WorldWideScience

Sample records for energy minimization progress

  1. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    Science.gov (United States)

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  2. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  3. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  4. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Minimal Self-Models and the Free Energy Principle

    Directory of Open Access Journals (Sweden)

    Jakub eLimanowski

    2013-09-01

    Full Text Available The term "minimal phenomenal selfhood" describes the basic, pre-reflective experience of being a self (Blanke & Metzinger, 2009. Theoretical accounts of the minimal self have long recognized the importance and the ambivalence of the body as both part of the physical world, and the enabling condition for being in this world (Gallagher, 2005; Grafton, 2009. A recent account of minimal phenomenal selfhood (MPS, Metzinger, 2004a centers on the consideration that minimal selfhood emerges as the result of basic self-modeling mechanisms, thereby being founded on pre-reflective bodily processes. The free energy principle (FEP, Friston, 2010 is a novel unified theory of cortical function that builds upon the imperative that self-organizing systems entail hierarchical generative models of the causes of their sensory input, which are optimized by minimizing free energy as an approximation of the log-likelihood of the model. The implementation of the FEP via predictive coding mechanisms and in particular the active inference principle emphasizes the role of embodiment for predictive self-modeling, which has been appreciated in recent publications. In this review, we provide an overview of these conceptions and illustrate thereby the potential power of the FEP in explaining the mechanisms underlying minimal selfhood and its key constituents, multisensory integration, interoception, agency, perspective, and the experience of mineness. We conclude that the conceptualization of MPS can be well mapped onto a hierarchical generative model furnished by the free energy principle and may constitute the basis for higher-level, cognitive forms of self-referral, as well as the understanding of other minds.

  6. The Use of Trust Regions in Kohn-Sham Total Energy Minimization

    International Nuclear Information System (INIS)

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-01-01

    The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF

  7. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  8. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  9. Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization

    Directory of Open Access Journals (Sweden)

    Vaiju Kalkhambkar

    2017-03-01

    Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.

  10. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué , D.; Carrillo, J. A.; Laurent, T.; Raoul, G.

    2013-01-01

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  11. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué, D.

    2013-05-22

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-01-01

    , they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU

  13. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    Science.gov (United States)

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  14. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  15. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  16. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  17. 76 FR 37805 - Progress Energy Carolinas; Notice of Meeting

    Science.gov (United States)

    2011-06-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2206-030] Progress Energy Carolinas; Notice of Meeting On May 31, 2011, Progress Energy Carolinas (Progress Energy), licensee for the... National Marine Fisheries Service (NMFS) and staff to discuss what is needed to complete formal...

  18. Alternative energies. Updates on progress

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, German (ed.) [CIRCE - Centre of Research for Energy Resources and Consumption, Zaragoza (Spain)

    2013-07-01

    Presents fundamental and applied research of alternative energies. Address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress. Includes the life cycle assessment and thermoeconomic analysis as tools for evaluating and optimising environmental and cost subjects. This book presents nine chapters based on fundamental and applied research of alternative energies. At the present time, the challenge is that technology has to come up with solutions that can provide environmentally friendly energy supply options that are able to cover the current world energy demand. Experts around the world are working on these issues for providing new solutions that will break the existing technological barriers. This book aims to address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress for each pillar. It also includes the life cycle assessment (LCA) and thermoeconomic analysis (TA) as tools for evaluating and optimising environmental and cost subjects. Chapters are organized into fundamental research, applied research and future trends; and written for engineers, academic researches and scientists.

  19. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  20. Hoelder continuity of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, Taoufik

    2004-10-01

    The goal of the present paper is to establish some kind of regularity of an energy minimizer map between Riemannian polyhedra. More precisely, we will show the Hoelder continuity of local energy minimizers between Riemannian polyhedra with the target spaces without focal points. With this new result, we also complete our existence theorem obtained elsewhere, and consequently we generalize completely, to the case of target polyhedra without focal points (which is a weaker geometric condition than the nonpositivity of the curvature), the Eells-Fuglede's existence and regularity theorem which is the new version of the famous Eells-Sampson's theorem. (author)

  1. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  2. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Davies, N.A.

    1989-01-01

    The author discusses international progress in fusion research during the last three years. Much of the technical progress has been achieved through international collaboration in magnetic fusion research. This progress has stimulated political interest in a multinational effort, aimed at designing and possibly constructing the world's first experimental fusion reactor. This interest was reflected in recent summit-level discussions involving President Mitterand, General Secretary Gorbachev, and President Reagan. Most recently, the European Community (EC), Japan, the United States, and the U.S.S.R. have decided to begin serious preparation for taking the next step toward practical fusion energy. These parties have agreed to begin the design and supporting R and D for an International Thermonuclear Experimental Reactor (ITER) under the auspices of the International Atomic Energy Agency (IAEA). The initiation of this international program to prepare for a fusion test reactor is discussed

  3. Technological progress and the energy challenges. The role of natural gas

    International Nuclear Information System (INIS)

    Rasmusen, H.J.

    1999-01-01

    Since the beginning of the industrial evolution, progress in technology development for the energy industry has been guided by economy and choice of fuel. For the last decades 'Energy Crisis' and 'Greenhouse effect' issues have supplemented the driving forces. (Improved Efficiency' is not of the strongest marketing issues when dealing with appliances for energy conversion. The trends of the development of today are towards smaller decentralized units and mass production. This is in contradiction to conventional wisdom of minimizing costs by use of centralized large-scale units. The future of energy conversion of power and heat production will be dominated by small-scale units, which produce heat and power simultaneously. Lower energy prices will slow down the transition to more efficient conversion technologies, but in the open and de-regulated market this will be opposed by competition between companies. To gain market shares and maintain customers, energy companies will have to use 'efficient appliances' as a market parameter. Use of more efficient technology always improves the environmental efficiency but conversion to natural gas from another fossil fuel will by itself lead to radical environmental improvements. (author)

  4. Molecular mechanics calculations of proteins. Comparison of different energy minimization strategies

    DEFF Research Database (Denmark)

    Christensen, I T; Jørgensen, Flemming Steen

    1997-01-01

    A general strategy for performing energy minimization of proteins using the SYBYL molecular modelling program has been developed. The influence of several variables including energy minimization procedure, solvation, dielectric function and dielectric constant have been investigated in order...... to develop a general method, which is capable of producing high quality protein structures. Avian pancreatic polypeptide (APP) and bovine pancreatic phospholipase A2 (BP PLA2) were selected for the calculations, because high quality X-ray structures exist and because all classes of secondary structure...... for this protein. Energy minimized structures of the trimeric PLA2 from Indian cobra (N.n.n. PLA2) were used for assessing the impact of protein-protein interactions. Based on the above mentioned criteria, it could be concluded that using the following conditions: Dielectric constant epsilon = 4 or 20; a distance...

  5. Tracking SDG7 : The Energy Progress Report 2018

    OpenAIRE

    International Energy Agency; International Renewable Energy Agency; United Nations; World Bank Group; World Health Organization

    2018-01-01

    The Energy Progress Report provides a global dashboard on progress towards Sustainable Development Goal 7 (SDG7). The report is a joint effort of the International Energy Agency (IEA), the International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD), the World Bank, and the World Health Organization (WHO), which the United Nations (UN) has named as global custod...

  6. Progress on alternative energy resources

    Science.gov (United States)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  7. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-05-15

    Modern smartphones are being designed with increasing processing power, memory capacity, network communication, and graphics performance. Although all of these features are enriching and expanding the experience of a smartphone user, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated, which implies relying on the GPU power for rendering all application graphics. In addition, the GPUs installed in smartphones are becoming more and more powerful by the day. This raises an energy consumption concern. We present a novel implementation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) scheme implemented in the Android kernel to dynamically scale the GPU. The scheme includes four main governors: Performance, Powersave, Ondmand, and Conservative. Unlike previous studies which looked into the power efficiency of mobile GPUs only through simulation and power estimations, we have implemented our approach on a real modern smartphone GPU, and acquired actual energy measurements using an external power monitor. Our results show that the energy consumption of smartphones can be reduced up to 15% using the Conservative governor in 2D rendering mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.

  8. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  9. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  10. Minimization of local impact of energy systems through exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, Gabriele; Colombo, Emanuela

    2013-01-01

    Highlights: • The model proposed aims at minimizing local impact of energy systems. • The model is meant to minimize the impact starting from system thermodynamics. • The formulation combines exergy analysis and quantitative risk analysis. • The approach of the model is dual to Thermoeconomics. - Abstract: For the acceptability of energy systems, environmental impacts are becoming more and more important. One primary way for reducing impacts related to processes is by improving efficiency of plants. A key instrument currently used to verify such improvements is exergy analysis, extended to include also the environmental externalities generated by systems. Through exergy-based analyses, it is possible indeed to evaluate the overall amount of resources consumed along all the phases of the life cycle of a system, from construction to dismantling. However, resource consumption is a dimension of the impact of a system at global level, while it may not be considered a measure of its local impact. In the paper a complementary approach named Combined Risk and Exergy Analysis (CRExA) to assess impacts from major accidents in energy systems is proposed, based on the combination of classical exergy analysis and quantitative risk analysis (QRA). Impacts considered are focused on effects on human health. The approach leads to the identification of solutions to minimize damages of major accidents by acting on the energy system design

  11. Minimal nuclear energy density functional

    Science.gov (United States)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  12. Waste Minimization Measurement and Progress Reporting

    International Nuclear Information System (INIS)

    Stone, K.A.

    1995-01-01

    Westinghouse Savannah River Company is implementing productivity improvement concepts into the Waste Minimization Program by focusing on the positive initiatives taken to reduce waste generation at the Savannah River Site. Previous performance measures, based only on waste generation rates, proved to be an ineffective metric for measuring performance and promoting continuous improvements within the Program. Impacts of mission changes and non-routine operations impeded development of baseline waste generation rates and often negated waste generation trending reports. A system was developed to quantify, document and track innovative activities that impact waste volume and radioactivity/toxicity reductions. This system coupled with Management-driven waste disposal avoidance goals is proving to be a powerful tool to promote waste minimization awareness and the implementation of waste reduction initiatives. Measurement of waste not generated, in addition to waste generated, increases the credibility of the Waste Minimization Program, improves sharing of success stories, and supports development of regulatory and management reports

  13. A strategy to find minimal energy nanocluster structures.

    Science.gov (United States)

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  14. Sectors of solutions and minimal energies in classical Liouville theories for strings

    International Nuclear Information System (INIS)

    Johansson, L.; Kihlberg, A.; Marnelius, R.

    1984-01-01

    All classical solutions of the Liouville theory for strings having finite stable minimum energies are calculated explicitly together with their minimal energies. Our treatment automatically includes the set of natural solitonlike singularities described by Jorjadze, Pogrebkov, and Polivanov. Since the number of such singularities is preserved in time, a sector of solutions is not only characterized by its boundary conditions but also by its number of singularities. Thus, e.g., the Liouville theory with periodic boundary conditions has three different sectors of solutions with stable minimal energies containing zero, one, and two singularities. (Solutions with more singularities have no stable minimum energy.) It is argued that singular solutions do not make the string singular and therefore may be included in the string quantization

  15. Three-Dimensional Dirac Oscillator with Minimal Length: Novel Phenomena for Quantized Energy

    Directory of Open Access Journals (Sweden)

    Malika Betrouche

    2013-01-01

    Full Text Available We study quantum features of the Dirac oscillator under the condition that the position and the momentum operators obey generalized commutationrelations that lead to the appearance of minimal length with the order of the Planck length, ∆xmin=ℏ3β+β′, where β and β′ are two positive small parameters. Wave functions of the system and the corresponding energy spectrum are derived rigorously. The presence of the minimal length accompanies a quadratic dependence of the energy spectrum on quantum number n, implying the property of hard confinement of the system. It is shown that the infinite degeneracy of energy levels appearing in the usual Dirac oscillator is vanished by the presence of the minimal length so long as β≠0. Not only in the nonrelativistic limit but also in the limit of the standard case (β=β′=0, our results reduce to well known usual ones.

  16. Efficient modified Jacobi relaxation for minimizing the energy functional

    International Nuclear Information System (INIS)

    Park, C.H.; Lee, I.; Chang, K.J.

    1993-01-01

    We present an efficient scheme of diagonalizing large Hamiltonian matrices in a self-consistent manner. In the framework of the preconditioned conjugate gradient minimization of the energy functional, we replace the modified Jacobi relaxation for preconditioning and use for band-by-band minimization the restricted-block Davidson algorithm, in which only the previous wave functions and the relaxation vectors are included additionally for subspace diagonalization. Our scheme is found to be comparable with the preconditioned conjugate gradient method for both large ordered and disordered Si systems, while it is more rapidly converged for systems with transition-metal elements

  17. Foraging site selection of two subspecies of Bar-tailed Godwit Limosa lapponica: time minimizers accept greater predation danger than energy minimizers

    NARCIS (Netherlands)

    Duijns, S.; Dijk, van J.G.B.; Spaans, B.; Jukema, J.; Boer, de W.F.; Piersma, Th.

    2009-01-01

    Different spatial distributions of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been

  18. Foraging site selection of two subspecies of Bar-tailed Godwit Limosa lapponica : time minimizers accept greater predation danger than energy minimizers

    NARCIS (Netherlands)

    Duijns, Sjoerd; van Dijk, Jacintha G. B.; Spaans, Bernard; Jukema, Joop; de Boer, Willem F.; Piersma, Theunis

    2009-01-01

    Different spatial distributions Of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been

  19. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  20. Free energy minimization and information gain: The devil is in the details

    NARCIS (Netherlands)

    Kwisthout, J.H.P.; Rooij, I.J.E.I. van

    2015-01-01

    Contrary to Friston's previous work, this paper describes free energy minimization using categorical probability distributions over discrete states. This alternative mathematical framework exposes a fundamental, yet unnoticed challenge for the free energy principle. When considering discrete state

  1. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.

  2. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  3. Rigid Body Energy Minimization on Manifolds for Molecular Docking.

    Science.gov (United States)

    Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima

    2012-11-13

    Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.

  4. Periodic-cylinder vesicle with minimal energy

    International Nuclear Information System (INIS)

    Xiao-Hua, Zhou

    2010-01-01

    We give some details about the periodic cylindrical solution found by Zhang and Ou-Yang in [1996 Phys. Rev. E 53 4206] for the general shape equation of vesicle. Three different kinds of periodic cylindrical surfaces and a special closed cylindrical surface are obtained. Using the elliptic functions contained in mathematic, we find that this periodic shape has the minimal total energy for one period when the period–amplitude ratio β ≈ 1.477, and point out that it is a discontinuous deformation between plane and this periodic shape. Our results also are suitable for DNA and multi-walled carbon nanotubes (MWNTs). (cross-disciplinary physics and related areas of science and technology)

  5. A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization

    National Research Council Canada - National Science Library

    Du, Qian; Ren, Hsuan; Chang, Chein-I

    2003-01-01

    ...: orthogonal subspace projection (OSP) and constrained energy minimization (CEM). It is shown that they are closely related and essentially equivalent provided that the noise is white with large SNR...

  6. Biomass energy: progress in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [CPL Scientific Limited, Newbury (United Kingdom)

    1996-05-01

    A brief overview of the progress in the use of biomass energy in the European Union is presented. Wood fuel, support for renewable energy research, liquid biofuel, wastes and residues, and non-food use of crops such as the production of fuels from lignocellulosic materials are examined. (UK)

  7. Nr 150 - Private bill introducing a progressive energy tariff

    International Nuclear Information System (INIS)

    Brottes, Francois; Le Roux, Bruno

    2012-01-01

    This document presents a private bill which, by introducing a progressive energy tariff, aims at speeding up energy transition (by inciting households to reduce their consumption, notably by insulating their housing), and at addressing the ineluctable issue of energy price increase. This private bill notably applies a bonus-malus concept by defining an energy consumption threshold which is to be determined by means of several parameters related to climate, housing occupancy, heating mode. This raises several issues concerning for example housing insulation of rented housing. All these aspects lead to a rather complex process to define and implement such a progressive pricing approach

  8. Microgrids: Energy management by loss minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)

    2011-07-01

    Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.

  9. Development of a waste minimization plan for a Department of Energy remedial action program: Ideas for minimizing waste in remediation scenarios

    International Nuclear Information System (INIS)

    Hubbard, Linda M.; Galen, Glen R.

    1992-01-01

    Waste minimization has become an important consideration in the management of hazardous waste because of regulatory as well as cost considerations. Waste minimization techniques are often process specific or industry specific and generally are not applicable to site remediation activities. This paper will examine ways in which waste can be minimized in a remediation setting such as the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, where the bulk of the waste produced results from remediating existing contamination, not from generating new waste. (author)

  10. Cooperative Content Distribution over Wireless Networks for Energy and Delay Minimization

    KAUST Repository

    Atat, Rachad

    2012-06-01

    Content distribution with mobile-to-mobile cooperation is studied. Data is sent to mobile terminals on a long range link then the terminals exchange the content using an appropriate short range wireless technology. Unicasting and multicasting are investigated, both on the long range and short range links. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form. Moreover, the schemes are applied in public safety vehicular networks, where Long Term Evolution (LTE) network is used for the long range link, while IEEE 802.11 p is considered for inter-vehicle collaboration on the short range links. Finally, relay-based multicasting is applied in high speed trains for energy and delay minimization. Results show that cooperative schemes outperform non-cooperative ones and other previous related work in terms of energy and delay savings. Furthermore, practical implementation aspects of the proposed methods are also discussed.

  11. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  12. Energy minimization in medical image analysis: Methodologies and applications.

    Science.gov (United States)

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Free-energy minimization and the dark-room problem.

    Science.gov (United States)

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).

  14. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    Science.gov (United States)

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  15. Nova Scotia Energy Strategy : progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    Nova Scotia's energy strategy addresses all aspects of energy production and use, from offshore oil and gas to electricity and coal, to climate change and renewable resources. It also encompasses energy conservation and efficiency. This progress report highlights the efforts that the province has made to promote exploration, improve efficiency of regulations and approval processes and promote the oil and natural gas sector. Efforts have also been made to support local businesses, address climate change issues and protect the environment. The strategy demonstrates how new energy resources can be used to build a more prosperous and self-reliant province. The progress report focuses on the following 3 themes: powering the economy; improving the environment; and, securing Nova Scotia's future. The report emphasizes that the growing oil and gas industry brings many opportunities for new jobs and a stronger economy. In the next 12 to 18 months, about 8 to 10 offshore exploration wells will be drilled, which is more than in the last decade. Funding will be provided to extend pipeline systems beyond franchise areas approved by the Nova Scotia Utility and Review Board. In May 2002, the Electricity Marketplace Governance Committee was formed to make recommendations on how competition can be introduced into the province's electricity market. The Department of Energy has been working to implement initiatives to increase the use of renewable energy sources such as solar and wind power. In October 2002, new wind turbines began producing electricity in 3 communities on Cape Breton Island. A key priority is to respond to climate change and reduce greenhouse gas emissions as well as emissions of mercury, sulphur, nitrogen, and ozone. The energy strategy also identifies the need to provide competitive taxation regimes.

  16. [Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].

    Science.gov (United States)

    de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre

    2015-01-01

    One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  17. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    International Nuclear Information System (INIS)

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-01-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits

  18. Research on energy-saving effect of technological progress based on Cobb-Douglas production function

    International Nuclear Information System (INIS)

    Yuan Chaoqing; Liu Sifeng; Wu Junlong

    2009-01-01

    Energy issues receive more and more attention these days. And it is considered that technological progress is an essential approach to save energy. This essay is to analyze the relation between energy intensity and technological progress by Cobb-Douglas production function in which energy, labor, capital and technological progress are taken as independent variables. It proves that the growth of output per capital and output per labor will increase energy intensity while technological progress will decrease energy intensity. Empirical research on Chinese industry is used here to indicate technological progress greatly decreases energy intensity. Because of the interferences of Asian financial crisis, there is something abnormal in the data. So in the empirical research, average weaken buffer operator (ABWO) is applied to weaken the interference of Asian financial crisis to the fixed assets, energy and value added. The results of the empirical research show that technological progress decreases energy intensity of Chinese industry an average of 6.3% every year in China.

  19. Cooperative relay-based multicasting for energy and delay minimization

    KAUST Repository

    Atat, Rachad

    2012-08-01

    Relay-based multicasting for the purpose of cooperative content distribution is studied. Optimized relay selection is performed with the objective of minimizing the energy consumption or the content distribution delay within a cluster of cooperating mobiles. Two schemes are investigated. The first consists of the BS sending the data only to the relay, and the second scheme considers the scenario of threshold-based multicasting by the BS, where a relay is selected to transmit the data to the mobiles that were not able to receive the multicast data. Both schemes show significant superiority compared to the non-cooperative scenarios, in terms of energy consumption and delay reduction. © 2012 IEEE.

  20. An existence result of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, T.

    2004-06-01

    In this paper, we prove the existence of energy minimizers in each free homotopy class of maps between polyhedra with target space without focal points. Our proof involves a careful study of some geometric properties of Riemannian polyhedra without focal points. Among other things, we show that on the relevant polyhedra, there exists a convex supporting function. (author)

  1. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  2. Predicting Consensus Structures for RNA Alignments Via Pseudo-Energy Minimization

    Directory of Open Access Journals (Sweden)

    Junilda Spirollari

    2009-01-01

    Full Text Available Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed to improve on RNA secondary structure prediction, such as covariance scores obtained from multiple sequence alignments. We present in this paper a new approach to predicting the consensus secondary structure of a set of aligned RNA sequences via pseudo-energy minimization. Our tool, called RSpredict, takes into account sequence covariation and employs effective heuristics for accuracy improvement. RSpredict accepts, as input data, a multiple sequence alignment in FASTA or ClustalW format and outputs the consensus secondary structure of the input sequences in both the Vienna style Dot Bracket format and the Connectivity Table format. Our method was compared with some widely used tools including KNetFold, Pfold and RNAalifold. A comprehensive test on different datasets including Rfam sequence alignments and a multiple sequence alignment obtained from our study on the Drosophila X chromosome reveals that RSpredict is competitive with the existing tools on the tested datasets. RSpredict is freely available online as a web server and also as a jar file for download at http:// datalab.njit.edu/biology/RSpredict.

  3. Inference with minimal Gibbs free energy in information field theory

    International Nuclear Information System (INIS)

    Ensslin, Torsten A.; Weig, Cornelius

    2010-01-01

    Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the Gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from Poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a Gaussian signal with unknown spectrum, and (iii) inference of a Poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-Gaussian posterior.

  4. Market clearing of joint energy and reserves auctions using augmented payment minimization

    International Nuclear Information System (INIS)

    Amjady, N.; Aghaei, J.; Shayanfar, H.A.

    2009-01-01

    This paper presents the market clearing of joint energy and reserves auctions and its mathematical formulation, focusing on a possible implementation of the Payment Cost Minimization (PCM). It also discusses another key point in debate: whether market clearing algorithm should minimize offer costs or payment costs? An aggregated simultaneous market clearing approach is proposed for provision of ancillary services as well as energy, which is in the form of Mixed Integer Nonlinear Programming (MINLP) formulation. In the MINLP formulation of the market clearing process, the objective function (Payment cost or offer cost) are optimized while meeting AC power flow constraints, system reserve requirements and lost opportunity cost (LOC) considerations. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS), and simulation studies are carried out to examine the effectiveness of each objective function. (author)

  5. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  6. Energy technology X: a decade of progress. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.F. (ed.)

    1983-06-01

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

  7. Wormholes minimally violating the null energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam [Departamento de Física, Universidade da Beira Interior, 6200 Covilhã (Portugal); Lobo, Francisco S N; Martín-Moruno, Prado, E-mail: mariam.bouhmadi@ehu.es, E-mail: fslobo@fc.ul.pt, E-mail: pmmoruno@fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal)

    2014-11-01

    We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted {sup t}he little sibling of the big rip{sup ,} where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyse the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalization of the equation of state considered above and analyse the respective stability regions. In particular, we obtain a specific wormhole solution with an asymptotic behaviour corresponding to a global monopole.

  8. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  9. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  11. Minimizing the Energy Consumption in ‎Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Saad Talib

    2017-12-01

    Full Text Available Energy in Wireless Sensor networks (WSNs represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. WSNs operate with battery powered sensors. Sensors batteries have not easily rechargeable even though having restricted power. Frequently the network failure occurs due to the sensors energy insufficiency. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup times. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure efficient network throughput. Prediction of the WSN lifetime previously to its installation represents a significant concern. To ensure energy efficiency the sensors duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and the idle states were also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the sensor node energy consumption. Results for these states with many performance metrics were also studied and discussed

  12. Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.

    Science.gov (United States)

    Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang

    2017-12-01

    Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.

  13. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  14. Progress towards energy efficient cities in Denmark

    DEFF Research Database (Denmark)

    Fertner, Christian

    and supporting local authorities in their actions. Still, a general benchmarking of states and efforts is still missing which could however increase the use of good practice and enforce discussions in lagging cities. Against this background, a model was developed in the ongoing EU-FP7 project PLEEC to measure......Energy is a key issue for sustainable urban development. Despite agendas set on national and international level, local authorities are the key actors in this transformation (Lewis et al. 2013). European initiatives as the Covenant of Mayors or Energy Cities are closely following this development...... the energy situation in cities, compiling 50 energy-related indicators. In this paper we discuss the progress towards more energy efficient cities in Denmark, by analysing selected key-indicators across all 98 municipalities and their development in the recent 10 years. This allows a unique perspective...

  15. Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

    International Nuclear Information System (INIS)

    De Kleine, Robert D.; Keoleian, Gregory A.; Kelly, Jarod C.

    2011-01-01

    A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: → Optimal replacement schedules for residential central air conditioners were found. → Minimizing energy required more frequent replacement than minimizing consumer cost. → Significant variation in optimal replacement was observed for Michigan and Texas. → Rebates for altering replacement patterns are not cost effective for GHG abatement. → Maintenance levels were significant in determining the energy and GHG impacts.

  16. Interactive seismic interpretation with piecewise global energy minimization

    KAUST Repository

    Hollt, Thomas; Beyer, Johanna; Gschwantner, Fritz M.; Muigg, Philipp; Doleisch, Helmut; Heinemann, Gabor F.; Hadwiger, Markus

    2011-01-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  17. Interactive seismic interpretation with piecewise global energy minimization

    KAUST Repository

    Hollt, Thomas

    2011-03-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  18. FY2013 Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  19. The directive on energy efficiency: review in progress

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    Whereas it has not been entirely transposed for all counties yet, the European directive on energy efficiency is to be reviewed to match objectives defined for 2030. Therefore, the European Commission is elaborating an analysis and a consultation on this issue. This article indicates some available data published in the Energy Efficiency Progress Report related to the evolution of final energy consumption and to its objective for 2020, to the evolution of energy consumption in the main sectors, and to the evolution of heat production by co-generation between 2005 and 2013. It also comments the main articles of the directive which address problematic and general objectives, public purchases, energy efficiency obligation schemes (EEOS, which are the main matter of questions), counting and billing, financing, and monitoring

  20. Solar-thermal energy - How progress will be made

    International Nuclear Information System (INIS)

    Frei, U.; Hawkins, A. C.

    2004-01-01

    This second part of a two-part article is based on a lecture given by professor Ueli Frei of the University of Applied Science in Rapperswil, Switzerland. It discusses present and future system technologies that can be used for thermal applications of solar energy. The importance of correct engineering and planning is stressed. The evolution of solar collector technology since 1980 is examined and the important progress made in this area is looked at. A selection of graphical representations illustrate the progress that has already been made and that which can be expected in the future

  1. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  2. Is the climate system an anticipatory system that minimizes free energy?

