

  10. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  11. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  12. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-10-01

    Full Text Available Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS supplied by the Italian electric utility company (ENEL have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  13. Demonstration of GTS Duratek Process for Stabilizing Mercury Contaminated (<260 ppm) Mixed Wastes. Mixed Waste Focus Area. OST Reference No. 2409

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities, totaling approximately 6,000 m3. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. They must also be proven feasible in terms of economics, operability, and safety. This report summarizes the findings from a stabilization technology demonstration conducted by GTS Duratek, Inc. Phase I of the study involved receipt and repackaging of the material, followed by preparations for waste tracking. Phase II examined the bench-scale performance of grouting at two different loadings of waste to grouted mass. Phase III demonstrated in-drum mixing and solidification using repackaged drums of sludge. Phase IV initially intended to ship final residues to Envirocare for disposal. The key results of the demonstration are as follows: (1) Solidification tests were performed at low and high waste loading, resulting in stabilization of mercury to meet the Universal Treatment Standard of 0.025 mg/L at the low loading and for two of the three runs at the high loading. The third high-loading run had a Toxicity Characteristic Leaching Procedure (TCLP) of 0.0314 mg/L. (2) Full-drum stabilization using the low loading formula was demonstrated. (3) Organic compound levels were discovered to be higher than originally reported, including the presence of some pesticides. Levels of some radionuclides were much higher than initially reported. (4

  14. Development and status of the AL Mixed Waste Treatment Plan or I love that mobile unit of mine

    Energy Technology Data Exchange (ETDEWEB)

    Bounini, L. [USDOE Grand Junction Project Office, CO (United States); Williams, M. [USDOE Albuquerque Operations Office, NM (United States); Zygmunt, S. [Los Alamos National Lab., NM (United States)

    1995-02-01

    Nine Department of Energy (DOE) sites reporting to the Albuquerque Office (AL) have mixed waste that is chemically hazardous and radioactive. The hazardous waste regulations require the chemical portion of mixed waste to be to be treated to certain standards. The total volume of low-level mixed waste at the nine sites is equivalent to 7,000 drums, with individual site volumes ranging from 1 gallon of waste at the Pinellas Plant to 4,500 drums at Los Alamos National Laboratory. Nearly all the sites have a diversity of wastes requiring a diversity of treatment processes. Treatment capacity does not exist for much of this waste, and it would be expensive for each site to build the diversity of treatment processes needed to treat its own wastes. DOE-AL assembled a team that developed the AL Mixed Waste Treatment Plan that uses the resources of the nine sites to treat the waste at the sites. Work on the plan started in October 1993, and the plan was finalized in March 1994. The plan uses commercial treatment, treatability studies, and mobile treatment units. The plan specifies treatment technologies that will be built as mobile treatment units to be moved from site to site. Mobile units include bench-top units for very small volumes and treatability studies, drum-size units that treat one drum per day, and skid-size units that handle multiple drum volumes. After the tools needed to treat the wastes were determined, the sites were assigned to provide part of the treatment capacity using their own resources and expertise. The sites are making progress on treatability studies, commercial treatment, and mobile treatment design and fabrication. To date, this is the only plan for treating waste that brings the resources of several DOE sites together to treat mixed waste. It is the only program actively planning to use mobile treatment coordinated between DOE sites.

  15. Electromagnetic mixed waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Inc., Portsmouth, NH (United States); Vaux, W.G. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Nocito, T. [Ohio DSI Corp., New York (United States)

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  16. Steam reforming of low-level mixed waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  17. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  18. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  19. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  20. Energy from biomass and waste

    NARCIS (Netherlands)

    Faaij, A.P.C.

    1997-01-01

    Biomass, a broad term for all organic matter of plants, trees and crops, is currently regarded as a renewable energy source which can contribute substantially to the world's energy supply in the future. Various scenarios for the development of energy supply and demand, such as compiled by the

  1. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  2. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  3. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  4. ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, B.; Loveland, K.

    2003-02-27

    Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

  5. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  6. Medical waste to energy: experimental study.

    Science.gov (United States)

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  7. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  8. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  9. Improvement of permeability of waste sludge by mixing with slag or construction and demolition waste.

    Science.gov (United States)

    Asakura, Hiroshi; Endo, Kazuto; Yamada, Masato; Inoue, Yuzo; Ono, Yusaku

    2009-06-01

    To determine the allowable ratio of waste sludge required to ensure an aerobic zone in the landfill, we investigated sludge permeability, which involved mixing sludge, the major landfill waste in Japan, at different mixing ratios with other wastes (slag and construction and demolition waste (C&D)). We measured parameters of sample permeability and analyzed parameters that exert a large influence on oxygen penetration depth with a simulation model accounting for both diffusion and convection driven by temperature gradients. We also determined the critical volumetric contents in which gas and/or water permeability change significantly when sludge is mixed with sand or gravel. From the results of the simulations, gas permeability of the layer, the difference between inside and outside temperatures and the oxygen consumption rate exert a large influence on the resulting oxygen penetration depth. The allowable ratio of sludge required to ensure an aerobic zone in the landfill was determined by considering the balance of the above three parameters. By keeping volumetric sludge content to below 25%, air convection and oxygen penetration depth of several meters were achieved in the modeling.

  10. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  11. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    OpenAIRE

    Schwarzb?ck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternati...

  12. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  13. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  14. Hydrothermal Gasification for Waste to Energy

    Science.gov (United States)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  15. The Museum of Solid Waste and Energy.

    Science.gov (United States)

    National Energy Education Development Project, Reston, VA.

    This activity geared for grades 5-9 involves students in creating museum stations on eight solid waste and energy topics. While working in groups, students present their station topic to other students who are conducting a "museum tour." In doing so participants are encouraged to enhance their reading, writing, public speaking, and artistic skills…

  16. Mixing Performance of a Suspended Stirrer for Homogenizing Biodegradable Food Waste from Eatery Centers

    Directory of Open Access Journals (Sweden)

    Olumide Babarinsa

    2014-08-01

    Full Text Available Numerical simulation of a suspended stirrer within a homogenizing system is performed towards determining the mixing performance of a homogenizer. A two-dimensional finite volume formulation is developed for the cylindrical system that is used for the storage and stirring of biodegradable food waste from eatery centers. The numerical solver incorporates an analysis of the property distribution for viscous food waste in a storage tank, while coupling the impact of mixing on the slurry fluid. Partial differential equations, which describe the conservation of mass, momentum and energy, are applied. The simulation covers the mixing and heating cycles of the slurry. Using carrot-orange soup as the operating fluid (and its thermofluid properties and assuming constant density and temperature-dependent viscosity, the velocity and temperature field distribution under the influence of the mixing source term are analyzed. A parametric assessment of the velocity and temperature fields is performed, and the results are expected to play a significant role in designing a homogenizer for biodegradable food waste.

  17. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  18. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis B. [National Security Technologies, LLC

    2015-12-01

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classified Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  19. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  20. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy...... technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  1. Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.

    Science.gov (United States)

    Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark

    2017-01-01

    In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.

  2. Recovery and removal of mercury from mixed wastes. Final report, September 1994--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, W.F.; Weyand, T.E.; Koshinski, C.J.

    1995-06-01

    In recognition of the major environmental problem created by mercury contamination of wastes and soils at an estimated 200,000 sites along US natural gas and oil pipelines and at a number of government facilities, including Oak Ridge, Savannah River, Hanford, and Rocky Flats, the US Department of Energy (DOE) is seeking an effective and economical process for removing mercury from various DOE waste streams in order to allow the base waste streams to be treated by means of conventional technologies. In response to the need for Unproved mercury decontamination technology, Mercury Recovery Services (MRS) has developed and commercialized a thermal treatment process for the recovery of mercury from contaminated soils and industrial wastes. The objectives of this program were to: demonstrate the technical and economic feasibility of the MRS process to successfully remove and recover mercury from low-level mixed waste containing mercury compounds (HgO, HgS, HgCl{sub 2}) and selected heavy metal compounds (PbO, CdO); determine optimum processing conditions required to consistently reduce the residual total mercury content to 1 mg/kg while rendering the treated product nontoxic as determined by TCLP methods; and provide an accurate estimate of the capital and operating costs for a commercial processing facility designed specifically to remove and recovery mercury from various waste streams of interest at DOE facilities. These objectives were achieved in a four-stage demonstration program described within with results.

  3. Recovering energy and materials from hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The tannery industry faces growing environmental concerns because of the high hazardous metal content of its process waste. The formation, during the tanning process, of the highly toxic hexavalent chromium precludes the use of conventional thermal incineration processes. Borge Tannery in Norway, which processes 600 cattle hides per day, has solved the problem by using new PyroArc technology. The PyroArc waste processing plant can treat all of the tannery's production wastes, transforming them into useful products such as fuel gas and re-usable metal. The fuel gas consists mainly of carbon monoxide, hydrogen and nitrogen, and has a calorific value of about 4 MJ/Nm{sub 3}. About 65-70% of the energy content of the source material (waste or biomass) is recovered in the gas, and this is used to produce steam and/or electricity in a gas engine with a capacity of 580 kW. A further 20-25% of the initial energy content is recovered as heat or low-pressure steam. The plant is designed to be self-sufficient in energy (1.5 MW) and to meet the tannery's maximum requirements for hot water and steam. (UK)

  4. 1994 Report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1994-04-01

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

  5. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    Science.gov (United States)

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  6. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    Science.gov (United States)

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  7. Plywood production wastes to energy

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.

    2017-11-01

    Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.

  8. Natural stone waste powders applied to SCC mix design

    NARCIS (Netherlands)

    Hunger, Martin; Brouwers, Jos

    2008-01-01

    In order to comply with current trends concerning sustainability, saving of primary materials and energy savings, this paper addresses Eco-concrete. The major focus thereby is on the increased efficiency of cement use. Applying a new mix design method for concrete, cement contents can be decreased

  9. Energy recovery from distillery wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, M.

    1981-09-01

    In sugar-producing countries where molasses are fermented and distilled the effluent can be a valuable energy-producing by-product. By evaporation of the stillage followed by combustion in a boiler, enough energy can be recovered to pay back the capital investment in a reasonable time. At the same time, the serious pollution problem associated with molasses distilleries is eliminated. Combustion of the pollutant organic materials can generate more steam than is needed for the preceding evaporation. The surplus steam can be used profitably in the sugar processing plant or distillery, or to generate electricity. Valuable inorganic substances, notably potassium, can be recovered in the form of a dry ash suitable for fertilizers. It is estimated that some two-thirds of the potassium that has been assimilated by sugar cane during its growth can be recycled in this way. Since all cane-growing countries currently import potassium for fertilizer-compounding, there is a direct benefit to the balance of payments as well as to the individual distiller.

  10. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  11. DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    LAGERAAEN,P.R.; KALB,P.D.; MILIAN,L.W.; ADAMS,J.W.

    1997-11-01

    Thermokinetic mixing was investigated as an alternative processing method for polyethylene microencapsulation, a technology well demonstrated for treatment of hazardous, low-level radioactive and low-level mixed wastes. Polyethylene encapsulation by extrusion has been previously shown to be applicable to a wide range of waste types but often pretreatment of the wastes is necessary due to process limitations regarding the maximum waste moisture content and particle size distribution. Development testing was conducted with kinetic mixing in order to demonstrate technology viability and show improved process applicability in these areas. Testing to establish process capabilities and relevant operating parameters was performed with waste surrogates including an aqueous evaporator concentrate and soil. Using a pilot-scale kinetic mixer which was installed and modified for this program, the maximum waste moisture content and particle size was determined. Following process development with surrogate wastes, the technology was successfully demonstrated at BNL using actual mixed waste.

  12. Optimal utilization of waste-to-energy in an LCA perspective

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas

    2011-01-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration....... For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production...... alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while...

  13. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  14. Energy from biomass and wastes: 1979 update

    Energy Technology Data Exchange (ETDEWEB)

    Klass, D.L.

    1979-01-01

    The R and D activities in progress in the United States on the development of biomass and wastes as renewable energy sources have reached the point where all phases of the technology are under active investigation. Highlights of this effort are briefly reviewed from the standpoint of energy impact, funding, carbon dioxide build-up in the atmosphere, and biomass production and its conversion to energy and synthetic fuels. Special attention is given to alcohols because of the current interest in gasohol. Significant accomplishments were reported in 1979, and it is expected that commercial utilization of this information will begin to gather more momentum.

  15. Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Seigler, R.S.

    1994-01-01

    The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. The first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.

  16. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered.

  17. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

  18. Evaluation of Waste-to-Energy Potential of Domestic Solid Wastes in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Waste-to-Energy Potential of Domestic Solid Wastes. 1091. IGBINOMWANHIA, DI; OBANOR, AI; OLISA, YP; AKHATOR, PE incineration plant with energy recovery. Therefore the obtainable heat energy value from combustible solid waste in Benin metropolis is 1,228GJ/day for domestic source. The analysis ...

  19. An optimal renewable energy mix for Indonesia

    Science.gov (United States)

    Leduc, Sylvain; Patrizio, Piera; Yowargana, Ping; Kraxner, Florian

    2016-04-01

    Indonesia has experienced a constant increase of the use of petroleum and coal in the power sector, while the share of renewable sources has remained stable at 6% of the total energy production during the last decade. As its domestic energy demand undeniably continues to grow, Indonesia is committed to increase the production of renewable energy. Mainly to decrease its dependency on fossil fuel-based resources, and to decrease the anthropogenic emissions, the government of Indonesia has established a 23 percent target for renewable energy by 2025, along with a 100 percent electrification target by 2020 (the current rate is 80.4 percent). In that respect, Indonesia has abundant resources to meet these targets, but there is - inter alia - a lack of proper integrated planning, regulatory support, investment, distribution in remote areas of the Archipelago, and missing data to back the planning. To support the government of Indonesia in its sustainable energy system planning, a geographic explicit energy modeling approach is applied. This approach is based on the energy systems optimization model BeWhere, which identifies the optimal location of energy conversion sites based on the minimization of the costs of the supply chain. The model will incorporate the existing fossil fuel-based infrastructures, and evaluate the optimal costs, potentials and locations for the development of renewable energy technologies (i.e., wind, solar, hydro, biomass and geothermal based technologies), as well as the development of biomass co-firing in existing coal plants. With the help of the model, an optimally adapted renewable energy mix - vis-à-vis the competing fossil fuel based resources and applicable policies in order to promote the development of those renewable energy technologies - will be identified. The development of the optimal renewable energy technologies is carried out with special focus on nature protection and cultural heritage areas, where feedstock (e.g., biomass

  20. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  1. Military Wastes-to-Energy Applications,

    Science.gov (United States)

    1980-11-01

    materials; soiled and dirty. Plastics Film and rigid, polyvinyl chloride, poly- ethylene, styrene in packaging, housewares, furniture, toys, and nonwoven ...energy recovered from sewage sludge that also goes into the digester. This calculation also assumes that the filter cake residue from the digester is...pounds. d D l. i and nee dle. a Steam plant Slowdown, pool filter hachwash, and engine test call. 106 Table 58. Summary of Military Hazardous Waste

  2. Energy Mix between Renewable Energy and Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Yousry E. M. Abushady

    2015-08-01

    Full Text Available  Energy is the backbone of any development in any State. Renewable Energy (wind, solar and biomass appears currently as a major strategic energy source for a sustainable development particularly for developing or under developing societies. Use of renewable Energy will challenge major technological changes, by achieving energy production and saving. In particular by replacing fossil fuel, a significant cut of environmental impact and green house gas emission (GHG could be achieved. In addition Renewable Energy could offer a sustainable development for different societies particularly those in rural area (e.g. desert or isolated islands. The significant technical renewable energy tool developments in developed States could be much easier to be transferred to or copied in developing States .

  3. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Johan, E-mail: Johan.lindmark@mdh.se; Eriksson, Per; Thorin, Eva, E-mail: Eva.Thorin@mdh.se

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  4. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    user

    world has been adopted as a very sustainable source of energy for waste treatment. Its application in both solid waste and waste water treatment as in pyrolysis, solar incineration and gasification for solid wastes treatment and solar pathogenic organic destruction, solar photocatalytic degradation, solar distillation and ...

  5. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  6. Energy from wood waste - A case study

    Science.gov (United States)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  7. Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts

    Energy Technology Data Exchange (ETDEWEB)

    Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

    2003-02-25

    To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

  8. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    Science.gov (United States)

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Application of pyrolysis process in processing of mixed food wastes

    Directory of Open Access Journals (Sweden)

    Grycová Barbora

    2016-03-01

    Full Text Available The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carbon monoxide were analyzed during the 4th gas sampling at a temperature of approx. 720–780°C. The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

  10. The use of urban wood waste as an energy resource

    Science.gov (United States)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  11. Chemical tailoring of steam to remediate underground mixed waste contaminents

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  12. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  13. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  14. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    Science.gov (United States)

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  15. Energy recovery from garden waste in a LCA perspective

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2015-01-01

    According to the common strategies regarding waste management and energy supply in EU countries, more efficient utilization of organic waste resources (including garden waste) with both nutrient and energy recovery is desired. Each of the most common treatments applied today – composting, direct...

  16. Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in the DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.

  17. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  18. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sustainable treatment potential of mixed algal consortia for domestic waste water: Growth and mixotrophy

    Directory of Open Access Journals (Sweden)

    Priyanka Murthy

    2015-04-01

    Full Text Available The increasing levels of generation of nutrient-rich waste water pose serious challenge. Conventional biological and chemical methods of waste water treatment have failed in meeting sustainability challenges. Naturally occurring mixed algal species reared in mixotrophic growth modes have been deployed to recover nutrients (N and P from domestic wastewater after anaerobic digestion. In this paper, we present the results pertaining to growth and mixotrophy. Pilot-scale operation shows that the cultivation methods adopted and the use of naturally selected species lead to a tendency among these species to clump at certain stages of growth that in turn float or settle rapidly making algal harvest and thereby the nutrient recovery processes energy efficient. The highest settling rate was found to be 6.37 ± 1.6 g/m2/d. Mixotrophy was seen to contribute 15 – 24 % across the various algal consortia in wastewater (polyculture.

  20. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    DOE/Navarro/NSTec

    2007-02-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

  1. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  2. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  3. Chemically bonded phosphate ceramics for low-level mixed waste stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A.S.; Cunnane, J.C. [Argonne National Lab., IL (United States); Mayberry, J.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1994-12-31

    Novel chemically bonded phosphate ceramics (CBPCs) are being developed and fabricated for low-temperature stabilization and solidification of mixed waste streams which are amenable to conventional high-temperature stabilization processes due to presence of volatiles such as heavy metal chloride and fluorides and/or pyrophorics in the wastes. Phosphates of Mg, Mg-Na and Zr are being developed as candidate matrix materials. In this paper, we present the fabrication procedures of phosphate waste forms using surrogates compositions of three typical mixed wastes streams -- ash, cement sludges, and salts. The performance of the final waste forms such as compression strength, leachability of the contaminants, durability in aqueous environment were conducted. In addition, parameteric studies have been conducted to establish the optimal waste loading in a particular binder system. Based on the results, we present potential applications in the treatment of various mixed waste streams.