    Science.gov (United States)

    Rubin, Sergio; Crucifix, Michel

    2017-04-01

    All systems, whether they are alive or not are structured determined systems, i.e. their present states [x (t)] depends of past states [x (t - α)]. However it has been suggested [Rosen, 1985; Friston, 2013] that systems that contain life are capable of anticipation and active inference. The underlying principle is that state changes in living systems are best modelled as a function of past and future states [ x(t) = f (x (t - α), x(t), x (t + β)) ]. The reason for this is that living systems contain a predictive model of their ambiance on which they are active: they appear to model their ambiance to preserve their integrity and homeorhesis. We therefore formulate the following hypothesis: can the climate system be interpreted as an anticipatory system that minimizes free energy? Can its variability (catastrophe, bifurcation and/or tipping points) be interpreted in terms of active inference and anticipation failure? Here we present a mathematical formulation of the climate system as an anticipatory system that minimizes free energy and its possible implication in the future climate predictability. References Rosen, R. (1985). Anticipatory systems. In Anticipatory systems (pp. 313-370). Springer New York. Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.

  3. Effects of atmospheric variability on energy utilization and conservation. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Burns, C.C.; Cochrane, H.; Johnson, G.R.; Leong, H.; Sheaffer, J.D.

    1980-07-01

    Research progress for the period September 1979 to July 1980 is reported. Research was structured along four major tasks: (1) atmospheric circulation and climate variability; (2) urban mesoclimate; (3) energy demand modelling; and (4) economic implications of weather variability and energy demand: stimulating residential energy conservation through the financial section. (ACR)

  4. Free Energy Minimization Calculation of Complex Chemical Equilibria. Reduction of Silicon Dioxide with Carbon at High Temperature.

    Science.gov (United States)

    Wai, C. M.; Hutchinson, S. G.

    1989-01-01

    Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)

  5. Energy-minimized design in all-optical networks using unicast/multicast traffic grooming

    Science.gov (United States)

    Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.

    2013-09-01

    The increased bandwidth required by applications, tends to raise the amount of optical equipment, for this reason, it is essential to maintain a balance between the wavelength allocation, available capacity and number of optical devices to achieve the lowest power consumption. You could say that we propose a model that minimizes energy consumption, using unicast / multicast traffic grooming in optical networks.

  6. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  7. Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2017-01-01

    Full Text Available The incorporation of cognitive radio (CR capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs, which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation. The energy harvesting technique, which gathers energy from the ambient environment, is regarded as a promising solution to perpetually power-up energy-limited devices with a continual source of energy. Therefore, applying the energy harvesting (EH technique in CRSNs is able to facilitate the self-sustainability of the energy-limited sensors. The primary concern of this study is to design sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and propose an ϵ-optimal sensing-transmission (ST policy through using the value iteration algorithm. ϵ is the error bound between the ST policy and the optimal policy, which can be pre-defined according to the actual need. Moreover, for a special case that the signal-to-noise (SNR power ratio is sufficiently high, we present an efficient transmission (ET policy and prove that the ET policy achieves the same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the performance of the proposed policies and the impaction of various network parameters.

  8. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  9. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    International Nuclear Information System (INIS)

    Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.

    2012-01-01

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  10. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.C.; Eckert, J.

    1993-09-01

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  11. Power allocation strategies to minimize energy consumption in wireless body area networks.

    Science.gov (United States)

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  12. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  13. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  14. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    Directory of Open Access Journals (Sweden)

    Jordi Serra

    2014-01-01

    of heating, ventilation, and air conditioning (HVAC systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  15. FY2011 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-01-31

    The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  16. Energy Division progress report, fiscal years 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Moser, C.I. [ed.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  17. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson A.M. [Federal University of Western Para (Brazil); Physics Institute, Rio de Janeiro State University (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, Rio de Janeiro State University (Brazil); Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Almeida, Carlos E. de [Radiological Sciences Laboratory, Rio de Janeiro State University (Brazil); Barroso, Regina C. [Physics Institute, Rio de Janeiro State University (Brazil)

    2012-07-15

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-{mu}CT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-{mu}CT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: Black-Right-Pointing-Pointer Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation {mu}CT imaging. Black-Right-Pointing-Pointer The present work is part of a research on the effects of radiotherapy on the thoracic region. Black-Right-Pointing-Pointer Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  18. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-12-01

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  19. Energy minimization of mobile video devices with a hardware H.264/AVC encoder based on energy-rate-distortion optimization

    Science.gov (United States)

    Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min

    2014-09-01

    In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.

  20. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  1. Poverty or progress: energy problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gair, G F

    1977-12-25

    In a review of the presentations at the International Energy Agency meet in Paris in the fall of 1977, the author noted that 19 developed nations agreed on a program of 12 principles to provide the positive response that must be made to meet the energy problem. To succeed, the principles must reflect themselves as quickly as possible in the development of national policies--greater effort in conservation and efficient use of energy; new impetus into research and development; progressive easing of dependence upon imported oil; programs for greater public support for and involvement in energy economies. New Zealand signed participation in a wind energy research project and will support one in coal technology. It did not actively support nuclear energy development. With the depletion of liquid fuels for transportation purposes, problems are cited. New Zealand does have abundant geothermal and hydro as static energy supplies. New Zealand must make plans for domestic exploration for petroleum to cut down on the cost of imported oil. Plans for substantially increasing indigenous coal production and increasing natural gas supplies are reviewed. It is also the government's hope that the larger elements of the South Island manufactured gas industry can be maintained by the use of liquefied petroleum gas as a feedstock, providing that satisfactory transport and pricing can be arranged. (MCW)

  2. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    Science.gov (United States)

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  3. Hazardous waste minimization at Oak Ridge National Laboratory during 1987

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1988-03-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems, Inc. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid-1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). The plan for waste minimization has been modified several times and continues to be dynamic. During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a system for distributing surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. Progress is being made toward completing these tasks and is described in this report. 13 refs., 1 fig., 7 tabs

  4. Clean energy technologies : perspectives and recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Research and Development

    2006-07-01

    There is a need to move toward a bio-based economy that offers new ways of thinking and new approaches to energy consumption and use. Bioenergy technologies can complement highly efficient fossil fuels with renewable and sustainable alternatives to achieve improved health and air quality, while reducing greenhouse gases. Perspectives on the bio-based economy and recent progress in bioenergy technologies were addressed in this presentation. The purpose was to explore the opportunities and challenges of using biomass for energy systems in industrial settings. The presentation provided information on current research being undertaken in bioenergy in the agricultural and forest fibre industries. Information on the Canadian Biomass Innovation Network (CBIN), which consists of federal researchers, program managers, policy makers and expert advisors and on its thermochemical energy systems were discussed in detail. CBIN's mission, vision, priorities, outputs, and funding were identified. Thermochemical conversion research under CBIN relates to combustion, gasification, and pyrolysis. tabs., figs.

  5. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  6. US Department of Energy Environment, Safety and Health Progress Assessment of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety, and Health (ES&H) Progress Assessment of the Nevada Test Site (NTS), Nye County, Nevada. The assessment, which was conducted from July 20 through August 4, 1992, included a selective review of the ES&H management systems and progress of the responsible DOE Headquarters Program Offices; the DOE Nevada Field Office (NV); and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. This report presents a summary of issues and progress in the areas of environment, safety and health, and management.

  7. Evaluation of the accuracy of the free-energy-minimization method

    International Nuclear Information System (INIS)

    Najafabadi, R.; Srolovitz, D.J.

    1995-01-01

    We have made a detailed comparison between three competing methods for determining the free energies of solids and their defects: the thermodynamic integration of Monte Carlo (TIMC) data, the quasiharmonic (QH) model, and the free-energy-minimization (FEM) method. The accuracy of these methods decreases from the TIMC to QH to FEM method, while the computational efficiency improves in that order. All three methods yield perfect crystal lattice parameters and free energies at finite temperatures which are in good agreement for three different Cu interatomic potentials [embedded atom method (EAM), Morse and Lennard-Jones]. The FEM error (relative to the TIMC) in the (001) surface free energy and in the vacancy formation energy were found to be much larger for the EAM potential than for the other two potentials. Part of the errors in the FEM determination of the free energies are associated with anharmonicities in the interatomic potentials, with the remainder attributed to decoupling of the atomic vibrations. The anharmonicity of the EAM potential was found to be unphysically large compared with experimental vacancy formation entropy determinations. Based upon these results, we show that the FEM method provides a reasonable compromise between accuracy and computational demands. However, the accuracy of this approach is sensitive to the choice of interatomic potential and the nature of the defect to which it is being applied. The accuracy of the FEM is best in high-symmetry environments (perfect crystal, high-symmetry defects, etc.) and when used to describe materials where the anharmonicity is not too large

  8. Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow.

    Science.gov (United States)

    Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu

    2016-11-01

    Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.

  9. Investigating a Learning Progression for Energy Ideas from Upper Elementary through High School

    Science.gov (United States)

    Herrmann-Abell, Cari F.; DeBoer, George E.

    2018-01-01

    This study tests a hypothesized learning progression for the concept of energy. It looks at 14 specific ideas under the categories of (i) Energy Forms and Transformations; (ii) Energy Transfer; (iii) Energy Dissipation and Degradation; and (iv) Energy Conservation. It then examines students' growth of understanding within each of these ideas at…

  10. OMEGA EP high-energy petawatt laser: progress and prospects

    International Nuclear Information System (INIS)

    Maywar, D N; Kelly, J H; Waxer, L J; Morse, S F B; Begishev, I A; Bromage, J; Dorrer, C; Edwards, J L; Folnsbee, L; Guardalben, M J; Jacobs, S D; Jungquist, R; Kessler, T J; Kidder, R W; Kruschwitz, B E; Loucks, S J; Marciante, J R; McCrory, R L; Meyerhofer, D D; Okishev, A V

    2008-01-01

    OMEGA EP (extended performance) is a petawatt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. It will enable high-energy picosecond backlighting of high-energy-density experiments and inertial confinement fusion implosions, the investigation of advanced-ignition experiments such as fast ignition, and the exploration of high-energy-density phenomena. The OMEGA EP short-pulse beams have the flexibility to be directed to either the existing OMEGA target chamber, or the new, auxiliary OMEGA EP target chamber for independent experiments. This paper will detail progress made towards activation, which is on schedule for completion in April 2008

  11. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    Science.gov (United States)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  12. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  13. 1999 annual progress report -- Energy conservation team

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. (EERE OTT Office of Advanced Automotive Technologies Energy Conversion Team Leader)

    1999-10-19

    This report highlights progress achieved during FY 1999 under the Light-duty Fuels Utilization R and D Program. The program is comprised of two elements: the Advanced Petroleum-Based APB Fuels Program which focused on developing and testing advanced fuels for use with compression-ignition direct-injection (CIDI) engines and fuel cells and the Alternative Fuels Program which focused on Natural gas and natural gas derived fuels. The report contains 17 summaries of industry and National Laboratory projects. Fuel efficient vehicles with very low emissions are essential to meet the challenges of climate change, energy security, and improved air quality. The authors anticipate cooperative efforts with the auto and energy industries to develop new and innovative technologies that will be used to make advanced transportation vehicles that are fuel efficient, clean, and safe.

  14. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  15. Performance of stratified thermal-storage system for Oliver Springs Elementary School. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Bedinger, A.F.G.

    1981-01-01

    A progress report is given on the performance of a stratified thermal storage system coupled with a heat recovery refrigeration machine designed to provide space heating, cooling and service water heating. Water storage tanks utilizing a flexible membrane to resist temperature blending will be used as the thermal storage element. The two design goals of the heat recovery and thermal energy storage system are (1) to minimize the need to purchase energy for space heating and cooling and water heating and (2) to minimize electrical demand. An automatic data acquisition system will be used for system performance and data gathering. Data collection is expected to begin in September, 1981.

  16. FY2012 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  17. A non-minimally coupled quintom dark energy model on the warped DGP brane

    International Nuclear Information System (INIS)

    Nozari, K; Azizi, T; Setare, M R; Behrouz, N

    2009-01-01

    We construct a quintom dark energy model with two non-minimally coupled scalar fields, one quintessence and the other phantom field, confined to the warped Dvali-Gabadadze-Porrati (DGP) brane. We show that this model accounts for crossing of the phantom divide line in appropriate subspaces of the model parameter space. This crossing occurs for both normal and self-accelerating branches of this DGP-inspired setup.

  18. Energy Storage Annual Progress Report for FY15

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cao, Lei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graf, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.

  19. Research progress of BOLD-fMRI in minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Zhou Zhiming; Zhao Jiannong

    2013-01-01

    The minimal hepatic encephalopathy is the early stage of hepatic encephalopathy. It has few apparent clinical symptoms and specific manifestations, and is difficult to diagnose. In the recent years, BOLD-fMRI has been used to study hepatic encephalopathy gradually. Through detection of the brain neuron activities in different states, it can not only locate the abnormal activity of brain functional areas, but also can find the changes of brain functional connectivity. BOLD- fMRI combining with other MR technologies can explore the pathology and pathogenesis of minimal hepatic encephalopathy from micro to macro and from structure to function. (authors)

  20. The energy accounts for the Nova Scotia genuine progress index : executive summary

    International Nuclear Information System (INIS)

    Lipp, J.; Cain, S.; Colman, R.; Parmenter, R.; Milne, K.; Mullaly, H.; Wysocki, A.

    2005-10-01

    GPI Atlantic has developed a Genuine Progress Index (GPI) involving a new measure of sustainability, wellbeing and quality of life in order to better evaluate energy supply and demand by accounting for all benefits and costs including natural capital, social capital, human capital, and conventional produced capital. The executive summary provides an energy overview and presents indicators of energy sustainability including socio-economic, health and environmental and institutional indicators. Socio-economic indicators are organized across the following 6 areas of concern: reliability, affordability, employment; energy efficiency, energy consumption; and energy production and supply. Health and environmental trends examined include carbon monoxide; nitrogen oxide; sulphur dioxide; mercury; total particulate matter; volatile organic compounds; and greenhouse gas emissions. Trends over time are assessed to determine if energy use is becoming more or less sustainable. Institutional indicators are grouped according to several areas of concern, such as leading by example; creating societal change; reporting; and evaluation. The full cost of energy was then discussed using the underlying physical indicators. It was concluded that Nova Scotia is not making sufficient progress towards sustainability in its energy system, and that the production and use of energy are the leading causes of a number of serious environmental problems. Several recommendations are made for government to lead on a number of initiatives. 4 tabs

  1. Technical progress faced with the challenges of the energy sector in the future

    International Nuclear Information System (INIS)

    Maillard, D.

    1999-01-01

    The colloquium organised by the Association of Energy Economists dealing with the theme 'Technical progress faced with the challenges of the energy sector in the future' takes place against a backdrop of ever-increasing initiatives in this field, for example at the World Energy Council or the International Energy Agency Faith in technical progress is widespread but should be supported by studies without any preconceived ideas. Research and development efforts must be fully supported, and in a climate of opening markets and liberalization the public authorities have a major role to pay. Historically, the markets have always been able to meet new needs thanks to technology, but the ambitious targets that the international community has set itself regarding the emission of greenhouse gases imply technical improvements and major investments. (authors)

  2. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  3. 1996 Progress report on energies and raw materials; 1996 rapport d`activite energies et matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1996 annual progress report, from the French Department of Energy, reviews the key points of the French policy for energy and raw materials: competitiveness, environmental protection, long term supply safety, and public service. 1996 was marked by positive results for the French energy industry, difficulties for the oil refining industry, and a new impetus for renewable energies. Five surveys are presented: nuclear safety in Eastern Europe, the european directive on electric power domestic market, evolution of the oil market, conditions of refining in France, and restructuring of the Mine bureau (BRGM). 40 prominent facts are briefly reviewed, concerning sustainable energy development, nuclear energy, electric power and gas, coal, oil products, raw materials. Diagrams on energy and raw materials are also included

  4. 1996 Progress report on energies and raw materials; 1996 rapport d`activite energies et matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The 1996 annual progress report, from the French Department of Energy, reviews the key points of the French policy for energy and raw materials: competitiveness, environmental protection, long term supply safety, and public service. 1996 was marked by positive results for the French energy industry, difficulties for the oil refining industry, and a new impetus for renewable energies. Five surveys are presented: nuclear safety in Eastern Europe, the european directive on electric power domestic market, evolution of the oil market, conditions of refining in France, and restructuring of the Mine bureau (BRGM). 40 prominent facts are briefly reviewed, concerning sustainable energy development, nuclear energy, electric power and gas, coal, oil products, raw materials. Diagrams on energy and raw materials are also included

  5. Fossil-energy program. Quarterly progress report for June 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1983-08-01

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  6. Fossil Energy Program semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-11-01

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  7. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  8. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-01-01

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities

  9. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  10. The 1989 progress report: High Energy Nuclear Physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1989-01-01

    The 1989 progress report of the laboratory of High-Energy Nuclear Physics, of the Polytechnic School (France) is presented. The investigations are performed in the fields of: bosons (W + , W - , Z 0 gauge and Higgs), supersymmetrical particles, new quarks and leptons, quark-gluon plasma, nucleon instability, the neutrino's mass. The 1989 most important event was the LEP start-up. New techniques for accelerating charged particles are studied. The published papers, the conferences and the Laboratory staff are listed [fr

  11. Progress report 2005-2007 - Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2008-01-01

    This progress report presents the results of the R and D center of IPEN in accordance with the main programs: Radiopharmacy; Application of Ionizing Radiations; Nuclear Science and Technology; Nuclear Reactors and Fuel Cycle; Environmental Science and Technology; Renewable Energies; Materials and Nanotechnology; Biotechnology; Lasers Technology and Education

  12. US Department of Energy Environment, Safety and Health Progress Assessment of the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-08-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety, and Health (ES ampersand H) Progress Assessment of the Nevada Test Site (NTS), Nye County, Nevada. The assessment, which was conducted from July 20 through August 4, 1992, included a selective review of the ES ampersand H management systems and progress of the responsible DOE Headquarters Program Offices; the DOE Nevada Field Office (NV); and the site contractors. The ES ampersand H Progress Assessments are part of the Secretary of Energy's continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. This report presents a summary of issues and progress in the areas of environment, safety and health, and management

  13. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun

    2014-01-01

    Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models

  14. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  15. Some practical progress of hydrogen energy in China

    International Nuclear Information System (INIS)

    Deyou, B.

    1995-01-01

    Research and development of hydrogen energy in China was described. Recent progress included hydrogen production with a two reactor method that consumes less than 3.0/KWh/Nm 3 . Development of a Hydrogen Hydride Rechargeable Battery (HHRB) was summarized. More than 1,000,000 AA type HHRB batteries were produced in 1994. A 150-200 AH battery for use in electric vehicles has also been manufactured, and research into proton exchange membrane fuel cells (PEMFCs) was continuing. 6 refs., 2 figs

  16. Fossil Energy Program semiannual progress report, April 1990-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1991-09-01

    This report covers progress made during the period April 1, 1990, through September 30, 1990, for research and development projects that contribute to the advancement of various fossil energy technologies. Topics discussed include: ceramics and composite materials R&D, new alloys, corrosion and erosion research, coal conversion development, mild gasification. (VC)

  17. Fossil Energy Program semiannual progress report, April 1990-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1991-09-01

    This report covers progress made during the period April 1, 1990, through September 30, 1990, for research and development projects that contribute to the advancement of various fossil energy technologies. Topics discussed include: ceramics and composite materials R D, new alloys, corrosion and erosion research, coal conversion development, mild gasification. (VC)

  18. Responsible Canadian energy progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Canadian Association of Petroleum Producers (CAPP) represents oil and gas companies throughout Canada; its members produce over 90% of Canada's natural gas and crude oil output. The aim of the Association is to improve the economics of the Canadian upstream petroleum sector in an environmentally and socially responsible way. The aim of this Responsible Canadian Energy report is to present the performance data of CAPP's members for the year 2009. Data, trends, and performance analyses are provided throughout the document. This analysis makes it possible to determine where progress has been made and where performance improvement is necessary. It also presents success stories and best practices so that other companies can learn from them how to improve their own performance. This paper provides useful information on the performance of the upstream petroleum industry in Canada and highlights where the focus should be for further improvement in its performance.

  19. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  20. High Energy Physics Group. Annual progress report, fiscal year 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Perhaps the most significant progress during the past twelve months of the Hawaii experimental program, aside from publication of results of earlier work, has been the favorable outcome of several important proposals in which a substantial fraction of our group is involved: the Mark II detector as first-up at the SLC, and DUMAND's Stage I approval, both by DOE review panels. When added to Fermilab approval of two neutrino bubble-chamber experiments at the Tevatron, E632 and E646, the major part of the Hawaii experimental program for the next few years is now well determined. Noteworthy in the SLAC/SLC/Mark II effort is the progress made in developing silicon microstrip detectors with microchip readout. Results from the IMB(H) proton decay experiment at the Morton Salt Mine, although not detecting proton decay, set the best lower limit on the proton's lifetime. Similarly the Very High Energy Gamma Ray project is closely linked with DUMAND, at least in principle, since these gammas are expected to arise from pi-zero decay, while the neutrinos come from charged meson decay. Some signal has been seen from Cygnus X-3, and other candidates are being explored. Preparations for upgrading the Fermilab 15' Bubble Chamber have made substantial progress. Sections of the Progress Report are devoted to VAX computer system improvements, other hardware and software improvements, travel in support of physics experiments, publications and other public reports, and last analysis of data still being gleaned from experimental data taken in years past (PEP-14 and E546, E388). High energy physics theoretical research is briefly described

  1. Progress towards the specification of embodied energy performance criteria for New Zealand buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baird, G.; Alcorn, A.; Wood, P.; Storey, J. B. [Victoria Univ., Wellington (New Zealand). School of Architecture; Jaques, R. [Building Research Association of New Zealand, Inc. (New Zealand)

    1998-11-01

    Incorporation of embodied energy performance criteria into New Zealand`s recently adopted performance-based building code is discussed. The paper also describes the concept of the Building Code and its energy related clauses and standards, work done to date to update the building materials` energy coefficients, and the progress made in using an embodied energy database. The purpose, desirability and likely pitfalls of such criteria, ways of specifying minimum performance, and relationships with operating energy criteria are also reviewed.

  2. High energy physics at Tufts University. Progress report

    International Nuclear Information System (INIS)

    1976-09-01

    In the past year the Bubble Chamber Group has been involved in a wide range of activities in experimental high energy physics. Beam momenta varying from 2.9 to 300 GeV/c; bubble chambers including the FNAL 30-inch, BNL 80-inch, ANL 12-foot and FNAL 15-foot; targets which include hydrogen, deuterium, hydrogen with downstream plate, and deuterium with downstream spark chambers; beam particles including K - , anti p and p--one is still waiting for neutrinos--were used. A search was made for exotic particles and charmed particles, continued to study strange baryons and mesons, probed the dimensions of the ''fireball,'' and studied multiplicities and correlations in high energy collisions. The following progress in each of the activities which have taken place is summarized. A list of publications is included

  3. Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress?

    Directory of Open Access Journals (Sweden)

    Federico Mosna

    2017-06-01

    Full Text Available Minimal residual disease evaluation refers to a series of molecular and immunophenotypical techniques aimed at detecting submicroscopic disease after therapy. As such, its application in acute myeloid leukemia has greatly increased our ability to quantify treatment response, and to determine the chemosensitivity of the disease, as the final product of the drug schedule, dose intensity, biodistribution, and the pharmakogenetic profile of the patient. There is now consistent evidence for the prognostic power of minimal residual disease evaluation in acute myeloid leukemia, which is complementary to the baseline prognostic assessment of the disease. The focus for its use is therefore shifting to individualize treatment based on a deeper evaluation of chemosensitivity and residual tumor burden. In this review, we will summarize the results of the major clinical studies evaluating minimal residual disease in acute myeloid leukemia in adults in recent years and address the technical and practical issues still hampering the spread of these techniques outside controlled clinical trials. We will also briefly speculate on future developments and offer our point of view, and a word of caution, on the present use of minimal residual disease measurements in “real-life” practice. Still, as final standardization and diffusion of the methods are sorted out, we believe that minimal residual disease will soon become the new standard for evaluating response in the treatment of acute myeloid leukemia.

  4. Minimizing the energy spread within a single bunch by shaping its charge distribution

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.

    1984-06-01

    When electrons or positrons in a bunch pass through the periodic structure of a linear accelerator, they leave behind them energy in the form of longitudinal wake fields. The longitudinal fields left behind by early particles in a bunch decrease the energy of later particles. For a linear collider, the energy spread introduced within the bunches by this beam loading effect must be minimized because it limits the degree to which the particles can be focused to a small spot due to chromatic effects in the final focus system. For example, for the SLC, the allowable energy spread is +-0.5%. It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this report shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave

  5. On minimal energy Hartree-Fock states for the 2DEG at fractional fillings

    International Nuclear Information System (INIS)

    Cabo Montes Oca, A. de.

    1995-08-01

    Approximate minimal energy solutions of the previously discussed general class of Hartree-Fock (HF) states of the 2DEG at 1/3 and 2/3 filling factors are determined. Their selfenergy spectrum is evaluated. Wannier states associated to the filled Bloch states are introduced in a lattice having three flux quanta per cell. They allow to rewrite approximately the ν = 1/3 HF Hamiltonian as sum of three independent tight-binding model Hamiltonians, one describing the dynamics in the band of occupied states and the other ones in the tow bands of excited states. The magnitude of the hopping integral indicates the enhanced role which should have the correlation energy in the present situation with respect to the case of the Yoshioka and Lee second order energy calculation for the lowest energy HF state. Finally, the discussion also suggests the Wannier function, which spreads an electron into a three quanta area, as a physical model for the composite fermion mean field one particle state. (author). 11 refs, 5 figs

  6. Technological progress and long-term energy demand - a survey of recent approaches and a Danish case

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2001-01-01

    This paper discusses di!erent approaches to incorporating technological progress in energy-economy models and the e!ecton long-term energy demand projections. Approaches to modelling based on an exogenous annual change of energy e$ciencyto an endogenous explanation of innovation for energy...... technologies are covered. Technological progress is an important issue for modelling long-term energy demand and is often characterised as the main contributor to the di!erent energy demand forecasts from di!erent models. New economic theoretical developments in the "elds of endogenous growth and industrial...... description, two models of residential energy demand in Denmark are compared. A Danish macroeconometric model is compared to a technological vintage model that is covering electric appliances and residential heating demand. The energy demand projection of the two models diverges, and the underlying...

  7. The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment

    International Nuclear Information System (INIS)

    Boeri, Marco; Longo, Alberto

    2017-01-01

    This study provides a methodologically rigorous attempt to disentangle the impact of various factors – unobserved heterogeneity, information and environmental attitudes – on the inclination of individuals to exhibit either a utility maximization or a regret minimization behaviour in a discrete choice experiment for renewable energy programmes described by four attributes: greenhouse gas emissions, power outages, employment in the energy sector, and electricity bill. We explore the ability of different models – multinomial logit, random parameters logit, and hybrid latent class – and of different choice paradigms – utility maximization and regret minimization – in explaining people's choices for renewable energy programmes. The “pure” random regret random parameters logit model explains the choices of our respondents better than other models, indicating that regret is an important choice paradigm, and that choices for renewable energy programmes are mostly driven by regret, rather than by rejoice. In particular, we find that our respondents' choices are driven more by changes in greenhouse gas emissions than by reductions in power outages. Finally, we find that changing the level of information to one attribute has no effect on choices, and that being a member of an environmental organization makes a respondent more likely to be associated with the utility maximization choice framework. - Highlights: • The first paper to use the Random Regret Minimization choice paradigm in energy economics • With a hybrid latent class model, choices conform to either utility or pure random regret. • The pure random regret random parameters logit model outperforms other models. • Reducing greenhouse gas emissions is more important than reducing power outages.

  8. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    Science.gov (United States)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  9. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  10. Minimal genera of open 4-manifolds

    OpenAIRE

    Gompf, Robert E.

    2013-01-01

    We study exotic smoothings of open 4-manifolds using the minimal genus function and its analog for end homology. While traditional techniques in open 4-manifold smoothing theory give no control of minimal genera, we make progress by using the adjunction inequality for Stein surfaces. Smoothings can be constructed with much more control of these genus functions than the compact setting seems to allow. As an application, we expand the range of 4-manifolds known to have exotic smoothings (up to ...

  11. Fossil Energy Program annual progress report for April 1994 through March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report covers progress made during the period April 1, 1994, through March 31, 1995, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, and DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Bartlesville Project Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The following research areas are covered in this report: Materials research and development; Environmental analysis support; Bioprocessing research; Coal combustion research; and Fossil fuels supplies modeling and research. Selected papers have been processed separately for inclusion in the Energy Science an Technology database.

  12. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  13. Renewable Energy Progress Reports. Data for 2009-2010

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, L.W.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    This report compiles and presents all data that were published by 27 European Member States to comply with Article 22 from the Renewable Energy Directive (2009/28/EC). These reports were due by December 2011 and present the status of renewable energy for the statistical years 2009 and 2010. The original Progress Reports are available publicly, but grabbing the data from the predefined tables is a challenge. In this report and the underlying database (both available at www.ecn.nl/nreap) all data are presented in an accessible manner. In the first part of the report the data have been grouped per country, in the second part per technology. Where possible EU-27 totals have been calculated in this second part. The report features an extensive index in order to increase its value as a reference book.

  14. The Energy-Related Inventions Program: A decade of commercial progress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Franchuk, C.A. [Oak Ridge National Lab., TN (United States); Wilson, C.R. [Tennessee Univ., Knoxville, TN (United States)

    1991-12-01

    This report provides information on the recent commercial progress of inventions supported by the US Department of Energy`s Energy-Related Inventions Programs (ERIP). It describes the results of the latest in a series of ERIP evaluation projects that have been completed since 1980. It focuses on the economic impacts of the program, notably sales and employment benefits. The period of interest is 1980 through 1990. The evaluation is based on data collected through mail and telephone surveying of 143 participants in the Program. As of October 1989, a total of 486 inventions were recommended to DOE by the National Institute for Standards and Technology, which screens all submitted inventions in terms of technical merit, potential for commercial success, and potential energy impact. By the end of 1990, at least 109 of these inventions had entered the market, generating total cumulative sales of more than $500 million. With $25.7 million in grants awarded from 1975 through 1990, and $63.1 million in program appropriations over the same period, ERIP has generated a 20:1 return in terms of sales values to grants, and an 8:1 return in sales versus program appropriations. It is estimated that 25% of all ERIP inventions had achieved sales by the end of 1990. While it is difficult to make exact comparisons between these percentages and other indicators of the success rates of technological innovations as a whole, the ERIP figures remain impressive. The commercial progress of spin-off technologies is also documented.

  15. The Waste Treatment Plant, a Work in Progress

    International Nuclear Information System (INIS)

    Hamel, W. F. Jr.; Duncan, G. M.

    2006-01-01

    There are many challenges in the design and construction of Department of Energy's (DOE) Waste Treatment and Immobilization Plant (WTP) at the Hanford site. The plant is being built to process some 55 million gallons of radioactive waste from 177 underground tanks. Engineering and construction are progressing on this largest project in the DOE complex. This paper describes some of WTP's principal recent challenges and opportunities and how they are being addressed to minimize impact on the project, enhance the capabilities of the facilities, and reduce risk. A significant new development in 2005 was the need to account for higher seismic accelerations than originally specified for the facility structures and equipment. Efforts have centered on continuing design and construction with minimal risk, while the final seismic design spectra was developed. Other challenges include development of an alternative cesium ion exchange resin to minimize the risk from reliance on a single product, implementing advanced analytical techniques to improve laboratory performance, adopting a thinner walled high level waste (HLW) canister to reduce waste volume and mission duration, and commissioning a comprehensive external flowsheet review of the design, along with its underpinning technologies, and projected plant operability. These challenges make it clear that WTP is a work in progress, but the challenges are being successfully resolved as the design and construction move on to completion. (authors)

  16. Dietary Energy Density, Renal Function, and Progression of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Rouhani

    2016-01-01

    Full Text Available Background. There is evidence of the association between dietary energy density and chronic diseases. However, no report exists regarding the relation between DED and chronic kidney disease (CKD. Objective. To examine the association between dietary energy density (DED, renal function, and progression of chronic kidney disease (CKD. Design. Cross-sectional. Setting. Three nephrology clinics. Subjects. Two hundred twenty-one subjects with diagnosed CKD. Main Outcome Measure. Dietary intake of patients was assessed by a validated food frequency questionnaire. DED (in kcal/g was calculated with the use of energy content and weight of solid foods and energy yielding beverages. Renal function was measured by blood urea nitrogen (BUN, serum creatinine (Cr, and estimated glomerular filtration rate (eGFR. Results. Patients in the first tertile of DED consumed more amounts of carbohydrate, dietary fiber, potassium, phosphorus, zinc, magnesium, calcium, folate, vitamin C, and vitamin B2. After adjusting for confounders, we could not find any significant trend for BUN and Cr across tertiles of DED. In multivariate model, an increased risk of being in the higher stage of CKD was found among those in the last tertile of DED (OR: 3.15; 95% CI: 1.30, 7.63; P=0.01. Conclusion. We observed that lower DED was associated with better nutrient intake and lower risk of CKD progression.

  17. Progress on a spherical TPC for low energy neutrino detection

    International Nuclear Information System (INIS)

    Aune, S; Colas, P; Deschamps, H; Dolbeau, J; Fanourakis, G; Ribas, E Ferrer; Enqvist, T; Geralis, T; Giomataris, Y; Gorodetzky, P; Gounaris, G J; Gros, M; Irastorza, I G; Kousouris, K; Lepeltier, V; Morales, J; Patzak, T; Paschos, E A; Salin, P; Savvidis, I; Vergados, J D

    2006-01-01

    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the first 1 m 3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others

  18. MINIMIZATION OF IMPACTS PERTAINING TO EXTERNAL AND INTERNAL ENERGY SECURITY THREATS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    V. N. Nagornov

    2012-01-01

    Full Text Available The paper contains a classification of internal and external threats for thermal power plants and recommendations on minimization of these risks. A set of concrete measures aimed at ensuring TPP energy security has been presented in the paper. The system comprises preventive measures aimed at reducing the possibilities of emergence and implementation of internal and external threats. The system also presupposes to decrease susceptibility of fuel- and energy supply systems to the threats, and application of liquidation measures that ensure elimination of emergency situation consequences and restoration of the conditions concerning fuel- and power supply to consumers.

  19. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  20. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  1. MINIMIZING THE MHD POTENTIAL ENERGY FOR THE CURRENT HOLE REGION IN TOKAMAKS

    International Nuclear Information System (INIS)

    CHU, M.S; PARKS, P.B

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n ≠ 0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n = 0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region''. The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  2. Minimizing the magnetohydrodynamic potential energy for the current hole region in tokamaks

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n≠0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n=0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma, or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region.'' The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  3. Fossil Energy Program annual progress report for April 1995 through March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1996-06-01

    This report covers progress for research and development projects that contribute to the advancement of various fossil energy technologies. Attention is focused on the following areas: materials research and development; environmental analysis support; bioprocessing research for coal, oil, and natural gas; coal combustion research; fossil fuels supplies modeling and research; and advanced turbine systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Progress report to the Department of Energy in support of basic energy and policy research

    International Nuclear Information System (INIS)

    1981-01-01

    This progress report describes the accomplishments of the first and second years of the three year institutional grant received from the Department of Energy and describes the activities now envisioned for year three. Attachments detailing the highlights of the first and second years' accomplishments are included. Research areas include: light path of carbon reduction in photosynthesis; heat transfer in coal-ash slags; mechanism of plant cell enlargement in Gymnosperms, emulsion stability in enhanced oil recovery; selective transfer phenomenon in friction and wear; conceptual design of the Purdue Compact Torus/Passive Liner Fusion Reactor; integration of farm level alcohol production consistent with the economic and labor constraints of a farming operation, and newsmedia coverage of selected energy policy proposals. Separate abstracts have been prepared for selected attachments for inclusion in the Energy Data Base

  5. Progress in integrated energy-economy-environment model system development

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao

    1987-11-01

    The Integrated Energy-Economy-Environment Model System has been developed for providing analytical tools for the system analysis and technology assessments in the field of nuclear research and development. This model system consists of the following four model groups. The first model block installs 5 models and can serve to analyze and generate long-term scenarios on economy-energy-environment evolution. The second model block installs 2 models and can serve to analyze the structural transition phenomena in energy-economy-environment interactions. The third model block installs 2 models and can handle power reactor installation strategy problem and long-term fuel cycle analysis. The fourth model block installs 5 models and codes and can treats cost-benefit-risk analysis and assessments. This report describes mainly the progress and the outlines of application of the model system in these years after the first report on the research and development of the model system (JAERI-M 84 - 139). (author)

  6. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  7. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  8. Environmental Restoration Progam Waste Minimization and Pollution Prevention Awareness Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Grumski, J. T.; Swindle, D. W.; Bates, L. D.; DeLozier, M. F.P.; Frye, C. E.; Mitchell, M. E.

    1991-09-30

    In response to DOE Order 5400.1 this plan outlines the requirements for a Waste Minimization and Pollution Prevention Awareness Program for the Environmental Restoration (ER) Program at Martin Marietta Energy System, Inc. Statements of the national, Department of Energy, Energy Systems, and Energy Systems ER Program policies on waste minimization are included and reflect the attitudes of these organizations and their commitment to the waste minimization effort. Organizational responsibilities for the waste minimization effort are clearly defined and discussed, and the program objectives and goals are set forth. Waste assessment is addressed as being a key element in developing the waste generation baseline. There are discussions on the scope of ER-specific waste minimization techniques and approaches to employee awareness and training. There is also a discussion on the process for continual evaluation of the Waste Minimization Program. Appendixes present an implementation schedule for the Waste Minimization and Pollution Prevention Program, the program budget, an organization chart, and the ER waste minimization policy.

  9. Environmental Restoration Progam Waste Minimization and Pollution Prevention Awareness Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    In response to DOE Order 5400.1 this plan outlines the requirements for a Waste Minimization and Pollution Prevention Awareness Program for the Environmental Restoration (ER) Program at Martin Marietta Energy System, Inc. Statements of the national, Department of Energy, Energy Systems, and Energy Systems ER Program policies on waste minimization are included and reflect the attitudes of these organizations and their commitment to the waste minimization effort. Organizational responsibilities for the waste minimization effort are clearly defined and discussed, and the program objectives and goals are set forth. Waste assessment is addressed as being a key element in developing the waste generation baseline. There are discussions on the scope of ER-specific waste minimization techniques and approaches to employee awareness and training. There is also a discussion on the process for continual evaluation of the Waste Minimization Program. Appendixes present an implementation schedule for the Waste Minimization and Pollution Prevention Program, the program budget, an organization chart, and the ER waste minimization policy

  10. Magnetic fusion energy. Progress report, January--June 1976

    International Nuclear Information System (INIS)

    Doran, D.G.; Yoshikawa, H.H.

    1976-01-01

    Brief descriptions are given of progress in the Irradiation Effects Analysis and Mechanical Performance of Magnetic Fusion Energy (MFE) Materials programs and in related programs. The objective of the Irradiation Effects Analysis program is the correlation of effects produced in neutron and charged particle irradiations in order to apply them to fusion reactor environments. Low energy displacement cascades--of intrinsic interest and the least understood component of high energy cascades--are being simulated by computer codes of the dynamical (D), quasi-dynamical (Q-D), and binary collision (BC) types. Fair agreement has been found between D and Q-D for low index focused replacement sequences; substantial differences appeared for a 250 eV high index event. The objective of the Mechanical Performance of MFE Materials program is to establish the effects of fusion reactor irradiation environments on the mechanical properties of candidate first wall materials. A Precision Torsional Creep Apparatus is being developed to permit accelerator studies of irradiation creep and behavior under cyclic conditions. This apparatus has demonstrated the required strain sensitivity, stress control, and thermal stability for long term thermal testing, and that it can be used for cyclic testing

  11. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    Science.gov (United States)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  12. Experimental medium energy physics: Annual progress report June 1987--May 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report discusses progress in experimental medium energy physics at Carnegie Mellon University. Some of the topics covered are: search for the ξ(2230); hyperon-antihyperon production studies; relativistic proton-nucleus and heavy ion-nucleus collisions; H dibaryon physics; hypernuclear physics research; pion physics; H particle experiment design and development; and electron scattering

  13. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  14. 10 CFR 20.1406 - Minimization of contamination.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Minimization of contamination. 20.1406 Section 20.1406... License Termination § 20.1406 Minimization of contamination. (a) Applicants for licenses, other than early... procedures for operation will minimize, to the extent practicable, contamination of the facility and the...

  15. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Stéphane, E-mail: steph.fay@gmail.com [Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, 75008 Paris (France)

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  16. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    International Nuclear Information System (INIS)

    Fay, Stéphane

    2013-01-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion

  17. Minimal and non-minimal standard models: Universality of radiative corrections

    International Nuclear Information System (INIS)

    Passarino, G.

    1991-01-01

    The possibility of describing electroweak processes by means of models with a non-minimal Higgs sector is analyzed. The renormalization procedure which leads to a set of fitting equations for the bare parameters of the lagrangian is first reviewed for the minimal standard model. A solution of the fitting equations is obtained, which correctly includes large higher-order corrections. Predictions for physical observables, notably the W boson mass and the Z O partial widths, are discussed in detail. Finally the extension to non-minimal models is described under the assumption that new physics will appear only inside the vector boson self-energies and the concept of universality of radiative corrections is introduced, showing that to a large extent they are insensitive to the details of the enlarged Higgs sector. Consequences for the bounds on the top quark mass are also discussed. (orig.)

  18. Potential pollution prevention and waste minimization for Department of Energy operations

    International Nuclear Information System (INIS)

    Griffin, J.; Ischay, C.; Kennicott, M.; Pemberton, S.; Tull, D.

    1995-10-01

    With the tightening of budgets and limited resources, it is important to ensure operations are carried out in a cost-effective and productive manner. Implementing an effective Pollution Prevention strategy can help to reduce the costs of waste management and prevent harmful releases to the environment. This document provides an estimate of the Department of Energy's waste reduction potential from the implementation of Pollution Prevention opportunities. A team of Waste Minimization and Pollution Prevention professionals was formed to collect the data and make the estimates. The report includes a list of specific reduction opportunities for various waste generating operations and waste types. A generic set of recommendations to achieve these reduction opportunities is also provided as well as a general discussion of the approach and assumptions made for each waste generating operation

  19. Electric power and its significance as the energy for innovation and progress

    International Nuclear Information System (INIS)

    Klinger, H.; Boehmer, T.

    1999-01-01

    The significance of electric power as the essential form of energy to support innovation and progress well into the future is explained with respect to four major domains of application: 1. Innovative activities in microelectronics and semiconductor technology, for applications such as automation and computer technology, instrumentation and control technology, facility and systems management and control. 2. Energy efficiency programmes and schemes for increasing the penetration of energiy from renewable sources in the market. Example: Heat pump technology. 3. Electric power as an energy boosting innovation in industrial production processes. Examples are given from the transportation sector. (orig./CB) [de

  20. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2017-12-01

    Full Text Available This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC and data from China during the period of 1995–2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.

  1. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China.

    Science.gov (United States)

    Jin, Lei; Duan, Keran; Shi, Chunming; Ju, Xianwei

    2017-12-04

    This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC) and data from China during the period of 1995-2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D) investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.

  2. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)

  3. High energy physics progress report, April 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B. Jr.

    1976-01-01

    During the contract year progress was attained in the goals of studying the interactions among the elementary particles at high energies. Experiments E-407, E-395, E-418, and E-415 were carried out at the Argonne ZGS. The year was largely devoted to the preparation and execution of experiments, along with the publication of papers

  4. Progress report 2011-2013 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2014-01-01

    This progress report presents the results of the R&D center of IPEN in accordance with the main programs: Lasers Technology, Applications of Ionizing Radiations, Biotechnology, Renewable Energies, Radiopharmacy, Nuclear Science and Technology, Environmental Science and Technology, Nuclear Reactors and Fuel Cycle, Materials and Nanotechnology, Nuclear Safety, Education, Brazilian Multipurpose Reactor and Scientific and Technical Production

  5. Progress report 2008-2010 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2011-01-01

    This progress report presents the results of the R and D center of IPEN in the areas of: Lasers Technology; Renewable Energies; Nuclear Reactors and Fuel Cycle; Applications of Ionizing Radiations; Nuclear Science and Technology; Materials and Nanotechnology; Environmental Science and Technology; Radiopharmacy; Nuclear Safety; and Education. Also presents the Technical and Scientific Production od the center

  6. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  7. Is spontaneous breaking of R-parity feasible in minimal low-energy supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Perez-Mercader, J.; Quiros, M.

    1985-01-01

    Spontaneous violation of lepton number without breaking Lorentz invariance can, in principle, be incorporated in models with softly broken supersymmetry. We study the situation for minimal low-energy supergravity models coming from a GUT (hence not having hierarchy destabilizing light singlets) and where the SU(2)xU(1) breaking is radiative. It is found that for this type of model, R-parity breaking requires either too heavy a top quark for a realistic superpartner spectrum or too light a superpartner spectrum for a realistic top quark, making the spontaneous violation of lepton number in the third generation incompatible with present experimental data. We do not discard the possibility of having it in a fourth, heavier, generation. (orig.)

  8. The Energy-Related Inventions Program: A decade of commercial progress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Franchuk, C.A. (Oak Ridge National Lab., TN (United States)); Wilson, C.R. (Tennessee Univ., Knoxville, TN (United States))

    1991-12-01

    This report provides information on the recent commercial progress of inventions supported by the US Department of Energy's Energy-Related Inventions Programs (ERIP). It describes the results of the latest in a series of ERIP evaluation projects that have been completed since 1980. It focuses on the economic impacts of the program, notably sales and employment benefits. The period of interest is 1980 through 1990. The evaluation is based on data collected through mail and telephone surveying of 143 participants in the Program. As of October 1989, a total of 486 inventions were recommended to DOE by the National Institute for Standards and Technology, which screens all submitted inventions in terms of technical merit, potential for commercial success, and potential energy impact. By the end of 1990, at least 109 of these inventions had entered the market, generating total cumulative sales of more than $500 million. With $25.7 million in grants awarded from 1975 through 1990, and $63.1 million in program appropriations over the same period, ERIP has generated a 20:1 return in terms of sales values to grants, and an 8:1 return in sales versus program appropriations. It is estimated that 25% of all ERIP inventions had achieved sales by the end of 1990. While it is difficult to make exact comparisons between these percentages and other indicators of the success rates of technological innovations as a whole, the ERIP figures remain impressive. The commercial progress of spin-off technologies is also documented.

  9. Progress with Implementing Energy Efficiency Policies in the G8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the 2008 G8 Summit in Hokkaido, leaders reaffirmed the critical role improved energy efficiency can play in addressing energy security, environmental and economic objectives. They went even farther than in previous Summits and committed to maximising implementation of the 25 IEA energy efficiency recommendations prepared for the G8. The imperative to enhance energy efficiency remains a priority for all countries. To support governments with their implementation of energy efficiency, the IEA recommended the adoption of a broad range of specific energy efficiency policy measures to the G8 Summits in 2006, 2007 and 2008. The consolidated set of recommendations from these Summits covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and power utilities. If governments want to significantly improve energy efficiency, the IEA considers that no single policy implemented in isolation will be effective at achieving this aim. The IEA Secretariat recommends that governments implement a full set of appropriate measures. The IEA estimates that if implemented globally without delay, the proposed actions could save around 8.2 GtCO2/yr by 2030 -- equivalent to twice the EU's yearly emissions. This report evaluates the progress of the G8 countries in implementing energy efficiency policy, including the 25 G8/IEA recommendations. Information in this report is current up to 31 March 2009.

  10. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan

    2018-01-09

    Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  11. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Anwar Khan

    2018-01-01

    Full Text Available Interference and energy holes formation in underwater wireless sensor networks (UWSNs threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  12. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  13. Theoretical high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Lee, T.D.

    1988-05-01

    This paper discusses the progress on High Energy Physics projects by the facility of Columbia University. Short discussions are given on the use of parallel computers for numerical simulation of lattice quantum chromodynamics; Soliton condensation; High Temperature superconductivity; New calculations techniques for non-Abelian gauge theories and other related topics

  14. The Ignition Physics Campaign on NIF: Status and Progress

    International Nuclear Information System (INIS)

    Edwards, M. J.

    2016-01-01

    We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x10 15 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities. (paper)

  15. Electron, photons, and molecules: Storing energy from light

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R. [Argonne National Laboratory, IL (United States)

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  16. 78 FR 38028 - Duke Energy Progress, Inc.; Notice of Video Conference To Discuss Yadkin-Pee Dee Hydroelectric...

    Science.gov (United States)

    2013-06-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2206-030] Duke Energy Progress, Inc.; Notice of Video Conference To Discuss Yadkin-Pee Dee Hydroelectric Project Biological Opinion On April 29, 2013, the National Marine Fisheries Service (NMFS) of the National Oceanic and...

  17. Structural change of the economy, technological progress and long-term energy demand

    International Nuclear Information System (INIS)

    Klinge Jacobsen, H.

    2000-01-01

    The material included in the report is a collection of papers dealing with different issues related to the topics included in the title. Some of these papers have already either been published or presented at various conferences. Together with a general introduction, they constitute the author's PhD dissertation. The dissertation includes six papers and two shorter notes on different aspects of structural change of the economy and energy demand. Three different issues related to long-term energy demand are discussed: (1) the importance of technological change and its representation in energy-economy modelling, (2) an integration of two different modelling approaches, and (3) the effect on energy demand of structural changes exemplified by changes in the energy supply sector and in Danish trade patterns. The report highlights a few aspects of the interaction between structural economic changes and energy demand, but it does not intend to cover a wide range of issues related to these topics. In the introductory chapter some discussions and thoughts about issues not covered by the articles are brought forward. The introductory chapter includes an overview of possible relations between longterm energy demand and the economy, technical progress demography, social conditions and politics. The first two papers discuss the importance for projections of long-term energy demand of the way in which technological progress is modelled. These papers focus on energy-economy modelling. A paper dealing with two different approaches to energy demand modelling and the possible integration of these approaches in the Danish case follows next. The integrated Danish model, is then used for analysing different revenue recycling principles in relation to a CO 2 tax. The effect of subsidising biomass use is compared with recycling through corporate tax rates. Then a paper follows describing the structural change of a specific sector, namely the energy supply sector, and the implications for

  18. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  19. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  20. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    International Nuclear Information System (INIS)

    Palanichamy, C; Veeramani, S; Nasir, Meseret

    2015-01-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia. (paper)

  1. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    Science.gov (United States)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  2. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  3. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    International Nuclear Information System (INIS)

    Schmidt, M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  4. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  5. Annual Waste Minimization Summary Report

    International Nuclear Information System (INIS)

    Haworth, D.M.

    2011-01-01

    This report summarizes the waste minimization efforts undertaken by National Security TechnoIogies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2010. The NNSA/NSO Pollution Prevention Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment.

  6. Nuclear structure at intermediate energies: Progress report, January 1-December 31, 1988

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1988-01-01

    This report discusses the progress in the following experiments: Λ Spin Transfer Experiment; Σ 0 Spin Transfer Experiment; Strangeness Production in Heavy Ion Collisions; Measurement of the Imaginary Part of the I=1 /bar N/N S-Wave Scattering Length; Single Pion Production in np Scattering; Measurements of the π + d→Δ ++ n at Intermediate Energy; and PhotoJets from Nuclei

  7. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya

    2015-01-01

    . An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss......, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of LCOE is achieved for the system when the power limit is optimized to a certain level of the designed maximum feed-in power (i.e., 3 kW). In addition, the proposed...

  8. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  9. Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-12-15

    In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potential composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.

  10. Energy crisis management: ways to cope with disruption in oil supply

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, T

    1981-03-10

    The causes and impacts of past oil-supply disruptions are examined in terms of the effectiveness of management strategies used to deal with the crisis. Progress is noted in the recent decline of US imports, augmented oil stockpiles, a turnaway from the spot market, oil self-sufficiency for Britain, conservation programs in France, price decontrol in Canada, and alternative energy projects in Japan. The International Energy Agency (IEA) plans to develop an emergency scheme that first seeks to minimize the chance of a crisis arising and then to minimize adverse impacts should one occur. The first part of the strategy incorporates demand management, increased energy production, cooperation between producing and consuming countries, and political stability. The emergency measures for dealing with an actual crisis will emphasize life and safety. 15 references. (DCK)

  11. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  12. 1994 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1

    International Nuclear Information System (INIS)

    Irwin, E.F.; Poligone, S.E.

    1995-01-01

    The Y-12 Plant serves as a key manufacturing technology center for the development and demonstration of unique materials, components, and services of importance to the Department of Energy (DOE) and the nation. This is accomplished through the reclamation and storage of nuclear materials, manufacture of nuclear materials, manufacture of components for the nation's defense capabilities, support to national security programs, and services provided to other customers as approved by DOE. We are recognized by our people, the community, and our customers as innovative, responsive, and responsible. We are a leader in worker health and safety, environmental protection, and stewardship of our national resources. As a DOE facility, Y-12 also supports DOE's waste minimization mission. Data contained in this report represents waste generation in Tennessee

  13. Minimally conscious state or cortically mediated state?

    Science.gov (United States)

    Naccache, Lionel

    2018-04-01

    Durable impairments of consciousness are currently classified in three main neurological categories: comatose state, vegetative state (also recently coined unresponsive wakefulness syndrome) and minimally conscious state. While the introduction of minimally conscious state, in 2002, was a major progress to help clinicians recognize complex non-reflexive behaviours in the absence of functional communication, it raises several problems. The most important issue related to minimally conscious state lies in its criteria: while behavioural definition of minimally conscious state lacks any direct evidence of patient's conscious content or conscious state, it includes the adjective 'conscious'. I discuss this major problem in this review and propose a novel interpretation of minimally conscious state: its criteria do not inform us about the potential residual consciousness of patients, but they do inform us with certainty about the presence of a cortically mediated state. Based on this constructive criticism review, I suggest three proposals aiming at improving the way we describe the subjective and cognitive state of non-communicating patients. In particular, I present a tentative new classification of impairments of consciousness that combines behavioural evidence with functional brain imaging data, in order to probe directly and univocally residual conscious processes.

  14. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    Science.gov (United States)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  15. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  16. Fossil Energy Program annual progress report for April 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1998-07-01

    This report covers progress made on research and development projects that contribute to the advancement of fossil energy technologies, covering the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve (SPR). Papers are arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; fossil fuels supplies modeling and research; and oil and gas production.

  17. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  18. Energy Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Wolff, P.P.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division's mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division's expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division's programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination

  19. Tracking Clean Energy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Global demand for energy shows no signs of slowing; carbon dioxide emissions keep surging to new records; and political uprisings, natural disasters and volatile energy markets put the security of energy supplies to the test. More than ever, the need for a fundamental shift to a cleaner and more reliable energy system is clear. What technologies can make that transition happen? How do they work? And how much will it all cost?.