  4. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  5. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  6. Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-03-01

    During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  7. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. [Argonne National Lab., Idaho Falls, ID (United States); Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States); Duff, M.J. [Consolidated Technical Services, Inc., Walkersville, MD (United States)

    1992-02-01

    Argonne National Laboratory is participating in the Department of Energy`s Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  8. Proceedings of the US Department of Energy Office of Environmental Restoration and Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The fifth of a series of waste minimization (WMIN)/reduction workshops (Waste Reduction Workshop V) was held at the Little Tree Inn in Idaho Falls, Idaho, on July 24--26, 1990. The workshops are held under the auspices of the US Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM). The purpose of this workshop was to provide a forum for sharing site activities in WMIN/reduction planning. Topics covered were management commitment, organizational structure, goal setting, reporting requirements, data bases and tracking systems, pollution prevention, awareness and incentives, information exchange, process waste assessment (PWA) implementation, and recycling internal and external. The workshops assist DOE waste-generating sites in implementing WMIN/reduction programs, plans, and activities, thus providing for optimal waste reduction within the DOE complex. All wastes are considered within this discipline: liquid, solid, and airborne, within the categories of high-level waste (HLW), transuranic waste (TRU), low-level waste (LLW), hazardous waste, and mixed waste.

  9. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Lindmark, Johan; Eriksson, Per; Thorin, Eva

    2014-08-01

    Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    Energy Technology Data Exchange (ETDEWEB)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  11. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    D.F. Nickelson; D.K. Jorgensen; J.J. Jessmore; R.A. Hyde; R.K. Farnsworth

    1999-02-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE's Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  12. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    Science.gov (United States)

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of asphaltic mix with waste products use

    Directory of Open Access Journals (Sweden)

    Pugin Konstantin Georgievich

    2014-07-01

    Full Text Available The trend of high growth of the vehicle fleet in Russia along with the positive impact on the socio-economic development of the country has a number of adverse consequences, one of which is the high accident rate on the roads. The paper considers modern way to provide the safe vehicles flow with the use of colored asphalt, which is a kind of hot asphalt and can have a variety of colors, which consists of coloring pigments. The conventional method of coloring the asphalt mix is produced by adding color rubble or pigmenting additives. The task, which was put forward, was the establishment of such road concrete mix, from which, without the use of primary materials and without increasing the consumption of bitumen, asphalt concrete road surfaces of acceptable strength could be obtained. As a pigment the dust of gas purification system of electrical furnace DSP - 60 of «Kamastal» plant, Perm, was used. The composition of the dust waste from the furnace consists of metal oxides and silicates. Dust-gas-cleaning is a fine powder with a high specific surface (1.2…2.5 thousand cm /g and bulk density of 3.7…4.2 g/cm . The powder color is dark brown. The density of the ready colored asphalt samples is 2.47...2.49 g/cm , and water saturation is 3.50…3.55 %. As a result of the research the diagrams of the dependence of road concrete mix’s water saturation from dust percentage and a diagram of dependence of concrete mixes’ durability from dust percentage at t = 20° and 50° C were built. After analyzing the obtained curves it can be concluded that the increase of the percentage of dust leads to increase of water saturation of road concrete mix and reduced strength. Thus, the developed asphalt concrete mix allows visually separating the lanes on the road, it has the relevant regulatory requirements durability and water resistance. This mixture corresponds to the type B mark III and can be used in regions I, II, and partly III of road-climatic zones

  14. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-16

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

  15. Case study and presentation of the DOE treatability group concept for low-level and mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D. [Lockheed Idaho Technologies, Germantown, MD (United States); Heath, B.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Davis, K.D. [Roy F. Weston, Inc., Idaho Falls, ID (United States)

    1994-12-31

    The Federal Facility Compliance Act of 1992 requires the US Department of Energy (DOE) to prepare an inventory report of its mixed waste and treatment capacities and technologies. Grouping waste streams according to technological requirements is the logical means of matching waste streams to treatment technologies, and streamlines the effort of identifying technology development needs. To provide consistency, DOE has developed a standard methodology for categorizing waste into treatability groups based on three characteristic parameters: radiological, bulk physical/chemical form, and regulated contaminant. Based on category and component definitions in the methodology, descriptive codes or strings of codes are assigned under each parameter, resulting in a waste characterization amenable to a computerized format for query and sort functions. By using only the applicable parameters, this methodology can be applied to all waste types generated within the DOE complex: radioactive, hazardous, mixed, and sanitary/municipal. Implementation of this methodology will assist the individual sites and DOE Headquarters in analyzing waste management technology and facility needs.

  16. Comparison of alternative treatment systems for DOE mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

  17. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance...... of a Danish waste refinery solution against state-of-the-art waste technology alternatives (incineration, mechanical-biological treatment (MBT), and landfilling). In total, 252 scenarios were evaluated, including effects from source-segregation, waste composition, and energy conversion pathway efficiencies...... 15-40% compared with incineration), albeit at the potential expense of additional toxic emissions to soil. Society's need for the outputs from waste, i.e., energy products (electricity vs transport fuels) and resources (e.g., phosphorus), and the available waste composition were found decisive...

  18. Making the Most of Waste Energy

    Science.gov (United States)

    2005-01-01

    The Thermo-Mechanical Systems Branch at NASA s Glenn Research Center is responsible for planning and conducting research efforts to advance thermal systems for space, aerospace, and non-aerospace applications. Technological areas pertain to solar and thermal energy conversion. For example, thermo-mechanical systems researchers work with gas (Stirling) and liquid/vapor (Rankine) systems that convert thermal energy to electrical power, as well as solar dynamic power systems that concentrate sunlight to electrical power. The branch s development of new solar and thermal energy technologies is propelling NASA s missions deep into unfamiliar territories of space. Solar dynamic power systems are actively improving the health of orbiting satellites, giving them longer life and a stronger radiation tolerance, thus, creating less need for on-orbit maintenance. For future missions, NASA may probe even deeper into the mysterious cosmos, with the adoption of highly efficient thermal energy converters that have the potential to serve as the source of onboard electrical power for satellites and spacecraft. Research indicates that these thermal converters can deliver up to 5 times as much power as radioisotope thermoelectric generators in use today, for the same amount of radioisotope. On Earth, energy-converting technologies associated with NASA s Thermo-Mechanical Systems Branch are being used to recover and transform low-temperature waste heat into usable electric power, with a helping hand from NASA.

  19. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    Science.gov (United States)

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-01-20

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  1. Waste-to-Energy Laboratory. Grades 8-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an activity for grades 8-12 students that focuses on the reuse of waste as an energy source by burning and converting it into energy. For this experiment students construct a calorimeter from simple recyclable material. The calorimeter is used to measure the amount of energy stored in paper and yard waste that could be used…

  2. Energy recovery from organic fractions of municipal solid waste: A case study of Hyderabad city, Pakistan.

    Science.gov (United States)

    Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I

    2016-04-01

    Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country. © The Author(s) 2016.

  3. Electromagnetic mixed-waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  4. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  5. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J. [and others

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  6. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  7. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  8. Optimization of use of waste in the future energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2011-01-01

    of mixed waste, anaerobic digestion of organic waste, and gasification of part of the potential RDF (refuse derived fuel) for CHP (combined heat and power) production, while the remaining part is co-combusted with coal. Co-combustion mainly takes place in new coal-fired power plants, allowing investments...

  9. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. (Argonne National Lab., Idaho Falls, ID (United States)); Courtney, J.C. (Louisiana State Univ., Baton Rouge, LA (United States)); Duff, M.J. (Consolidated Technical Services, Inc., Walkersville, MD (United States))

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  10. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  11. Anaerobic digestion of organic solid waste for energy production

    OpenAIRE

    Nayono, Satoto Endar

    2009-01-01

    This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms of its energy recovery, either by investigating the maximum organic loading rate or by co-digestion with other types of wastes for energy recovery. In order to reach the research purpose, several experiments such as characteristics examination of different organic solid wastes, which are potential substrates for anaerobic digestion.

  12. The Hidden Burden of Food Waste: The Double Energy Waste in Italy

    Directory of Open Access Journals (Sweden)

    Matteo Vittuari

    2016-08-01

    Full Text Available The energy intensity of modern food systems represents a major issue in a scenario of decreasing oil resources and increasing population. Beside the use of renewable energy, an increased efficiency in food systems could contribute to reduce fossil fuels dependence. In this sense, food losses and waste (FLW have crucial consequences on the energy balance. Based on the concept of “embodied energy”, food wastage can be framed as a double waste of energy, both in terms of non-consumed food energy and the inputs used for production. Secondary data regarding direct and indirect energy inputs and FLW have been collected for the Italian food chain to estimate the embodied energy of food waste. Since in 2011 the production and distribution of food implied the use of 822 PJ and 18 Mt of food was discarded, 67 PJ of food energy and 100 PJ of embodied energy were wasted. These figures are equivalent to 12.2% of the total nutritional energy output and to 1.3% of the final energy use in Italy, respectively. The concept of double energy waste sheds new light on the intertwined relationship between energy and food security, suggesting that appropriate food waste reduction policies could result in a higher food production level and relevant energy savings.

  13. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    To meet the rising demand for energy and to address environmental concerns, a conversion from conventional energy systems to renewable resources is essential. For the sustainability of human civilization, an environmentally techno – economically feasible waste treatment method is very important to treat waste. Several ...

  14. System modeling of waste flow in energy planning | Njoku | Journal ...

    African Journals Online (AJOL)

    The problem of waste flow in energy system planning was investigated by adopting integrated systems enginee-ring approach. The system model was considered at multiple levels of hierarchy. Waste flow in energy plann-ing process was viewed as a system arranged or organized that plans and policies as controlled ...

  15. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    These waste treatment methods require light from the sun to photocatalyse reactions and also heat as thermal energy for the various endothermic reactions. This review therefore highlighted various methods of waste treatment which does not require the limited conventional energy sources. It also reveals that model ...

  16. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-29

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells.

  17. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  18. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    DEFF Research Database (Denmark)

    Tonini, Davide; Dorini, Gianluca Fabio; Astrup, Thomas Fruergaard

    2014-01-01

    Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials......, phosphorous, potassium, and biogenic carbon recovery was estimated to be between 81% and 89% of the input. Biogenic and fossil carbon in the mixed household waste input was determined to 63% and 37% of total carbon based on 14C analyses. Additional recovery of metals and plastic was possible based on further...

  19. A review on organic waste to energy systems in India.

    Science.gov (United States)

    Dhar, Hiya; Kumar, Sunil; Kumar, Rakesh

    2017-12-01

    Waste generation is increasing day-by-day with the growth of population which directly affects the environment and economy. Organic municipal solid waste (MSW) and agriculture sectors contribute towards maximum waste generation in India. Thus, management of organic waste is very much essential with the increasing demand for energy. The present paper mainly focusses on reviewing waste to energy (WtE) potentials, its technologies, and the associated challenges. Different substrates are utilized through various technological options in India. Organic waste has good potential to attain sustainable energy yields with and without affecting the environment. A realistic scenario of WtE technologies and their challenges in line with the existing Indian condition is presented in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Problems associated with solid wastes from energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

    1980-09-01

    Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

  1. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-03-03

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

  2. Recycling Mixed Plastics Waste as Reductant in Ironmaking ...

    African Journals Online (AJOL)

    One of the major obstacles to the implementation of an appropriate plastics recycling scheme is the inhomogeneity of many plastics waste. Accordingly, most of the existing recycling schemes require a feedstock that is reasonably pure and contains only items made from a single polymer type. However, in reality, waste ...

  3. Optimal utilization of waste-to-energy in an LCA perspective.

    Science.gov (United States)

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    Science.gov (United States)

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  5. Stabilize ash using Clemson`s sintering process (Part 1 -- Phase 1 results): Mixed waste fly ash stabilization. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    Incineration of applicable Department of Energy (DOE) mixed wastes has produced a secondary waste stream of radioactive and Resource Conservation and Recovery Act (RCRA) hazardous fly ash that also requires treatment before land disposal. Unlike bottom ash, fly ash usually contains constituents making efficient stabilization difficult. For example, fly ash from the DOE Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) contains volatile metals, metal salts, high concentrations of zinc, and unburned organic residues. All of these constituents can effect the stabilization process. The Department of Energy, and in particular the Mixed Waste Focus Area (MWFA) of EM-50, has stated the need for improved stabilization methods would accept a higher ash waste loading while meeting waste form disposal criteria. These alternative stabilization technologies should include delivery systems to minimize worker exposure and minimize secondary waste generation, while maximizing operational flexibility and radionuclide containment. Currently, the standard practice for stabilizing ash is mixing with Portland cement at room temperature. This standard practice produces a significant increase of waste material volume or has difficulty in adequately stabilizing the components in the fly ash to ensure regulatory requirements are consistently satisfied. To address these fly ash stabilization shortcomings, the MWFA, a DOE/EM-50 program, invested in the development of several fly ash stabilization alternatives, including the Clemson University sintering method.

  6. MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

  7. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...

  8. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  9. Energy recovery from solid waste. Volume 1: Summary report

    Science.gov (United States)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  10. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    Optimal utilization of biomass and waste for energy purposes offers great potentials for reducing fossil fuel dependency and resource consumption. The common understanding is that bioenergy decreases greenhouse gas (GHG) emissions as the carbon released during energy conversion has previously been...... impacts. Waste, such as municipal solid waste, does not involve land use change impacts. However, existing and emerging waste treatment technologies offer different environmental benefits and drawbacks which should be evaluated in order to recommend appropriate technologies in selected scenarios....... To evaluate the environmental and energy performance of bioenergy and wasteto-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide...

  11. Experimental Investigation of Biogas Production from Kitchen Waste Mixed with Chicken Manure

    OpenAIRE

    H. Mousa; A. Obaidat; H.B. Khaled; A. Alawaneh; A. Tarawneh

    2016-01-01

    ogas produced from solid kitchen waste (KW) mixed with chicken manure (M) at different mass ratios was investigated. The effect of the ratio of the amount of water to the mixed solid waste on the amount of biogas produced was studied. The results showed that at a fixed ratio of water-to-solid waste, the amount of biogas increased as the amount of chicken M increased. At a fixed M-to-KW ratio, the amount of biogas produced increased as the solid content increased and then decreased, reaching i...

  12. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Second quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Groundwater monitoring continued at the Savannah River Plant. During second quarter 1993, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Chloroethene (vinyl chloride), dichloromethane (methylene chloride), 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  13. Fuel-related Emissions from the Croatian Municipal Solid Waste Collection System in 2013: Mixed Municipal Waste

    Directory of Open Access Journals (Sweden)

    Anamarija Grbeš

    2018-01-01

    Full Text Available Waste removal (collection and landfilling in the Republic of Croatia is the responsibility of the municipalities and local governments in 21 administrative units (counties. They entrust the respective economic activity to 208 private and public companies specialized in waste collection and treatment. Organised waste collection affects 99 % of the population. The mixed waste from households and enterprises is at various frequencies collected at the door (kerbside collection and transported by truck to a landfill, or processing plant. This article aims to estimate fuel consumption and fuel-related airborne emissions from the collection of mixed municipal waste in Croatia in 2013. The input data and emission results are shown for Croatia and each Croatian county, in total, and relative to the number of inhabitants and mass of collected waste. Annual consumption of diesel for the collection of mixed waste is estimated at 10.6 million litres. At the county level, fuel consumption ranges from 87 thousand litres to 2.2 million litres, on average 504 thousand litres per county. Total emission of CO2 is estimated at 28 000 t, which at county level ranges from 231 to 5711 t. Relative emission ranges from 3.3 to 13 kg CO2 per capita (average 6.6 kg per capita, or 8.6–28.1 kg t−1 of municipal waste (average 17 kg CO2 per ton of municipal waste. The average values of CO2 emission from MSW collection that should also be the target values are 7–9 kg for mixed waste, and 8–15 kg CO2 for separate waste streams. Apart from CO2 emission, this research estimates emission of other, diesel combustion related compounds, such as NOx, CO, lubricant related CO2, NMVOC, PM, f-BC, N2O, SO2, NH3, Pb, ID[1,2,3-cd]P, B[k]F, B[b]F, B[a]P, as well as total distance of transport.

  14. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    Energy Technology Data Exchange (ETDEWEB)

    Alkanok, Gizem; Demirel, Burak, E-mail: burak.demirel@boun.edu.tr; Onay, Turgut T.

    2014-01-15

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  15. Effects of specimen size and mix ratio on the nickel migration behavior of landfill waste mixed mortar.

    Science.gov (United States)

    Haque, M Aminul

    2017-04-01

    Landfill solid waste management system poses the potential source of silent wide-spread heavy metals like nickel poisoning in the entire ecosystem of nearby environment. Nickel containing demolish solid wastes are disposed at landfill zones to a great extent from where nickel migrate into the food chain through the surface water body as well as groundwater. Consequently, nickel exposure may cause different environmental problems. From this sense, it may be an attractive proposal to recycle the waste as a sustainable product. Herein is presented a long-term feasibility study on potential leaching behavioral pattern of nickel from different sizes and mixes based solidified landfill waste mixed mortar block. The calculated results revealed the larger sizes block entrapped more nickel content than the smaller in relation to the available for leaching. Moreover, the specimen bearing the higher amount of waste resulted the significant nickel immobilization within the crystalline structure. The study observed the fixation results 97.72%-99.35%, 97.08%-99.11%, 96.19%-98.58% and 95.86%-91.6% under the stabilizing agent to fine aggregate mixing combination 1:1, 1:1.5, 1:2 and 1:2.5 respectively where 30% of the total volume of fine aggregate was replaced by landfill waste. Although, mechanical strength test of all surrogate waste forms was also conducted that showed acceptable performance for land disposal, the current research pointing out that constructed green products were non-hazardous except the specimens having mixture ratio 1:2.5 because nickel ion release mechanism was observed under this ratio by surface decay or physical erosion of the monolithic matrices. Furthermore, semi-empirical based dominant leaching mechanism models were justified against the goodness of fit statistical parameters for interpreting the experimental observations of nickel transport profile where the adopted models possessed strong potential for predicting Ni content with high accuracy

  16. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (OptiWaste......). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...... in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility....

  17. Evaluation of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane ...

  18. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  19. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research.

  20. SEPARATION AND EXTRACTION OF PLUTONIUM IN MIXED WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur E. Desrosiers, ScD, CHP; Robert Kaiser, ScD; Jason Antkowiak; Justin Desrosiers; Josh Jondro; Adam Kulczyk

    2002-12-13

    The Sonatol process uses ultrasonic agitation in fluorinated surfactant solutions to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. The current work applies the Sonatol process to the decontamination of heterogeneous legacy Pu-238 waste that exhibits excessive hydrogen gas generation, which prevents transportation of the waste to the Waste Isolation Pilot Plant. Bartlett Services, Inc. (BSI) designed and fabricated a prototype decontamination system within a replica of a Savannah River Site glovebox. In Phase I, BSI conducted cold testing with surrogate waste material to verify that the equipment, operating procedures, and test protocols would support testing with Pu-238 in Phase II. The surrogate waste material is representative of known constituents of legacy job control waste. Two sub-micron sized Pu-238 simulants were added to the surrogate waste so that decontamination could be tested. The first simulant was an Osram Sylvania Phosphor 2284C powder that fluoresces under ultraviolet light. The use of the fluorescent simulant allows rapid, inexpensive system startup testing because residuals can be assayed using a digital camera. The results of digital pixel analysis (DPA) are available immediately and do not require use of licensed material. The second simulant, which was used for integrated cold testing, was a cerium oxide powder that was activated in a research reactor neutron flux and assayed by photon spectroscopy. The surrogate transuranic (TRU) waste material was contaminated with Pu-238 simulants and loaded into the cleaning chamber, where the surrogates were ultrasonically agitated and rinsed. The decontaminated materials were then assayed for surface contamination by DPA to establish optimum operating parameters and provide process quality control. Selected samples were sent to the Massachusetts Institute of Technology for neutron activation analysis (NAA). NAA testing

  1. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  2. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Directory of Open Access Journals (Sweden)

    Kunwar Paritosh

    2017-01-01

    Full Text Available Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  3. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  4. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  5. The Louisiana State University waste-to-energy incinerator

    Science.gov (United States)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  6. adaptation of plastic waste to energy development in lagos

    African Journals Online (AJOL)

    user

    In view of the financial challenges experienced currently by government at all level in Nigeria occasioned by dwindling oil and gas revenue, this paper evaluates the possibility of adapting plastic waste to energy development for sustainable growth. Volume of wastes for the month of January, July and September, 2014 were ...

  7. Waste to Energy: Challenges and Opportunities in Iran

    Directory of Open Access Journals (Sweden)

    Lida Rafati

    2016-12-01

    Conclusion: This study recommends construction of incineration plants with an appropriate location for processing municipal, household, and industrial hazardous wastes, as well as energy recovery. In addition, promoting application of household biogas reservoirs in villages and use of pyrolysis for some industries to converse industrial waste into fuel, are further suggested.

  8. Energy in Solid Waste: A Citizen Guide to Saving.

    Science.gov (United States)

    Citizens Advisory Committee on Environmental Quality.

    This booklet contains information for citizens on solid wastes. It discusses the possible energy available in combustible and noncombustible trash. It suggests how citizens can reduce waste at home through discriminating buying practices and through recycling and reuse of resources. Recommendations are given for community action along with state…

  9. Comparative Energy Values Of Sorghum Distillers Waste, Maize ...

    African Journals Online (AJOL)

    A balance trial aimed at determining the energy values of Sorghum Distiller's Wastes (SDW), Maize cob (MC) and Shea butter Waste (SBW) for barrows was conducted using a 4 x 4 Latin square cross- over experimental design. While feed intake was influenced (P < 0.05) by the test feed ingredients, the weight gained was ...

  10. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  11. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    Science.gov (United States)

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO2eq/kg of waste and 25 to 61gCO2eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess

  12. Stabilization of liquid low-level and mixed wastes: a treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  13. USE OF RECYCLED POLYMERS FOR ENCAPSULATION OF RADIOACTIVE, HAZARDOUS AND MIXED WASTES

    Energy Technology Data Exchange (ETDEWEB)

    LAGERRAAEN,P.R.; KALB,P.D.

    1997-11-01

    Polyethylene encapsulation is a waste treatment technology developed at Brookhaven National Laboratory using thermoplastic polymers to safely and effectively solidify hazardous, radioactive and mixed wastes for disposal. Over 13 years of development and demonstration with surrogate wastes as well as actual waste streams on both bench and full scale have shown this to be a viable and robust technology with wide application. Process development efforts have previously focused on the use of virgin polymer feedstocks. In order to potentially improve process economics and serve to lessen the municipal waste burden, recycled polymers were investigated for use as encapsulating agents. Recycled plastics included low-density polyethylene, linear low-density polyethylene, high-density polyethylene and polypropylene, and were used as a direct substitute for or blended together with virgin resin. Impacts on processing and final waste form performance were examined.

  14. Treatment of DOE and commercial mixed waste by the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  15. Polyolephine waste recycling as source of power energy

    Directory of Open Access Journals (Sweden)

    Tisovski Štefan

    2008-01-01

    Full Text Available Polyolephine waste (polyetilene, polypropilene is the main source of environmental pollution. Depolymerization of waste in reactor under atmospheric pressure yields hydrocarbon mixture C1-C34. In turn, combustion of C1-C7 fraction provides reactor temperature regime. The plant is automated and energetically highly efficient. Small electric power is required for operating the plant. The waste originating from depolymerazation does not pollute the environment. Fraction C7-C34 not only serves for commercial purposes but also as a power energy provider within the waste deploymerization plant.

  16. Determination of biogas generation potential as a renewable energy source from supermarket wastes.

    Science.gov (United States)

    Alkanok, Gizem; Demirel, Burak; Onay, Turgut T

    2014-01-01

    Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    Science.gov (United States)

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  18. Thermodynamic Theory with Mixing Entropy Coupled to Mixing Energy for Phase Separation and Solubility Transition

    Science.gov (United States)

    Sasaki, Shigeo

    2017-10-01

    Thermodynamic theory is developed by introducing the concept of intermolecular interaction surface areas in the evaluation of the mixing free energy, which can quantitatively explain the phase separation with the lower critical solution temperature (LCST) and the solubility transition.

  19. INVESTIGATION ON UTILITY OF PLASTIC WASTE AS AN ADDITIVE FOR BITUMINOUS CONCRETE USING WET PROCESS OF MIXING

    Directory of Open Access Journals (Sweden)

    Anurag Virendra Tiwari

    2017-12-01

    Full Text Available Purpose. Plastic waste has become a major environmental issue of concern due to its exponential growth due to rapid urbanization. The paper investigates utility of plastic waste as an additive for bituminous concrete using wet process of mixing. Methodology. The methodology for the present paper has been designed with complex research consisting of Marshall mix design of the bituminous mix added with plastic waste for modifying bitumen using wet process of mixing, performing the tests on the samples and analyzing the results in the form of table and figures. In the present paper LDPE and HDPE type of plastic waste are used to modify the bitumen. Finding. The results show that addition of 6 percent of bitumen improves the Marshall properties of the mix. Use of plastic to modify the bitumen not only makes the road surface more durable but also it is an eco-friendly way of proper disposal of plastic waste. Originality. The processes used for mixing the plastic waste to the bitumen are dry process and wet process. Dry process of mixing the plastic waste to the bituminous mix is most common and lot of study is carried out on its application. In the present paper wet process of mixing has not yet been studied much. Practical Value. The practical application of utilizing the plastic waste to modify bitumen in the bituminous mix improves the stability values resulting in the more durable road surface. Also the method ensures the proper disposal of plastic waste in eco-friendly way.

  20. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    OpenAIRE

    Raffaele Cioffi; Barbara Liguori; Fabio Iucolano; Francesco Colangelo; Francesco Messina; Claudio Ferone

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by ...

  1. Energy drinks mixed with alcohol : are there any risks?

    OpenAIRE

    Alford, C; Scholey, A.; J. C. Verster

    2015-01-01

    There have now been a number of publications, including laboratory studies and surveys, on alcohol mixed with energy drinks. Some authors have highlighted problems associated with consumption of this beverage combination, including reduced perception of alcohol intoxication and greater alcohol consumption with more negative consequences as a result. For example, the recent article by Marczinski and Fillmore entitled “Energy drinks mixed with alcohol: what are the risks?” suggests that “consum...

  2. Tellurite glass as a waste form for a simulated mixed chloride waste stream: Candidate materials selection and initial testing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-02-02

    Tellurite glasses have been researched widely for the last 60 years since they were first introduced by Stanworth. These glasses have been primarily used in research applications as glass host materials for lasers and as non-linear optical materials, though many other uses exist in the literature. Tellurite glasses have long since been used as hosts for various, and even sometimes mixed, halogens (i.e., multiple chlorides or even chlorides and iodides). Thus, it was reasonable to expect that these types of glasses could be used as a waste form to immobilize a combination of mixed chlorides present in the electrochemical separations process involved with fuel separations and processing from nuclear reactors. Many of the properties related to waste forms (e.g., chemical durability, maximum chloride loading) for these materials are unknown and thus, in this study, several different types of tellurite glasses were made and their properties studied to determine if such a candidate waste form could be fabricated with these glasses. One of the formulations studied was a lead tellurite glass, which had a low sodium release and is on-par with high-level waste silicate glass waste forms.

  3. In-situ stabilization of TRU/mixed waste project at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

    1997-08-01

    Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.

  4. A techno-economic comparison of fluidized bed gasification of two mixed plastic wastes.

    Science.gov (United States)

    Arena, U; Di Gregorio, F; Amorese, C; Mastellone, M L

    2011-07-01

    A comparison between the most promising design configurations for the industrial application of gasification based, plastics-to-energy cogenerators in the 2-6 MWe range is presented. A pilot scale bubbling fluidized bed air gasifier, having a feeding capacity of 100 kg/h, provided experimental data: the syngas complete composition, the characterization of the bed material, the entrained fines collected at the cyclone and the purge material from the scrubber. Mass and energy balances and material and substance flow analyses have been therefore drawn to assess and compare design solutions utilizing two mixed plastic wastes (MPW) obtained from separate collection of plastic packaging, after different levels of pre-treatments. The related techno-economic performances have been finally estimated on the basis of the manufacturer's specifications. The study concludes that the MPW obtained after a very simple pre-treatment and fed to a gasifier coupled with a steam turbine is the solution that currently offers the higher reliability and provides the higher internal rate of return for the investigated range of electrical energy production. Copyright © 2011. Published by Elsevier Ltd.

  5. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Rieck, Bennett T. [Washington State University, Pullman, WA 99164 (United States); McCloy, John S.; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Sundaram, S.K. [Alfred University, Alfred, NY 14802 (United States); Vienna, John D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We provide the first standardized chemical durability test on tellurite glasses. Black-Right-Pointing-Pointer The glasses we studied showed a wide variety of chemical durability. Black-Right-Pointing-Pointer The best-performing glass showed good halide retention following melting and durability testing. Black-Right-Pointing-Pointer These glasses have very high densities resulting in high volumetric waste loading ability. - Abstract: Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO{sub 2} glasses with other oxides (PbO, Al{sub 2}O{sub 3} + B{sub 2}O{sub 3}, WO{sub 3}, P{sub 2}O{sub 5}, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO{sub 2}-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  6. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  7. Task 1.6 -- Mixed waste treatment. Semi-annual report, January 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rindt, J.R.

    1997-08-01

    Mixed-waste sites make up the majority of contaminated sites, yet remediation techniques used at such sites often target only the most prevalent contaminant. A better understanding of site situation (i.e., most common types of contamination), current remediation techniques, and combinations of techniques would provide insight into areas in which further research should be performed. The first half of this task program year consisted of a survey of common types of mixed-wastes sites and a detailed literature search of the remediation techniques and combinations of techniques that were currently available. From this information, an assessment of each of the techniques was made and combined into various ways appropriate to mixed-waste protocol. This activity provided insight into areas in which further research should be performed.

  8. EXPERIMENTAL STUDY ON EFFECTS OF FIBERGLASS AND FIBER WASTE IN CONCRETE MIXES

    OpenAIRE

    Mashair.A.Mohamed1, Mansour Ahmed Moh2, Nuha Moawia Akasha3, Ibrahim.Y.I.Elgady4

    2016-01-01

    In this research concrete mixes were tested to investigate the effect of fiber waste and fiber glass and evaluate the efficiency on fresh and hardened concrete for trying to produce a concrete with high strength. an experimental study was carried out to test for compressive strength of concrete for six types of concrete mixes each mixture were casted in the form of cubes were studied for 7 and 28 days, one of  those mentioned mixes is a (control mix). Finally the results are compared with the...

  9. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Mixed Solutions of Electrical Energy Storage

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents electrical energy storage solutions using electricbatteries and supercapacitors powered from photovoltaic solarmodules, with possibilities of application in electric and hybrid vehicles.The future development of electric cars depends largely on electricalenergy storage solutions that should provide a higher range of roadand operating parameters comparable to those equipped with internalcombustion engines, that eliminate pollution.

  11. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin; Cunningham, Al; Peyton, Brent

    2005-06-01

    The collaborative project was designed to evaluate the possibility developing a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We have been gaining a better understanding of microbial transformation of chromium, uranium, iron minerals, and trinitrotoluene (TNT) by Cellulomonas spp. in simulated subsurface environments.

  12. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

  13. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective

    Science.gov (United States)

    2017-01-01

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150

  14. From Waste Management to Resource Efficiency—The Need for Policy Mixes

    Directory of Open Access Journals (Sweden)

    Henning Wilts

    2016-07-01

    Full Text Available Treating waste as a resource and the design of a circular economy have been identified as key approaches for resource efficiency. Despite ambitious targets, policies and instruments that would enable a transition from a conventional waste management to an integrated and comprehensive resource management are still missing. Moreover, this will require innovative policy mixes which do not only address different end-of-pipe approaches but integrate various resource efficiency aspects from product design to patterns of production and consumption. Based on the results of a project funded by the Seventh Framework Programme for Research and Technological Development named “POLFREE—Policy Options for a resource efficient economy”, this paper addresses several aspects of the conceptualization of policy mixes with regard to waste as a specific resource efficiency challenge. The guiding research interest of this paper is the combination of policies necessary to create a full circular economy. In a first step, the present waste policy frameworks, institutions and existing incentives at national level are examined in order to disclose regulatory and policy gaps. Based on this, the second part of the paper describes and analyses specific waste-related resource efficiency instruments with regard to their potential impacts under the constraints of various barriers. Based on the assessment of the country analyses and the innovative instruments, the paper draws conclusions on waste policy mixes and political needs.

  15. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective.

    Science.gov (United States)

    Chen, Wei-Shan; Strik, David P B T B; Buisman, Cees J N; Kroeze, Carolien

    2017-06-20

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent.

  16. Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  17. ASSESSMENT OF ENERGY SAVING IN WASTE RECYCLING USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    Eugênio de Oliveira Simonetto

    2013-06-01

    Full Text Available Recycling is a topic of great importance in integrated waste management, evidence of this is verified in the National Policy of Solid Waste, decreed in 2010, where it is considered one of the priorities. In this article is presented a computer simulation model, since their development until its validation, which aims to support environmental managers in their decisions regarding the definition and / or maintenance of solid waste policies recycling, as well as evaluating the benefits of process in the environment (in this article we evaluated the energy savings. For the model development was considered: the rate of natural population growth (births and deaths, percentage of solid waste recycled (for each type of material, gravimetric composition of the material in the total waste generated, the amount of waste generated per inhabitant and energy savings caused by each distinct type of material. Through the model results generated, end users (environmental managers thereof may, for example, set incentives to reduce the total generation of solid waste, produce campaigns enhancing reuse and recycling and to assess the relative benefits of energy savings caused by recycling. Model validation was through analysis of future scenarios for a given municipality in southern Brazil. For modeling and system validation was used Vensim from Ventana Systems.

  18. Solidification of radioactive waste resins using cement mixed with organic material

    Energy Technology Data Exchange (ETDEWEB)

    Laili, Zalina, E-mail: liena@nm.gov.my [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Yasir, Muhamad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Wahab, Mohd Abdul [Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  19. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    Energy Technology Data Exchange (ETDEWEB)

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    2011-06-20

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location

  20. Energy implications of alternative solid waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    White, A.L.; Becker, M.B.; Schatzki, S.T.

    1990-02-01

    This study examines the energy implications of alternative solid waste management systems. As state and local governments move away from a traditional single facility strategies to more integrated waste management systems, energy use and recovery patterns will be substantially altered. The direct and indirect effects of such trends will result in major shifts in the volumes and composition of waste handled at incineration, recycling, composting and landfill facilities. In addition, second order energy savings will result from the substitution of recycled for virgin materials in the manufacturing sector. As such shifts occur, the energy balance -- the difference between energy recovered and energy used -- will undergo major adjustments. Such repercussions will occur at the regional, state, local and facility-specific level. Energy balances defined in this study cover seven use points, three recovery points and, separately, energy saved in production processes. For each of eleven Northeastern states, we estimate current balances based on existing waste management systems. State-specific profiles of recycling, composting, resource recovery and landfill activities provide the starting point for these base year estimates. Using the same estimating procedure, and taking into account each state's policy and planning objectives during the 1990's, we proceed to estimate the energy balances which will result if such objectives are met. By comparing current against future balances, we project the percentage change over a specified planning horizon. 2 figs., 37 tabs.

  1. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  2. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  3. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... Key word: Waste activated sludge (WAS), ultrasonic, solubilization, disintegration degree, enzyme activity. ... E-mail: fengleiyu2001@yahoo.com.cn. .... treated by ultrasonics at different specific energies, the mean particle size changed dramatically. For example, at the specific energy of 15000 kJ/kg DS, the ...

  4. Developing Primary School Children's Understanding of Energy Waste.

    Science.gov (United States)

    Kruger, Colin; Summers, Mike

    2000-01-01

    Studies 34 elementary school children's understanding of five aspects of energy waste and the ways in which these conceptions develop following teaching. Concludes that the children had good prior awareness of some behaviors that save energy, but their reasons for thinking this were based largely on everyday intuitive ideas that involved…

  5. Physico-chemical properties and energy potential of wood wastes ...

    African Journals Online (AJOL)

    Calorific values, moisture contents as well as proximate and ultimate analyses were performed to assess the energy characteristics of the collected wood wastes in accordance with the American Society for Testing and Materials: ASTM E872-82 and ASTM D4442-07. Results from the laboratory experiments and energy ...

  6. Energy recovery from solid waste. [production engineering model

    Science.gov (United States)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  7. Waste characterisation, determining the energy potential of waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-11-01

    Full Text Available • Pyrolysis Non-burn technologies 11 WtE technologies – Electricity production Technology Electricity production range kWhr/tonne Conventional incineration (older) 500-600 Conventional incineration (newer) 750-850 Gasification 400-800 Plasma Arc... Gasification 300-600 Pyrolysis 500-800 12 MSW as energy source • MSW is an inhomogeneous fuel with varying calorific value • Incineration is only viable at lower calorific value above 7MJ/wet kg • Electricity production range of MSW 300 to 850 k...