  20. High energy experimental physics. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1985-01-01

    Technical progress is summarized for activities in these areas: study of charm particle production in hadronic collisions (data analysis); large-aperture multiparticle spectrometer; TEV I debuncher ring profile monitor; beta source monochromatizer; final reduction of data from pp and p anti p elastic scattering; high energy elastic scattering and cross section review; consequences of the Auberson-Kinoshita-Martin theorem for the nuclear slope parameter; planning and final design of the elastic scattering and total cross section experiment at the Tevatron Collider; a D-zero pp project and photoproduction experiment; lepton production in heavy-ion collisions; prompt gamma and massive lepton-pair production apparatus; and spin physics with the Fermilab polarized beam facility

  1. ARE. Regional energy supplies - progress report 2000-2001; ARE. Regionale Energieversorgung 2000-2001. Taetigkeitsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    The ARE progress report discusses the following issues: Economic development and its effects on power supply; Deregulation of the electricity and gas market; Competition between regional utilities; Energy policy of the new German government; European regulations; Legislation on energy supply; Energy supply and cartel law; Regional supply in the East German states. [German] Der Taetigkeitsbericht der ARE befasst sich mit folgenden Themen: Gesamtwirtschaftliche Entwicklung und ihre Auswirkung auf die Energiewirtschaft, Oeffnung des Monopoles fuer Strom und Gas, Wettbewerb der regionalen Energieversorger, Energiepolitik der neuen Bundesregierung, Europaeische Richtlininen, energiewirtschaftsrecht, Versorgungswirtschaft und Kartellrecht und der Regionalversorgung in den neuen Bundeslaendern.

  2. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  3. MINIMIZE ENERGY AND COSTS REQUIREMENT OF WEEDING AND FERTILIZING PROCESS FOR FIBER CROPS IN SMALL FARMS

    Directory of Open Access Journals (Sweden)

    Tarek FOUDA

    2015-06-01

    Full Text Available The experimental work was carried out through agricultural summer season of 2014 at the experimental farm of Gemmiza Research Station, Gharbiya governorate to minimize energy and costs in weeding and fertilizing processes for fiber crops (Kenaf and Roselle in small farms. The manufactured multipurpose unit performance was studied as a function of change in machine forward speed (2.2, 2.8, 3.4 and 4 Km/h fertilizing rates (30,45 and 60 Kg.N.fed-1,and constant soil moisture content was 20%(d.b in average. Performance of the manufactured machine was evaluated in terms of fuel consumption, power and energy requirements, effective field capacity, theoretical field capacity, field efficiency, and operational costs as a machine measurements .The experiment results reveled that the manufactured machine decreased energy and increased effective field capacity and efficiency under the following conditions: -machine forward speed 2.2Kmlh. -moisture content average 20%.

  4. Non-minimally coupled quintessence dark energy model with a cubic galileon term: a dynamical system analysis

    Science.gov (United States)

    Bhattacharya, Somnath; Mukherjee, Pradip; Roy, Amit Singha; Saha, Anirban

    2018-03-01

    We consider a scalar field which is generally non-minimally coupled to gravity and has a characteristic cubic Galilean-like term and a generic self-interaction, as a candidate of a Dark Energy model. The system is dynamically analyzed and novel fixed points with perturbative stability are demonstrated. Evolution of the system is numerically studied near a novel fixed point which owes its existence to the Galileon character of the model. It turns out that demanding the stability of this novel fixed point puts a strong restriction on the allowed non-minimal coupling and the choice of the self-interaction. The evolution of the equation of state parameter is studied, which shows that our model predicts an accelerated universe throughout and the phantom limit is only approached closely but never crossed. Our result thus extends the findings of Coley, Dynamical systems and cosmology. Kluwer Academic Publishers, Boston (2013) for more general NMC than linear and quadratic couplings.

  5. Prevention and Minimization of Waste Production

    International Nuclear Information System (INIS)

    Noynaert, L.; Bruggeman, A.; Rahier, A.

    1998-01-01

    The general objectives of SCK-CEN's programme on the prevention and minimization of waste production are to contribute to reducing volumes and cost of radioactive waste. It also aims tro provide reliable data and models to the design engineers with a view to determining the final plant characteristics. In the long term, these objectives will be extended to other nuclear applications. Progress and achievements in 1997 are summarised

  6. Radio frequency energy for non-invasive and minimally invasive skin tightening.

    Science.gov (United States)

    Mulholland, R Stephen

    2011-07-01

    This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  8. 2011 Progress Report on HEU Minimization Activities in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bonini, A.; Cristini, P.; Lio, L. De; Dell' Occhio, L.; Gil, D.; Gonzalez, A.G.; Gonzalez, R.; Varela, C. Komar; Lopez, M.; Novara, O.; Taboada, H. [Comision Nacional de Energia Atomica, Av. Del Libertador 8250 (1429) Buenos Aires (Argentina)

    2011-07-01

    After the core conversion of the RA-6 reactor finished in March 2008, an extension of the original CNEA-NNSA DoE contract was signed to enhance the final national HEU inventories minimization. Before this process, CNEA reserved a small inventory of HEU for R and D uses in fission chambers, neutronic probes and standards. This minimization comprises that all fresh and irradiated HEU remnant inventories coming from fuels and Mo99 irradiation targets fabrication and irradiated HEU-oxides retained in production filters and solutions will be recovered, down-blended into LEU and purified or dispose as waste whenever its recovery would not be advisable due to cost-benefit consideration. CNEA has a R and D program to develop the fabrication technology of both dispersed U-Mo (Al-Si matrix and Al cladding) and monolithic (Zry-4 cladding) miniplates to support the qualification activities of the RERTR program. Some monolithic 58% enrichment and LEU 8%Mo and U10%Mo miniplates and plates were and are being delivered to INL-DoE to be irradiated in the ATR reactor core. CNEA, a worldwide leader on LEU technology for fission radioisotope production is providing Brazil with 1/3 of the national requirements on Mo99 by weekly deliveries. Australia has started the fission radioisotope production through several batches by week, based on CNEA's LEU technology provided by INVAP SE. CNEA is also committed to improve the diffusion of LEU target and radiochemical technology for radioisotope production and target and process optimization. Future plans include: 1. Plans to recover and purify the LEU based inventories in Mo99 production filters, once the HEU to LEU campaign is over. 2. Fabrication and delivering to INL to be irradiated in the ATR core of U-8%Mo and U-10%Mo monolithic miniplates and development and fabrication of LEU very high density monolithic and dispersed U-Mo fuel plates with Zr cladding for the FUTURE-MONO experiment in the frame of the RERTR program. 3

  9. Gravitino problem in minimal supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Fuminori [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Mukaida, Kyohei [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Terada, Takahiro, E-mail: terada@kias.re.kr [School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455 (Korea, Republic of); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-04-10

    We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  10. Gravitino problem in minimal supergravity inflation

    Directory of Open Access Journals (Sweden)

    Fuminori Hasegawa

    2017-04-01

    Full Text Available We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  11. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  12. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  13. High energy accelerator and colliding beam user group: Progress report, March 1, 1987-February 29, 1988

    International Nuclear Information System (INIS)

    1987-09-01

    Progress is reported on the OPAL experiment at LEP, including construction and assembly of the hadron calorimeter and development of OPAL software. Progress on the JADE experiment, which examines e + e - interactions at PETRA, and of the PLUTO collaboration are also discussed. Experiments at Fermilab are reported, including deep inelastic muon scattering at TeV II, the D0 experiment at TeV I, and hadron jet physics. Neutrino-electron elastic scattering and a search for point-sources of ultra-high energy cosmic rays are reported. Other activities discussed include polarization in electron storage rings, participation in studies for the SSC and LEP 200, neutron-antineutron oscillations, and the work of the electronics support group. High energy physics computer experience is also discussed. 158 refs

  14. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.

  15. Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

  16. Energy consumption during simulated minimal access surgery with and without using an armrest.

    Science.gov (United States)

    Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie

    2013-03-01

    Minimal access surgery (MAS) can be a lengthy procedure when compared to open surgery and therefore surgeon fatigue becomes an important issue and surgeons may expose themselves to chronic injuries and making errors. There have been few studies on this topic and they have used only questionnaires and electromyography rather than direct measurement of energy expenditure (EE). The aim of this study was to investigate whether the use of an armrest could reduce the EE of surgeons during MAS. Sixteen surgeons performed simulated MAS with and without using an armrest. They were required to perform the time-consuming task of using scissors to cut a rubber glove through its top layer in a triangular fashion with the help of a laparoscopic camera. Energy consumptions were measured using the Oxycon Mobile system during all the procedures. Error rate and duration time for simulated surgery were recorded. After performing the simulated surgery, subjects scored how comfortable they felt using the armrest. It was found that O(2) uptake (VO(2)) was 5 % less when surgeons used the armrest. The error rate when performing the procedure with the armrest was 35 % compared with 42.29 % without the armrest. Additionally, comfort levels with the armrest were higher than without the armrest. 75 % of surgeons indicated a preference for using the armrest during the simulated surgery. The armrest provides support for surgeons and cuts energy consumption during simulated MAS.

  17. Research in high energy elementary particle physics: Annual progress report, [March 1, 1986-February 29, 1988

    International Nuclear Information System (INIS)

    Field, R.; Ramond, P.; Thorn, C.; Avery, P.; Walker, J.; Tanner, D.; Sikivie, P.; Sullivan, N.; Majeswki, S.

    1988-01-01

    This is a progress report covering the period March 1, 1986 through February 29, 1988 for the High Energy Physics program at the University of Florida (DOE Florida Demonstration Project grant FG05-86-ER40272). Our research program covers a braod range of topics in theoretical and experimental physics and includes detector development and an Axion search. Included in this report is a summary of our program and a discussion of the research progress

  18. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  20. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  1. Energy Resources Consumption Minimization in Housing Construction

    Directory of Open Access Journals (Sweden)

    Balastov Alexey

    2017-01-01

    Full Text Available The article deals with the energy savings analysis during operation of buildings, provides the heat balance of residential premises, considers options for energy-efficient solutions for hot water supply systems in buildings. As technical facilities that allow the use of secondary heat sources and solar energy, there are also considered the systems with heat recovery of “gray” wastewater, heat pumps, solar collectors and photoelectric converters.

  2. HEDL magnetic fusion energy programs. Progress report, July--September 1977

    International Nuclear Information System (INIS)

    Doran, D.G.

    1978-01-01

    This report describes progress in three HEDL programs supported by the U.S. Department of Energy's Division of Magnetic Fusion Energy. They are (A) Irradiation Effects Analysis, (B) Mechanical Performance of MFE Materials, and (C) Preparation and Presentation of Design Data. (A) Interatomic potentials are being developed for use in simulating displacement damage in binary alloys. A computer code is being written that derives A-A, A-B, and B-B potentials from macroscopic data on A 3 B alloys of L1 2 symmetry. The potentials are the Moliere type at small-to-intermediate separations and fitted cubics at large separations. Helium production cross sections for isotopes of Fe, Ni, and Cr, calculated with the HAUSER*4 code, are tabulated at 15 MeV. Agreement with measurements on Al and Cu was demonstrated previously. The energy dependence of the (n,α), (n,αn), and (n,nα) cross sections in the 13 to 20 MeV range are plotted for 56 Fe. (B) A computer code has been developed for calculating the energy deposition by 0.5 to 25 MeV protons incidents on a cylindrical metal specimen. (C) New additions to the Nuclear Systems Materials Handbook include low cycle fatigue of Type 304 stainless steel; swelling correlation for 30% cold-worked Type 316 stainless steel; friction, wear, and self-welding of Tribaloy 700; process guidelines on cleaning and cleanliness; physical properties of stainless steels; and fatigue-crack growth behavior of Inconel 600 and 718

  3. Supramolecular structures for photochemical energy conversion. Technical progress report, 1993--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This research project is concerned with the design, synthesis and study by photochemical and spectroscopic methods of complex molecular devices that mimic some important aspects of photosynthetic electron and energy transfer. Properly engineered molecules of this type can functionally mimic photosynthetic light harvesting (singlet-singlet energy transfer between chromophores), photoprotection from light-initiated singlet oxygen damage (triplet-triplet energy transfer from chlorophylls to carotenoid polyenes), and, most importantly, photoinduced multistep electron transfer to generate charge-separated states that preserve some of the photon energy as chemical potential. During the last three years, progress has been made on several fronts, all of which are related to the overall goal. A biomimetic system based on carotenoid-porphyrin-quinone triads has been constructed that demonstrates photoinduced transmembrane charge separation which in turn drives transmembrane proton transfer. Another investigation has focused on the use of proton transfer reactions to stabilize the initial products of photoinduced electron transfer and thereby increase the yield of long-lived charge separation. A third study has investigated the influence of rigid molecular geometries and short donor-acceptor separations on photoinduced electron transfer reactions. Finally, generation and quenching of singlet molecular oxygen by chlorophyll aggregates has been studied. All four studies are described and results are discussed.

  4. Inflationary models with non-minimally derivative coupling

    International Nuclear Information System (INIS)

    Yang, Nan; Fei, Qin; Gong, Yungui; Gao, Qing

    2016-01-01

    We derive the general formulae for the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL. (paper)

  5. Coalbed methane multi-stakeholder advisory committee recommendations : progress update : year 3

    International Nuclear Information System (INIS)

    2009-11-01

    The coalbed methane (CBM) multi-stakeholder advisory committee (MAC) was formed in 2003 to address public concerns related to CBM development in Alberta. This progress update discussed activities and recommendations made by the MAC, with particular reference to the following 4 main areas: (1) protecting water resources, (2) enhancing information and knowledge, (3) minimizing surface impacts, and (4) communication and consultation. A second MAC was formed by members from environmental organizations, landowners, the energy industry, and government agencies in 2006 to review progress on the implementation of the recommendations. Members of the committee agree that significant progress has been achieved in relation to the recommendations made by the original MAC. A large number of new directives, guidelines, processes and best management practices have been established, or are currently under development. Approximately 19,000 CBM wells have been developed since the MAC was established in 2003. It was concluded that ongoing work related to the recommendations will ensure that CBM in Alberta continues to be developed in a responsible manner. 1 tab.

  6. Commercial radioactive waste minimization program development guidance

    International Nuclear Information System (INIS)

    Fischer, D.K.

    1991-01-01

    This document is one of two prepared by the EG ampersand G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG ampersand G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans

  7. Transformation of general binary MRF minimization to the first-order case.

    Science.gov (United States)

    Ishikawa, Hiroshi

    2011-06-01

    We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.

  8. Kazakhstan and America: the Frontiers of Energy Diplomacy

    Directory of Open Access Journals (Sweden)

    Bekbolat Almadiyev

    2015-05-01

    Full Text Available The article describes the development and use of policy instruments and tools for energy cooperation promotion between Kazakhstan and the United States. The role of energy diplomacy in foreign policy strategy of the Republic of Kazakhstan is due to the progressive growth of the relationship between the economic interests of Kazakhstan and the United States. The main objectives of the energy policy of the Republic of Kazakhstan are: the internal energy market formation, energy supplies on a competitive basis and energy security provision, as well as the improvement of the environmental sustainability of the energy. Modern American transnational enterprises have at their disposal significant financial resources, technological and managerial capacity. They are able to develop oil and gas fields effectively in the Republic of Kazakhstan with the least financial costs and minimal environmental damage.

  9. The non-minimal heterotic pure spinor string in a curved background

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)

    2014-03-21

    We study the non-minimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a non-trivial stress-energy tensor for the minimal and non-minimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.

  10. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  11. Minimizing water consumption when producing hydropower

    Science.gov (United States)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  12. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo; Schö nlieb, Carola-Bibiane

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a

  13. Progress of the LASL dry hot rock geothermal energy project

    Science.gov (United States)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  14. Systems biology perspectives on minimal and simpler cells.

    Science.gov (United States)

    Xavier, Joana C; Patil, Kiran Raosaheb; Rocha, Isabel

    2014-09-01

    The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Systems Biology Perspectives on Minimal and Simpler Cells

    Science.gov (United States)

    Xavier, Joana C.; Patil, Kiran Raosaheb

    2014-01-01

    SUMMARY The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. PMID:25184563

  16. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  17. Progress in energy generation for Canadian remote sites

    Science.gov (United States)

    Saad, Y.; Younes, R.; Abboudi, S.; Ilinca, A.; Nohra, C.

    2016-07-01

    Many remote areas around the world are isolated, for various reasons, from electricity networks. They are usually supplied with electricity through diesel generators. The cost of operation and transportation of diesel fuel in addition to its price have led to the procurement of a more efficient and environmentally greener method of supply. Various studies have shown that a wind-diesel hybrid system with compressed air storage (WDCAS) seems to be one of the best solutions, and presents itself as an optimal configuration for the electrification of isolated sites. This system allows significant fuel savings to be made because the stored compressed air is used to supercharge the engine. In order to optimize system performance and minimize fuel consumption, installation of a system for recovering and storing the heat of compression (TES) seems necessary. In addition, the use of hydro-pneumatic energy storage systems that use the same machine as the hydraulic pump and turbine allow us to store energy in tight spaces and, if possible, contribute to power generation. The scrupulous study of this technical approach will be the focus of our research which will validate (or not) the use of such a system for the regulation of frequency of electrical networks. In this article we will skim through the main research that recently examined the wind-diesel hybrid system which addressed topics such as adiabatic compression and hydro-pneumatic storage. Instead, we will offer (based on existing studies) a new ACP-WDCAS (wind-diesel hybrid system with adiabatic air compression and storage at constant pressure), which combines these three concepts in one system for the optimization of wind-diesel hybrid system.

  18. High energy physics studies progress report. Part I. Experimental program

    International Nuclear Information System (INIS)

    1977-01-01

    The experimental program of research, including Assembly of an experiment at Fermilab E-351 to measure decay lifetimes, with tagged emulsion, of charmed particles produced by high energy neutrinos will continue. A data-taking run will take place in the coming fiscal year. Participation in the neutrino experiment E-310, Fermilab-Harvard-Pennsylvania-Rutgers-Wisconsin, will also continue. Data analysis from several experiments performed in the recent past at the ZGS ANL is in progress and will be pursued. These experiments are, E-397, E-420 and E-428 performed with the Charged and Neutral Spectrometer, and E-347 with the Σ/sub β/ Spectrometer. Plans are in the making to collaborate with a polarized proton experiment at the ZGS. New approaches to ''third generation'' neutrino experiments at Fermilab are being discussed by the whole high energy group. Ideas of pursuing experiments at the AGS-BNL with the Σ/sub β/ Spectrometer are explored. The theoretical research program covers topics of current interest in particle theory which will be investigated in the coming year; namely, the role of instantons in quantum chromodynamics, Higgs Lagrangian involving scalar fields, phenomenology of neutrino physics and in particular the nature of trimuon production, higher order symmetries like SU(3) x U(1) SU(5) and SU(6), dynamics of high energy diffractive scattering, classical solutions to the gauge field theories

  19. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  20. Nuclear physics and High Energy Physics Institute: 1988 to 1989 progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The 1988 to 1989 progress report of the Nuclear Physics and High Energy Physics National Institute (France) is presented. The main objectives of the Institute research programs are the identification of the fundamental components of matter, the study of the properties and interactions between quarks and leptons. The results and the experiments presented are: Z O event at LEP, hadron spectroscopy, CP violation, standard model, sixth quark, heavy ions at CERN, thermistocle experiment, high spin, exotic nuclei. The research and developments concerning instruments are also reported [fr

  1. Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian

    2006-01-01

    ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected

  2. Studies in theoretical high energy particle physics: Technical progress report [February 1987-February 1988

    International Nuclear Information System (INIS)

    Sukhatme, U.P.; Keung, Wai-Yee; Kovacs, E.

    1988-02-01

    This is a technical progress report for grant No. FG02-84ER40173 for the period February 1987 to February 1988. Our research on supersymmetric quantum mechanics has yielded many interesting results. In particular, a systematic approach to the tunneling problem in double well potentials has been developed. Higgs boson related physics at the high energy hadron colliders has been extensively studied

  3. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  4. The evolution and future of minimalism in neurological surgery.

    Science.gov (United States)

    Liu, Charles Y; Wang, Michael Y; Apuzzo, Michael L J

    2004-11-01

    The evolution of the field of neurological surgery has been marked by a progressive minimalism. This has been evident in the development of an entire arsenal of modern neurosurgical enterprises, including microneurosurgery, neuroendoscopy, stereotactic neurosurgery, endovascular techniques, radiosurgical systems, intraoperative and navigational devices, and in the last decade, cellular and molecular adjuvants. In addition to reviewing the major developments and paradigm shifts in the cyclic reinvention of the field as it currently stands, this paper attempts to identify forces and developments that are likely to fuel the irresistible escalation of minimalism into the future. These forces include discoveries in computational science, imaging, molecular science, biomedical engineering, and information processing as they relate to the theme of minimalism. These areas are explained in the light of future possibilities offered by the emerging field of nanotechnology with molecular engineering.

  5. Mapping Project on Energy and the Social Sciences. Progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Doob, L.W.; Gould, L.C.

    1979-01-01

    This is a progress report of activities in the fourth year of the Yale Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences. The Mapping Project evaluates past and present social and behavioral science energy studies, assesses the potential for social and behavioral science contributions to a resolution of the energy problems in the future, and diffuses social and behavioral science information and perspectives to policymakers and others concerned with US or world energy developments. Activities in FY 1979 included meetings, workshops, collecting bibliographic material, publications, evaluating DOE programs in buildings and transportation, performing a special study of potential social impacts of 4 coal technologies, and developing plans for 10 specific research studies on energy.

  6. Ademe et Vous. International Newsletter No. 40, March 2017. Energy efficiency: The progress needs further acceleration

    International Nuclear Information System (INIS)

    Martin, Valerie; Seguin-Jacques, Catherine

    2017-03-01

    The latest report on energy efficiency trends around the world, published late 2016 by the World Energy Council and ADEME, highlights the undeniable progress that has been made so far. However, more sustained institutional commitment and an increase in the deployment of means are necessary in order to meet the upcoming energy and climatic challenges. After eleven years, the Energy Saving Certificates (ESC) scheme will enter a fourth phase, a new step that will usher in new obligations more ambitious than ever. ADEME and its Japanese counterpart, the New Energy and Industrial Technology Development Organization (NEDO), celebrated the 25. anniversary of their long-standing cooperation in Japan in December 2016, as the France-Japan Year of Innovation came to an end

  7. Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials.

    Science.gov (United States)

    Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F

    2018-05-22

    We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.

  8. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  9. A procedure to compute equilibrium concentrations in multicomponent systems by Gibbs energy minimization on spreadsheets

    International Nuclear Information System (INIS)

    Lima da Silva, Aline; Heck, Nestor Cesar

    2003-01-01

    Equilibrium concentrations are traditionally calculated with the help of equilibrium constant equations from selected reactions. This procedure, however, is only useful for simpler problems. Analysis of the equilibrium state in a multicomponent and multiphase system necessarily involves solution of several simultaneous equations, and, as the number of system components grows, the required computation becomes more complex and tedious. A more direct and general method for solving the problem is the direct minimization of the Gibbs energy function. The solution for the nonlinear problem consists in minimizing the objective function (Gibbs energy of the system) subjected to the constraints of the elemental mass-balance. To solve it, usually a computer code is developed, which requires considerable testing and debugging efforts. In this work, a simple method to predict equilibrium composition in multicomponent systems is presented, which makes use of an electronic spreadsheet. The ability to carry out these calculations within a spreadsheet environment shows several advantages. First, spreadsheets are available 'universally' on nearly all personal computers. Second, the input and output capabilities of spreadsheets can be effectively used to monitor calculated results. Third, no additional systems or programs need to be learned. In this way, spreadsheets can be as suitable in computing equilibrium concentrations as well as to be used as teaching and learning aids. This work describes, therefore, the use of the Solver tool, contained in the Microsoft Excel spreadsheet package, on computing equilibrium concentrations in a multicomponent system, by the method of direct Gibbs energy minimization. The four phases Fe-Cr-O-C-Ni system is used as an example to illustrate the method proposed. The pure stoichiometric phases considered in equilibrium calculations are: Cr 2 O 3 (s) and FeO C r 2 O 3 (s). The atmosphere consists of O 2 , CO e CO 2 constituents. The liquid iron

  10. Minimal Invasive Urologic Surgery and Postoperative Ileus

    Directory of Open Access Journals (Sweden)

    Fouad Aoun

    2015-07-01

    Full Text Available Postoperative ileus (POI is the most common cause of prolonged length of hospital stays (LOS and associated healthcare costs. The advent of minimal invasive technique was a major breakthrough in the urologic landscape with great potential to progress in the future. In the field of gastrointestinal surgery, several studies had reported lower incidence rates for POI following minimal invasive surgery compared to conventional open procedures. In contrast, little is known about the effect of minimal invasive approach on the recovery of bowel motility after urologic surgery. We performed an overview of the potential benefit of minimal invasive approach on POI for urologic procedures. The mechanisms and risk factors responsible for the onset of POI are discussed with emphasis on the advantages of minimal invasive approach. In the urologic field, POI is the main complication following radical cystectomy but it is rarely of clinical significance for other minimal invasive interventions. Laparoscopy or robotic assisted laparoscopic techniques when studied individually may reduce to their own the duration and prevent the onset of POI in a subset of procedures. The potential influence of age and urinary diversion type on postoperative ileus is contradictory in the literature. There is some evidence suggesting that BMI, blood loss, urinary extravasation, existence of a major complication, bowel resection, operative time and transperitoneal approach are independent risk factors for POI. Treatment of POI remains elusive. One of the most important and effective management strategies for patients undergoing radical cystectomy has been the development and use of enhanced recovery programs. An optimal rational strategy to shorten the duration of POI should incorporate minimal invasive approach when appropriate into multimodal fast track programs designed to reduce POI and shorten LOS.

  11. Progress report 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report of the nuclear physics institute includes five basic subjects: theoretical physics, high energy and intermediate energy physics, nuclear physics, combined research physics and instrumentation (microelectronics, imaging, multidetectors, scintillators,...) [fr

  12. High energy particle physics at Purdue. Annual progress report, March 1981-1982

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Koltick, D.S.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Willmann, R.B.

    1982-01-01

    Progress is reported in these areas: study of electron positron annihilation using the High Resolution Spectrometer at PEP; experimental study of proton decay; a study of rare processes in meson spectroscopy utilizing the SLAC Hybrid Bubble Chamber System; theory of fundamental problems of gravitational, electromagnetic, weak, and strong interactions; experimental study of chi production by hadrons; p-nucleus interactions; development of the Collider Detector at Fermilab; anitneutrino physics and low energy neutrino physics; and the study of the observed hadrons as the relativistic bound states of baryons and antibaryons

  13. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  14. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  15. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  16. Planning for a program design for energy environmental analysis. Progress report

    International Nuclear Information System (INIS)

    Denton, J.C.

    The work reported in this progress report is focused on determining the proper scope of a regional assessment study program suitable for BER/ERDA. Within the tentative scope selected, a tentative set of purposes, goals, and objectives is identified for a preliminary specification of a geographical region. The initial specification of the region includes the states of Pennsylvania, New Jersey, Delaware, Maryland, and Virginia. The tentative scope of considerations for the regional assessment study program encompasses the interacting facets of environment, energy, and economic well-being of the region with the overarching goal of reconciling these facets within the decision framework of the region

  17. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  18. Energy abundance and economic progress

    International Nuclear Information System (INIS)

    Schurr, S.H.

    1983-01-01

    A discussion is presented on the benefits of energy abundance and on the links between energy supply, economic growth and human welfare in the United States. It is argued that the restoration of energy abundance with dependable sources of supply should be a major national objective. (U.K.)