  8. Thermoelectric energy harvesting for a solid waste processing toilet

    Science.gov (United States)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  9. Waste-to-Energy and Fuel Cell Technologies Overview

    Science.gov (United States)

    2011-01-13

    Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO

  10. On-Site Field-Feeding Waste to Energy Converter

    Science.gov (United States)

    2008-12-01

    operator’s duty is to feed relatively dry paper and plastic trash into the OFWEC’s shredder, having previously se- parated cans, glass bottles , and...ON-SITE FIELD- FEEDING WASTE TO ENERGY CONVERTER L. Knowlton* and D. Pickard U.S. Army Natick Soldier Research, Development and Engineering...field- feeding generates tons of solid waste that is a costly logistic burden, requiring personnel, vehi- cles, and fuel that could otherwise be used for

  11. Policy Mixes to Achieve Absolute Decoupling: A Case Study of Municipal Waste Management

    Directory of Open Access Journals (Sweden)

    Francesca Montevecchi

    2016-05-01

    Full Text Available Studying the effectiveness of environmental policies is of primary importance to address the unsustainable use of resources that threatens the entire society. Thus, the aim of this paper is to investigate on the effectiveness of environmental policy instruments to decouple waste generation and landfilling from economic growth. In order to do so, the paper analyzes the case study of the Slovakian municipality of Palarikovo, which has drastically improved its waste management system between 2000 and 2012, through the utilization of differentiated waste taxes and awareness-raising and education campaigns, as well as targeting increased recycling and municipal composting. We find evidence of absolute decoupling for landfilled waste and waste generation, the latter being more limited in time and magnitude. These policy instruments could therefore play an important role in municipalities that are still lagging behind in waste management. More specifically, this policy mix was effective in moving away from landfilling, initiating recycling systems, and to some extent decreasing waste generation. Yet, a more explicit focus on waste prevention will be needed to address the entirety of the problem effectively.

  12. Exploring neutrino mixing with low energy superbeams

    Science.gov (United States)

    Minakata, Hisakazu; Nunokawa, Hiroshi

    2001-10-01

    We explore the features of neutrino oscillation which are relevant for measurements of the leptonic CP violating phase δ and the sign of Δm213 in experiments with low-energy conventional superbeams. Toward the goal, we introduce a new powerful tool called the ``CP trajectory diagram in bi-probability space'' which allows us to represent pictorially the three effects, the effects of (a) genuine CP violation due to the sin δ term, (b) CP conserving cos δ term, and (c) fake CP violation due to earth matter, separately in a single diagram. By using the diagram, we observe that there is a two-fold ambiguity in the determination of δ which is related with the sign of Δm213. Possible ways of resolving the ambiguity are discussed. In particular, we point out that an in situ simultaneous measurement of δ and the sign of Δm213 can be carried out at distances of about 700 km, or at the Phase II of the JHF experiment provided that sin δ · Δm213 < 0, both with a megaton class water Cherenkov detector.

  13. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  14. Techno-economic evaluation of high temperature pyrolysis processes for mixed plastic waste.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Westerhout, R.W.J.; van Koningsbruggen, M.P.; van der Ham, Aloysius G.J.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1998-01-01

    Three pyrolysis processes for Mixed Plastic Waste (MPW) with different reactors (Bubbling Fluidized Bed, Circulating Fluidized Bed and Rotating Cone Reactor, respectively BFB, CFB and RCR) were designed and evaluated. The estimated fixed capital investment for a 50 kton/year MPW pyrolysis plant

  15. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  16. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    Science.gov (United States)

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  17. Experimental Investigation of Biogas Production from Kitchen Waste Mixed with Chicken Manure

    Directory of Open Access Journals (Sweden)

    H. Mousa

    2016-12-01

    Full Text Available ogas produced from solid kitchen waste (KW mixed with chicken manure (M at different mass ratios was investigated. The effect of the ratio of the amount of water to the mixed solid waste on the amount of biogas produced was studied. The results showed that at a fixed ratio of water-to-solid waste, the amount of biogas increased as the amount of chicken M increased. At a fixed M-to-KW ratio, the amount of biogas produced increased as the solid content increased and then decreased, reaching its maximum value at a solid waste-to-water ratio of 1:1. The pH of the bioreactor containing the KW-M mixture dropped with time, resulting in a decrease in the amount of biogas produced. Controlling the pH value by titrating with NaOH solution improved the production of biogas. Investigating biogas produced from sludge showed that the pH of the reactor slightly decreased and then increased slightly. The results also showed that the amount of biogas produced from sludge containing 3% solid waste was larger than the amount produced from sludge containing 6% solid waste.

  18. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  19. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  20. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  1. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    Directory of Open Access Journals (Sweden)

    Chen Kuo-Wei

    2016-01-01

    Full Text Available This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with carbon ash proportion for significant impact. The set density of lightweight brick ameliorates with M3824 additive and CM3 cement mortar for significant impact. Under conditions of technology and economic, the results of this study as reference for market-oriented marketing and commercialization of production.

  2. Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  3. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  4. Energy drinks mixed with alcohol: misconceptions, myths, and facts.

    Science.gov (United States)

    Verster, Joris C; Aufricht, Christoph; Alford, Chris

    2012-01-01

    Whilst energy drinks improve performance and feelings of alertness, recent articles suggest that energy drink consumption combined with alcohol may reduce perception of alcohol intoxication, or lead to increased alcohol or drug use. This review discusses the available scientific evidence on the effects of mixing energy drinks with alcohol. A literature search was performed using the keywords "energy drink and Red Bull(®)" and consulting Medline/Pubmed, PsycINFO, and Embase. There is little evidence that energy drinks antagonize the behavioral effects of alcohol, and there is no consistent evidence that energy drinks alter the perceived level of intoxication of people who mix energy drinks with alcohol. No clinically relevant cardiovascular or other adverse effects have been reported for healthy subjects combining energy drinks with alcohol, although there are no long-term investigations currently available. Finally, whilst several surveys have shown associations, there is no direct evidence that coadministration of energy drinks increases alcohol consumption, or initiates drug and alcohol dependence or abuse. Although some reports suggest that energy drinks lead to reduced awareness of intoxication and increased alcohol consumption, a review of the available literature shows that these views are not supported by direct or reliable scientific evidence. A personality with higher levels of risk-taking behavior may be the primary reason for increased alcohol and drug abuse per se. The coconsumption of energy drinks being one of the many expressions of that type of lifestyle and personality.

  5. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effect of stirring in the hydrothermal process to convert the mixed municipal solid waste into uniform solid fuel

    Science.gov (United States)

    Prawisudha, P.; Mu'min, G. F.; Yoshikawa, K.; Pasek, A. D.

    2016-06-01

    An innovative waste treatment technology has been developed in Indonesia to treat the mixed municipal solid waste into a solid fuel by employing the hydrothermal process. A mixture of organic and plastic waste was treated in a 2.5 L reactor using saturated steam in the temperature range of 120 to 180 °C. Two modes of operation were employed to achieve two different goals, i.e. without stirring (NS mode) and with stirring (WS mode). It was observed that both modes resulted in increasing density of product up to twofold of the raw MSW. In NS mode, the processed mixed MSW was converted into two different products; however, in WS mode the bulky plastic was converted into small granules, producing a uniform product. The results suggest that by hydrothermal treatment, the organic fibers in the organic parts are trapped into the plastic, and the stirring breaks the bulky plastics, producing uniform granules suitable as solid fuel. Therefore, the stirring during the hydrothermal process can be a solution to treat the MSW as it is, without any separation, to produce a clean and renewable energy source.

  8. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, B.; Chiba, Z.; Hsu, P.; Lewis, P.; Murguia, L.; Adamson, M.

    1997-02-01

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation. The oxidant, or mediator, is a multivalent transition metal ion which is cleanly recycled in a number of charge transfer steps in an electrochemical cell. The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70{degrees}C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques. Although the oxidation of organics and the dissolution of transuranics by higher valency metal ions has been known for some time, applying the MEO technology to waste treatment is a relatively recent development. Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and

  9. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    Science.gov (United States)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  10. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  11. Energy drinks mixed with alcohol: what are the risks?

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T

    2014-10-01

    Energy drinks are popular beverages that typically include high levels of caffeine and other ingredients such as taurine, or caffeine-containing herbs, such as guarana. While energy drinks are often consumed alone, they are also frequently used as mixers for alcoholic beverages. This review summarizes what is known about the scope of use of alcohol mixed with energy drinks, the risks associated with such mixtures, and the objective laboratory data examining how the effects of their consumption differ from consuming alcohol alone. The weight of the evidence reveals that consuming alcohol mixed with energy drinks is riskier than consuming alcohol alone and constitutes a public health concern. Consumption of these mixed beverages is frequent, especially in young and underage drinkers, and compared with alcohol alone, their use is associated with elevated rates of binge drinking, impaired driving, risky sexual behavior, and risk of alcohol dependence. Laboratory research (human and animal) has demonstrated that consuming alcohol mixed with energy drinks leads to altered subjective states including decreased perceived intoxication, enhanced stimulation, and increased desire to drink/increased drinking compared to consuming alcohol alone. Possible underlying mechanisms explaining these observations are highlighted in this review. © 2014 International Life Sciences Institute.

  12. Optimal Energy Mix with Renewable Portfolio Standards in Korea

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-05-01

    Full Text Available Korea is a heavily energy-dependent country whose primary energy consumption ranks ninth in the world. However, at the same time, it promised to reduce carbon emission and planned to use more renewable energy. Thus, the objective of this study is to propose an optimal energy mix planning model in electricity generation from various energy sources, such as gas, coal, nuclear, hydro, wind, photovoltaic, and biomass, which considers more renewable and sustainable portions by imposing governmental regulation named renewable portfolio standard (RPS. This optimization model minimizes various costs such as construction cost, operation and management cost, fuel cost, and carbon emission cost while satisfying minimal demand requirement, maximal annual installation potential, and renewable portfolio standard constraints. Results showed that this optimization model could successfully generate energy mix plan from 2012 to 2030 while minimizing the objective costs and satisfying all the constraints. Therefore, this optimization model contributes more efficient and objective method to the complex decision-making process with a sustainability option. This proposed energy mix model is expected to be applied not only to Korea, but also to many other countries in the future for more economical planning of their electricity generation while affecting climate change less.

  13. Energy from waste by gasification; Energi ur avfall genom foergasning

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader; Nilsson, Torbjoern; Berge, Niklas [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    At present the investigation on alternative techniques to solve the problem with the growing amount of the wastes within European countries is a highly propitiated research area. The driving forces behind this priority are the current EU-legislations regarding the ban on landfill of combustible wastes and also the regulation on emission limits from waste treatment plants. The alternatives for waste treatment besides recycling are incineration, direct co-combustion and gasification. Co-combustion of waste with biomass can be considered a short-term solution for the problem but has the disadvantages of decreasing the capacity for clean fuels such as biomass and set demands on intensive modifications in the existing heat or heat and power plants. Waste gasification is an attractive alternative that can compete with incineration and co-combustion processes when the environmental and economical aspects are concerned. The product gas from a waste gasifier can be burned alone in conventional oil fired boilers or be co-fired with biomass in biomass plant. Fuel quality, gas cleaning system and questions related to ash treatment are the key parameters that must be considered in design and construction of a waste gasification process. Gasification of waste fractions that have limited contents of contaminants such as nitrogen, sulfur and chlorine will simplify the gas cleaning procedure and increase the competitiveness of the process. Heavy metals will be in captured in the fly ash if a gas filtering temperature below 200 deg C is applied. Activated carbon can be used as a sorbent for mercury, lime or alkali for capturing chlorine. For fuels with low Zn content a higher gas filtering temperature can be applied. Direct co-combustion or gasification/co-combustion of a fuel with low heating value affects two main parameters in the boiler: the adiabatic combustion temperature and the total capacity of the boiler. It is possible to co-fire: a) sorted MSW: 25%, b) sorted industrial

  14. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  15. Development of a 2nd Generation Decision Support Tool to Optimize Resource and Energy Recovery for Municipal Solid Waste

    Science.gov (United States)

    In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity, the m...

  16. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  17. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    Science.gov (United States)

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The total energy flux leaving the ocean's mixed layer

    Science.gov (United States)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2017-04-01

    Interior density mixing contributes to drive the large-scale ocean circulation. The energy needed for this mixing is believed to be supplied predominantly by the tidal and wind forcing. In this study, we focus on the wind-power input to three different types of motions, that is, near-inertial waves, sub-inertial fluctuations, and time-mean flows. Surface winds can generate near-inertial waves which propagate freely into the ocean's interior and after escaping the mixed layer contribute to interior mixing. Winds also input power into the ocean to maintain the time-mean circulation and to generate sub-inertial fluctuations, either by the vertical or horizontal shear instability of the large-scale flows, or directly via wind induced fluctuations at the ocean surface. The energy of both the sub-inertial fluctuations and the time-mean flow will be eventually dissipated (or transferred to the internal gravity wave field or small scale turbulence). However, the exact portion of the power that escapes the turbulent mixed layer and that can potentially affect the interior mixing, is still unknown. The total energy flux leaving the ocean's spatially and seasonally varying mixed layer is estimated using a global 1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW) sub-inertial fluctuations (0.87 TW), and the time-mean circulation (2.11 TW), 0.92 TW leave the mixed layer; with 0.04 TW (11.4%) due to near-inertial motions, 0.07 TW (8.3%) due to sub-inertial fluctuations, and 0.81 TW (38.4%) due to time-mean motions. Of the 0.81 TW from the time-mean motions, 0.5 TW result from the projection of the horizontal flux onto the sloped bottom of the mixed layer. This projection is negligible for the transient fluxes. The spatial structure of the vertical flux is determined principally by the wind stress curl. The mean and sub-inertial fluxes leaving the mixed layer are approximately 40-50% smaller than the respective

  19. Critical resources in clean energy technologies and waste flows

    DEFF Research Database (Denmark)

    Habib, Komal

    is fraught with the risk of shifting the supply security problem from one type of non‐renewable resources (fossil fuels) to another type (metals), in particular the specialty metals such as rare earth elements e.g. neodymium and dysprosium. This PhD work presented an in‐depth analysis of potential resource...... constraints for the emerging clean energy technologies in future, along with an insight into the resource criticality assessment methodologies, detailed material flow analysis (MFA) of critical resources, and recovery of critical resources from the waste streams. The key findings of this PhD study were......, and is dispersed over a myriad of different products in the present waste flows, rendering their economically feasible recovery from waste.    This study has revealed the complete loss of neodymium and dysprosium in the current waste electrical and electronic equipment (WEEE) treatment system...

  20. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    Science.gov (United States)

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  1. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  2. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  4. WASTE WOOD OF URBAN ORIGIN FOR ENERGY USE

    Directory of Open Access Journals (Sweden)

    Carlos Rogério Andrade

    Full Text Available ABSTRACT The increasing demand for energy propels new areas of research in the search for sources that are economically viable and sustainable from an environmental point of view. In this sense, the objective of this study was to characterize a batch from urban wood waste aimed at energy use. We evaluate six different types of waste: solid wood, plywood, chipboard, MDF, OSB, and veneer. The residues were collected in a recycling plant in Piracicaba - SP and were taken to the laboratory to carry out the physical, chemical and thermogravimetric analyses. The experiment was conducted in a completely randomized design with three replicates per treatment (waste. Data analysis was performed by analysis of variance (ANOVA and the Tukey test applied for multiple comparisons of means. Overall, there were no major differences between the results of solid wood residues and waste panels. Waste analyzed showed potential for energy use. It is recommended further studies to investigate the influence of different panels resins and coatings in its thermal degradation process.

  5. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  6. Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model

    Directory of Open Access Journals (Sweden)

    Matthew Franchetti

    2016-08-01

    Full Text Available The U.S. generates more than 37 million metric tons of food waste each year, and over 95% of it is disposed of at U.S. landfills. This paper describes the development of a novel food waste collection kiosk and business model called “Greenbox” that will collect and store food waste from households and restaurants with incentives for user participation to spur food waste-to-energy production in a local community. Greenbox offers a low-cost collection point to divert food waste from landfills, reduce greenhouse gases from decomposition, and aid in generating cleaner energy. A functional prototype was successfully developed by a team of engineering students and a business model was created as part of a senior design capstone course. Each Greenbox unit has the potential to reduce 275 metric tons of food waste per year, remove 1320 kg of greenhouse gases, and create 470,000 liters of methane gas while providing a payback period of 4.2 years and a rate of return of 14.9%.

  7. The Total Energy Flux Leaving the Ocean's Mixed Layer

    NARCIS (Netherlands)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    The total energy flux leaving the ocean’s spatially and seasonally varying mixed layer is estimated using a global ⅝1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW), subinertial fluctuations (0.87 TW), and the time-mean circulation

  8. Effect of Mixed Feeding of Forages and Graded Dietary Energy ...

    African Journals Online (AJOL)

    Thirty six New Zealand White X Dutch rabbits of crosses were used for the experiment to assess the effect of mixed feeding of forages and graded dietary metabolisable energy levels at 1500kcal/kg, and 2000kcal/kg and 2500kcal/kg, respectively. Forages used were Calapogonium mucunoides, Panicum maximum and ...

  9. Characteristics of University Students Who Mix Alcohol and Energy Drinks

    Science.gov (United States)

    Bonar, Erin E.; Green, Michaela R.; Ashrafioun, Lisham

    2017-01-01

    Objective: Research has identified correlates (e.g., drug use, risky sex, smoking) of using alcohol mixed with energy drinks (AMEDs). Few studies have investigated common mental health-related concerns (e.g., depression, sleep). Participants: Alcohol-using college students (n = 380 never used AMEDs, n = 180 used AMEDs) were recruited in the study…

  10. Utility of Rice Bran Mixed with Fermentation Extract of Vegetable Waste Unconditioned as Probiotics from Vegetable Market

    Directory of Open Access Journals (Sweden)

    Cahya Setya Utama

    2013-06-01

    Full Text Available The aimed of the study was to enhance utilization of Lactobacillus Sp. and Saccharomyces sp. as starter for fermentation of waste cabbage and green mustard to enhance the utility of rice bran as an ingredient of poultry feed. The first stage of the study was to characterize the extract of fermented wasted vegetable with difference concentration of glucose and different period of time for incubation. Completely randomized design using 3 x 3 factorial with three replications was used for the first stage of the study. The second stage of the study was to evaluate the effectiveness of the extract of fermented wasted vegetable to improve the quality and utility of rice bran. Completely randomized design with four treatments and 4 replications. The third stage of the study was to obtain the value of nitrogen, calcium and phosphorus retention, as well as metabolic energy of rice bran after fermentation in broiler hatching. The third stage analysis was conducted by t-test analysis. The results of the study showed that the microbial characteristics on the extract of fermented wasted vegetable in two days incubation time and 2% concentration of glucose was able to produce pH of 3.80, log of total lactic acid bacteria 7.38 and types of microbes that grow predominantly were Lactobacillus Sp. and Saccharomyces Sp. The effectiveness of the extract fermented wasted vegetable for the fermentation of rice bran were shown in additional concentration of extract wasted vegetable of 40% with a moisture content of  toluene 65.24%, 13.36% ash, 14.93% protein, 7.61% crude fat, 12.39% crude fiber, nitrogen free extract material (NFE 51.59% and 0.07% biomass. The biological value and the availability of fermented rice bran were higher than unfermented rice bran on the broiler chickens after hatching. The values were justified from nitrogen, calcium and phosphorus retention also metabolic energy. The study concluded that the benefits and utility of rice bran could

  11. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  12. Evaluation of the capabilities of the Hanford Reservation and Envirocare of Utah for disposal of potentially problematic mixed low-level waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Pohl, P.I.; Cheng, W.C.; Gruebel, M.M.; Wheeler, T.A.; Langkopf, B.S.

    1998-03-01

    The US Department of Energy`s (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE`s mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m{sup 3} of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare`s commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m{sup 3} exceeds the WAC for disposal at Hanford, and about 4,500 m{sup 3} exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE`s total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams.

  13. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences wi...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement.......The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...

  14. Mixing processes in high-level waste tanks. Progress report, September 15, 1996--September 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F.

    1997-01-01

    'U.C. Berkeley has made excellent progress in the last year in building and running experiments and performing analysis to study mixing processes that can affect the distribution of fuel and oxygen in the air space of DOE high-level waste tanks, and the potential to create flammable concentrations at isolated locations, achieving all of the milestones outlined in the proposal. The DOE support has allowed the acquisition of key experimental equipment, and has funded the full-time efforts of one doctoral student and one postdoctoral researcher working on the project. In addition, one masters student and one other doctoral student, funded by external sources, have also contributed to the research effort. Flammable gases can be generated in DOE high-level waste tanks, including radiolytic hydrogen, and during cesium precipitation from salt solutions, benzene. Under normal operating conditions the potential for deflagration or detonation from these gases is precluded by purging and ventilation systems, which remove the flammable gases and maintain a well-mixed condition in the tanks. Upon failure of the ventilation system, due to seismic or other events, however, it has proven more difficult to make strong arguments for well-mixed conditions, due to the potential for density-induced stratification which can potentially sequester fuel or oxidizer at concentrations significantly higher than average. This has complicated the task of defining the safety basis for tank operation. The author is currently developing numerical tools for modeling the transient evolution of fuel and oxygen concentrations in waste tanks following loss of ventilation. When used with reasonable grid resolutions, standard multi-dimensional fluid dynamics codes suffer from excessive numerical diffusion effects, which strongly over predict mixing and provide nonconservative estimates, particularly after stratification occurs. The National Institute of Standards and Technology (NIST) has developed

  15. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  16. physico-chemical properties and energy potential of wood wastes

    African Journals Online (AJOL)

    user

    transportation fuels by using several technologies available such as direct combustion, gasification and pyrolysis [9]. Combustion with energy recovery involves the burning of wood wastes and transferring the heat produced to water for the purpose of generating steam in boiler super-heater tubes. The steam may be used to.

  17. Energy Drinks Mixed with Alcohol: What are the Risks?

    OpenAIRE

    Marczinski, Cecile A.; Fillmore, Mark T.

    2014-01-01

    Energy drinks are popular beverages that typically include high levels of caffeine and other ingredients such as taurine, or caffeine-containing herbs, such as guarana. While energy drinks are often consumed alone, they are also frequently used as mixers for alcoholic beverages. This review summarizes what is known about the scope of use of alcohol mixed with energy drinks (AmED), the risks associated with AmED, and the objective laboratory data examining how AmED differs from alcohol alone. ...

  18. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  19. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  20. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Buying less and wasting less food. Changes in household food energy purchases, energy intakes and energy density between 2007 and 2012 with and without adjustment for food waste.

    Science.gov (United States)

    Whybrow, Stephen; Horgan, Graham W; Macdiarmid, Jennie I

    2017-05-01

    Consumers in the UK responded to the rapid increases in food prices between 2007 and 2009 partly by reducing the amount of food energy bought. Household food and drink waste has also decreased since 2007. The present study explored the combined effects of reductions in food purchases and waste on estimated food energy intakes and dietary energy density. The amount of food energy purchased per adult equivalent was calculated from Kantar Worldpanel household food and drink purchase data for 2007 and 2012. Food energy intakes were estimated by adjusting purchase data for food and drink waste, using waste factors specific to the two years and scaled for household size. Scotland. Households in Scotland (n 2657 in 2007; n 2841 in 2012). The amount of food energy purchased decreased between 2007 and 2012, from 8·6 to 8·2 MJ/adult equivalent per d (Pwaste, estimated food energy intake was not significantly different (7·3 and 7·2 MJ/adult equivalent per d for 2007 and 2012, respectively; P=0·186). Energy density of foods purchased increased slightly from 700 to 706 kJ/100 g (P=0·010). While consumers in Scotland reduced the amount of food energy that they purchased between 2007 and 2012, this was balanced by reductions in household food and drink waste over the same time, resulting in no significant change in net estimated energy intake of foods brought into the home.

  2. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  3. Energy efficiency in the waste water system; Energieeffizienz im Abwasserbereich

    Energy Technology Data Exchange (ETDEWEB)

    Panckow, Kathrin; Wienke, Andreas (comps.)

    2008-08-15

    The volume 51 of the publication series of the Municipal Environmental Campaign U.A.N. (Hannover, Federal Republic of Germany) reports on the energy efficiency in the waste water section. This volume consists of the following contributions: (a) How much energy is necessary for the sewage plant? (Artur Mennerich); (b) Possibilities of energy saving in the sewer system (Wolfgang Buehler); (c) Possibilities of energy saving at sewage plants: a Survey (Ulf Theilen); (d) Possibilities of energy saving at sewage plants: Examples from the practice (Wilfried Osterloh); (e) Review of the possibilities of power generation at sewage plants (K.-H. Rosenwinkel, Linda Hinken); (f) Potentials of production and utilization of fouling gas (Johannes Mueller); (g) Realisation of a 5 MW biological gas facility with waste heat utilization for sewage sludge drying (Marc Stueben); (h) The micro gas turbine: An alternative for the compact cogeneration plant (Christian Schaum); (i) PR report: Energy efficiency - (rational utilization of energy), energy concepts - (analysis of energy, strategic perspectives) (Martin Mergelmeyer, Gerhard Seibert-Erling).

  4. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    low spring constant objective to be achieved. A piezoelectric cantilever beam that is very long and very thin would produce the maximum voltage...California, Berkeley, 2002. [11] A. Kasyap, “Development of MEMS-based piezoelectric cantilever arrays for vibrational energy harvesting,” Gainesville, FL...maximum 200 words) The piezoelectric effect is a phenomenon where strain on a piezoelectric crystal structure causes potential difference at its

  5. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  6. Energy droughts in a 100% renewable electricity mix

    Science.gov (United States)

    Raynaud, Damien; Hingray, Benoît; François, Baptiste; Creutin, Jean-Dominique

    2017-04-01

    During the 21st conference of parties, 175 countries agreed on limiting the temperature increase due to global warming to 2°C above preindustrial levels. Such an ambitious goal necessitates a deep transformation of our society in order to reduce greenhouse gas (GHG) emissions. Europe has started its energy transition years ago by, for instance, increasing the share of renewables in the European electricity generation and should continue in this direction. Variable renewable energies (VRE) and especially those driven by weather conditions (namely wind, solar and hydro power from river flow), are expected to play a key role in achieving the GHG reduction target. However, these renewables are often criticized for their intermittency and for the resulting difficult integration in the power supply system, especially for large shares of VRE in the energy mix. Assessing the feasibility of electricity generation using large contributions of VRE requires a deep understanding and characterization of the VRE spatiotemporal variations. In the last decade, many studies have focused on the short-term intermittency of VRE generation, but the persistency and the characteristics of periods of low/high electricity generation have been rarely studied. Yet, these particular situations require some demanding adaptations of the power supply system in term of back-up sources or production curtailment respectively. This study focuses on what we call "energy droughts" which, by analogy with hydrological or meteorological droughts, are defined as periods of very low energy production. We consider in turn "energy droughts" associated to wind, solar and hydro power (run-of-the-river). Their characteristics are estimated for 12 European regions being subjected to different climatic regimes. For each region and energy source, "droughts" are evaluated from a 30-yr time series of power generation (1983-2012). These series are simulated by using a suite of weather-to-energy conversion models with

  7. Exergy losses of resource recovery from a waste-to-energy plant

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Laner, D.; Astrup, Thomas Fruergaard

    2013-01-01

    Metal resources recovered from waste incineration bottom ash (BA) are of lower quality as compared to primary resources, but to date no framework for expressing the quality losses exists. Exergy is a concept that may have the potential to evaluate the resource quality in waste management. In this......Metal resources recovered from waste incineration bottom ash (BA) are of lower quality as compared to primary resources, but to date no framework for expressing the quality losses exists. Exergy is a concept that may have the potential to evaluate the resource quality in waste management....... In this study, focusing on recovery from waste-to-energy plants with basic and advanced BA treatment, the goal is to give an indication about quality of selected recovered resources (Fe, Al, and Cu) by means of exergy analysis. Metal flows are modeled through both incineration scenarios, and then chemical...... exergy values are assigned to all flows, allowing for quantifying various types of exergy losses. The exergy losses determined here are those caused by (1) oxidative changes in the thermal process (irreversible exergy destruction), (2) material losses (low recovery efficiencies), and (3) mixing of metals...

  8. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  9. Waste-to-energy conversion from a microfluidic device

    Science.gov (United States)

    López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.

    2017-08-01

    This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration <11 mM) was used as an energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.

  10. Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro-wastes in Saudi Arabia.

    Science.gov (United States)

    Alananbeh, Kholoud M; Bouqellah, Nahla A; Al Kaff, Nadia S

    2014-12-01

    Promoting the use of agricultural waste is one of the newly prepared water and environment friendly agriculture strategies in the Kingdom of Saudi Arabia (KSA). The objective of this research was to study the efficiency of cultivating oyster mushroom (Pleurotus ostreatus) on date palm wastes mixed with other agricultural wastes available in KSA. Four agricultural wastes were mixed with date palm leaves at different ratios, with two supplements and three spawn rates were used. Wheat straw mixed with date palm at ratio of 25 (date palm): 75 (agro-waste) showed the best results in most of the parameters measured. Corn meal was superior over wheat bran as a supplement in all treatments. Parameter values increased with the increase of the spawn rate of P. ostreatus. Treatments with date palm leave wastes contained higher carbohydrates and fibers. No significant differences were found among the fruiting bodies produced on the different agro-wastes studied for the different proximates analyzed. Analyses of metal concentration showed that potassium was the highest in all the treatments tested followed by Na, Mg, Ca, and Zn. This is the first study that reported the success of growing oyster mushroom on date palm leaf wastes mixed with other agro-wastes obtainable in KSA.

  11. Results from five years of treatability studies using hydraulic binders to stabilize low-level mixed waste at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    Gering, K.L.; Schwendiman, G.L.

    1997-05-01

    This paper summarizes work involving bench-scale solidification of nonincinerable, land disposal restricted low-level mixed waste. Waste forms included liquids, sludges, and solids; treatment techniques included hydraulic systems (Portland cement with and without additives), proprietary commercial formulations, and sulphur polymer cement. Solidification was performed to immobilize hazardous heavy metals (including mercury, lead, chromium, and cadmium), and volatile and semivolatile organic compounds. Pretreatment options for mixed wastes are discussed, using a decision tree based on the form of mixed waste and the type of hazardous constituents. Hundreds of small concrete monoliths were formed for a variety of waste types. The experimental parameters used for the hydraulic concrete systems include the ratio of waste to dry binder (Portland cement, proprietary materials, etc.), the total percentage of water in concrete, and the amount of concrete additives. The only parameter that was used for the sulfur polymer-based monoliths is ratio of waste to binder. Optimum concrete formulations or {open_quotes}recipes{close_quotes} for a given type of waste were derived through this study, as based on results from the Toxicity Characteristic Leaching Procedure analyses and a free liquids test. Overall results indicate that high waste loadings in the concrete can be achieved while the monolithic mass maintains excellent resistance to leaching of heavy metals. In our study the waste loadings in the concrete generally fell within the range of 0.5 to 2.0 kg mixed waste per kg dry binder. Likewise, the most favorable amount of water in concrete, which is highly dependent upon the concrete constituents, was determined to be generally within the range of 300 to 330 g/kg (30-33% by weight). The results of this bench-scale study will find applicability at facilities where mixed or hazardous waste solidification is a planned or ongoing activity. 19 refs., 1 fig., 5 tabs.

  12. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  13. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  14. Waste-to-Energy Evaluation: U.S. Virgin Islands

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Hasse, S.; Warren, A.

    2011-08-01

    This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

  15. Anaerobic co-digestion of hatchery waste and wastewater to produce energy and biofertilizer - Batch phase

    Directory of Open Access Journals (Sweden)

    Juliana M. Matter

    Full Text Available ABSTRACT Aiming to evaluate different wastewaters in the anaerobic co-digestion (ACoD of hatchery wastes, a batch test was conducted in bench horizontal digesters. At the end of the process, the potential production of biogas and methane was calculated as well as the chemical composition (macro- and micronutrients of the effluent and the concentrations of methane and carbon dioxide gas at 60 days. The monitoring of the process included observations of the reduction of the organic carbon, chemical oxygen demand, and total (TS and volatile solids (VS, as well as the variation of pH and electrical conductivity (EC. The results showed that the mixing between the hatchery fresh waste and swine wastewater (T4 and among fresh hatchery waste, water from the first anaerobic pond of the hatchery and swine wastewater (T5 represent significant sources of renewable energy and thereby greater potential for biogas production (192.50 and 205.0 L biogas per kg of VS added to T4 and T5, respectively. The average concentration of methane in the biogas varied from 72 to 77% among the treatments. For all treatments, reductions were observed in TS and VS and increases in pH and EC. It was concluded that the energy recovery from hatchery wastes is favoured by the addition of swine wastewater in the ACoD process.

  16. New renewable source of energy from municipal solid waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Zaman, Ashiquz; Mamunor Rashid, Mohammad

    2010-09-15

    Renewable energy plays an important role in the supply of energy. When energy sources are used, the demand for fossil fuels is reduced. Emissions from the evaporation and combustion of these traditional fossil fuels contributing to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and many alternative fuels are being developed based on solar, wind and biomass. Natural State Research has developed different alternative hydrocarbon fuel produced from abundant waste plastic materials.

  17. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  18. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

  19. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  20. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  1. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  2. Increase in energy efficiency of use of vegetable waste

    Science.gov (United States)

    Safin, R. R.; Safiullina, A. K.; Nazipova, F. V.

    2017-10-01

    Wastes of woodworking which are exposed to granulation for equalization of humidity, dispersion and also for increase in energy efficiency are the most widespread types of alternative fuel in Russia. Besides, one of the effective methods of the increase in calorific capability of granulates now is the preliminary torrefaction of wood waste - heat treatment without air oxygen access. However this technology is rather researched in detail only in relation to wood particles, while pellets from wastes of agricultural productions are also popular in the market in recent years. The possibility of the increase of the efficiency of production of pellets from sunflower pod by torrefaction is considered in this article, and the analysis of their characteristics in comparison with wood pellets is carried out. It is established that the process of heat treatment of waste of sunflower production is similar to torrefaction of wood raw materials in many respects; therefore, the equipment with similar characteristics can be used. According to the received results on pellet’s properties it is established that hygroscopicity and swelling of samples of fuel granules from sunflower pod considerably decreases with the increase in temperature of treatment that simplifies requirements for their storage and transportation. Besides, it is defined that torrefaction of the granulated fuel from sunflower pod does not yield in calorific properties to the similar fuel granules made of wood sawdust. Thus feasibility of use of heat treatment in production of fuel granules from waste of vegetable raw materials is proved.

  3. A Computer Program for Modeling the Conversion of Organic Waste to Energy

    OpenAIRE

    Namuli, Rachel; Laflamme, Claude B.; Pillay, Pragasen

    2011-01-01

    This paper presents a tool for the analysis of conversion of organic waste into energy. The tool is a program that uses waste characterization parameters and mass flow rates at each stage of the waste treatment process to predict the given products. The specific waste treatment process analysed in this paper is anaerobic digestion. The different waste treatment stages of the anaerobic digestion process are: conditioning of input waste, secondary treatment, drying of sludge, conditioning of di...

  4. Spatial issues when optimising waste treatment and energy systems – A Danish Case Study

    DEFF Research Database (Denmark)

    Pizarro Alonso, Amalia Rosa; Münster, Marie; Petrovic, Stefan

    2014-01-01

    This study addresses the challenge of including geographical information related to waste resources, energy demands and production plants, and transport options in the optimization of waste management. It analyses how waste may serve as an energy source through thermal conversion and anaerobic...... digestion. The relation to the energy sector is taken into account. The geographically specific potentials and utilization possibilities of waste are taken into account. Thus, the relative location of the resources (in this study waste and manure for codegestion) is accounted for. Also the location...... of the year. The study provides an analysis of the Danish waste and energy systems with a spatial and temporal resolution....

  5. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  6. Water recycling from mixed chromic acid waste effluents by membrane technology

    NARCIS (Netherlands)

    Frenzel, I.; Frenzel, I.; Stamatialis, Dimitrios; Wessling, Matthias

    2006-01-01

    Approaching zero discharge waste on site requires economical treatment technologies for the plating industry, recovering high quality rinse water for reuse. The combination of membranes and evaporation could be an efficient way to downsize the cost and the energy intensive evaporation equipment. In

  7. Solid waste conversion to energy: Current European and U.S. practice

    Science.gov (United States)

    Alter, H.; Dunn, J. J., Jr.

    The book provides an introduction to the background and technology of resource recovery from municipal solid wastes, as practiced in the United States and Europe. Quantity and composition of wastes in the United States and Europe are analyzed, and recovery of materials from waste in Europe is studied. Examples of waste-to-energy conversion and use technologies are discussed. Decision making for waste-to-energy system planning and implementation is considered, and marketing recovered products are outlined.

  8. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  9. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  10. Renewable energy and greenhouse gas emissions from the waste sectors of European Union member states: a panel data analysis.

    Science.gov (United States)

    Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso

    2017-08-01

    In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.

  11. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  12. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. DC graphite arc furnace, a simple system to reduce mixed waste volume

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J. [and others

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  14. Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

    2001-02-01

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

  15. Energy drinks mixed with alcohol: misconceptions, myths, and facts

    Directory of Open Access Journals (Sweden)

    Verster JC

    2012-03-01

    Full Text Available Joris C Verster1, Christoph Aufricht2, Chris Alford31Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands; 2Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Währinger Gürtel, Wien, Austria; 3University of the West of England, Psychology Department, Faculty of Health and Life Sciences, Frenchay Campus, Coldharbour Lane, Bristol, UKBackground: Whilst energy drinks improve performance and feelings of alertness, recent articles suggest that energy drink consumption combined with alcohol may reduce perception of alcohol intoxication, or lead to increased alcohol or drug use. This review discusses the available scientific evidence on the effects of mixing energy drinks with alcohol.Methods: A literature search was performed using the keywords “energy drink and Red Bull®” and consulting Medline/Pubmed, PsycINFO, and Embase.Results: There is little evidence that energy drinks antagonize the behavioral effects of alcohol, and there is no consistent evidence that energy drinks alter the perceived level of intoxication of people who mix energy drinks with alcohol. No clinically relevant cardiovascular or other adverse effects have been reported for healthy subjects combining energy drinks with alcohol, although there are no long-term investigations currently available. Finally, whilst several surveys have shown associations, there is no direct evidence that coadministration of energy drinks increases alcohol consumption, or initiates drug and alcohol dependence or abuse.Conclusion: Although some reports suggest that energy drinks lead to reduced awareness of intoxication and increased alcohol consumption, a review of the available literature shows that these views are not supported by direct or reliable scientific evidence. A personality with higher levels of risk-taking behavior may be the primary reason for increased alcohol and drug abuse per se. The

  16. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.