  19. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  20. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  1. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  2. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  3. Medium energy measurements of n-n parameters. Progress report, January 1-December 31, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This document constitutes a progress report (1985-86) for the ongoing medium energy nuclear physics research program. A major part of the work has been and will continue to be associated with research done at the Nucleon Physics Laboratory (NPL) at the Los Alamos Meson Physics Facility (LAMPF). The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energy. The required data include both elastic and inelastic experiments, and in addition the measurement of polarization and polarization transfer parameters. We have been emphasizing single pion production measurements using polarized proton beams, and expect that our present data base will provide stringent tests of theoretical models. With the development of the LAMPF high intensity polarized proton source, we expect that a reasonably intense beam of medium energy polarized neutrons will become available, and are planning a series of experiments utilizing polarized neutrons to determine the importance of the I = 0 reaction amplitudes at medium energies

  4. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  5. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  6. Energy, the engine for progress? 120 keys to understand energies

    International Nuclear Information System (INIS)

    Mathis, Paul

    2014-01-01

    Through 120 issues or questions, the author proposes an overview of issues related to energy. He first addresses general issues (definition of energy, relationship between heat and temperature, between energy and climate change, types of energy), discusses the relationship between life and energy (our energy need, energy in food, use and consumption of energy by living materials), proposes an history of the use of energy resources by mankind, gives an overview of energy resources (origins, primary and final energies, energy mix, fossil energies, oil producers, peak oil, shale gases, coal is back, nuclear energy and accidents, renewable energies, biomass and biofuel production, the issue of energy storage, and so on). He discusses the various aspects and issues of energy transition, and the role of energy in the society (prices, technological perspectives, risks, accidents and their consequences, the strategic role of energy). He finally comments the perspectives: the interest of using scenarios, the use of hydrogen, future biofuels, micro-algae, thermal solar power plants, sea energies, etc.

  7. Waste Minimization and Pollution Prevention Awareness Plan

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this plan is to document the Lawrence Livermore National Laboratory (LLNL) Waste Minimization and Pollution Prevention Awareness Program. The plan specifies those activities and methods that are or will be employed to reduce the quantity and toxicity of wastes generated at the site. It is intended to satisfy Department of Energy (DOE) and other legal requirements that are discussed in Section C, below. The Pollution Prevention Awareness Program is included with the Waste Minimization Program as suggested by DOE Order 5400.1. The intent of this plan is to respond to and comply with the Department's policy and guidelines concerning the need for pollution prevention. The Plan is composed of a LLNL Waste Minimization and Pollution Prevention Awareness Program Plan and, as attachments, Directorate-, Program- and Department-specific waste minimization plans. This format reflects the fact that waste minimization is considered a line management responsibility and is to be addressed by each of the Directorates, Programs and Departments. Several Directorates have been reorganized, necessitating changes in the Directorate plans that were published in 1991

  8. Serum uric acid, dehydroepiandrosterone sulphate, and apolipoprotein E genotype in benign vs. progressive multiple sclerosis

    NARCIS (Netherlands)

    Ramsaransing, GSM; Heersema, DJ; De Keyser, J

    The majority of patients with multiple sclerosis (MS) experience gradual progression of disability, either as secondary progressive MS (SPMS) or primary progressive MS (PPMS). A subgroup with relapsing-remitting MS shows a benign course with little or no disease progression and minimal disability

  9. Progress update on the low-energy demonstration accelerator (LEDA)

    International Nuclear Information System (INIS)

    Schneider, J.D.; Chan, K.C.D.

    1997-01-01

    As part of the linac design for the accelerator production of tritium (APT) project, the authors are assembling the first approximately 20 MeV portion of this cw proton accelerator. Primary objective of this low-energy demonstration accelerator (LEDA) is to verify the design codes, gain fabrication knowledge, understand LEDA's beam operation, and be able to better predict costs and operational availability for the full 1,700 MeV APT accelerator. This paper provides an updated report on this past year's progress that includes beam tests of the 75 keV injector, fabrication of the 6.7 MeV radio-frequency quadrupole (RFQ), preparation of the facility, procurement and assembly of the rf system, and detailed design and documentation of many pieces of support equipment. First tests with the 6.7 MeV, 100 mA, cw beam from the RFQ are scheduled for late 1998. References are given to many detailed papers on LEDA at this conference

  10. Perturbed Yukawa textures in the minimal seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Thomas; Schmitz, Kai [Max Planck Institute for Nuclear Physics (MPIK),69117 Heidelberg (Germany)

    2017-03-29

    We revisit the minimal seesaw model, i.e., the type-I seesaw mechanism involving only two right-handed neutrinos. This model represents an important minimal benchmark scenario for future experimental updates on neutrino oscillations. It features four real parameters that cannot be fixed by the current data: two CP-violating phases, δ and σ, as well as one complex parameter, z, that is experimentally inaccessible at low energies. The parameter z controls the structure of the neutrino Yukawa matrix at high energies, which is why it may be regarded as a label or index for all UV completions of the minimal seesaw model. The fact that z encompasses only two real degrees of freedom allows us to systematically scan the minimal seesaw model over all of its possible UV completions. In doing so, we address the following question: suppose δ and σ should be measured at particular values in the future — to what extent is one then still able to realize approximate textures in the neutrino Yukawa matrix? Our analysis, thus, generalizes previous studies of the minimal seesaw model based on the assumption of exact texture zeros. In particular, our study allows us to assess the theoretical uncertainty inherent to the common texture ansatz. One of our main results is that a normal light-neutrino mass hierarchy is, in fact, still consistent with a two-zero Yukawa texture, provided that the two texture zeros receive corrections at the level of O(10 %). While our numerical results pertain to the minimal seesaw model only, our general procedure appears to be applicable to other neutrino mass models as well.

  11. Intermixing in heteroepitaxial islands: fast, self-consistent calculation of the concentration profile minimizing the elastic energy

    International Nuclear Information System (INIS)

    Gatti, R; UhlIk, F; Montalenti, F

    2008-01-01

    We present a novel computational method for finding the concentration profile which minimizes the elastic energy stored in heteroepitaxial islands. Based on a suitable combination of continuum elasticity theory and configurational Monte Carlo, we show that such profiles can be readily found by a simple, yet fully self-consistent, iterative procedure. We apply the method to SiGe/Si islands, considering realistic three-dimensional shapes (pyramids, domes and barns), finding strongly non-uniform distributions of Si and Ge atoms, in qualitative agreement with several experiments. Moreover, our simulated selective-etching profiles display, in some cases, a remarkable resemblance to the experimental ones, opening intriguing questions on the interplay between kinetic, entropic and elastic effects

  12. Energy options and the role of coal: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Institute, Edmonton, AB (Canada)

    2006-07-01

    Considers energy goals and options with particular regard to providing affordable energy to Canada. Gasification of coal and carbon to provide a reliable source of clean power and heat to the oil sand industry and for feedstocks for the production of fertilizer, methanol, petrochemicals, and ultra-clean fuels is examined. The layout for integrated gasification polygeneration with carbon feed and plans for Canada's first commercial gasification plant (the Nexen Long Lake Project) are shown in diagrams. Progress in coal gasification at a clean coal Luscar/Sherritt pilot plant is outlined. Clean coal technology is part of a strategy to provide integration across energy systems, generate value for all hydrocarbon resources, and minimize emissions. 15 figs., 2 tabs.

  13. Development of a waste minimization plan for the Department of Energy's Naval petroleum reserve No. 3

    International Nuclear Information System (INIS)

    Falconer, K.L.; Lane, T.C.

    1991-01-01

    A Waste Minimization Program Plan for the U.S. Department of Energy's (DOE) Naval Petroleum Reserve No. 3 (NPR-3) was prepared in response to DOE Order 5400.1, open-quotes General Environmental Protection Program close-quote The NPR-3 Waste Minimization Program Plan encompasses all ongoing operations at the Naval Petroleum Reserve and is consistent with the principles set forth in the mission statement for NPR-3. The mission of the NPR-3 is to apply project management, engineering and scientific capabilities to produce oil and gas from subsurface zones at the maximum efficiency rate for the United States Government. NPR-3 generates more than 60 discrete waste streams, many of significant volume. Most of these waste streams are categorized as wastes from the exploration, development and production of oil and gas and, as such, are exempt from Subtitle C of RCRA as indicated in the regulatory determination published in the Federal Register on July 6, 1988. However, because so many of these waste streams contain hazardous substances and because of an increasingly more restrictive regulatory environment, in 1990 an overall effort was made to characterize all waste streams produced and institute the best waste management practice economically practical to reduce the volume and toxicity of the waste generated

  14. Hydrogen atom in momentum space with a minimal length

    International Nuclear Information System (INIS)

    Bouaziz, Djamil; Ferkous, Nourredine

    2010-01-01

    A momentum representation treatment of the hydrogen atom problem with a generalized uncertainty relation, which leads to a minimal length ΔX imin =(ℎ/2π)√(3β+β ' ), is presented. We show that the distance squared operator can be factorized in the case β ' =2β. We analytically solve the s-wave bound-state equation. The leading correction to the energy spectrum caused by the minimal length depends on √(β). An upper bound for the minimal length is found to be about 10 -9 fm.

  15. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiyun Gao

    2017-01-01

    Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.

  16. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  17. Theoretical progress at CNDC theory group

    International Nuclear Information System (INIS)

    Lu Zhongdao

    1993-01-01

    In 1992, CNDC (Chinese Nuclear Data Center) theory group has made progress in model study, code making and data calculations for low energy nuclear reaction, intermediate and high energy nuclear reaction. It has also made progress in parameter library establishment. The brief explanations are presented

  18. Minimality of critical scenarios with linear logic and cutsets

    African Journals Online (AJOL)

    DK

    Keywords: Dependability - Mechatronic systems -Petri net - Linear logic - Minimal Feared scenarios - Cutsets. ..... Energy supply. Detection high level. Relay. ET. Energy supply. Detection high level. Relay ..... Evaluation de la SdF des systèmes mécatroniques en utilisant ... in complex distributed systems, Proceedings of the.

  19. Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema.

    Science.gov (United States)

    Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A

    2014-01-01

    Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary.

  20. Effects of thermal fluctuations on non-minimal regular magnetic black hole

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2017-01-01

    We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein-Yang-Mill theory with gauge field of magnetic Wu-Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb's free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the γ factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant. (orig.)

  1. Effects of thermal fluctuations on non-minimal regular magnetic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)

    2017-05-15

    We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein-Yang-Mill theory with gauge field of magnetic Wu-Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb's free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the γ factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant. (orig.)

  2. Trends and projections in Europe 2013. Tracking progress towards Europe's climate and energy targets until 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-01

    This report provide an assessment of the progress of the EU and European countries towards achieving their climate mitigation and energy policy objectives. These targets include international commitments pursuant the KP and the EU 2020 commitment to reduce by 20 % greenhouse gas (GHG) emissions compared to 1990, to create 20 % of energy consumption from renewables and to increase energy efficiency by 20 %. The assessment is based on GHG data for the period 2008-2012, including recent estimates of proxy 2012 GHG emissions, GHG projections until 2020 submitted by Member States in 2013, as well as energy statistics until 2011. (Author)

  3. Power Minimization techniques for Networked Data Centers

    International Nuclear Information System (INIS)

    Low, Steven; Tang, Kevin

    2011-01-01

    Our objective is to develop a mathematical model to optimize energy consumption at multiple levels in networked data centers, and develop abstract algorithms to optimize not only individual servers, but also coordinate the energy consumption of clusters of servers within a data center and across geographically distributed data centers to minimize the overall energy cost and consumption of brown energy of an enterprise. In this project, we have formulated a variety of optimization models, some stochastic others deterministic, and have obtained a variety of qualitative results on the structural properties, robustness, and scalability of the optimal policies. We have also systematically derived from these models decentralized algorithms to optimize energy efficiency, analyzed their optimality and stability properties. Finally, we have conducted preliminary numerical simulations to illustrate the behavior of these algorithms. We draw the following conclusion. First, there is a substantial opportunity to minimize both the amount and the cost of electricity consumption in a network of datacenters, by exploiting the fact that traffic load, electricity cost, and availability of renewable generation fluctuate over time and across geographical locations. Judiciously matching these stochastic processes can optimize the tradeoff between brown energy consumption, electricity cost, and response time. Second, given the stochastic nature of these three processes, real-time dynamic feedback should form the core of any optimization strategy. The key is to develop decentralized algorithms that can be implemented at different parts of the network as simple, local algorithms that coordinate through asynchronous message passing.

  4. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  5. δ-hydride habit plane determination in α-zirconium by strain energy minimization technique at 25 and 300 deg C

    International Nuclear Information System (INIS)

    Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.

    2008-01-01

    The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)

  6. Fast ignition: Physics progress in the US fusion energy program and prospects for achieving ignition

    International Nuclear Information System (INIS)

    Key, M.; Andersen, C.; Cowan, T.

    2003-01-01

    Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term road map for FI is defined. (author)

  7. Low energy implications of minimal superstring unification

    International Nuclear Information System (INIS)

    Khalil, S.; Vissani, F.; Masiero, A.

    1995-11-01

    We study the phenomenological implications of effective supergravities based on string vacua with spontaneously broken N =1 supersymmetry by dilation and moduli F-terms. We further require Minimal String Unification, namely that large string threshold corrections ensure the correct unification of the gauge couplings at the grand unification scale. The whole supersymmetric mass spectrum turns out to be determined in terms of only two independent parameters, the dilaton-moduli mixing angle and the gravitino mass. In particular we discuss the region of the parameter space where at least one superpartner is ''visible'' at LEPII. We find that the most likely candidates are the scalar partner of the right-handed electron and the lightest chargino, with interesting correlations between their masses and with the mass of the lightest higgs. We show how discovering SUSY particles at LEPII might rather sharply discriminate between scenarios with pure dilaton SUSY breaking and mixed dilaton-moduli breaking. (author). 10 refs, 7 figs

  8. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  9. PET studies of brain energy metabolism in a model of subcortical dementia: progressive supranuclear Palsy

    International Nuclear Information System (INIS)

    Blin, J.; Baron, J.C.; Cambon, H.

    1988-01-01

    In 41 patients with clinically determined Progressive Supranuclear Palsy, a model of degenerative subcortical dementia, alterations in regional brain energy metabolism with respect to control subjects have been investigated using positron computed tomography and correlated to clinical and neuropsychological scores. A generalized significant reduction in brain metabolism was found, which predominated in the prefrontal cortex in accordance with, and statistically correlated to, the frontal neuropsychological score

  10. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Science.gov (United States)

    2011-03-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL] In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2... by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has not previously performed any...

  11. US energy agency making progress

    Science.gov (United States)

    2017-07-01

    The Advanced Research Projects Agency-Energy (ARPA-E) has the ability to make significant contributions to energy research but must be allowed time to do so, according to a report by the US National Academies of Sciences, Engineering and Medicine.

  12. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Directory of Open Access Journals (Sweden)

    Knol Dirk L

    2006-08-01

    Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.

  13. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  14. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    Science.gov (United States)

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their

  15. Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema

    Directory of Open Access Journals (Sweden)

    Pertl, Daniela

    2014-10-01

    Full Text Available [english] Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary.

  16. [Theory and practice of minimally invasive endodontics].

    Science.gov (United States)

    Jiang, H W

    2016-08-01

    The primary goal of modern endodontic therapy is to achieve the long-term retention of a functional tooth by preventing or treating pulpitis or apical periodontitis is. The long-term retention of endodontically treated tooth is correlated with the remaining amount of tooth tissue and the quality of the restoration after root canal filling. In recent years, there has been rapid progress and development in the basic research of endodontic biology, instrument and applied materials, making treatment procedures safer, more accurate, and more efficient. Thus, minimally invasive endodontics(MIE)has received increasing attention at present. MIE aims to preserve the maximum of tooth structure during root canal therapy, and the concept covers the whole process of diagnosis and treatment of teeth. This review article focuses on describing the minimally invasive concepts and operating essentials in endodontics, from diagnosis and treatment planning to the access opening, pulp cavity finishing, root canal cleaning and shaping, 3-dimensional root canal filling and restoration after root canal treatment.

  17. Minimal massive 3D gravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Merbis, Wout; Hohm, Olaf; Routh, Alasdair J; Townsend, Paul K

    2014-01-01

    We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)

  18. Medium energy measurements of N-N parameters. Progress in research, January 1, 1983-December 31, 1983

    International Nuclear Information System (INIS)

    1983-12-01

    The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energy. Experiments described include D/sub SS/, D/sub LS/, D/sub SL/, D/sub LL/, and P for p-p elastic scattering, the measurement of polarization observables in ppvector → pvector π + nu and ppvector → ppvector π, and measurements of the spin rotation parameters for pvector d → pvector d elastic scattering at 496, 647, and 800 MeV. Also, progress on an energy dependent proton-carbon analyzing power fit is reported. Current approved LAMPF proposals are described and 1983 publications are listed

  19. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  20. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  1. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  2. Minimizing fuel wood consumption through the evolution of hot ston ...

    African Journals Online (AJOL)

    The central objective of this paper is to minimize fuelwood consumption through evolving alternative domestic energy. Data on alternative domestic energy sources, and use fuel wood consumption during scarcity of petroleum were collected using structured questionnaires. Data on time spent to cook yam, race and beans ...

  3. Risk Minimization for Insurance Products via F-Doubly Stochastic Markov Chains

    Directory of Open Access Journals (Sweden)

    Francesca Biagini

    2016-07-01

    Full Text Available We study risk-minimization for a large class of insurance contracts. Given that the individual progress in time of visiting an insurance policy’s states follows an F -doubly stochastic Markov chain, we describe different state-dependent types of insurance benefits. These cover single payments at maturity, annuity-type payments and payments at the time of a transition. Based on the intensity of the F -doubly stochastic Markov chain, we provide the Galtchouk-Kunita-Watanabe decomposition for a general insurance contract and specify risk-minimizing strategies in a Brownian financial market setting. The results are further illustrated explicitly within an affine structure for the intensity.

  4. Twenty-third Semiannual Report of the Commission to the Congress, January 1958. Progress in peaceful uses of atomic energy July - December 1957

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Lewis L.

    1958-01-31

    The document represents the twenty-third semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period July - December 1957. A special part one of this semiannual report is titled ''Progress in the Peaceful Uses of Atomic Energy - A 3-year Summary.

  5. National Institutes of Health: Mixed waste minimization and treatment

    International Nuclear Information System (INIS)

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy's National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified

  6. Waste minimization activity report for 1991

    International Nuclear Information System (INIS)

    Shoemaker, J.D.

    1992-01-01

    This is a waste reduction report for the Lawrence Livermore National Laboratory (LLNL) for 1991. The report covers the Main Site at Livermore and Site 300. Each research program at LLNL is described by its operation, administrative procedures, and waste minimization. Examples of the programs at LLNL are biomedical and environmental research, chemistry and materials science, and energy program and earth sciences. (MB)

  7. Minimally invasive lateral trans-psoas approach for tuberculosis of lumbar spine

    Directory of Open Access Journals (Sweden)

    Nitin Garg

    2014-01-01

    Full Text Available Anterior, posterolateral and posterior approaches are used for managing lumbar tuberculosis. Minimally invasive methods are being used increasingly for various disorders of the spine. This report presents the utility of lateral trans-psoas approach to the lumbar spine (LS using minimal access techniques, also known as direct lateral lumbar interbody fusion in 2 cases with tuberculosis of LS. Two patients with tuberculosis at L2-3 and L4-5 presented with back pain. Both had destruction and deformity of the vertebral body. The whole procedure comprising debridement and placement of iliac crest graft was performed using tubular retractors and was augmented by posterior fixation using percutaneous transpedicular screws. Both patients recovered well with no significant procedure related morbidity. Post-operative computed tomography scans showed appropriate position of the graft and instrumentation. At follow-up, both patients are ambulant with no progression of the deformity. Minimal access direct lateral transpsoas approach can be used for debridement and reconstruction of ventral column in tuberculous of Lumbar spine. This paper highlights the growing applications of minimal access surgery for spine.

  8. Scientific and technical progress in high-energy astrophysics at INPE

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Jayanthi, U.B.; Jardim, J.O.D.; Braga, J.; Santo, C.M.E.

    1984-01-01

    The recent advances in high-energy Astrophysics pertains to the study of compact objects in galactic nuclei, binary systems and pulsars. These aspects are best understood by the study of the emissions in X- and gamma rays of these objects through the temporal variation in flux and spectrum. The Southern Hemisphere offers some of the unique objects for investigations such as galactic center, the Vela pulsar etc. For high temporal and spectra resolution studies two telescopes 'GeLi' and 'Pulsar' were designed and constructed. To support these scientific activities, a program in balloon launching and data acquisition facilities has been developed since 1971. The 'Balloon Launching Center' of INPE has capacity to launch balloons of -850,000 m 3 with payloads weighting about 1,000 Kg. Taking advantage of these facilities, project 'Bantar', with the goal to measure the atmospheric gamma-ray radiation in the Antartic Region, is under progress. (Author) [pt

  9. Advanced pyrochemical technologies for minimizing nuclear waste

    International Nuclear Information System (INIS)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-01-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts

  10. Smartphone-assisted minimally invasive neurosurgery.

    Science.gov (United States)

    Mandel, Mauricio; Petito, Carlo Emanuel; Tutihashi, Rafael; Paiva, Wellingson; Abramovicz Mandel, Suzana; Gomes Pinto, Fernando Campos; Ferreira de Andrade, Almir; Teixeira, Manoel Jacobsen; Figueiredo, Eberval Gadelha

    2018-03-13

    OBJECTIVE Advances in video and fiber optics since the 1990s have led to the development of several commercially available high-definition neuroendoscopes. This technological improvement, however, has been surpassed by the smartphone revolution. With the increasing integration of smartphone technology into medical care, the introduction of these high-quality computerized communication devices with built-in digital cameras offers new possibilities in neuroendoscopy. The aim of this study was to investigate the usefulness of smartphone-endoscope integration in performing different types of minimally invasive neurosurgery. METHODS The authors present a new surgical tool that integrates a smartphone with an endoscope by use of a specially designed adapter, thus eliminating the need for the video system customarily used for endoscopy. The authors used this novel combined system to perform minimally invasive surgery on patients with various neuropathological disorders, including cavernomas, cerebral aneurysms, hydrocephalus, subdural hematomas, contusional hematomas, and spontaneous intracerebral hematomas. RESULTS The new endoscopic system featuring smartphone-endoscope integration was used by the authors in the minimally invasive surgical treatment of 42 patients. All procedures were successfully performed, and no complications related to the use of the new method were observed. The quality of the images obtained with the smartphone was high enough to provide adequate information to the neurosurgeons, as smartphone cameras can record images in high definition or 4K resolution. Moreover, because the smartphone screen moves along with the endoscope, surgical mobility was enhanced with the use of this method, facilitating more intuitive use. In fact, this increased mobility was identified as the greatest benefit of the use of the smartphone-endoscope system compared with the use of the neuroendoscope with the standard video set. CONCLUSIONS Minimally invasive approaches

  11. Minimizing energy consumption of accelerators and storage ring facilities

    International Nuclear Information System (INIS)

    The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities

  12. Environmental Restoration Program waste minimization and pollution prevention self-assessment

    International Nuclear Information System (INIS)

    1994-10-01

    The Environmental Restoration (ER) Program within Martin Marietta Energy Systems, Inc. is currently developing a more active waste minimization and pollution prevention program. To determine areas of programmatic improvements within the ER Waste Minimization and Pollution Prevention Awareness Program, the ER Program required an evaluation of the program across the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, the Paducah Environmental Restoration and Waste Minimization Site, and the Portsmouth Environmental Restoration and Waste Minimization Site. This document presents the status of the overall program as of fourth quarter FY 1994, presents pollution prevention cost avoidance data associated with FY 1994 activities, and identifies areas for improvement. Results of this assessment indicate that the ER Waste Minimization and Pollution Prevention Awareness Program is firmly established and is developing rapidly. Several procedural goals were met in FY 1994 and many of the sites implemented ER waste minimization options. Additional growth is needed, however, for the ER Waste Minimization and Pollution Prevention Awareness Program

  13. Progress report energy from renewable sources in the Netherlands 2009-2010. Directive 2009/28/EG; Voortgangsrapportage energie uit hernieuwbare bronnen in Nederland 2009-2010. Richtlijn 2009/28/EG

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    This report describes the progress the Netherlands has made in the field of sustainable energy in 2009 and 2010. It is an obligatory report sent to the European Commission late 2011. The reported progress is the effect of the policy and measures that were taken in the reporting period (2009 and 2010). A description is provided of the outlines of the new energy policy. The report also describes the effect of new policy on the indicative figures for 2020 as calculated by the Netherlands Environmental Assessment Agency (PBL)and ECN [Dutch] Dit rapport beschrijft de voortgang die Nederland heeft gemaakt in 2009 en 2010 op het gebied van duurzame energie. Het gaat om een verplichte rapportage die eind 2011 aan de Europese Commissie is gestuurd. De beschreven voortgang is het effect van het in de rapportageperiode (2009 en 2010) vigerende beleid en maatregelen. Een beschrijving van het nieuwe energiebeleid op hoofdlijnen is gegeven. Ook is het effect beschreven van het nieuwe beleid op het streefcijfer 2020 zoals doorgerekend door Planbureau voor de Leefomgeving (PBL) en ECN.

  14. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  15. Inflation in non-minimal matter-curvature coupling theories

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, C.; Bertolami, O. [Departamento de Física e Astronomia and Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Rosa, J.G., E-mail: claudio.gomes@fc.up.pt, E-mail: joao.rosa@ua.pt, E-mail: orfeu.bertolami@fc.up.pt [Departamento de Física da Universidade de Aveiro and CIDMA, Campus de Santiago, 3810-183 Aveiro (Portugal)

    2017-06-01

    We study inflationary scenarios driven by a scalar field in the presence of a non-minimal coupling between matter and curvature. We show that the Friedmann equation can be significantly modified when the energy density during inflation exceeds a critical value determined by the non-minimal coupling, which in turn may considerably modify the spectrum of primordial perturbations and the inflationary dynamics. In particular, we show that these models are characterised by a consistency relation between the tensor-to-scalar ratio and the tensor spectral index that can differ significantly from the predictions of general relativity. We also give examples of observational predictions for some of the most commonly considered potentials and use the results of the Planck collaboration to set limits on the scale of the non-minimal coupling.

  16. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  17. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  18. Waste minimization at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, P.; Wong, P.C.F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  19. Waste minimization at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Kranz, P.; Wong, P.C.F.

    2011-01-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  20. Late-time acceleration and phantom divide line crossing with non-minimal coupling and Lorentz-invariance violation

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Sadatian, S.D.

    2008-01-01

    We consider two alternative dark-energy models: a Lorentz-invariance preserving model with a non-minimally coupled scalar field and a Lorentz-invariance violating model with a minimally coupled scalar field. We study accelerated expansion and the dynamics of the equation of state parameter in these scenarios. While a minimally coupled scalar field does not have the capability to be a successful dark-energy candidate with line crossing of the cosmological constant, a non-minimally coupled scalar field in the presence of Lorentz invariance or a minimally coupled scalar field with Lorentz-invariance violation have this capability. In the latter case, accelerated expansion and phantom divide line crossing are the results of the interactive nature of this Lorentz-violating scenario. (orig.)

  1. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  2. Cosmological perturbations of non-minimally coupled quintessence in the metric and Palatini formalisms

    International Nuclear Information System (INIS)

    Fan, Yize; Wu, Puxun; Yu, Hongwei

    2015-01-01

    Cosmological perturbations of the non-minimally coupled scalar field dark energy in both the metric and Palatini formalisms are studied in this paper. We find that on the large scales with the energy density of dark energy becoming more and more important in the low redshift region, the gravitational potential becomes smaller and smaller, and the effect of non-minimal coupling becomes more and more apparent. In the metric formalism the value of the gravitational potential in the non-minimally coupled case with a positive coupling constant is less than that in the minimally coupled case, while it is larger if the coupling constant is negative. This is different from that in the Palatini formalism where the value of gravitational potential is always smaller. Based upon the quasi-static approximation on the sub-horizon scales, the linear growth of matter is also analyzed. We obtain that the effective Newton's constants in the metric and Palatini formalisms have different forms. A negative coupling constant enhances the gravitational interaction, while a positive one weakens it. Although the metric and Palatini formalisms give different linear growth rates, the difference is very small and the current observation cannot distinguish them effectively

  3. Image denoising by a direct variational minimization

    Directory of Open Access Journals (Sweden)

    Pilipović Stevan

    2011-01-01

    Full Text Available Abstract In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.