    Directory of Open Access Journals (Sweden)

    Rebeca González-Cabaleiro

    Full Text Available The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.

  17. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Lema, Juan M; Rodríguez, Jorge

    2015-01-01

    The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.

  18. Reducing Energy Waste Due to Idle Network Devices

    OpenAIRE

    Khan, Rafiullah; Khan, Sarmad Ullah

    2017-01-01

    Network devices always demand full time Internet connectivity for remote access, VoIP & Instant Messaging (IM) clients and other Internet based applications. Their built-in low power management features are usually disabled by users due to their incapability of maintaining network connectivity. The concept of Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism for reducing energy waste by impersonating presence of sleeping devices. However, proposed strat...

  19. Energy from domestic wast water and kitchen wast with Eureka-HD, An Energy Balance

    NARCIS (Netherlands)

    Grond, Lukas

    2010-01-01

    Treatment of wastewater is commonly done centralized, bringing high costs for collecting a big flow of low concentrated wastewater. A mixed input of black water, grey water, rainwater and groundwater has a low concentration of contamination making recover

  20. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    Science.gov (United States)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Energy demand and mix for global welfare and stable ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Kern, C.; Kaiser, P.

    2012-07-01

    Social indicators show that an annual energy consumption of 2 tonnes of oil equivalent per capita (toe pc) should be enough to ensure a sufficient global average level of welfare and happiness. Hence, rich countries with currently up to 8 toe pc should reduce and poor should legitimately increase their energy demand until 2 toe pc are reached. At today's global energy mix with 80% fossil fuels, even this optimistic scenario will inevitably lead to a conflict between welfare and stable ecosystems. The population will be 9 billion by 2050 and the ecological footprint would rise from today 1.5 to 2 planet Earths. The only option to reach the desired footprint of one planet Earth is a complete shift from fossil fuels to renewables. (orig.)

  2. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    Science.gov (United States)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  3. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  4. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  5. Biogas : Animal Waste That Can be Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Tuti Haryati

    2006-09-01

    Full Text Available Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerobe bacteria activity in aerobic digester . Anaerobic digestion process is basically carried out in three steps i.e. hydrolysis, acidogenic and metanogenic . Digestion process needs certain condition such as C : N ratio, temperature, acidity and also digester design . Most anaerobic digestions perform best at 32 - 35°C or at 50 - 55°C, and pH 6 .8 - 8 . At these temperatures, the digestion process essentially converts organic matter in the present of water into gaseous energy . Generally, biogas consists of methane about 60 - 70% and yield about 1,000 British Thermal Unit/ft 3 or 252 Kcal/0.028 m3 when burned . In several developing countries, as well as in Europe and the United States, biogas has been commonly used as a subtitute environmental friendly energy . Meanwhile, potentially Indonesia has abundant potential of biomass waste, however biogas has not been used maximally .

  6. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

    1999-03-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  7. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste.

    Science.gov (United States)

    Ghanimeh, Sophia; El Fadel, Mutasem; Saikaly, Pascal

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235 days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314 l CH4/g VS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825 mg HAc/l, propionate content from 2073 to 488 mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5 g VS/l/d in comparison to 1.9 g VS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10 g VSS/l and enhanced solids and soluble COD removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  9. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.

    2012-01-31

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.

  10. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  11. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Castonguay

    2012-06-29

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  12. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    Science.gov (United States)

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. RoHS regulated substances in mixed plastics from waste electrical and electronic equipment.

    Science.gov (United States)

    Wäger, Patrick A; Schluep, Mathias; Müller, Esther; Gloor, Rolf

    2012-01-17

    The disposal and recovery of plastics from waste electrical and electronic equipment (WEEE) are of considerable importance, both from an environmental and an economic perspective. This paper presents the results of a study investigating current concentrations of hazardous substances in mixed plastics from WEEE and their implications for an environmentally sound recovery. The study included 53 sampling campaigns for mixed plastics from WEEE. The samples were analyzed with regard to heavy metals (cadmium, chromium, mercury, and lead) and flame retardants (PentaBDE, OctaBDE, DecaBDE, DecaBB) regulated in the RoHS Directive. Besides these substances, other brominated flame retardants known to occur in electronics (HBCD, TBBPA) as well as the total bromine and phosphorus contents were considered. Results show that no mixed plastics fraction from WEEE is completely free from substances regulated in the RoHS Directive. The lowest number and average concentrations were found in flat screen monitors. The highest concentrations were found in mixed plastics from CRT monitors and TVs. Mixed plastics fractions with high average concentrations of heavy metals originate from the treatment of small household appliances (cadmium), ICT equipment (lead), and consumer equipment (lead). Mixed plastics fractions with high average concentrations of brominated flame retardants mainly originate from the treatment of small household appliances for high temperature applications (DecaBDE), CRT monitors (OctaBDE and DecaBDE) and consumer equipment (DecaBDE), in particular CRT TVs (DecaBDE). To avoid a dissipation of hazardous substances into plastics and the environment, it is recommended that mixed plastics from WEEE are subject to a strict quality management.

  14. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  15. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  16. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  17. Getting a taste for food waste: a mixed methods ethnographic study into hospital food waste before patient consumption conducted at three New Zealand foodservice facilities.

    Science.gov (United States)

    Goonan, Sarah; Mirosa, Miranda; Spence, Heather

    2014-01-01

    Foodservice organizations, particularly those in hospitals, are large producers of food waste. To date, research on waste in hospitals has focused primarily on plate waste and the affect of food waste on patient nutrition outcomes. Less focus has been placed on waste generation at the kitchen end of the hospital food system. We used a novel approach to understand reasons for hospital food waste before consumption and offer recommendations on waste minimization within foodservices. A mixed methods ethnographic research approach was adopted. Three New Zealand hospital foodservices were selected as research sites, all of which were contracted to an external foodservice provider. Data collection techniques included document analyses, observations, focus groups with kitchen staff, and one-on-one interviews with managers. Thematic analysis was conducted to generate common themes. Most food waste occurred during service and as a result of overproduction. Attitudes and habits of foodservice personnel were considered influential factors of waste generation. Implications of food waste were perceived differently by different levels of staff. Whereas managers raised discussion from a financial perspective, kitchen staff drew upon social implications. Organizational plans, controls, and use of pre-prepared ingredients assisted in waste minimization. An array of factors influenced waste generation in hospital foodservices. Exploring attitudes and practices of foodservice personnel allowed an understanding of reasons behind hospital food waste and ways in which it could be minimized. This study provides a foundation for further research on sustainable behavior within the wider foodservice sector and dietetics practice. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  18. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  19. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  20. Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach.

    Science.gov (United States)

    Chen, Ying-Chu

    2016-12-01

    Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×106kgCO2-eq/year) and paper (averaging 7.38×105kgCO2-eq/year). In addition, the recycling of paper (1.33×1010kWh) and plastics (1.26×1010kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solid waste as an alternative energy source and a means of solving ...

    African Journals Online (AJOL)

    ... and also providing alternative energy source to supplement the high cost and fast depleting conventional sources of energy. It also discussed the conventional incineration, gasification and pyrolysis processes in which energy may be recovered from solid wastes and put to useful purposes. Keywords: solid waste, energy, ...

  2. Optimising waste treatment and energy systems - focusing on spatial and temporal issues

    DEFF Research Database (Denmark)

    Pizarro Alonso, Amalia Rosa; Münster, Marie; Ravn, H.

    The aim of the TOPWASTE project is to evaluate current and future optimal treatment of waste fractions in terms of economy and the environment, with a focus on recycling versus Waste-to-Energy technologies. After optimization of the waste management system, results must be analysed so...... as to identify drivers and barriers that efficient waste utilization in Denmark is facing and discuss the economic and/or environmental benefits that might arise from a change of the current waste management system....

  3. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    BLACKFORD LT

    2008-02-04

    CH2M HILL Hanford Group, Inc. (CH2M HILL) plays a critical role in Hanford Site cleanup for the U. S. Department of Energy, Office of River Protection (ORP). CH2M HILL is responsible for the management of 177 tanks containing 53 million gallons of highly radioactive wastes generated from weapons production activities from 1943 through 1990. In that time, 149 single-shell tanks, ranging in capacity from 50,000 gallons to 500,000 gallons, and 28 double-shell tanks with a capacity of 1 million gallons each, were constructed and filled with toxic liquid wastes and sludges. The cleanup mission includes removing these radioactive waste solids from the single-shell tanks to double-shell tanks for staging as feed to the Waste Treatment Plant (WTP) on the Hanford Site for vitrification of the wastes and disposal on the Hanford Site and Yucca Mountain repository. Concentrated efforts in retrieving residual solid and sludges from the single-shell tanks began in 2003; the first tank retrieved was C-106 in the 200 East Area of the site. The process for retrieval requires installation of modified sluicing systems, vacuum systems, and pumping systems into existing tank risers. Inherent with this process is the removal of existing pumps, thermo-couples, and agitating and monitoring equipment from the tank to be retrieved. Historically, these types of equipment have been extremely difficult to manage from the aspect of radiological dose, size, and weight of the equipment, as well as their attendant operating and support systems such as electrical distribution and control panels, filter systems, and mobile retrieval systems. Significant effort and expense were required to manage this new waste stream and resulted in several events over time that were both determined to be unsafe for workers and potentially unsound for protection of the environment. Over the last four years, processes and systems have been developed that reduce worker exposures to these hazards, eliminate violations

  4. Energy recovery from waste processing; La recuperation de l'energie issue du traitement des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, H.

    2000-07-15

    This report discusses the feasibility of energy production by waste reprocessing. After an analysis of the situation, the different steps of the methane and gas production, are detailed. Many scenari of energy efficiency are compared. The report proposes also solutions to enhance the treatment units of energy production. Propositions are discussed around five main axis: the energy improvement and the product improvement, the safety and the public health, the compensation by economical tools of the greenhouse effect impacts, the competition equilibrium between energy produced by the wastes and other energy forms and the decrease of the processing cost of wastes producing energy. (A.L.B.)

  5. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    . This study allows multiple stakeholders to participate in the process of decision-making and they are also allowed to use linguistic variables to rate the alternatives and determine the weights of the evaluation criteria. The interval-valued fuzzy group decision making trail and evaluation laboratory......The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...

  6. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  7. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    Science.gov (United States)

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DIAGNOSIS OF RECLAIMING WASTE WITH POTENTIAL ENERGY IN THE MUNICIPALITY OF PALMAS - TO

    OpenAIRE

    João Vitor Horácio da Silva; Amir Prudente Bittar; Juan Carlos Valdés Serra; Joel Carlos Zukowiski Junior

    2011-01-01

    The stimulation of consumption and production in large quantities by the company, generating hype of municipal solid waste and agriculture, which in some cases can be used to generate energy or energy substitution by a renewable source. In this sense and to reduce the waste from municipal landfills and generate energy, this study aims to diagnose the sources of origin of wood residues and also the use of pruning and garden waste to produce briquettes for energy purposes.

  9. Energy intensity and the energy mix: what works for the environment?

    Science.gov (United States)

    El Anshasy, Amany A; Katsaiti, Marina-Selini

    2014-04-01

    In the absence of carbon sequestration, mitigating carbon emissions can be achieved through a mix of two broad policy approaches: (i) reducing energy intensity by improving energy efficiency and conservation, and (ii) changing the fuel mix. This paper investigates the long-run relationship between energy intensity, the energy mix, and per capita carbon emissions; while controlling for the level of economic activity, the economic structure measured by the relative size of the manufacturing sector, and the differences in institutional qualities across countries. We aim to answer two particularly important policy questions. First, to what extent these policy approaches are effective in mitigating emissions in the long-run? Second, which institutional qualities significantly contribute to better long-run environmental performance? We use historical data for 131 countries in a heterogeneous panel framework for the period 1972-2010. We find that less dependence on fossil fuel and lower energy intensity reduce emissions in the long run. A goal of 10% reduction in CO2 levels in the long-run requires reducing the share of fossil fuel in total energy use by 11%, or reducing energy intensity by 13%. In addition, specific institutional qualities such as better corruption control and judiciary independence contribute to mitigating levels of emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Energy response of graphite-mixed magnesium borate TLDs to low energy x-rays

    DEFF Research Database (Denmark)

    Pelliccioni, M.; Prokic, M.; Esposito, A.

    1991-01-01

    of the energy response to very low energy x-rays are presented and evidence of agreement between experimental and calculated conversion coefficient H'(0.07, alpha = 0-degrees)/Ka is also shown. A monochromatized x-ray beam from a synchrotron radiation source in the energy range from 3 to 12 keV has been......Graphite-mixed sintered magnesium borate TL dosemeters are attractive for beta/gamma dosimetry because they combine a low energy dependence to beta-rays with near tissue or air equivalence to photon irradiations and a high sensitivity. In this paper results from the experimental measurements...

  11. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  12. Energy from waste in Europe: an analysis and comparison of the EU 27.

    Science.gov (United States)

    Sommer, Manuel; Ragossnig, Arne

    2011-10-01

    This article focuses on analysing the development of waste-generated energy in the countries of the European Union (EU 27). Besides elaborating the relevant legal and political framework in the waste and energy sector as well as climate protection, the results from correlation analyses based on the databases of the energy statistics from Eurostat are discussed. The share of energy from waste is correlated with macro-economic, waste- and energy-sector-related data, which have been defined as potentially relevant for energy recovery from waste in the countries of the European Union. The results show that a single factor influencing the extent of waste-generated energy could not be isolated as it is being influenced not only by the state of economic development and the state of development of waste management systems in the respective countries but also by energy-sector-related factors and the individual priority settings in those countries. Nevertheless the main driving force for an increase in the utilization of waste for energy generation can be seen in the legal and political framework of the European Union leading to the consequence that market conditions influence the realization of waste management infrastructure for waste-generated energy.

  13. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    user

    waste and waste water treatment as in pyrolysis, solar incineration and gasification for solid wastes treatment and solar pathogenic organic destruction, solar photocatalytic degradation, solar distillation and desalination for waste water treatment. These waste treatment methods require light from the sun to photocatalyse ...

  14. Vitrification of surrogate mixed wastes in a graphite electrode arc melter

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Ball, L. [and others

    1995-11-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system.

  15. OPERATIONAL CHALLENGES IN MIXING AND TRANSFER OF HIGH YIELD STRESS SLUDGE WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.; Bhatt, P.

    2009-12-07

    The ability to mobilize and transport non-Newtonian waste is essential to advance the closure of highly radioactive storage tanks. Recent waste removal operations from Tank 12H at the Savannah River Site (SRS) encountered sludge mixtures with a yield stress too high to pump. The waste removal equipment for Tank 12H was designed to mobilize and transport a diluted slurry mixture through an underground 550m long (1800 ft) 0.075m diameter (3 inch) pipeline. The transfer pump was positioned in a well casing submerged in the sludge slurry. The design allowed for mobilized sludge to enter the pump suction while keeping out larger tank debris. Data from a similar tank with known rheological properties were used to size the equipment. However, after installation and startup, field data from Tank 12H confirmed the yield stress of the slurry to exceed 40 Pa, whereas the system is designed for 10 Pa. A revision to the removal strategy was required, which involved metered dilution, blending, and mixing to ensure effective and safe transfer performance. The strategy resulted in the removal of over 255,000 kgs of insoluble solids with four discrete transfer evolutions for a total transfer volume of 2400 m{sup 3} (634,000 gallons) of sludge slurry.

  16. Environmental Restoration and Waste Management manpower needs assessment: US Department of Energy complex

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, C.W.; Lewis, R.E.; Hunt, S.T. [Pacific Northwest Lab., Richland, WA (United States); Finn, M.G. [Oak Ridge Associated Universities, Inc., TN (United States)

    1992-06-01

    A study was conducted Pacific Northwest Laboratory and Oak Ridge Associated Universities, Inc. to assess the supply and demand for 53 scientific, engineering, and technical occupations relevant to the US Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste management (EM). These assessments were made by examining budget projections and the input of program/project and human resources managers throughout the DOE complex. Quantitative projections of full-time equivalent employees slots for each occupation have been developed for the 1993--1997 time frame. Qualitative assessments of the factors that affect recruitment, staffing, and retention are also reported. The implications of the study are discussed within the likely skills mix of the future workforce and the education and organization interventions most likely to address the needs of the DOE complex.

  17. Easetech Energy: Advanced Life Cycle Assessment of Energy from Biomass and Waste

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Turconi, Roberto; Tonini, Davide

    SUMMARY: Biomass and waste are expected to play a key role in future energy systems based on large shares of renewable energy resources. The LCA model EASETECH Energy was developed specifically for modelling large and complex energy systems including various technologies and several processing...... steps. The model allows simultaneous balancing of mass and energy flows of the system under assessment, and is equipped with advanced tools for sensitivity/uncertainty analysis. EASETECH Energy was used to assess the environmental footprint of the Danish energy system in 2050 (based on 100% renewables......) and compare it to the current situation. The results show that the future Danish energy systems will have a rather different environmental footprint than the current one....

  18. Mix proportions and properties of CLSC made from thin film transition liquid crystal display optical waste glass.

    Science.gov (United States)

    Wang, Her-Yung; Chen, Jyun-Sheng

    2010-01-01

    In this study, controlled low-strength concrete (CLSC) is mixed using different water-to-binder (W/B) ratios (1.1, 1.3 and 1.5) and various percentages of sand substituted by waste LCD glass sand (0%, 10%, 20% and 30%). The properties of the fresh concrete, including compressive strength, electrical resistivity, ultrasonic pulse velocity, permeability ratio and shrinking of the CLSC, are examined. Results show that increases in amount of waste glass added result in better slump and slump flow, longer initial setting time and smaller unit weight. Compressive strength decreases with increasing W/B ratio and greater amounts of waste glass added. Both electrical resistivity and ultrasonic pulse velocity increase with increases in amount of waste glass and decreases in W/B ratio. On the contrary, the permeability ratio increases with increases in W/B ratio, but decreases with greater amounts of waste glass added. CLSC specimens cured for different durations show little changes in length with shrinkage below 0.025%. Our findings reveal that CLSC mixed using waste LCD glass in place of sand can meet design requirements. Recycling of waste LCD glass not only offers an economical substitute for aggregates, but also an ecological alternative for waste management. 2009 Elsevier Ltd. All rights reserved.