  4. Elementary particles and high energy phenomena. Progress report, January 1979-December 1979

    International Nuclear Information System (INIS)

    Bartlett, D.

    1980-01-01

    The experimental program in 1979 was directed toward the preparation of two major detectors: the new multiparticle spectrometer facility for the Fermilab tagged photon beam and the lepton/total energy detector (MAC) for PEP. The two large Cerenkov counters were installed and made operational during a test beam run at Fermilab and substantial progress was made on the track reconstruction programs. The MAC central drift chamber was completed and delivered at SLAC and operational tests were started. Work produced by the theory group included studies of color separation in multi-hadron jet production, diffractive jet production in photo-induced reactions, the relation between the several generations of leptons and quarks, tests of unified gauge theories, gauge hierarchies, and several problems in grand unified theories

  5. 76 FR 77561 - Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc.; (Levy County...

    Science.gov (United States)

    2011-12-13

    ...] Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc.; (Levy County Nuclear....\\1\\ On February 23, 2009, this Board was established to handle the matter and to preside over any... resulting from active and passive dewatering; 2. Impacts resulting from the connection of the site to the...

  6. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  7. Energy Systems Group. Annual Progress Report 1984

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Larsen, Hans Hvidtfeldt; Villadsen, B.

    The report describes the work of the Energy Systems Group at Risø National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff...

  8. Treatment progress of diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Dou Kou

    2016-05-01

    Full Text Available Diabetic retinopathy(DR,which can cause blindness, is a serious eye diseases. Diabetic macular edema(DME, often causes irreversible vision loss, can occur in any period of DR. The treatment of DME, including laser photocoagulation, anti-inflammatory therapy, anti-VEGF therapy and surgical treatment have made great progress in recent years as the researches on the pathogenesis deepening. The innovation of minimally invasive technique also proved the surgical treatment more convenience. The joint application of a variety of treatments, also become the main trend of treatment. A review of the present status and progress of the treatment was made in this paper.

  9. 10 CFR 905.14 - Does Western require annual IRP progress reports?

    Science.gov (United States)

    2010-01-01

    ... Section 905.14 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Integrated Resource Planning § 905.14 Does Western require annual IRP progress reports? Yes, customers must submit IRP progress... projected goals and implementation schedules, and energy and capacity benefits and renewable energy...

  10. Energy Systems Group annual progress report 1984

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Villadsen, B.

    1985-02-01

    The report describes the work of the Energy Systems Group at Risoe National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff members. (author)

  11. Implementation of Waste Minimization at a complex R ampersand D site

    International Nuclear Information System (INIS)

    Lang, R.E.; Thuot, J.R.; Devgun, J.S.

    1995-01-01

    Under the 1994 Waste Minimization/Pollution Prevention Crosscut Plan, the Department of Energy (DOE) has set a goal of 50% reduction in waste at its facilities by the end of 1999. Each DOE site is required to set site-specific goals to reduce generation of all types of waste including hazardous, radioactive, and mixed. To meet these goals, Argonne National Laboratory (ANL), Argonne, IL, has developed and implemented a comprehensive Pollution Prevention/Waste Minimization (PP/WMin) Program. The facilities and activities at the site vary from research into basic sciences and research into nuclear fuel cycle to high energy physics and decontamination and decommissioning projects. As a multidisciplinary R ampersand D facility and a multiactivity site, ANL generates waste streams that are varied, in physical form as well as in chemical constituents. This in turn presents a significant challenge to put a cohesive site-wide PP/WMin Program into action. In this paper, we will describe ANL's key activities and waste streams, the regulatory drivers for waste minimization, and the DOE goals in this area, and we will discuss ANL's strategy for waste minimization and it's implementation across the site

  12. 77 FR 51832 - Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc. (Levy County...

    Science.gov (United States)

    2012-08-27

    ...] Atomic Safety and Licensing Board; In the Matter of Progress Energy Florida, Inc. (Levy County Nuclear... testimony are being heard, all of the proceedings will be open to the public. See 10 CFR 2.328. A. Matters.... Impacts resulting from active and passive dewatering; 2. Impacts resulting from the connection of the site...

  13. Quantum N-body problem with a minimal length

    International Nuclear Information System (INIS)

    Buisseret, Fabien

    2010-01-01

    The quantum N-body problem is studied in the context of nonrelativistic quantum mechanics with a one-dimensional deformed Heisenberg algebra of the form [x,p]=i(1+βp 2 ), leading to the existence of a minimal observable length √(β). For a generic pairwise interaction potential, analytical formulas are obtained that allow estimation of the ground-state energy of the N-body system by finding the ground-state energy of a corresponding two-body problem. It is first shown that in the harmonic oscillator case, the β-dependent term grows faster with increasing N than the β-independent term. Then, it is argued that such a behavior should also be observed with generic potentials and for D-dimensional systems. Consequently, quantum N-body bound states might be interesting places to look at nontrivial manifestations of a minimal length, since the more particles that are present, the more the system deviates from standard quantum-mechanical predictions.

  14. High Energy Physics progress report, 1985-1986

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported for experiments addressing: hadron-nucleus collisions, charm production from pp collisions at 400 and 800 GeV/c, radial excitation of rho, direct photon and charmonium production, and search for a quark-gluon plasma in proton-antiproton collisions at 2 TeV

  15. Tracking Progress in Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    At the second Clean Energy Ministerial in Abu Dhabi, April 2011 (CEM 2), the Carbon Capture, Use and Storage Action Group (CCUS AG) presented seven substantive recommendations to Energy Ministers on concrete, near-term actions to accelerate global carbon capture and storage (CCS) deployment. Twelve CCUS AG governments agreed to advance progress against the 2011 recommendations by the third Clean Energy Ministerial (London, 25-26 April 2012) (CEM 3). Following CEM 2, the CCUS AG requested the IEA and the Global CCS Institute to report on progress made against the 2011 recommendations at CEM 3. Tracking Progress in Carbon Capture and Storage: International Energy Agency/Global CCS Institute report to the third Clean Energy Ministerial responds to that request. The report considers a number of key questions. Taken as a whole, what advancements have committed CCUS AG governments made against the 2011 recommendations since CEM 2? How can Energy Ministers continue to drive progress to enable CCS to fully contribute to climate change mitigation? While urgent further action is required in all areas, are there particular areas that are currently receiving less policy attention than others, where efforts could be redoubled? The report concludes that, despite developments in some areas, significant further work is required. CCS financing and industrial applications continue to represent a particularly serious challenge.

  16. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Annual progress report, 1988--1989

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs

  17. Hanford Site pollution prevention progress report 1999

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  18. Hanford Site pollution prevention progress report; FINAL

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  19. Stars of bosons with non-minimal energy-momentum tensor

    International Nuclear Information System (INIS)

    van der Bij, J.J.; Gleiser, M.

    1987-02-01

    We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling ξ absolute value of phi 2 R to gravity. We find, for fields of mass m, maximum masses and number of particles of order M/sub max/ ∼ 0.73ξ/sup 1/2/ M/sub Planck/ 2 /m, and N/sub max/ ∼ 0.88ξ/sup 1/2/ M/sub Planck/ 2 /m 2 respectively, for large positive ξ. For large negative ξ we find, M/sub max/ ∼ 0.66 absolute value of ξ/sup 1/2/ M/sub Planck/ 2 /m, and N/sub max/ ∼ 0.72 absolute value of ξ/sup 1/2/ M/sub Planck/ 2 /m 2

  20. Minimization of mixed waste in explosive testing operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Sator, F.E.; Simmons, L.F.

    1993-02-01

    In the 1970s and 1980s, efforts to manage mixed waste and reduce pollution focused largely on post-process measures. In the late 1980s, the approach to waste management and pollution control changed, focusing on minimization and prevention rather than abatement, treatment, and disposal. The new approach, and the formulated guidance from the US Department of Energy, was to take all necessary measures to minimize waste and prevent the release of pollutants to the environment. Two measures emphasized in particular were source reduction (reducing the volume and toxicity of the waste source) and recycling. In 1988, a waste minimization and pollution prevention program was initiated at Site 300, where the Lawrence Livermore National Laboratory (LLNL) conducts explosives testing. LLNL's Defense Systems/Nuclear Design (DS/ND) Program has adopted a variety of conservation techniques to minimize waste generation and cut disposal costs associated with ongoing operations. The techniques include minimizing the generation of depleted uranium and lead mixed waste through inventory control and material substitution measures and through developing a management system to recycle surplus explosives. The changes implemented have reduced annual mixed waste volumes by more than 95% and reduced overall radioactive waste generation (low-level and mixed) by more than 75%. The measures employed were cost-effective and easily implemented

  1. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, April 16, 1994--August 1, 1994

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1994-01-01

    The objective of this program is the experimental study of interactions of low energy, highly charged ions with other atomic species. The Cornell superconducting solenoid, cryogenic electron beam ion source CEBIS designed and built in our laboratory is the major piece of apparatus used in these investigations. This progress report describes the work accomplished during the period April 16, 1994 and August 1, 1994. This includes both finished experiments and preparatory work for planned future experiments using the source. During this time, we have completed measurements of the angular distributions and energy gains in Ar q+ (11≤q≤14) on Ar collisions at 72 qeV laboratory energy. In particular, energy gain spectra at different laboratory scattering angles were obtained for Ar( q-1 ) + projectiles, i.e. projectiles whose final charge state had decreased by one unit. The experimental technique used, and the method of analysis are described elsewhere. The raw spectra are similar to those observed for Ar 8+ and Ar l0+ on Ar at comparable energies, as well as those described in the last progress report for Ar l2+ on Ar

  2. High energy physics progress report, April 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B.

    1979-01-01

    During the contract year progress was made in data analysis and interpretation of a number of ANL-ZGS experiments. Results were published for seven experiments: E-415 (direct electron production); E-395, measurement of Δsigma/sub T/ in the 1 to 3 GeV/c Region; measurement of p--p elastic scattering at 6 GeV; E-408, asymmetries in inclusive proton--nucleon scattering at 11.75 GeV/c; E-437, polarization of elastic p--p and p--n scattering at 1.03 GeV; E-437, analyzing power in the reaction p+d→d+p and p+p→d+π at GeV energies; and E-434; measurement of the energy dependence of Δsigma/sub T/ and A/sub nn/ for p--p scattering in the 1 to 3 GeV/c region. In addition, three new experiments were undertaken at ZGS: E-434, measurement of A/sub nn/ in p--p scattering at 12 GeV/c; E-445, assymmetries in inclusive pion production with a polarized beam and target; E-425, studies of np and pp A/sub nn/ using a polarized beam. During the year the new polarized target PPT-VI became operational and was used in experiments. The new PDP 11/34 computer became operational for data analysis. A list of publications is included

  3. Westinghouse Hanford Company waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Craig, P.A.; Nichols, D.H.; Lindsey, D.W.

    1991-08-01

    The purpose of this plan is to establish the Westinghouse Hanford Company's Waste Minimization Program. The plan specifies activities and methods that will be employed to reduce the quantity and toxicity of waste generated at Westinghouse Hanford Company (Westinghouse Hanford). It is designed to satisfy the US Department of Energy (DOE) and other legal requirements that are discussed in Subsection C of the section. The Pollution Prevention Awareness Program is included with the Waste Minimization Program as permitted by DOE Order 5400.1 (DOE 1988a). This plan is based on the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, which directs DOE Field Office, Richland contractors to develop and maintain a waste minimization program. This waste minimization program is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Westinghouse Hanford Waste Minimization Program is designed to prevent or minimize pollutant releases to all environmental media from all aspects of Westinghouse Hanford operations and offers increased protection of public health and the environment. 14 refs., 2 figs., 1 tab

  4. Medium energy measurements of N-N parameters: Progress report, January 1, 1988--December 31, 1988

    International Nuclear Information System (INIS)

    Riley, P.J.

    1988-01-01

    We report here progress made for the period January 1, 1988, to December 31, 1988, for the Department of Energy Three-year Grant No. DE-FG05-88ER40446, first year. A major part of the work has been and will continue to be associated with research done at the Nucleon Physics Laboratory (NPL) at the Los Alamos Meson Physics Facility (LAMPF). The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energies. The required data include both elastic and inelastic experiments, and in addition the measurement of polarization and polarization transfer parameters. The measurements can be broadly categorized into those of proton-proton elastic scattering, which probe the isospin-1 elastic channel, neutron-proton elastic scattering, which allow measurements of isospin-0 amplitudes, proton-proton inelastic scattering, and neutron-proton inelastic scattering. We are nearing completion of a long-range series of p-p elastic scattering measurements, and believe that the required goals have been achieved. During the past few years we have emphasized proton-proton inelastic scattering measurements, and believe that the determination of the I = 1 inelastic phase shifts is progressing well. The I = 0 amplitudes, both elastic, and inelastic, are still poorly determined, at best. These measurements require a much more intense polarized neutron beam than is yet available, and therefore have needed the high-intensity optically pumped polarized ion source, due to come on-line during late 1989. During the past year our work emphasized p-p elastic differential scattering cross-section measurements in the energy range 500--800 MeV at LAMPF. The measurements aimed for an absolute accuracy of 1%, and we believe that this was achieved. We also have been involved in what we believe is the first partial wave analysis of pp → npπ + data

  5. An application of a double bootstrap to investigate the effects of technological progress on total-factor energy consumption performance in China

    International Nuclear Information System (INIS)

    Li, Ke; Lin, Boqiang

    2017-01-01

    This paper proposes a total-factor energy consumption performance index (TEPI) for measuring China's energy efficiency across 30 provinces during the period 1997 to 2012. The TEPI is derived by solving an improved non-radial data envelopment analysis (DEA) model, which is based on an energy distance function. The production possibility set is constructed by combining the super-efficiency and sequential DEA models to avoid “discriminating power problem” and “technical regress”. In order to explore the impacts of technological progress on TEPI and perform statistical inferences on the results, a two-stage double bootstrap approach is adopted. The important findings are that China's energy technology innovation produces a negative effect on TEPI, while technology import and imitative innovation produce positive effects on TEPI. Thus, the main contribution of TEPI improvement is technology import. These conclusions imply that technology import especially foreign direct investment (FDI) is important for imitative innovation and can improve China's energy efficiency. In the long run, as the technical level of China approaches to the frontier, energy technology innovation and its wide adoption become a sustained way to improve energy efficiency. Therefore, it is urgent for China to introduce measures such as technology translation and spillover policies as well as energy pricing reforms to support energy technology innovation. - Highlights: • A total-factor energy consumption performance index (TEPI) is introduced. • Three types of technological progress have various effects on TEPI. • FDI is the main contributor of TEPI improvement. • An improved DEA calculation method is introduced. • A two-stage double-bootstrap non-radial DEA model is used.

  6. Interleukin-1 may link helplessness-hopelessness with cancer progression: A proposed model

    OpenAIRE

    Argaman, M; Gidron, Y; Ariad, S

    2005-01-01

    A model of the relations between psychological factors and cancer progression should include brain and systemic components and their link with critical cellular stages in cancer progression. We present a psychoneuroimmunological (PNI) model that links helplessness-hopelessness (HH) with cancer progression via interleukin-1β (IL-1β). IL-1β was elevated in the brain following exposure to inescapable shock, and HH was minimized by antagonizing cerebral IL-1β. Elevated cerebral IL-1β increased ca...

  7. Hazardous waste minimization report for CY 1986

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs

  8. Technical progress and its strategic consequences

    International Nuclear Information System (INIS)

    Bouchard, G.

    1999-01-01

    The history of energy during recent decades has shown that technical progress can have consequences for the organisation of markets, company strategies and the economy in general, confounding all forecasts and going beyond simple technical change. As a consequence for example, improvements in the techniques concerning the exploration and production of hydrocarbons have led to the petrol 'counter-crisis', the reduction in the power of OPEC and undreamed of gains in wealth for certain countries. The progress in gas turbines has led to the reversal of the age-old tendency towards increases in the size of electricity production units and encouraged the liberation of this sector. When looking at the future it is therefore judicious to try and understand the forces at work, and the major trends which result. This is the aim of the articles in this edition of the Revue de l'Energie, published on the occasion of the European colloquium on 'Technical progress faced with the challenges of the energy sector in the future' organised by the Association of Energy Economists. (authors)

  9. Annual progress report for the high-energy-physics program at Texas A and M University, December 1, 1981-December 1, 1982

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Webb, R.C.

    1982-01-01

    The High-Energy Group at Texas A and M has continued to strengthen and grow during this the first full year of funding from the Department of Energy. The past year was marked by several successes: (a) the funding of our group's GUT monopole search, (b) the construction and testing of a prototype hadron calorimeter for the Fermilab Collider Detector, (c) a preliminary agreement on our group's responsibilities for the Fermilab Collider Detector, and (d) the beginning of the assembly of the monopole detector at Avery Island, Louisiana. The accompanying progress report will detail the progress being made by our group in these areas over the past year. In addition, future plans and funding requests for continued DOE support for the period April 1, 1983 to March 31, 1984, are presented

  10. A perturbation technique for shield weight minimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1993-01-01

    The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5)

  11. Intermediate-energy nuclear physics. Task C. Technical progress report, October 1, 1982-October 1, 1983. Part I

    International Nuclear Information System (INIS)

    1983-01-01

    Progress is reported on the following experimental studies: (1) excitation of giant resonances in 118 Sn in inelastic pion scattering at 130 MeV; (2) giant dipole excitations of 40 Ca by inelastic pion scattering; (3) charge symmetry test using the π + and π - elastic scattering from deuterium at 143 and 256 MeV; (4) binding energy effects on the isospin amplitudes in p-shell nuclei; (5) the energy dependence of the 14 C (π + ,π 0 ) 14 N reaction to the IAS; (6) the ( 3 He,t) reaction at 2 GeV; (7) analyzing power in the (polarized p,n) IAS transitions; (8) the excitation of the 1/2 + (2.36) MeV state in the 24Mg (polarized p,d) reaction from 27 to 150 MeV; (9) the energy dependence of the (polarized p,d) reaction for 54 Fe and 140 Ce; and (10) the energy dependence of the 7 Li(p,d) 6 Li reaction. Publications are listed

  12. Progress report 1981

    International Nuclear Information System (INIS)

    Chalupka, A.; Dirninger, G.

    1982-01-01

    The progress report describes the scientific work and research results of the institute for radium research and nuclear physics of the Austrian Academy of Sciences for the period of 1981. The progress report covers the subject areas of nuclear theory, nuclear model calculations, experimental nuclear physics and neutron involved reactions, medium energy physics, instrumentation and detectors, evaluation of nuclear data and numerical data processing, dating, applications in medicine, dosimetry and environmental studies. A list of publications of this institute is given. (A.N.)

  13. Progress report 1982

    International Nuclear Information System (INIS)

    Chalupka, A.; Wild, E.; Dirninger, G.

    1983-01-01

    The progress report describes the scientific work and research results of the institute for radium research and nuclear physics of the Austrian Academy of Sciences for the period of 1982. The progress report covers the subject areas of nuclear theory, nuclear model calculations, experimental nuclear physics and neutron involved reactions, medium energy physics, instrumentation and detectors, evaluation of nuclear data and numerical data processing, dating, applications in medicine, dosimetry and environmental studies. A list of publications of this institute is given. (A.N.)

  14. Radwaste minimization successes at Duke Power Company

    International Nuclear Information System (INIS)

    Lan, C.D.; Johnson, G.T.; Groves, D.C.; Smith, T.A.

    1996-01-01

    At Duke Power Company, open-quotes Culture Changeclose quotes is a common term that we have used to describe the incredible transformation. We are becoming a cost conscious, customer driven, highly competitive business. Nowhere has this change been more evident then in the way we process and dispose of our solid radioactive waste. With top-down management support, we have used team-based, formalized problem solving methods and have implemented many successful waste minimization programs. Through these programs, we have dramatically increased employees' awareness of the importance of waste minimization. As a result, we have been able to reduce both our burial volumes and our waste processing and disposal costs. In June, 1994, we invited EPRI to conduct assessments of our waste minimization programs at Oconee and Catawba nuclear stations. Included in the assessments were in-depth looks at contamination control, an inventory of items in the plant, the volume of waste generated in the plant and how it was processed, laundry reject data, site waste-handling operations, and plant open-quotes housekeepingclose quotes routines and process. One of the most important aspects of the assessment is the open-quotes dumpster dive,close quotes which is an evaluation of site dry active waste composition by sorting through approximately fifteen bags of radioactive waste. Finally, there was an evaluation of consumable used at each site in order to gain knowledge of items that could be standardized at all stations. With EPRI recommendations, we made several changes and standardized the items used. We have made significant progress in waste reduction. We realize, however, that we are aiming at a moving target and we still have room for improvement. As the price of processing and disposal (or storage) increases, we will continue to evaluate our waste minimization programs

  15. Progress on linking gender and sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.

    2000-04-05

    The field of gender and energy has been identified as critical in global sustainable energy development and is increasingly important to decision makers. The theme of women and energy was of significance at the 1998 World Renewable Energy Congress in Florence, Italy. This paper traces further developments in this field by summarizing selected programmatic initiatives, meetings, and publications over the past 18 months.

  16. State of the Low-Carbon Energy Union: Assessing the EU's progress towards its 2030 and 2050 climate objectives

    International Nuclear Information System (INIS)

    Spencer, Thomas; Pierfederici, Roberta; Sartor, Oliver; Berghmans, Nicolas; Samadi, Sascha; Fischedick, Manfred; Knoop, Katharina; Pye, Steve; Criqui, Patrick; Mathy, Sandrine; Capros, Pantelis; Fragkos, Panagiotis; Bukowski, Maciej; Sniegocki, Aleksander; Virdis, Maria Rosa; Gaeta, Maria; Pollier, Karine; Cassisa, Cyril

    2016-11-01

    Rather than examining aggregate emissions trends, this study delves deep into the dynamics affecting each sector of the EU energy system. It examines the structural changes taking place in power production, transport, buildings and industry, and benchmarks these with the changes required to reach the 2030 and 2050 targets. In so doing it aims to influence both the ambition and direction of future policy decisions, both at Member State and EU level. In order to assess the adequacy of the EU and its Member States policies with the 2030 and 2050 decarbonization objectives, this study goes beyond the aggregate GHG emissions or energy use figures and analyse the underlying drivers of emission changes, following a sectoral approach (power generation, buildings, industry, and transport). Historical trends of emission drivers are compared with the required long-term deep decarbonization pathways, which provide sectoral 'benchmarks' or 'corridors' against which to analyse the rate and direction of historical change for each Member State and the EU in aggregate. This approach allows the identification of the necessary structural changes in the energy system and policy interventions to reach deep decarbonization, and therefore the comparison with the current policy programs at European and Member State level. The EU has made significant progress in the structural decarbonization of its energy system. However, despite of this progress, the EU is currently 'off-track' to achieve its objectives by 2030 and 2050. First, the rate of change is insufficient across a large number of the indicators assessed. Second, too much of the change in aggregate emissions has been driven by cyclical effects rather than structural decarbonization, notably the impact of the financial crisis and subsequent slow recovery. Third, long-term decarbonization options, for example to decarbonize industrial processes and materials, are not being adequately prepared. While some policies under the EU's 2030

  17. [High energy particle physics]: Progress report covering the period from August 1, 1987 to July 31, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    In this document the High Energy Physics Group reviews its accomplishments and progress during the past year and presents plans for continuing research during the next several years. Some of the topics discussed in this report are: completed fixed target experiments; applications of QCD to hard hadronic processes; top quark signatures at the Tevatron collider; searching for supersymmetry at e + e/sup /minus// colliders; Monte Carlo simulations; and quantrum field theories

  18. Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy

    International Nuclear Information System (INIS)

    Zhang, Wenbin; Li, Jianqiu; Xu, Liangfei; Ouyang, Minggao

    2017-01-01

    Highlights: • The hybridization of the fuel cell with the energy storage systems is realized for the tram. • A protype tram is tested based on an operation mode switching method. • An equivalent consumption minimization strategy is proposed and verified for optimization. - Abstract: This paper describes a hybrid tram powered by a Proton Exchange Membrane (PEM) fuel cell (FC) stack supported by an energy storage system (ESS) composed of a Li-ion battery (LB) pack and an ultra-capacitor (UC) pack. This configuration allows the tram to operate without grid connection. The hybrid tram with its full load is tested in the CRRC Qingdao Sifang Co.; Ltd. It firstly works on the operation mode switching method (OPMS) without energy regenerative and proper power management. Therefore, an equivalent consumption minimization strategy (ECMS) aimed at minimizing the hydrogen consumption is proposed to improve the characteristics of the tram. The results show that the proposed control system enhances drivability and economy, and is effective for application to this hybrid system.

  19. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  20. Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy

    OpenAIRE

    Li, Xiang; Garraghan, Peter; Jiang, Xiaohong; Wu, Zhaohui; Xu, Jie

    2018-01-01

    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, tradi...

  1. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  2. Understanding the decision-making environment for people in minimally conscious state.

    Science.gov (United States)

    Yelden, Kudret; Sargent, Sarah; Samanta, Jo

    2017-04-11

    Patients in minimally conscious state (MCS) show minimal, fluctuating but definitive signs of awareness of themselves and their environments. They may exhibit behaviours ranging from the ability to track objects or people with their eyes, to the making of simple choices which requires the ability to recognise objects and follow simple commands. While patients with MCS have higher chances of further recovery than people in vegetative states, this is not guaranteed and their prognosis is fundamentally uncertain. Therefore, patients with MCS need regular input from healthcare professionals to monitor their progress (or non-progress) and to address their needs for rehabilitation, for the provision of an appropriate environment and equipment. These requirements form a backdrop to the potentially huge variety of ethical-legal dilemmas that may be faced by their families, caregivers and ultimately, the courts. This paper analyses the decision-making environment for people with MCS using data obtained through four focus groups which included the input of 29 senior decision makers in the area. The results of the focus group study are presented and further explored with attention on recurrent and strong themes such as lack of expertise, resource issues, and the influence of families and friends of people with MCS.

  3. Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  4. Recent Progress in Energy-Driven Water Splitting.

    Science.gov (United States)

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  5. Lumbar Spinal Stenosis Minimally Invasive Treatment with Bilateral Transpedicular Facet Augmentation System

    Energy Technology Data Exchange (ETDEWEB)

    Masala, Salvatore, E-mail: salva.masala@tiscali.it [Interventional Radiology and Radiotherapy, University of Rome ' Tor Vergata' , Department of Diagnostic and Molecular Imaging (Italy); Tarantino, Umberto [University of Rome ' Tor Vergata' , Department of Orthopaedics and Traumatology (Italy); Nano, Giovanni, E-mail: gionano@gmail.com [Interventional Radiology and Radiotherapy, University of Rome ' Tor Vergata' , Department of Diagnostic and Molecular Imaging (Italy); Iundusi, Riccardo [University of Rome ' Tor Vergata' , Department of Orthopaedics and Traumatology (Italy); Fiori, Roberto, E-mail: fiori.r@libero.it; Da Ros, Valerio, E-mail: valeriodaros@hotmail.com; Simonetti, Giovanni [Interventional Radiology and Radiotherapy, University of Rome ' Tor Vergata' , Department of Diagnostic and Molecular Imaging (Italy)

    2013-06-15

    Purpose. The purpose of this study was to evaluate the effectiveness of a new pedicle screw-based posterior dynamic stabilization device PDS Percudyn System Trade-Mark-Sign Anchor and Stabilizer (Interventional Spine Inc., Irvine, CA) as alternative minimally invasive treatment for patients with lumbar spine stenosis. Methods. Twenty-four consecutive patients (8 women, 16 men; mean age 61.8 yr) with lumbar spinal stenosis underwent implantation of the minimally invasive pedicle screw-based device for posterior dynamic stabilization. Inclusion criteria were lumbar stenosis without signs of instability, resistant to conservative treatment, and eligible to traditional surgical posterior decompression. Results. Twenty patients (83 %) progressively improved during the 1-year follow-up. Four (17 %) patients did not show any improvement and opted for surgical posterior decompression. For both responder and nonresponder patients, no device-related complications were reported. Conclusions. Minimally invasive PDS Percudyn System Trade-Mark-Sign has effectively improved the clinical setting of 83 % of highly selected patients treated, delaying the need for traditional surgical therapy.

  6. Lumbar Spinal Stenosis Minimally Invasive Treatment with Bilateral Transpedicular Facet Augmentation System

    International Nuclear Information System (INIS)

    Masala, Salvatore; Tarantino, Umberto; Nano, Giovanni; Iundusi, Riccardo; Fiori, Roberto; Da Ros, Valerio; Simonetti, Giovanni

    2013-01-01

    Purpose. The purpose of this study was to evaluate the effectiveness of a new pedicle screw-based posterior dynamic stabilization device PDS Percudyn System™ Anchor and Stabilizer (Interventional Spine Inc., Irvine, CA) as alternative minimally invasive treatment for patients with lumbar spine stenosis. Methods. Twenty-four consecutive patients (8 women, 16 men; mean age 61.8 yr) with lumbar spinal stenosis underwent implantation of the minimally invasive pedicle screw-based device for posterior dynamic stabilization. Inclusion criteria were lumbar stenosis without signs of instability, resistant to conservative treatment, and eligible to traditional surgical posterior decompression. Results. Twenty patients (83 %) progressively improved during the 1-year follow-up. Four (17 %) patients did not show any improvement and opted for surgical posterior decompression. For both responder and nonresponder patients, no device-related complications were reported. Conclusions. Minimally invasive PDS Percudyn System™ has effectively improved the clinical setting of 83 % of highly selected patients treated, delaying the need for traditional surgical therapy.

  7. Hungary making progress toward free market

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the Hungarian government made major progress in reorienting the energy sector toward a market economy in 1991. A study conducted by the International Energy Agency the progress was particularly evident in price reform and restructuring of the Hungarian energy industry. The pace of change has accelerated. Effective with fourth quarter 1991 through 1992 all the main energy enterprises will begin operating under new structures. Assuming that liberalized energy prices are set by suppliers to cover their costs and local governments do not subsidize district heating prices, all energy prices are to be at least at their economic cost level by mid-1992, IEA the. Some prices will be above this level because of sales taxes on gasoline and diesel and taxes on all imported energy. Hungary depends on imports for about half of its primary energy supply. Because domestic production has peaked, the share of imports will rise if consumption, after a likely further decline in the short term, returns to an upward trend

  8. Mixed low-level waste minimization at Los Alamos

    International Nuclear Information System (INIS)

    Starke, T.P.

    1998-01-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL

  9. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  10. Progress and prospects of ion-driven fast ignition

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Albright, Brian J.; Flippo, Kirk A.; Gautier, D. Cort; Hegelich, Bjoern M.; Schmitt, Mark J.; Yin Lin; Honrubia, J.J.; Temporal, M.

    2009-01-01

    Fusion fast ignition (FI) initiated by laser-driven ion beams is a promising concept examined in this paper. FI based on a beam of quasi-monoenergetic ions (protons or heavier ions) has the advantage of a more localized energy deposition, which minimizes the required total beam energy, bringing it close to the ∼10 kJ minimum required for fuel densities ∼500 g cm -3 . High-current, laser-driven ion beams are most promising for this purpose. Because they are born neutralized in picosecond timescales, these beams may deliver the power density required to ignite the compressed DT fuel, ∼10 kJ/10 ps into a spot 20 μm in diameter. Our modelling of ion-based FI include high fusion gain targets and a proof of principle experiment. That modelling indicates the concept is feasible, and provides confirmation of our understanding of the operative physics, a firmer foundation for the requirements, and a better understanding of the optimization trade space. An important benefit of the scheme is that such a high-energy, quasi-monoenergetic ignitor beam could be generated far from the capsule (≥1 cm away), eliminating the need for a reentrant cone in the capsule to protect the ion-generation laser target, a tremendous practical benefit. This paper summarizes the ion-based FI concept, the integrated ion-driven FI modelling, the requirements on the ignitor beam derived from that modelling, and the progress in developing a suitable laser-driven ignitor ion beam.

  11. Sustainable energy strategies for green energy supply. Paper no. IGEC-1-123

    International Nuclear Information System (INIS)

    Midilli, A.; Ay, M.; Dincer, I.

    2005-01-01

    The main objectives of this study are, first, to determine the sustainable energy strategies for green energy supply, and secondly, to derive the green energy recovery ratio and the sustainable green energy progress ratio, and thirdly, to investigate the effects of sustainable energy strategies on these ratios. For these purposes, 20-possible sustainable energy strategies are taken into consideration and are divided into three subgroups that are strategies on the technological impact, sectoral impact, and green energy impact in a society. Using the possible sustainable energy strategies, technological and sectoral impact ratios of green energy and also green energy activity ratio are determined and discussed in detail. Additionally, some Case studies are performed in the scope of this interesting investigation: (i) the effect of technological impact ratio on green energy recovery ratio, and sustainable green energy progress ratio, (ii) the effect of sectoral impact ratio on green energy recovery ratio, and sustainable green energy progress ratio, and (iii) the effect of green energy impact ratio on green energy recovery ratio and sustainable green energy progress ratio. It is found that sustainable green energy progress ratio increases with an increase of technological, sectoral, and green energy impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy is abundantly produced. Therefore, the investment in green energy supply should be, for the future of world nations, encouraged by governments and other authoritative bodies who, for strategic reasons, wish to have a green alternative to fossil

  12. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  13. Telecommunications energy and greenhouse gas emissions management for future network growth

    International Nuclear Information System (INIS)

    Chan, Chien Aun; Gygax, André F.; Leckie, Christopher; Wong, Elaine; Nirmalathas, Ampalavanapillai; Hinton, Kerry

    2016-01-01

    Highlights: • Model to evaluate key interdependencies of a fast growing telecommunications network. • Network growth analysis using real data and Monte Carlo simulation. • Importance of both operational and embodied energy efficiency improvements. • Embodied energy expected to dominate in the future under current energy efficiency trends. • Carbon footprint and energy management through optimum network replacement cycle. - Abstract: A key aspect of greener network deployment is how to achieve sustainable growth of a telecommunications network, both in terms of operational and embodied energy. Hence, in this paper we investigate how the overall energy consumption and greenhouse gas emissions of a fast growing telecommunications network can be minimized. Due to the complexities in modeling the embodied energy of networks, this aspect of energy consumption has received limited attention by network operators. Here, we present the first model to evaluate the interdependencies of the four main contributing factors in managing the sustainable growth of a telecommunications network: (i) the network’s operational energy consumption; (ii) the embodied energy of network equipment; (iii) network traffic growth; and (iv) the expected energy efficiency improvements in both the operational and embodied phases. Using Monte Carlo techniques with real network data, our results demonstrate that under the current trends in overall energy efficiency improvements the network embodied energy will account for over 40% of the total network energy in 2025 compared to 20% in 2015. Further, we find that the optimum equipment replacement cycle, which will result in the lowest total network life cycle energy, is directly dependent on the technological progress in energy efficiency improvements of both operational and embodied phases. Our model and analysis highlight the need for a comprehensive approach to better understand the interactions between network growth, technological

  14. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  15. Higher Integrability for Minimizers of the Mumford-Shah Functional

    Science.gov (United States)

    De Philippis, Guido; Figalli, Alessio

    2014-08-01

    We prove higher integrability for the gradient of local minimizers of the Mumford-Shah energy functional, providing a positive answer to a conjecture of De Giorgi (Free discontinuity problems in calculus of variations. Frontiers in pure and applied mathematics, North-Holland, Amsterdam, pp 55-62, 1991).

  16. Alternative energies updates on progress

    CERN Document Server

    Ferreira, Germán

    2013-01-01

    This book examines the key pillars of alternative energy, including biomass, hydrogen, solar and geothermal. It features life cycle assessment and thermoeconomic analysis as tools for evaluating and optimising environmental and cost subjects.

  17. A review of building energy regulation and policy for energy conservation in developing countries

    International Nuclear Information System (INIS)

    Iwaro, Joseph; Mwasha, Abraham

    2010-01-01

    The rapid growth of energy use, worldwide, hfs raised concerns over problems of energy supply and exhaustion of energy resources. Most of the developed countries are implementing building energy regulations such as energy standards, codes etc., to reduce building energy consumption. The position of developing countries with respect to energy regulations implementation and enforcement is either poorly documented or not documented at all. In addition, there is a lack of consistent data, which makes it difficult to understand the underlying changes that affect energy regulation implementation in developing countries. In that respect, this paper investigates the progress of building energy regulations in developing countries and its implication for energy conservation and efficiency. The present status of building energy regulations in 60 developing countries around the world was analysed through a survey of building energy regulations using online survey. The study revealed the present progress made on building energy regulations in relation to implementation, development and compliance; at the same time the study recommends possible solutions to the barriers facing building energy regulation implementation in the developing world. - Research Highlights: →Progress and implications of energy regulations in developing countries. →Investigation assessed the progress made on energy regulations using online survey. →Energy regulation activities is progressively increasing in developing countries. →The study identified 25 developing countries without energy regulatory standards. →The study shows relationship between energy regulation and energy consumption.

  18. One-parameter family of solitons from minimal surfaces

    Indian Academy of Sciences (India)

    solitons arising from a one parameter family of minimal surfaces. The process enables us to generate a new solution of the B–I equation from a given complex solution of a special type (which are abundant). We illustrate this with many examples. We find that the action or the energy of this family of solitons remains invariant ...

  19. Double quantum dot as a minimal thermoelectric generator

    OpenAIRE

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  20. Computers and the Environment: Minimizing the Carbon Footprint

    Science.gov (United States)

    Kaestner, Rich

    2009-01-01

    Computers can be good and bad for the environment; one can maximize the good and minimize the bad. When dealing with environmental issues, it's difficult to ignore the computing infrastructure. With an operations carbon footprint equal to the airline industry's, computer energy use is only part of the problem; everyone is also dealing with the use…

  1. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  2. Stars of bosons with non-minimal energy-momentum tensor

    International Nuclear Information System (INIS)

    Van der Bij, J.J.; Gleiser, M.

    1987-01-01

    We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling ξvertical strokeφvertical stroke 2 R to gravity. We find, for zeronode fields of mass m, maximum masses and number of particles of order M max ≅ 0.73ξ 1/2 M Planck 2 /m, and N max ≅ 0.88ξ 1/2 x M Planck 2 /m 2 respectively, for large positive ξ. For large negative ξ we find M max ≅ 0.66vertical strokeξvertical stroke 1/2 M Planck 2 /m, and N max ≅ 0.72vertical strokeξvertical stroke 1/2 x M Planck 2 /m 2 . We also calculate the critical mass and particle number for higher radial nodes of the scalar field and find that both quantities grow approximately linearly for large node number n. (orig.)

  3. Keratoconus Progression Induced by In Vitro Fertilization Treatment.

    Science.gov (United States)

    Yuksel, Erdem; Yalinbas, Duygu; Aydin, Bahri; Bilgihan, Kamil

    2016-01-01

    To evaluate patients with keratoconus who manifested progression after in vitro fertilization (IVF) treatment. Patients with keratoconus who received IVF treatment were included in this study. None of the patients became pregnant as a result of the IVF treatment. Progression of keratoconus was determined by changes in corrected distance visual acuity and/or topographic changes and subjective assessments. Three patients with keratoconus received IVF treatment and keratoconus progression was detected in all 6 eyes of the patients. The mean age of the patients was 32.3 ± 3.6 years (range: 28 to 36 years) and the mean follow-up duration was 15.6 ± 3.2 months (range: 12 to 18 months). The mean and the maximum keratometry values increased and corrected distance visual acuity decreased after 2.3 IVF treatments. Drugs used in IVF treatment increase estrogen levels, which may affect corneal biomechanics and induce progression of keratoconus. Corneal cross-linking treatment could be offered to minimize the risk of keratoconus progression before IVF treatment. Copyright 2016, SLACK Incorporated.

  4. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    Science.gov (United States)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  5. BUILDING STRONGER STATE ENERGY PARTNERSHIPS WITH THE U.S. DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Kate Burke

    2002-11-01

    This technical progress report includes an update of the progress during the second year of cooperative agreement DE-FC26-00NT40802, Building Stronger State Energy Partnerships with the U.S. Department of Energy. The report also describes the barriers in conduct of the effort, and our assessment of future progress and activities.

  6. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  7. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  8. Minimal flavour violation in the quark and lepton sector and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, S.L.

    2008-01-07

    We address to explain the matter-antimatter asymmetry of the universe in a framework that generalizes the quark minimal flavour violation hypothesis to the lepton sector. We study the impact of CP violation present at low and high energies and investigate the existence of correlations among leptogenesis and lepton flavour violation. Further we present an approach alternative to minimal flavour violation where the suppression of flavour changing transitions involving quarks and leptons is governed by hierarchical fermion wave functions. (orig.)

  9. Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty

    International Nuclear Information System (INIS)

    Nie, S.; Li, Y.P.; Liu, J.; Huang, Charley Z.

    2017-01-01

    An interval-stochastic risk management (ISRM) method is launched to control the variability of the recourse cost as well as to capture the notion of risk in stochastic programming. The ISRM method can examine various policy scenarios that are associated with economic penalties under uncertainties presented as probability distributions and interval values. An ISRM model is then formulated to identify the optimal power mix for the Beijing's energy system. Tradeoffs between risk and cost are evaluated, indicating any change in targeted cost and risk level would yield different expected costs. Results reveal that the inherent uncertainty of system components and risk attitude of decision makers have significant effects on the city's energy-supply and electricity-generation schemes as well as system cost and probabilistic penalty. Results also disclose that import electricity as a recourse action to compensate the local shortage would be enforced. The import electricity would increase with a reduced risk level; under every risk level, more electricity would be imported with an increased demand. The findings can facilitate the local authority in identifying desired strategies for the city's energy planning and management in association with financial-cost minimization and environmental-impact mitigation. - Highlights: • Interval-stochastic risk management method is launched to identify optimal power mix. • It is advantageous in capturing the notion of risk in stochastic programming. • Results reveal that risk attitudes can affect optimal power mix and financial cost. • Developing renewable energies would enhance the sustainability of energy management. • Import electricity as an action to compensate the local shortage would be enforced.

  10. Constraining non-minimally coupled tachyon fields by the Noether symmetry

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2009-01-01

    A model for a homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. The Noether symmetry is used to find expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is responsible for the decelerated-accelerated transition period.

  11. High energy physics: Progress report

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B. Jr.; Bonner, B.E.

    1987-01-01

    Analysis of data on collision of protons with targets of He, Be, C, Al, Sn, and Pb continued. A jet signal has been clearly observed from all nuclei. A collaboration has been formed for carrying out an experiment studying the photoproduced jets from nuclei and propagation of quarks and gluons through nuclear matter. The production of lambda hyperons was studied using the primary polarized beam at BNL/AGS at 13.3 and 18.5 GeV/c. The effect of the proton beam polarization on the lambda production, A/sub N/ and spin transfer have been measured. A request was approved for additional polarized proton beam at the AGS to continue measurements of the spin transfer to hyperons. Progress is reported on an initial 200 GeV/c polarized beam-polarized target experiment. A collaborative experiment was approved for the saearch for exotic/hybrid mesons. Investigations in quantum field theories, especially quantum chromodynamics, were contined

  12. Minimally Invasive Procedures - Direct and Video-Assisted Forms in the Treatment of Heart Diseases

    International Nuclear Information System (INIS)

    Castro, Josué Viana Neto; Melo, Emanuel Carvalho; Silva, Juliana Fernandes; Rebouças, Leonardo Lemos; Corrêa, Larissa Chagas; Germano, Amanda de Queiroz; Machado, João José Aquino

    2014-01-01

    Minimally invasive cardiovascular procedures have been progressively used in heart surgery. To describe the techniques and immediate results of minimally invasive procedures in 5 years. Prospective and descriptive study in which 102 patients were submitted to minimally invasive procedures in direct and video-assisted forms. Clinical and surgical variables were evaluated as well as the in hospital follow-up of the patients. Fourteen patients were operated through the direct form and 88 through the video-assisted form. Between minimally invasive procedures in direct form, 13 had aortic valve disease. Between minimally invasive procedures in video-assisted forms, 43 had mitral valve disease, 41 atrial septal defect and four tumors. In relation to mitral valve disease, we replaced 26 and reconstructed 17 valves. Aortic clamp, extracorporeal and procedure times were, respectively, 91,6 ± 21,8, 112,7 ± 27,9 e 247,1 ± 20,3 minutes in minimally invasive procedures in direct form. Between minimally invasive procedures in video-assisted forms, 71,6 ± 29, 99,7 ± 32,6 e 226,1 ± 42,7 minutes. Considering intensive care and hospitalization times, these were 41,1 ± 14,7 hours and 4,6 ± 2 days in minimally invasive procedures in direct and 36,8 ± 16,3 hours and 4,3 ± 1,9 days in minimally invasive procedures in video-assisted forms procedures. Minimally invasive procedures were used in two forms - direct and video-assisted - with safety in the surgical treatment of video-assisted, atrial septal defect and tumors of the heart. These procedures seem to result in longer surgical variables. However, hospital recuperation was faster, independent of the access or pathology

  13. Progress report for a research program in theoretical high-energy physics

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Guralnik, G.S.; Jevicki, A.; Kang, K.; Tan, C.I.

    1980-01-01

    The past year's research has dealt with a wide range of topics in High-Energy Theoretical Physics. Important new results have been found in the fields of large-N expansions in quantum field theories via an effective Hamiltonian technique, and by the method of classical field equations supplemented by quantum boundary conditions; finite lattice QCD at N/sub c/ = infinity; neutrino oscillations and natural flavor conservation in gauge theory; the vanishing of the renormalized effective potential in phi 4 4 theory; a new method for treating singular differential equations; and an infrared cluster expansion in quantum field theory. In addition, substantial progress has been made in the analyses of lattice gauge theories; studies of factorization properties of mass and infrared singularities in QCD: non-hermitian quantum problems in the context of Gribov field theories; symmetry breaking via contracted groups; the calculation of Cabibbo-type angles and grand unification theories; and strong-coupling methods in gauge and nongauge field theories, using a systematic, lattice-formulated, perturbation theory, and by the extraction of relevant infrared structure

  14. Investigations on quantum mechanics with minimal length

    International Nuclear Information System (INIS)

    Chargui, Yassine

    2009-01-01

    We consider a modified quantum mechanics where the coordinates and momenta are assumed to satisfy a non-standard commutation relation of the form( X i , P j ) = iℎ(δ ij (1+βP 2 )+β'P i P j ). Such an algebra results in a generalized uncertainty relation which leads to the existence of a minimal observable length. Moreover, it incorporates an UV/IR mixing and non commutative position space. We analyse the possible representations in terms of differential operators. The latter are used to study the low energy effects of the minimal length by considering different quantum systems : the harmonic oscillator, the Klein-Gordon oscillator, the spinless Salpeter Coulomb problem, and the Dirac equation with a linear confining potential. We also discuss whether such effects are observable in precision measurements on a relativistic electron trapped in strong magnetic field.

  15. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  16. Holographic fluctuations and the principle of minimal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chemissany, Wissam [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstr. 2, 30167 Hannover (Germany); Department of Mechanical Engineering, MIT,Cambridge MA 02139 (United States); Osborne, Tobias J. [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstr. 2, 30167 Hannover (Germany)

    2016-12-14

    We discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. We review the idea that the informational principle of minimal complexity determines a dual holographic bulk spacetime from a minimal quantum circuit U preparing a given boundary state from a trivial reference state. We describe how this idea may be extended to determine the relationship between the fluctuations of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system.

  17. Theoretical and computational studies in intermediadte energy nuclear physics. Progress report, November 1, 1993--October 31, 1994

    International Nuclear Information System (INIS)

    Elster, C.

    1994-08-01

    The research supported by this grant includes application of many-body scattering theory to nuclear systems and studies of few-body systems described by effective hadronic field theories. During the second year of the current grant from the US Department of Energy considerable progress was made in bringing all first order effects into the nonrelativistic elastic nucleon-nucleus scattering in a consistent fashion. This work is directed towards completely and reliably calculating the first order term in a Watson expansion including a modification through the nuclear medium. The research effort in few-body physics was concentrated on finishing a study on the sensitivity of the np backward angle differential cross section to the size of the pion nucleon coupling constant and setting up a framework to investigate the low energy behavior of energy dependent meson-exchange potentials. Completed and ongoing research efforts in the two main areas mentioned above are discussed in the following two sections

  18. Theory and phenomenology of strong and weak interaction high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Carruthers, P.; Thews, R.L.

    1988-01-01

    This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories

  19. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term

    Science.gov (United States)

    Bahamonde, Sebastian; Marciu, Mihai; Rudra, Prabir

    2018-04-01

    Within this work, we propose a new generalised quintom dark energy model in the teleparallel alternative of general relativity theory, by considering a non-minimal coupling between the scalar fields of a quintom model with the scalar torsion component T and the boundary term B. In the teleparallel alternative of general relativity theory, the boundary term represents the divergence of the torsion vector, B=2∇μTμ, and is related to the Ricci scalar R and the torsion scalar T, by the fundamental relation: R=‑T+B. We have investigated the dynamical properties of the present quintom scenario in the teleparallel alternative of general relativity theory by performing a dynamical system analysis in the case of decomposable exponential potentials. The study analysed the structure of the phase space, revealing the fundamental dynamical effects of the scalar torsion and boundary couplings in the case of a more general quintom scenario. Additionally, a numerical approach to the model is presented to analyse the cosmological evolution of the system.

  20. Separations: The path to waste minimization

    International Nuclear Information System (INIS)

    Bell, J.T.

    1992-01-01

    Waste materials usually are composed of large amounts of innocuous and frequently useful components mixed with lesser amounts of one or more hazardous components. The ultimate path to waste minimization is the separation of the lesser quantities of hazardous components from the innocuous components, and then recycle the useful components. This vision is so simple that everyone would be expected to properly manage waste. Several parameters interfere with this proper waste management, which encourages the open-quotes sweep it under the rugclose quotes or the open-quotes bury it allclose quotes attitudes, both of which delay and complicate proper waste management. The two primary parameters that interfere with proper waste management are: economics drives a process to a product without concerns of waste minimization, and emergency needs for immediate production of a product usually delays proper waste management. A third parameter in recent years is also interfering with proper waste management: quick relief of waste insults to political and public perceptions is promoting the open-quotes bury it allclose quotes attitude. A fourth parameter can promote better waste management for any scenario that suffers either or all of the first three parameters: separations technology can minimize wastes when the application of this technology is not voided by influence of the first three parameters. The US Department of Energy's management of nuclear waste has been seriously affected by the above four parameters. This paper includes several points about how the generation and management of DOE wastes have been, and continue to be, affected by these parameters. Particular separations technologies for minimizing the DOE wastes that must be stored for long periods are highlighted

  1. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  2. Annual Waste Minimization Summary Report, Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2008. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO

  3. Annual Waste Minimization Summary Report, Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2009. This report was developed in accordance with the requirements of the Nevada Test Site Resource Conservation and Recovery Act Permit (No. NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by NNSA/NSO.

  4. Annual Waste Minimization Summary Report Calendar Year 2007

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year (CY) 2007. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (number NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO

  5. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  6. Energy-aware design of digital systems

    Energy Technology Data Exchange (ETDEWEB)

    Gruian, F.

    2000-02-01

    Power and energy consumption are important issues in many digital applications, for reasons such as packaging cost and battery life-span. With the development of portable computing and communication, an increasing number of research groups are addressing power and energy related issues at various stages during the design process. Most of the work done in this area focuses on lower abstraction levels, such as gate or transistor level. Ideally, a power and energy-efficient design flow should consider the power and energy issues at every stage in the design process. Therefore, power and energy aware methods, applicable early in the design process are required. In this trend, the thesis presents two high-level design methods addressing power and energy consumption minimization. The first of the two approaches we describe, targets power consumption minimization during behavioral synthesis. This is carried out by minimizing the switching activity, while taking the correlations between signals into account. The second approach performs energy consumption minimization during system-level design, by choosing the most energy-efficient schedule and configuration of resources. Both methods make use of the constraint programming paradigm to model the problems in an elegant manner. The experimental results presented in this thesis show the impact of addressing the power and energy related issues early in the design process.

  7. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers

    International Nuclear Information System (INIS)

    Jarungthammachote, S.; Dutta, A.

    2008-01-01

    Spouted beds have been found in many applications, one of which is gasification. In this paper, the gasification processes of conventional and modified spouted bed gasifiers were considered. The conventional spouted bed is a central jet spouted bed, while the modified spouted beds are circular split spouted bed and spout-fluid bed. The Gibbs free energy minimization method was used to predict the composition of the producer gas. The major six components, CO, CO 2 , CH 4 , H 2 O, H 2 and N 2 , were determined in the mixture of the producer gas. The results showed that the carbon conversion in the gasification process plays an important role in the model. A modified model was developed by considering the carbon conversion in the constraint equations and in the energy balance calculation. The results from the modified model showed improvements. The higher heating values (HHV) were also calculated and compared with the ones from experiments. The agreements of the calculated and experimental values of HHV, especially in the case of the circular split spouted bed and the spout-fluid bed were observed

  8. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  9. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  10. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    Science.gov (United States)

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  11. Governance of the emerging bio-energy markets

    International Nuclear Information System (INIS)

    Verdonk, M.; Dieperink, C.; Faaij, A.P.C.

    2007-01-01

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  12. Governance of the emerging bio-energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M. [Department of Water and Energy, Grontmij Nederland BV, P.O. Box 203, 3730 AE, De Bilt (Netherlands); Dieperink, C. [Department of Innovation and Environmental Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands); Faaij, A.P.C. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands)

    2007-07-15

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  13. Recent developments in the DOE Waste Minimization Pollution Prevention Program

    International Nuclear Information System (INIS)

    Hancock, J.K.

    1993-01-01

    The U.S. Department of Energy (DOE) is involved in a wide variety of research and development, remediation, and production activities at more than 100 sites throughout the United States. The wastes generated cover a diverse spectrum of sanitary, hazardous, and radioactive waste streams, including typical office environments, power generation facilities, laboratories, remediation sites, production facilities, and defense facilities. The DOE's initial waste minimization activities pre-date the Pollution Prevention Act of 1990 and focused on the defense program. Little emphasis was placed on nonproduction activities. In 1991 the Office of Waste Management Operations developed the Waste Minimization Division with the intention of coordinating and expanding the waste minimization pollution prevention approach to the entire complex. The diverse nature of DOE activities has led to several unique problems in addressing the needs of waste minimization and pollution prevention. The first problem is developing a program that addresses the geographical and institutional hurdles that exist; the second is developing a monitoring and reporting mechanism that one can use to assess the overall performance of the program

  14. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  15. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  16. Nuclear energy: Where do we go from here?