  19. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  20. Energy and emergy analysis of mixed crop-livestock farming

    Science.gov (United States)

    Kuczuk, Anna; Pospolita, Janusz; Wacław, Stefan

    2017-10-01

    This paper contains substance and energy balances of mixed crop-livestock farming. The analysis involves the period between 2012 and 2015. The structure of the presentation in the paper includes: crops and their structure, details of the use of plants with a beneficial effect on soil and stocking density per 1ha of agricultural land. Cumulative energy intensity of agricultural animal and plant production was determined, which is coupled the discussion of the energy input in the production of a grain unit obtained from plant and animal production. This data was compared with the data from the literature containing examples derived from intensive and organic production systems. The environmental impact of a farm was performed on the basis of emergy analysis. Emergy fluxes were determined on the basis of renewable and non-renewable sources. As a consequence, several performance indicators were established: Emergy Yield Ratio EYR, Environmental Loading Ratio ELR and ratio of emergy from renewable sources R! . Their values were compared with the parameters characterizing other production patterns followed in agricultural production. As a consequence, conclusions were derived, in particular the ones concerning environmental sustainability of production systems in the analyzed farm.

  1. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.

  2. Bio-hydrogen production from waste fermentation. Mixing and static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Cuetos, M.J.; Prieto, J.I.; Moran, A. [Chemical Engineering Dept. IRENA, University of Leon, Avda. de Portugal 41, 24071 Leon (Spain)

    2009-04-15

    One of the main disadvantages of the dark fermentation process is the cost associated with the stages needed for obtaining H{sub 2} producing microorganisms. Using anaerobic microflora in fermentation systems directly is an alternative which is gaining special interest when considering the implementation of large-scale plants and the use of wastes as substrate material. The performance of two H{sub 2} producing microflora obtained from different anaerobic cultures was studied in this paper. Inoculum obtained from a waste sludge digester and from a laboratory digester treating slaughterhouse wastes were used to start up H{sub 2} fermentation systems. Inoculum acclimatized to slaughterhouse wastes gave better performance in terms of stability. However, due to the limited availability of this seed material, further work was performed to study the behaviour of the inoculum obtained from the municipal wastewater treatment plant. The process was evaluated under static and mixing conditions. It was found that application of a low organic loading rate favoured the performance of the fermentation systems, and that agitation of the reacting mass could alleviate unsteady performance. Specific H{sub 2} production obtained was in the range of 19-26 L/kg SV{sub fed} with maximum peak production of 38-67 L/kg SV{sub fed}. Although the performance of the systems was unsteady, recovery could be achieved by suspending the feeding process and controlling the pH in the range of 5.0-5.5. Testing the recovery capacity of the systems under temperature shocks resulted in total stoppage of H{sub 2} production. (author)

  3. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-06-14

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events.

  4. Real-Time Broad Spectrum Characterization of Hazardous Mixed Waste by Membrane Introduction Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson Jr., Charles W.

    2000-12-31

    The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. Membrane introduction mass spectrometry (MIMS) functions as a near real-time monitor: there is little to no sample preparation and t analysis time is seconds to minutes. MIMS can be implemented as a flow injection technique, where samples, standards, and method blanks can be sequentially analyzed in a continuous fashion. The membrane acts as an interface between the sample (air or water) and the vacuum of the mass spectrometer. Transport of the analyte through the membrane occurs by the process of pervaporation. This process is described by adsorption to the outer surface of the membrane, diffusion through the membrane, and desorption from the inner membrane surface into a helium gas flow or into vacuum. The driving force for this work is the need for a rapid, sensitive, and broadly applicable tool for characterizing organic and metal-containing contaminants in a variety of DOE (and other) waste streams. In all characterization scenarios, a balance must be struck between evaluation of the hazards and their extent at a waste site, and the resources available for the overall mitigation of that risk. In the case of chemically, physically, and geometrically homogeneous waste, the situation is aided by the ability to reasonably assume that any sample collected is representative of the overall site constituents. However, few real environmental challenges are homogeneous. As a result, detailed sampling plans must be prepared, and chemical analyses must be performed on a number of samples in order to identify areas of contamination and assess further options. For many years, the chemical analysis part of this process has been accomplished by delivering the samples to a (typically) physically remote laboratory, where very detailed, and

  5. Wideband energy harvesting based on mixed connection of piezoelectric oscillators

    Science.gov (United States)

    Wu, P. H.; Chen, Y. J.; Li, B. Y.; Shu, Y. C.

    2017-09-01

    An approach for wideband energy harvesting together with power enhancement is proposed by integrating multiple piezoelectric oscillators with mixed parallel-series connection. This gives rise to the feasibility of shifting the operation frequency band to the dominant frequency domain of ambient excitations. There are two types of connection patterns discussed here: the p-type (s-type) is the parallel (series) connection of all sets of oscillators where some of them may be connected in series (parallel). In addition, the standard interface circuit used for electric rectification is adopted here. The analytic estimates of output power are derived and explicitly expressed in terms of different matrix formulations for these two connection patterns. They are subsequently validated and are found in good agreement with numerical simulations and experimental observations. Finally, the experimental results from the mixed connection of 4 piezoelectric oscillators show that the peak power of each array is about 3.4 times higher than that generated by a single piezoelectric oscillator. In addition, the bandwidth of the array capable of switching connection patterns is around 2.8 times wider than that based on a single array configuration. Hence, the effective bandwidth is enlarged without the loss of peak power.

  6. Solid waste as renewable source of energy. Current and future possibility in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Taqiy Eddine, Boukelia; Salah, Mecibah Med [Mentouri Univ., Constantine (Algeria). Mechanical Dept.

    2012-11-01

    Algeria has created a green momentum by launching an ambitious program to develop renewable energies and promote energy efficiency. Solid waste is one of most important sources of biomass potential in Algeria, which can be used as renewable energy sources. With economic development and the evolution of population, the quantity of solid waste is increasing rapidly in Algeria; according to the National Cadastre for Solid Waste Generation, the overall generation of municipal solid waste was more than 10.3 million tons per year, and the amount of industrial solid waste, including non-hazardous and inert industrial waste was 2,547,000 tons per year, with a stock quantity of 4,483,500 tons. The hazardous waste generated amounts to 325,100 tons per year; the quantities of waste in stock and awaiting a disposal solution amount to 2,008,500 tons. Healthcare waste reaches to 125,000 tons per year. The management of solid waste and its valorization is based on the understanding of solid waste composition by its categories and physicochemical characteristics. Elimination is the solution applied to 97% of waste produced in Algeria. Wastes are disposed in the following ways: open dumps (57%), burned in the open air in public dumps or municipal uncontrolled ones (30%), and controlled dumps and landfill (10%). On the other side, the quantities destined for recovery are too low: only 2% for recycling and 1% for composting. Waste to energy is very attractive option for elimination solid waste with energy recovery. In this paper, we give an overview for this technology, including its conversion options and its useful products (such as electricity, heat and transportation fuel), and waste to energy-related environmental issues and its challenges. (orig.)

  7. Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McVey, M.D.; Goering, T.J. [GRAM, Inc., Albuquerque, NM (United States); Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1996-02-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

  8. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour...... for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different...... scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT...

  9. Waste Not, Want Not: Role of Waste Generation, Management, and Treatment in Food-Energy-Water Nexus Interactions

    Science.gov (United States)

    Gunda, T.; Tidwell, V. C.

    2016-12-01

    While the food-water-energy (FEW) nexus framework has focused on the interactions between primary production and resource requirements (for example, water used to produce electricity), the waste component of these interactions has been largely overlooked. We use the electric utility industry as a case study to explore the burden posed by waste generation, management, and treatment. Using EPA datasets such as the Toxics Release Inventory, we quantify the current waste budget for the electric utility industry. Some aspects of generated waste from the electric utility industry are well-known (e.g., greenhouse gas emissions and criteria air pollutants). Others, however, such as discharges to water and associated water and energy requirements used for treatment are less understood. Overall, the electric industry accounts for 25% of all US air releases, 21% of surface water discharges, and 28% of all land releases. We conclude with a proposed framework to incorporate waste more systematically into the FEW dialogue.

  10. Solid waste as an alternative energy source and a means of solving ...

    African Journals Online (AJOL)

    This paper presents practical ways of generating energy from solid waste as a means of solving the problem of solid waste disposal which is confronting the major cities in Nigeria and also providing alternative energy source to supplement the high cost and fast depleting conventional sources of energy. It also discussed the ...

  11. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  12. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    Science.gov (United States)

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  13. Energy efficient refuse derived fuel (RDF from municipal solid waste rejects: a case for Coimbatore

    Directory of Open Access Journals (Sweden)

    Offor N Kimambo

    2014-05-01

    Full Text Available In this paper production of energy efficient Refuse Derived Fuel (RDF from municipal solid waste rejects was carried out during August 2012 – April 2013 in Coimbatore City India. Municipal Solid wastes rejects (paper, plastics with exception of polyvinyl chloride, textiles were collected from waste dump yard of Coimbatore City. Sawdust, coir dust, water hyacinth and rice husk were mixed with the collected wastes at a fixed amount of 20 percent. After grinding, cassava starch was used as a binder to produce RDF briquettes with the help of uniaxial piston briquettes making machine. Physical, chemical and thermal characteristics of the RDF were studied to assess their potential use as energy efficient material. The analyses were divided into three categories namely, physical, proximate and ultimate analyses. Results indicated that, under physical and proximate analyses; impact resistance index (IRI for all the RDF samples were 200, density were less than 1 kg cm-3, moisture were less than 10 % wt, ash content varied from 2.8 to 9.2 % wt, whilst volatile mater had mean value of 83.1 % wt and fixed carbon which is by subtraction ranged from 1.4 to 9.2 % wt. With respect to Ultimate analysis, Oxygen, carbon, hydrogen varied from 27.01 to 39.78 % wt, 44.8 to59.7 % wt, 5.9 to 8.1 % wt respectively. On the other hand nitrogen, sulfur and chlorine ranged from 0.18 to 0.87 % wt, 0.27 to 0.71 % wt and 0.339 to0.521 % wt respectively. Calorific values (high heating values ranged from 5085 to 6474.9 kcal kg-1. The results were compared with Energy research Centre for the Netherland database and noted that with exception to moisture, fixed carbon and hydrogen other parameters had a significant lower or higher differences. From the study, RDF from municipal solid wastes rejects along with the additives produced high energy efficient materials. DOI: http://dx.doi.org/10.3126/ije.v3i2.10530 International Journal of the Environment Vol.3(2 2014: 205-215

  14. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...... proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO2 quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies......Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...

  15. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Boe, Kanokwan

    2016-01-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co......-digesting sludge with food waste, grass clippings and garden waste with a corresponding % VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30...

  16. Engineering Properties and Microstructural Performance of Low Energy Super-Sulfated Cement Using Industrial Waste Anhydrite

    Directory of Open Access Journals (Sweden)

    Huang Tsung-Yuan

    2017-01-01

    Full Text Available This study aims at proposing the mix proportions of low energy super-sulfated cement (SSC concrete from industrial waste anhydrite from circulating fluidized bed combustion (CFBC fly ash (CFA as an alternative sulfate activator of ground granulated blast furnace slag (GGBFS/slag. The optimized mix proportion of the SSC was carried out by using mixture of different amounts of CFA in range of 25—45 wt.% and various quantities of ordinary Portland cement (OPC in range of 0 — 10 wt.% to trigger the hydration of slag. Experimental results showed that with the expected slump at values of 190 — 220 mm, the 28-day compressive strengths of the concrete with low energy SSC reached 43.69 MPa which can be feasibly applied for widely advanced construction materials. The OPC in range of 3 — 5 wt.% and 25 wt.% of CFA were considered as the optimum ingredients of the activator and was suggested to be used for fabricating the low energy SSC concrete with the good performance on compressive strength, dynamic Young’s modulus, UPV measurement, and stabilized change of length. The OPC additive up to 10 wt.% was encouraged to be used for producing the SSC concrete with significant reduction on creep.

  17. Energy and exergy optimization of food waste pretreatment and incineration.

    Science.gov (United States)

    Tang, Yuanjun; Dong, Jun; Chi, Yong; Zhou, Zhaozhi; Ni, Mingjiang

    2017-08-01

    With the aim of upgrading current food waste (FW) management strategy, a novel FW hydrothermal pretreatment and air-drying incineration system is proposed and optimized from an energy and exergy perspective. Parameters considered include the extracted steam quality, the final moisture content of dehydrated FW, and the reactor thermal efficiency. Results show that optimal working condition can be obtained when the temperature and pressure of extracted steam are 159 °C and 0.17 MPa, the final moisture content of dehydrated FW is 10%, and the reactor thermal efficiency is 90%. Under such circumstance, the optimal steam energy and exergy increments reach 194.92 and 324.50 kJ/kg-FW, respectively. The novel system is then applied under the local conditions of Hangzhou, China. Results show that approximately 2.7 or 11.6% (from energy or exergy analysis perspective) of electricity can be additionally generated from 1 ton of MSW if the proposed novel FW system is implemented. Besides, comparisons between energy and exergy analysis are also discussed.

  18. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    Science.gov (United States)

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2018-03-01

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full

  19. Anthropology and decision making about chronic technological disasters: Mixed waste remediation on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, A.K.; Schweitzer, M.

    1996-12-31

    This paper discusses two related case studies of decision making about the remediation of mixed (hazardous and radioactive) wastes on the Oak Ridge Reservation in Tennessee. The three goals of the paper are to (1) place current decision-making efforts in the varied and evolving social, political, regulatory, economic, and technological contexts in which they occur; (2) present definitions and attributes of {open_quotes}successful{close_quotes} environmental decision making from the perspectives of key constituency groups that participate in decision making; and (3) discuss the role of anthropology in addressing environmental decision making. Environmental decision making about remediation is extraordinarily complex, involving human health and ecological risks; uncertainties about risks, technological ability to clean up, the financial costs of clean up; multiple and sometimes conflicting regulations; social equity and justice considerations; and decreasing budgets. Anthropological theories and methods can contribute to better understanding and, potentially, to better decision making.

  20. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sanjay K.S. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India); Department of Biotechnology, University of Pune, Pune 411007 (India); Purohit, Hemant J. [Environmental Genomics Unit, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur 440020 (India); Kalia, Vipin C. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India)

    2010-10-15

    Mixed microbial cultures (MMCs) based on 11 isolates belonging to Bacillus spp. (Firmicutes), Bordetella avium, Enterobacter aerogenes and Proteus mirabilis (Proteobacteria) were employed to produce hydrogen (H{sub 2}) under dark fermentative conditions. Under daily fed culture conditions (hydraulic retention time of 2 days), MMC6 and MMC4, immobilized on ligno-cellulosic wastes - banana leaves and coconut coir evolved 300-330 mL H{sub 2}/day. Here, H{sub 2} constituted 58-62% of the total biogas evolved. It amounted to a H{sub 2} yield of 1.54-1.65 mol/mol glucose utilized over a period of 60 days of fermentation. The involvement of various Bacillus spp. -Bacillus sp., Bacillus cereus, Bacillus megaterium, Bacillus pumilus and Bacillus thuringiensis as components of the defined MMCs for H{sub 2} production has been reported here for the first time. (author)

  1. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L. (.); Goering, Timothy James (GRAM, Inc.); Miller, Mark Laverne; Ho, Clifford Kuofei

    2007-01-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.

  2. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  3. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    Energy Technology Data Exchange (ETDEWEB)

    Streit, R.D.; Couture, S.A.

    1995-03-01

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  4. Innovative cross-flow membrane system for volume reduction of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Greene, W. [SpinTek Membrane Systems, Huntington Beach, CA (United States)

    1997-10-01

    In this task, SpinTek Membrane Systems, Inc., and the Institute of Gas Technology are completing engineering development leading to a full-scale demonstration of the SpinTek ST-II High Shear Rotary Membrane Filtration System (ST-II) under a Program Research and Development Agreement (PRDA) with the Federal Energy Technology Center-Morgantown. The SpinTek ST-II technology will be scaled-up, and a two-stage ST-II system will be designed, constructed, and operated on both surrogate and actual feed at the Los Alamos National Laboratory (LANL) Liquid Radioactive Waste Treatment Facility (LRWTF). Results from these studies on both surrogate and actual wastewater streams will also be used by LANL personnel to produce a model for determining the applicability and economics of the SpinTek ST-II system to other DOE waste and process streams. The ST-II is a unique, compact cross-flow membrane system having several advantages in performance and cost compared to currently available systems. Staff at LANL have performed pilot-scale testing with the SpinTek technology to evaluate its feasibility for enhanced radionuclide removal from wastewater at its 5- to 8-million-gallon-per-year LRWTF. Recent data have shown the system`s capabilities to remove radionuclides from the waste stream at concentration factors greater than 2000:1, and performance has exceeded both conventional and all other advanced technologies examined.

  5. Alcohol Mixed with Energy Drinks: Daily Context of Use.

    Science.gov (United States)

    Linden-Carmichael, Ashley N; Lau-Barraco, Cathy

    2017-04-01

    The link between use of alcohol mixed with energy drinks (AmEDs) and alcohol-related harms is well established, but limited research has examined the context in which AmEDs are consumed. Identifying the social and environmental characteristics of use may illuminate whether AmEDs are used in settings that could increase the likelihood of engaging in risky behaviors or experiencing harms. This study used a 2-week daily diary assessment to compare days in which AmEDs were consumed ("AmED days") and days where other types of alcohol were used ("non-AmED days") on where, when, and with whom drinking occurred. Participants were 122 (90 women) heavy drinking college students who reported mixing caffeine with alcohol at least once in the past week. Data were collected across 389 drinking days; 40 of these days involved AmED use. Multilevel modeling findings revealed that odds of drinking AmEDs were higher on days where individuals drank at a bar or club and drank at home relative to other locations. In addition, odds of pregaming were higher on AmED days as compared to non-AmED days. AmED use was linked with lower odds of drinking game behavior. Overall, AmEDs appear to be consumed in potentially risky contexts. In combination with prior findings that AmED days are linked with heavier alcohol use and more harms experienced, these findings support the unique nature of AmED consumption in terms of the factors that may predict or maintain potentially hazardous drinking patterns. Copyright © 2017 by the Research Society on Alcoholism.

  6. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    Science.gov (United States)

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  8. The mixed waste management facility. Project baseline revision 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  9. Obtaining energy from waste; La obtencion de energia a partir de residuos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Zayas, J.; Villarrubia Lopez, M.

    2008-07-01

    During the April 2008 Environmental Management seminar, dedicated to how obtaining of energy from waste, supported by Gas Natural, a book La Recuperation energia eco-efficient de los residues. Potential in Spain was presented, and multiple offers were exposed to use in Spain the waste with energetic purposes, especially in Catalonia. One example to take advantage of the waste was a practical case: waste conversion in synthesis gas by plasma. (Author)

  10. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes

    Directory of Open Access Journals (Sweden)

    Julius Akinbomi

    2015-05-01

    Full Text Available The economic viability of employing dark fermentative hydrogen from whole fruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to the inhibitory effect of some metabolites in the fermentation medium. In exploring means of increasing hydrogen production from fruit wastes, including orange, apple, banana, grape and melon, the present study assessed the hydrogen production potential of singly-fermented fruits as compared to the fermentation of mixed fruits. The fruit feedstock was subjected to varying hydraulic retention times (HRTs in a continuous fermentation process at 55 °C for 47 days. The weight distributions of the first, second and third fruit mixtures were 70%, 50% and 20% orange share, respectively, while the residual weight was shared equally by the other fruits. The results indicated that there was an improvement in cumulative hydrogen yield from all of the feedstock when the HRT was five days. Based on the results obtained, apple as a single fruit and a fruit mixture with 20% orange share have the most improved cumulative hydrogen yields of 504 (29.5% of theoretical yield and 513 mL/g volatile solid (VS (30% of theoretical yield , respectively, when compared to other fruits.

  11. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

  12. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  13. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    Science.gov (United States)

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  14. A Preliminary Modified Volumetric Mix Design for Self-Compacting Concrete (SCC by Utilizing Asphalt Dust Waste (ADW

    Directory of Open Access Journals (Sweden)

    Ismail Isham

    2017-01-01

    Full Text Available The construction of asphalt roads has been commonly used as for infrastructure development since ancient times. The production of asphalt using drum mix plants has created powder waste in the premix batching plant industry. It consists of very fine powders and causesproblems to the environment today. However, powder waste can be successfully and economically utilized in the development of self-compacting concrete (SCC. The aim of this study is to evaluate the fresh properties and the compressive strength of SCC containing asphalt dust waste (ADW. For this purpose, a simple modified volumetric mix design approach based on the Okumura Method was adapted to produce SCC mixes. In order to obtain this SCC, a series of SCC mixes with a specific water/binder ratio (0.3, superplasticizer ratio (2% as well as different amounts of aggregate, sand and ADW were prepared. Fresh properties of the SCC mix were tested using tests such as slump-flow, J-Ring, L-box and V-funnel which showed satisfactory results for MD840 and MD850. The compressive strength for MD840 and MD850 after 28 days was 40.8 MPa and 34.7 MPa respectively. In conclusion, the simple modified volumetric mix design method by utilizing ADW in SCC can be suggested for the development of SCC.

  15. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  16. Waste to energy plant operation under the influence of market and legislation conditioned changes

    DEFF Research Database (Denmark)

    Tomic, Tihomir; Dominkovic, Dominik Franjo; Pfeifer, Antun

    2017-01-01

    , waste-to-energy plants need to be adapted to market operation. This influence is tracked by the gate-fee volatility. The operation of the waste-to-energy plant on electricity markets is simulated by using EnergyPLAN and heat market is simulated in Matlab, based on hourly marginal costs. The results have...... shown that the fuel switch reduced gate-fee and made the facility economically viable again. In the second case, the operation of the waste-to-energy plant on day-ahead electricity and heat market is analysed. It is shown that introducing heat market increased needed gate-fee on the yearly level over......In this paper, gate-fee changes of the waste-to-energy plants are investigated in the conditions set by European Union legislation and by the introduction of the new heat market. Waste management and sustainable energy supply are core issues of sustainable development of regions, especially urban...

  17. [Protein-energy wasting and nutritional supplementation in chronic hemodialysis].

    Science.gov (United States)

    Bozzoli, Laura; Sabatino, Alice; Regolisti, Giuseppe; Morabito, Santo; Donadio, Carlo; Cupisti, Adamasco; Piotti, Giovanni; Fiaccadori, Enrico

    2015-01-01

    Protein Energy Wasting (PEW) is a pathological condition characterized by a progressive reduction of protein and energy stores. PEW has a high prevalence among patients with CKD/ESRD (Chronic Kidney Disease/End Stage Renal Disease) and is closely associated with adverse clinical outcomes and increased rate of hospitalization, complications and mortality. The multifactorial pathogenesis of PEW is complex. A key role is played both by the reduced intake of nutrients and the condition of hypercatabolism/reduced anabolism typical of renal patients. The approach to prevent or treat PEW has several milestones such as reduction of potential risk factors, improvement in lifestyle and correction of any factor related to dialysis. It also needs a periodic assessment of nutritional status by using biochemical markers, body and muscle mass variables, nutritional scores and instrumental methods, aiming for an early diagnosis. In case of reduced protein and energy intake, the administration of nutrients during dialysis, or the use of oral supplements specific for renal patients are the first nutritional interventions recommended. In fact, oral nutritional supplementation represents the most effective nutritional approach to PEW prevention and treatment. It is simple and safe and it has a positive impact on quality of life and survival of haemodialysis patients. In the case of failure of oral supplementation, nutritional support should be enhanced by using intradialytic parenteral nutrition (IDPN). If the patient has difficulty in swallowing or IDPN is insufficient, total enteral nutrition should be considered.

  18. Energy and time modelling of kerbside waste collection: Changes incurred when adding source separated food waste.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Burn, Stewart; Crossin, Enda

    2016-10-01

    The collection of source separated kerbside municipal FW (SSFW) is being incentivised in Australia, however such a collection is likely to increase the fuel and time a collection truck fleet requires. Therefore, waste managers need to determine whether the incentives outweigh the cost. With literature scarcely describing the magnitude of increase, and local parameters playing a crucial role in accurately modelling kerbside collection; this paper develops a new general mathematical model that predicts the energy and time requirements of a collection regime whilst incorporating the unique variables of different jurisdictions. The model, Municipal solid waste collect (MSW-Collect), is validated and shown to be more accurate at predicting fuel consumption and trucks required than other common collection models. When predicting changes incurred for five different SSFW collection scenarios, results show that SSFW scenarios require an increase in fuel ranging from 1.38% to 57.59%. There is also a need for additional trucks across most SSFW scenarios tested. All SSFW scenarios are ranked and analysed in regards to fuel consumption; sensitivity analysis is conducted to test key assumptions. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    Science.gov (United States)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%–91% (average of 58%) for heating and 24%–100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%–87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  20. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  1. Environmental Restoration and Waste Management manpower needs assessment: US Department of Energy complex

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, C.W.; Lewis, R.E.; Hunt, S.T. (Pacific Northwest Lab., Richland, WA (United States)); Finn, M.G. (Oak Ridge Associated Universities, Inc., TN (United States))

    1992-06-01

    A study was conducted Pacific Northwest Laboratory and Oak Ridge Associated Universities, Inc. to assess the supply and demand for 53 scientific, engineering, and technical occupations relevant to the US Department of Energy's (DOE's) Office of Environmental Restoration and Waste management (EM). These assessments were made by examining budget projections and the input of program/project and human resources managers throughout the DOE complex. Quantitative projections of full-time equivalent employees slots for each occupation have been developed for the 1993--1997 time frame. Qualitative assessments of the factors that affect recruitment, staffing, and retention are also reported. The implications of the study are discussed within the likely skills mix of the future workforce and the education and organization interventions most likely to address the needs of the DOE complex.

  2. Physicochemical characteristics of various inorganic combustible solid waste (ICSW) mixed as sustainable solid fuel

    Science.gov (United States)

    Sukarni, Sumarli, Puspitasari, Poppy; Suryanto, Heru; Wati, Rita Fajar

    2017-09-01

    The potential of inorganic combustible solid waste (ICSW) as sustainable solid fuel regarding its physical and chemical properties have investigated. The physical characterization was obtained by conducting the proximate test using Differential Thermal Analysis (DTA). This ICSW showed excellent physical properties, which its water, volatile, fixed carbon and ash content were 2.25, 65.45, 28.94 and 3.36 (wt%, air dry basis), respectively. The calorific value of 33.87 MJ/kg was found in the ICSW, which it to be comparable to the medium class of bituminous coal. The energy density of ICSW was 3612,8 MJ/m3. The ICSW chemical properties, which analyzed by using energy dispersive X-ray (EDX) spectrometry, indicated that it has a high content of C (79,49 wt%) and relatively small content of incombustible ingredient.

  3. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  4. A Closer Look on Spatiotemporal Variations of Dissolved Oxygen in Waste Stabilization Ponds Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Long Ho

    2018-02-01

    Full Text Available Dissolved oxygen is an essential controlling factor in the performance of facultative and maturation ponds since both take many advantages of algal photosynthetic oxygenation. The rate of this photosynthesis strongly depends on the time during the day and the location in a pond system, whose roles have been overlooked in previous guidelines of pond operation and maintenance (O&M. To elucidate these influences, a linear mixed effect model (LMM was built on the data collected from three intensive sampling campaigns in a waste stabilization pond in Cuenca, Ecuador. Within two parallel lines of facultative and maturation ponds, nine locations were sampled at two depths in each pond. In general, the output of the mixed model indicated high spatial autocorrelations of data and wide spatiotemporal variations of the oxygen level among and within the ponds. Particularly, different ponds showed different patterns of oxygen dynamics, which were associated with many factors including flow behavior, sludge accumulation, algal distribution, influent fluctuation, and pond function. Moreover, a substantial temporal change in the oxygen level between day and night, from zero to above 20 mg O2·L−1, was observed. Algal photosynthetic activity appeared to be the main reason for these variations in the model, as it was facilitated by intensive solar radiation at high altitude. Since these diurnal and spatial patterns can supply a large amount of useful information on pond performance, insightful recommendations on dissolved oxygen (DO monitoring and regulations were delivered. More importantly, as a mixed model showed high predictive performance, i.e., high goodness-of-fit (R2 of 0.94, low values of mean absolute error, we recommended this advanced statistical technique as an effective tool for dealing with high autocorrelation of data in pond systems.

  5. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Science.gov (United States)

    2010-01-25

    ... COMMISSION Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc., Biosys... Energy Corp. because it has not filed any periodic reports since the period ended December 31, 2006. It... concerning the securities of Biomedical Waste Systems, Inc. because it has not filed any periodic reports...

  6. adaptation of plastic waste to energy development in lagos

    African Journals Online (AJOL)

    user

    economic and environmental advantages of plastic wastes may far exceed metallic wastes if it is properly integrated for human need. Plastic waste is recyclable and therefore could be used for agricultural manure as reported in some literatures [17, 20].The invention of plastics has revolutionised the world as these plastic.

  7. A Computer Program for Modeling the Conversion of Organic Waste to Energy

    Directory of Open Access Journals (Sweden)

    Pragasen Pillay

    2011-11-01

    Full Text Available This paper presents a tool for the analysis of conversion of organic waste into energy. The tool is a program that uses waste characterization parameters and mass flow rates at each stage of the waste treatment process to predict the given products. The specific waste treatment process analysed in this paper is anaerobic digestion. The different waste treatment stages of the anaerobic digestion process are: conditioning of input waste, secondary treatment, drying of sludge, conditioning of digestate, treatment of digestate, storage of liquid and solid effluent, disposal of liquid and solid effluents, purification, utilization and storage of combustible gas. The program uses mass balance equations to compute the amount of CH4, NH3, CO2 and H2S produced from anaerobic digestion of organic waste, and hence the energy available. Case studies are also presented.

  8. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    Science.gov (United States)

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  9. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  10. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    Science.gov (United States)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  11. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    Science.gov (United States)

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  12. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  13. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    Science.gov (United States)

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are

  14. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  15. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  16. Solid waste management in Greece and potential for waste-to-energy; Die Abfallwirtschaft und das Waste-to-Energy Potenzial in Griechenland

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, Efstratios [WTERT Greece - SYNERGIA, A.I.T., Attica (Greece); Manolis, Klados [INTRAKAT, Attica (Greece); Bourtsalas, Athanasios; Themelis, Nickolas J. [Columbia Univ., New York, NY (United States). Earth Engineering Center; Karagiannidis, Avraam [Aristotle Univ., Thessaloniki (Germany). Lab. of Heat Transfer and Environmental Engineering

    2011-05-15

    In Greece the daily production of Municipal Solid Waste (MSW) is estimated to be 15,000 tones, which means roughly 5.4 million tons per year, from which 77 % is deposited in Landfills, while 23 % is recycled and composted. The European Union Legislation for Sanitary Landfills (1999/31/EC), imposes the decrease of biodegradable waste that are deposit to sanitary landfills; thus WTE methods of MSW is one of the best, in terms of affordability in a competitive world and environmental friendly, proposed solutions. Waste-to-Energy methods produce steam and/or electricity. Also, the weight of MSW is reduced up to 70-80 % and the volume up to 90 %, and finally the land area requirements are very small. Our proposal for the WTE technology implementation in Greece is the construction of MSW WTE plants in all major cities operating with an annual capacity of 200.000-400.000 tones. The required land area will be only 4-7 hectares. The basic income of such plants is the gate fee, varying from 50 to 80 Euro/ton. The second income comes from selling of the produced electricity to the Public Power Corporation for 87.85 Euro/MWh (referring to the biodegradable fraction of MSW), according to the new Greek law for renewable energy sources (L. 3851/2010). Additional income comes from the recovered metals of the bottom ash. Furthermore, there is a considerable prospect for state subsidy of the whole investment, according to the Greek Development Law. (orig.)

  17. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    Science.gov (United States)

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013

  18. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst.

    Science.gov (United States)

    Ramachandran, Kasirajan; Sivakumar, Pandian; Suganya, Tamilarasan; Renganathan, Sahadevan

    2011-08-01

    Al(HSO(4))(3) heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl(3). This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220°C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO(3)H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Energy densification of animal waste lignocellulose biomass and raw biomass

    Directory of Open Access Journals (Sweden)

    G. Pahla

    2017-12-01

    Full Text Available The need to reduce carbon emissions has encouraged more research into use of biomass energy in place of coal. Biomass is carbon neutral; its use can therefore lower net emissions. Biomass can be upgraded to a fuel similar to coal by torrefaction. Different biomass have been torrefied but there is limited research in possible use of lignocellulose biomass from animal waste. This study aims to compare extent of energy densification of torrefied cow dung, corn cob and pine wood. They were dried, ground and sieved. Proximate and ultimate analysis was conducted. The samples were then torrefied at 200, 250 and 300 °C at 10 °C/min for 40 min. The resulting biochar were characterized using mass yield, higher heating value, energy yield and density. Biochar obtained at 250 °C were analyzed for elemental composition. Results were compared to Anglo bituminous coal and other torrefied biomass in literature. Corn cob and pine wood reached a maximum of 25.98 MJ/kg and 20.90 MJ/kg in heating value respectively whilst cow dung only increased to a maximum of 18.60 MJ/kg. Increase in heating value for corn cob was attributed to reduction in oxygen due to release of volatiles as well as water. This lowered the O/C ratio thereby densifying the fuel. The O/C and H/C ratio for corncob and wood moved towards that of bituminous coal unlike that of cow dung. Cow dung had a high inorganic composition so its heating value could not be upgraded as much as the other 2 biomass. Its use as a torrefaction raw material was therefore discouraged. Keywords: Torrefaction, Biomass, Temperature, Cow dung, Corn cobs, Pine wood

  20. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  1. A nexus approach for sustainable urban Energy-Water-Waste systems planning and operation.

    Science.gov (United States)

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen Haziel; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-01-31

    Energy, water and waste systems analyzed at a nexus level is key to move towards more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW) and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in Sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, natural constrained, policy interventions and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  2. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

    2013-01-17

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

  3. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Mike G. [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States); Barnes, Steve M. [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)

    2013-07-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

  4. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.; Milbrandt, Anelia R.

    2017-10-01

    Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.

  5. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  6. A survey of energy drink and alcohol mixed with energy drink consumption.

    Science.gov (United States)

    Magnezi, Racheli; Bergman, Lisa Carroll; Grinvald-Fogel, Haya; Cohen, Herman Avner

    2015-01-01

    Energy drink consumption among youth is increasing despite recommendations by the American Academy of Pediatrics to eliminate consumption by youth. This study provides information on consumption of energy drinks and alcohol mixed with energy drinks (AmED) in a sample of Israeli youth and how consumer knowledge about the risks affects consumption rates. The study was conducted in three Tel Aviv public schools, with a total enrollment of 1,253 students in grades 8 through 12. Among them, 802 students completed a 49-item questionnaire about energy drink and AmED consumption, for a 64 % response rate Non-responders included 451 students who were absent or refused to participate. All students in the same school were administered the questionnaire on the same day. Energy drinks are popular among youth (84.2 % have ever drunk). More tenth through twelfth grade students consumed energy drinks than eighth and ninth grade students. Students who began drinking in elementary school (36.8 %) are at elevated risk for current energy drink (P drinking ED at a young age is important. Boys and those who start drinking early have a greater risk of both ED and AmED consumption. The characteristics of early drinkers can help increase awareness of potential at-risk youth, such as junior and senior high school students with less educated or single parents. Risks posed by early use on later energy drink and AmED consumption are concerning. We suggest that parents should limit accessibility. Increased knowledge about acceptable and actual amounts of caffeine in a single product might decrease consumption.

  7. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    energy efficiency; biogas purification; digester capacity and stability; waste sludge generation and characteristics; operational reliability, safety...50 per wet ton and composting costs range from $29 to $52 per wet ton. Renewable Energy Production From DoD Installation Solid Wastes by...provides an approach toward meeting these requirements which includes a focus on: 1) reducing energy needs and reliance on fossil fuels; and 2) water

  8. energy characteristics of ethanol-diesel mix for automotive use

    African Journals Online (AJOL)

    A 1% to 5% by volume of 99.6% ethanol was mixed with diesel fuel. A 500ml of each mix was used to power a 9.545kW diesel engine and the engine speed, torque, power and specific fuel consumption (sfc) were determined. Performance test indicates a 4.2% drop in power output at a 5% ethanol addition to diesel and an ...

  9. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria.

    Science.gov (United States)

    Zhu, Nengwu; Xiang, Yun; Zhang, Ting; Wu, Pingxiao; Dang, Zhi; Li, Ping; Wu, Jinhua

    2011-08-30

    Metal concentrates of printed circuit boards (PCBs) are the residue valuable metals from which non-metallic components are removed. The non-metallic components show bacterial toxicity in bioleaching process and can be recycled as well. In this study, the effects of initial pH, initial Fe(II) concentration, metal concentrate dosage, particle size, and inoculation quantity on the bioleaching were investigated so as to determine the optimum conditions and evaluate the feasibility of bioleaching of metal concentrates of PCBs by mixed culture of acidophilic bacteria (MCAB). The results showed that the initial pH and Fe(II) concentration played an important role in copper extraction and precipitate formation. Under the optimized conditions of initial pH 2.00, 12g/L initial Fe(II), 12g/L metal concentrate dosage, 10% inoculation quantity, and 60-80 mesh particle size, 96.8% the copper leaching efficiency was achieved in 45h, and aluminum and zinc 88.2% and 91.6% in 98h, respectively. All findings demonstrated that metals could be efficiently leached from metal concentrates of waste PCBs by using the MCAB, and the leaching period was shorten from about 8 days to 45h. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Use of Recycling Building Demolition waste As Coarse Aggregate in Hot Mix Asphalt

    Directory of Open Access Journals (Sweden)

    Nabil I. Al- Sarrag* Hanaa Khaleel A Suham E. Saleh Al-Maliky

    2014-04-01

    Full Text Available At the recent years in Iraq, building demolition increase because of wars and the processes of destruction that lead to increase concrete waste, causing extreme pressure on the available land-filled sites that’s becomes a new challenge to local environment, in addition to south region from country poor from aggregate source.  So this study make as first evaluation to return use concrete aggregate for