    Science.gov (United States)

    Muslim, Dato'Noramly, Dr

    2015-04-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia's moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  17. Nuclear energy: Where do we go from here?

    International Nuclear Information System (INIS)

    Muslim, Dato’ Dr Noramly

    2015-01-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands

  18. Nuclear energy: Where do we go from here?

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Dato’ Dr Noramly, E-mail: noramlymuslim@yahoo.com [Visiting Professor, Universiti Tenaga Nasional, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  19. Minimal Poems Written in 1979 Minimal Poems Written in 1979

    Directory of Open Access Journals (Sweden)

    Sandra Sirangelo Maggio

    2008-04-01

    Full Text Available The reading of M. van der Slice's Minimal Poems Written in 1979 (the work, actually, has no title reminded me of a book I have seen a long time ago. called Truth, which had not even a single word printed inside. In either case we have a sample of how often excentricities can prove efficient means of artistic creativity, in this new literary trend known as Minimalism. The reading of M. van der Slice's Minimal Poems Written in 1979 (the work, actually, has no title reminded me of a book I have seen a long time ago. called Truth, which had not even a single word printed inside. In either case we have a sample of how often excentricities can prove efficient means of artistic creativity, in this new literary trend known as Minimalism.

  20. All delays before radiotherapy risk progression of Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Tsang, G.; O'Brien, P.; Robertson, R.; Hamilton, C.; Wratten, C.; Denham, J.

    2004-01-01

    Prolonged waiting times for radiotherapy have resulted in many centres assigning priorities to various patient or diagnostic groups. A high risk of progression on a waiting list is one factor that would reasonably influence the priority. The present descriptive study of 27 patients with Merkel cell carcinoma (MCC) found that a median wait of 24 days for radiotherapy is associated with a high risk of progression. Eleven (41%) of 27 patients developed progressive disease, including five (45%) of 11 patients waiting for adjuvant radiotherapy. Patients treated adjuvantly also had longer waiting times prior to their initial radiotherapy consultation (median 41 days), which may have contributed to the rate of progression. Merkel cell carcinoma is an aggressive but curable malignancy and appropriate management should include efforts to minimize all potential delays prior to the commencement of radiotherapy. Copyright (2004) Blackwell Science Pty Ltd

  1. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals.

    Science.gov (United States)

    Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y; Miller, Patrick J O

    2013-01-01

    Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.

  2. Discretized energy minimization in a wave guide with point sources

    Science.gov (United States)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  3. Pollution prevention/waste minimization program 1998 fiscal year work plan - WBS 1.11.2.1

    International Nuclear Information System (INIS)

    Howald, S.C.; Merry, D.S.

    1997-09-01

    Pollution Prevention/Waste Minimization (P2/WMin) is the Department of Energy's preferred approach to environmental management. The P2/WMin mission is to eliminate or minimize waste generation, pollutant releases to the environment, use of toxic substances, and to conserve resources by implementing cost-effective pollution prevention technologies, practices, and polices

  4. Energy entanglement relation for quantum energy teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)

    2010-07-26

    Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.

  5. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  6. Magnet field design considerations for a high energy superconducting cyclotron

    International Nuclear Information System (INIS)

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  7. Correlates of minimal dating.

    Science.gov (United States)

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  8. Wind Energy Department. Annual progress report 2001

    International Nuclear Information System (INIS)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P.

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  9. Wind Energy Department. Annual progress report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Skrumsager, B.; Larsen, S.; Hauge Madsen, P. (eds.)

    2002-10-01

    The report describes the work of the Wind Energy Department at Risoe National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2001 is shown, including lists of publications, lectures, committees and staff members. (au)

  10. Tethys and Annex IV Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Luke A.; Butner, R. Scott; Whiting, Jonathan M.; Copping, Andrea E.

    2013-09-01

    The marine and hydrokinetic (MHK) environmental Impacts Knowledge Management System, dubbed “Tethys” after the mythical Greek titaness of the seas, is being developed by the Pacific Northwest National Laboratory (PNNL) to support the U.S. Department of Energy’s Wind and Water Power Program (WWPP). Functioning as a smart database, Tethys enables its users to identify key words or terms to help gather, organize and make available information and data pertaining to the environmental effects of MHK and offshore wind (OSW) energy development. By providing and categorizing relevant publications within a simple and searchable database, Tethys acts as a dissemination channel for information and data which can be utilized by regulators, project developers and researchers to minimize the environmental risks associated with offshore renewable energy developments and attempt to streamline the permitting process. Tethys also houses a separate content-related Annex IV data base with identical functionality to the Tethys knowledge base. Annex IV is a collaborative project among member nations of the International Energy Agency (IEA) Ocean Energy Systems – Implementing Agreement (OES-IA) that examines the environmental effects of ocean energy devices and projects. The U.S. Department of Energy leads the Annex IV working with federal partners such as the Federal Energy Regulatory Commission (FERC), the Bureau of Ocean Energy Management (BOEM), and the National Oceanic Atmospheric Administration (NOAA). While the Annex IV database contains technical reports and journal articles, it is primarily focused on the collection of project site and research study metadata forms (completed by MHK researchers and developers around the world, and collected by PNNL) which provide information on environmental studies and the current progress of the various international MHK developments in the Annex IV member nations. The purpose of this report is to provide a summary of the content

  11. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  12. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    Science.gov (United States)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  13. Better Plants Progress Update Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-23

    This Progress Update summarizes the significant energy saving achievements and cumulative cost savings made by these industry leaders from 2010-2012. The update also shares the plans and priorities over the next year for the Better Plants Program to continue to advance energy efficiency in the industrial sector.

  14. Canada's climate change voluntary challenge and registry program : Suncor Energy Inc. eighth annual progress report

    International Nuclear Information System (INIS)

    2002-10-01

    A corporate profile of Suncor Energy, a Canadian integrated energy company placing the emphasis on the development of the Athabasca oil sands in northern Alberta, is provided. A message from the president reiterates the company's commitment to improving both the environmental and economic performance through innovative policies and strategic management plans. A sustainable approach to climate change has meant an effort toward reducing the emissions of greenhouse gases and improving energy use. Suncor has lowered its greenhouse gas emission intensity by 11 per cent below 1990 levels in 2001. Total reductions of 12.9 million tonnes have been achieved during the period 1990-2001. The total absolute emissions are above 1990 levels, which can be explained by tremendous production growth at Suncor Energy. Suncor has developed a seven-point plan to address the issue of climate change as follows: manage its greenhouse gas emissions, develop renewable sources of energy, invest in environmental and economic research, use domestic and foreign offsets, collaborate with governments and other stakeholder groups on policy development, educate its employees and the public on ways to respond to the risk posed by climate change, and measure and report its progress from that perspective. The document is divided into sections. The first section provides an organization profile, and section two discusses senior management support. In section three, a review of base year methodology and quantification is provided, followed by projection in section four. Target setting is the topic of section five, while section six deals with measures to achieve targets. The results achieved are highlighted in section seven. Education, training and awareness is broached in section eight, and the final section includes the statistical summary. tabs., figs

  15. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  16. Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost

    International Nuclear Information System (INIS)

    Kim, Hyung Chul; Keoleian, Gregory A.; Horie, Yuhta A.

    2006-01-01

    Although the last decade witnessed dramatic progress in refrigerator efficiencies, inefficient, outdated refrigerators are still in operation, sometimes consuming more than twice as much electricity per year compared with modern, efficient models. Replacing old refrigerators before their designed lifetime could be a useful policy to conserve electric energy and greenhouse gas emissions. However, from a life cycle perspective, product replacement decisions also induce additional economic and environmental burdens associated with disposal of old models and production of new models. This paper discusses optimal lifetimes of mid-sized refrigerator models in the US, using a life cycle optimization model based on dynamic programming. Model runs were conducted to find optimal lifetimes that minimize energy, global warming potential (GWP), and cost objectives over a time horizon between 1985 and 2020. The baseline results show that depending on model years, optimal lifetimes range 2-7 years for the energy objective, and 2-11 years for the GWP objective. On the other hand, an 18-year of lifetime minimizes the economic cost incurred during the time horizon. Model runs with a time horizon between 2004 and 2020 show that current owners should replace refrigerators that consume more than 1000 kWh/year of electricity (typical mid-sized 1994 models and older) as an efficient strategy from both cost and energy perspectives

  17. Probing gravitational non-minimal coupling with dark energy surveys

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Hsinchu (China); Lee, Chung-Chi [National Center for Theoretical Sciences, Hsinchu (China); Wu, Yi-Peng [Academia Sinica, Institute of Physics, Taipei (China)

    2017-03-15

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G{sub eff} subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G{sub eff}/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G{sub eff}/G < 2.2 x 10{sup -5} when combining with Solar System tests. (orig.)

  18. Model Arrhenius untuk Pendugaan Laju Respirasi Brokoli Terolah Minimal

    Directory of Open Access Journals (Sweden)

    Nurul Imamah

    2016-04-01

    Full Text Available Minimally processed broccoli are perishable product because it still has some metabolism process during the storage period. One of the metabolism process is respiration. Respiration rate is varied depend on the commodity and storage temperature. The purpose of this research are: to review the respiration pattern of minimally processed broccoli during storage period, to study the effect of storage temperature to respiration rate, and to review the correlation between respiration rate and temperature based on Arrhenius model. Broccoli from farming organization “Agro Segar” was processed minimally and then measure the respiration rate. Closed system method is used to measure O2 and CO2 concentration. Minimally processed broccoli is stored at a temperature of 0oC, 5oC, 10oC and 15oC. The experimental design used was completely randomized design of the factors to analyze the rate of respiration. The result shows that broccoli is a climacteric vegetable. It is indicated by the increasing of O2 consumption and CO2 production during senescence phase. The respiration rate increase as high as the increasing of temperature storage. Models Arrhenius can describe correlation between respiration rate and temperature with R2 = 0.953-0.947. The constant value of activation energy (Eai and pre-exponential factor (Roi from Arrhenius model can be used to predict the respiration rate of minimally processed broccoli in every storage temperature

  19. Proceedings of the Department of Energy Defense Programs hazardous and mixed waste minimization workshop: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1988-09-01

    The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling

  20. The progress in development and use of nuclear energy for the power in Yugoslavia

    International Nuclear Information System (INIS)

    Vrhovac, S.; Bojic, K.; Fabijancic, A.; Medvedec, I.; Vujovic, D.

    1984-01-01

    Nuclear power plant Krsko from 1982, produces the power which is very useful for the electric power system of the country. At the same time, the investors of the nuclear power plants from republics and autonomous provinces of Yugoslavia have organized the construction of series of nuclear power plants up to 2000. The purpose of this report is to explain those activities which have initiated the process of development and the use of energy for the power in Yugoslavia, and to continue the attempts to place the near future to the progress of this process. The base of these efforts has to be solving the very problem of decision making regarding the best solution of nuclear fuel cycle, the type of nuclear power plants in Yugoslavia and their construction. (author)

  1. A program in medium energy nuclear physics. Progress report and continuation proposal October 1, 1995

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1995-01-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the ρ Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on 3 He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline

  2. Waste Minimization Policy at the Romanian Nuclear Power Plant

    International Nuclear Information System (INIS)

    Andrei, V.; Daian, I.

    2002-01-01

    The radioactive waste management system at Cernavoda Nuclear Power Plant (NPP) in Romania was designed to maintain acceptable levels of safety for workers and to protect human health and the environment from exposure to unacceptable levels of radiation. In accordance with terminology of the International Atomic Energy Agency (IAEA), this system consists of the ''pretreatment'' of solid and organic liquid radioactive waste, which may include part or all of the following activities: collection, handling, volume reduction (by an in-drum compactor, if appropriate), and storage. Gaseous and aqueous liquid wastes are managed according to the ''dilute and discharge'' strategy. Taking into account the fact that treatment/conditioning and disposal technologies are still not established, waste minimization at the source is a priority environmental management objective, while waste minimization at the disposal stage is presently just a theoretical requirement for future adopted technologies . The necessary operational and maintenance procedures are in place at Cernavoda to minimize the production and contamination of waste. Administrative and technical measures are established to minimize waste volumes. Thus, an annual environmental target of a maximum 30 m3 of radioactive waste volume arising from operation and maintenance has been established. Within the first five years of operations at Cernavoda NPP, this target has been met. The successful implementation of the waste minimization policy has been accompanied by a cost reduction while the occupational doses for plant workers have been maintained at as low as reasonably practicable levels. This paper will describe key features of the waste management system along with the actual experience that has been realized with respect to minimizing the waste volumes at the Cernavoda NPP

  3. Health Physics and Waste Minimization Best Practices benchmarking study

    International Nuclear Information System (INIS)

    Levin, V.

    1995-01-01

    The Health Physics and Waste Minimization Best Practices project examines the usefulness of benchmarking as a tool for identifying health physics and waste minimization best practices for low-level solid radioactive waste (LLW) in the U.S. Department of Energy (DOE) complex. The goal of the project is to identify best practices from the nuclear power industry that will reduce the amount of LLW going to disposal in a cost-effective manner. An increase in worker efficiency and productivity is a secondary goal. These practices must be adaptable for implementation in the DOE complex. Once best practices are identified, ranked, and funded for implementation, a pilot implementation will be done at the Chemistry and Metallurgy Research (CMR) building at Los Alamos National Laboratory

  4. An Efficiency Improved Active Power Decoupling Circuit with Minimized Implementation Cost

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2014-01-01

    topology does not require additional passive component, e.g. inductors or film capacitors for ripple energy storage because this task can be accomplished by the dc-link capacitors themselves, and therefore its implementation cost can be minimized. Another unique feature of the proposed topology...

  5. The simplest non-minimal matter-geometry coupling in the f(R, T) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, P.H.R.S. [ITA - Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Paulo (Brazil); Sahoo, P.K. [Birla Institute of Technology and Science-Pilani, Department of Mathematics, Hyderabad (India)

    2017-07-15

    f(R, T) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(R, T) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter-geometry coupling within the f(R, T) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter-geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(R, T) formalism in order to check its reliability in other fields, rather than cosmology. (orig.)

  6. The simplest non-minimal matter-geometry coupling in the f(R, T) cosmology

    International Nuclear Information System (INIS)

    Moraes, P.H.R.S.; Sahoo, P.K.

    2017-01-01

    f(R, T) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(R, T) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter-geometry coupling within the f(R, T) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter-geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(R, T) formalism in order to check its reliability in other fields, rather than cosmology. (orig.)

  7. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  8. Asymptotically safe non-minimal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tronconi, Alessandro, E-mail: Alessandro.Tronconi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)

    2017-07-01

    We study the constraints imposed by the requirement of Asymptotic Safety on a class of inflationary models with an inflaton field non-minimally coupled to the Ricci scalar. The critical surface in the space of theories is determined by the improved renormalization group flow which takes into account quantum corrections beyond the one loop approximation. The combination of constraints deriving from Planck observations and those from theory puts severe bounds on the values of the parameters of the model and predicts a quite large tensor to scalar ratio. We finally comment on the dependence of the results on the definition of the infrared energy scale which parametrises the running on the critical surface.

  9. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    Extensive fossil fuel consumption in almost all human activities led to some undesirable phenomena such as atmospheric and environmental pollutions, which have not been experienced before in known human history. Consequently, global warming, greenhouse affect, climate change, ozone layer depletion and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel uses because they emit greenhouse gases such as carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) which hinder the long wave terrestrial radiation to escape into space, and consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or more significantly to replace fossil fuel usage as much as possible with environmentally friendly, clean and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance, and more evenly distribution in nature than any other renewable energy types such as wind, geothermal, hydro, wave and tidal energies. It must be the main and common purpose of humanity to sustain environment for the betterment of future generations with sustainable energy developments. On the other hand, the known limits of fossil fuels compel the societies of the world in the long run to work jointly for their gradual replacement by renewable energy alternatives rather than the quality improvement of fossil sources. Solar radiation is an integral part of different renewable energy resources. It is the main and continuous input variable from practically inexhaustible sun. Solar energy is expected to play a very significant role in the future especially in developing countries, but it has also potential prospects for developed

  10. Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Significantly improving energy efficiency remains a priority for all countries. Meetings of G8 leaders and IEA ministers reaffirmed the critical role that improved energy efficiency can play in addressing energy security, environmental and economic challenges. Many IEA publications have also documented the essential role of energy efficiency. For example, the World Energy Outlook and the Energy Technology Perspectives reports identify energy efficiency as the most significant contributor to achieving energy security, economic and environmental goals. Energy efficiency is clearly the “first fuel” in the delivery of energy services in the coming low-carbon energy future. To support governments in their implementation of energy efficiency, the IEA recommended the adoption of specific energy efficiency policy measures to the G8 summits in 2006, 2007 and 2008. The consolidated set of recommendations to these summits is known as the ‘IEA 25 energy efficiency policy recommendations’ because it covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and energy utilities. The IEA estimates that if implemented globally without delay, the proposed actions could save as much as 7.6 giga tonnes (Gt) CO2/year by 2030 – almost 1.5 times the current annual carbon dioxide (CO2) emissions of the United States. The IEA 25 energy efficiency policy recommendations were developed to address policy gaps and priorities. This has two implications. First, the recommendations do not cover the full range of energy efficiency policy activity possible. Rather, they focus on priority energy efficiency policies identified by IEA analysis. Second, while IEA analysis, the energy efficiency professional literature and engagement with experts clearly demonstrate the broad benefits of these IEA priority measures, the recommendations are not weighted to reflect the different energy end-use make up of different

  11. Renewable energy research progress in Mexico: A review

    OpenAIRE

    ALEMÁN-NAVA Gibrán S. Alemán-Nava; CASIANO-FLORES Victor H.; CARDENAS-CHAVEZ Diana L.; DÍAZ-CHAVEZ Rocío; SCARLAT NICOLAE; MAHLKNECHT Jürgen; DALLEMAND Jean-Francois; PARRA Roberto

    2013-01-01

    Mexico ranks 9th in the world in crude oil reserves, 4th in natural gas reserves in America and it is also highly rich in renewable energy sources (solar, wind, biomasss, hydropower and geothermal). However, the potential of this type of energy has not been fully exploited. Hydropower is the renewable energy source with the highest installed capacity within the country (11,603 MW), while geothermal power capacity (958 MW) makes Mexico to be ranked 4th in the use of this energy worldwide. Wind...

  12. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  13. Minimizing Mutual Couping

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna.......Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna....

  14. Nuclear-structure studies by the scattering of medium-energy electrons. Progress report, October 1, 1980-July 31, 1981

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1981-08-01

    Electron scattering experiments are in progress at the Bates Linear Accelerator in Middleton, Massachusetts. Both magnetic elastic and transverse inelastic scattering cross sections have been measured at 180 0 by the apparatus constructed and brought into operation in late 1977 by the University of Massachusetts. A liquid-nitrogen-cooled gas target is being used in a study of deuteron elastic scattering and electrodisintegration over a large energy range. A measurement of elastic magnetic and transverse inelastic scattering from 14 N has been started. Measurements of the elastic magnetic scattering from 13 C, 15 N, 27 Al, 29 Si, and 31 P have been completed. The data set on 15 N inelastic scattering are now complete and analysis of the data is in progress. A study of M8 transitions in 54 Fe and 60 Ni is nearing completion. A measurement of the transverse quasielastic scattering from 56 Fe has been started. Planning for an experiment utilizing radioactive 14 C is underway. Large-basis shell model calculations pertaining to the above nuclei and others have been made. Theoretical calculations of exchange currents, nuclear convection currents, and other nuclear phenomena are in progress. Finally, considerations are being given to the design of an integrated storage-ring-experimental system

  15. Self-organization, free energy minimization, and optimal grip on a field of affordances.

    Science.gov (United States)

    Bruineberg, Jelle; Rietveld, Erik

    2014-01-01

    In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism's tendency toward an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston's work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the system "brain-body-landscape of affordances." Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism's selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients.

  16. Effects of energy related activities on the plankton of the Chesapeake Bay. Section 1. Progress report, 1 August 1976--30 September 1977

    International Nuclear Information System (INIS)

    Taft, J.L.

    1977-01-01

    Progress is reported on a comprehensive study of the ecology of the Chesapeake Bay estuary system. Emphasis is placed on seasonal variations of initial energy fixation by phytoplankton primary producers and subsequent energy transfer to herbivours and becterial heterotrophs. The impact of chemical and radioactive effluents from electric power plants on the ecology of Chesapeake Bay will be assessed. Data are included on the role of plankton metabolism in regenerating nutrients, nutrient exchange with sediments, and the role of micro-zooplankton in nutrient cycling

  17. What drives energy consumers? : Engaging people in a sustainable energy transition

    NARCIS (Netherlands)

    Steg, Linda; Shwom, Rachel; Dietz, Thomas

    Providing clean, safe, reliable, and affordable energy for people everywhere will require converting to an energy system in which the use of fossil fuels is minimal. A sustainable energy transition means substantial changes in technology and the engagement of the engineering community. But it will

  18. Thermodynamic analysis of ethanol/water system in a fuel cell reformer with the Gibbs energy minimization method

    International Nuclear Information System (INIS)

    Lima da Silva, Aline; De Fraga Malfatti, Celia; Heck, Nestor Cesar

    2003-01-01

    The use of fuel cells is a promising technology in the conversion of chemical to electrical energy. Due to environmental concerns related to the reduction of atmospheric pollution and greenhouse gases emissions such as CO 2 , NO x and hydrocarbons, there have been many researches about fuel cells using hydrogen as fuel. Hydrogen gas can be produced by several routes; a promising one is the steam reforming of ethanol. This route may become an important industrial process, especially for sugarcane producing countries. Ethanol is renewable energy and presents several advantages over other sources related to natural availability, storage and handling safety. In order to contribute to the understanding of the steam reforming of ethanol inside the reformer, this work displays a detailed thermodynamic analysis of the ethanol/water system, in the temperature range of 500-1200K, considering different H 2 O/ethanol reforming ratios. The equilibrium determinations were done with the help of the Gibbs energy minimization method using the Generalized Reduced Gradient algorithm (GRG). Based on literature data, the species considered in calculations were: H 2 , H 2 O, CO, CO 2 , CH 4 , C 2 H 4 , CH 3 CHO, C 2 H 5 OH (gas phase) and C gr . (graphite phase). The thermodynamic conditions for carbon deposition (probably soot) on catalyst during gas reforming were analyzed, in order to establish temperature ranges and H 2 O/ethanol ratios where carbon precipitation is not thermodynamically feasible. Experimental results from literature show that carbon deposition causes catalyst deactivation during reforming. This deactivation is due to encapsulating carbon that covers active phases on a catalyst substrate, e.g. Ni over Al 2 O 3 . In the present study, a mathematical relationship between Lagrange multipliers and the carbon activity (with reference to the graphite phase) was deduced, unveiling the carbon activity in the reformer atmosphere. From this, it is possible to foreseen if soot

  19. Neutral Higgs bosons in the standard model and in the minimal ...

    Indian Academy of Sciences (India)

    assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including. CP violation in the Higgs sector. Keywords. Higgs bosons; standard model; minimal supersymmetric model; searches at LEP. 1. Introduction. One of the challenges in high-energy particle physics is the discovery of Higgs bosons.

  20. Waste minimization/pollution prevention study of high-priority waste streams

    International Nuclear Information System (INIS)

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M ampersand C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division's pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M ampersand C staff members empowered by the Division Director to study specific waste streams

  1. Minimal residual method stronger than polynomial preconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others

    1994-12-31

    Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.

  2. Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand

    International Nuclear Information System (INIS)

    Adeyemi, Olutomi I.; Hunt, Lester C.

    2014-01-01

    This paper explores the way technical progress and improvements in energy efficiency are captured when modelling OECD industrial energy demand. The industrial sectors of the developed world involve a number of different practices and processes utilising a range of different technologies. Consequently, given the derived demand nature of energy, it is vital when modelling industrial energy demand that the impact of technical progress is appropriately captured. However, the energy economics literature does not give a clear guide on how this can be achieved; one strand suggests that technical progress is ‘endogenous’ via asymmetric price responses whereas another strand suggests that it is ‘exogenous’. More recently, it has been suggested that potentially there is a role for both ‘endogenous’ technical progress and ‘exogenous’ technical progress and consequently the general model should be specified accordingly. This paper therefore attempts to model OECD industrial energy demand using annual time series data over the period 1962–2010 for 15 OECD countries. Using the Structural Time Series Model framework, the general specifications allow for both asymmetric price responses (for technical progress to impact endogenously) and an underlying energy demand trend (for technical progress and other factors to impact exogenously, but in a non-linear way). The results show that almost all of the preferred models for OECD industrial energy demand incorporate both a stochastic underlying energy demand trend and asymmetric price responses. This gives estimated long-run income elasticities in the range of 0.34 to 0.96; estimated long-run price-maximum elasticities in the range of − 0.06 to − 1.22; estimated long-run price-recovery elasticities in the range of 0.00 to − 0.27; and estimated long-run price-cut elasticities in the range of 0.00 to − 0.18. Furthermore, the analysis suggests that when modelling industrial energy demand there is a place for

  3. Probing gravitational non-minimal coupling with dark energy surveys

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Wu, Yi-Peng

    2017-01-01

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G_e_f_f subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G_e_f_f/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G_e_f_f/G < 2.2 x 10"-"5 when combining with Solar System tests. (orig.)

  4. Recent progress on laser acceleration research

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Dewa, Hideki; Hosokai, Tomonao; Kanazawa, Shuhei; Kando, Masaki; Kondoh, Shuji; Kotaki, Hideyuki

    2000-01-01

    Recently there has been a tremendous experimental progress in ultrahigh field particle acceleration driven by ultraintense laser pulses in plasmas. A design of the laser wakefield accelerators aiming at GeV energy gains is discussed by presenting our recent progress on the laser wakefield acceleration experiments, the developments of high quality electron beam injectors and the capillary plasma waveguide for optical guiding of ultrashort intense laser pulses. (author)

  5. Limit behavior of mass critical Hartree minimization problems with steep potential wells

    Science.gov (United States)

    Guo, Yujin; Luo, Yong; Wang, Zhi-Qiang

    2018-06-01

    We consider minimizers of the following mass critical Hartree minimization problem: eλ(N ) ≔inf {u ∈H1(Rd ) , ‖u‖2 2=N } Eλ(u ) , where d ≥ 3, λ > 0, and the Hartree energy functional Eλ(u) is defined by Eλ(u ) ≔∫Rd|∇u (x ) |2d x +λ ∫Rdg (x ) u2(x ) d x -1/2 ∫Rd∫Rdu/2(x ) u2(y ) |x -y |2 d x d y . Here the steep potential g(x) satisfies 0 =g (0 ) =infRdg (x ) ≤g (x ) ≤1 and 1 -g (x ) ∈Ld/2(Rd ) . We prove that there exists a constant N* > 0, independent of λg(x), such that if N ≥ N*, then eλ(N) does not admit minimizers for any λ > 0; if 0 N N*, then there exists a constant λ*(N) > 0 such that eλ(N) admits minimizers for any λ > λ*(N) and eλ(N) does not admit minimizers for 0 N). For any given 0 N N*, the limit behavior of positive minimizers for eλ(N) is also studied as λ → ∞, where the mass concentrates at the bottom of g(x).

  6. High energy physics at Tufts University: Progress report, July 16, 1987--July 15, 1988

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1988-01-01

    The past year is best characterized in production terms: the Tufts High Energy Physics Group has participated significantly in the successful manufacture of a great mass of raw scientific data and of a major detector system. In summary: the fixed-target study of charm production at Fermilab---Experiment E-769---has yielded upwards of 500 million recorded triggers on some 10 4 standard computer tapes, far more events than planned and a landmark in online data acquisition at an accelerator. The Fermilab 15-foot hydrogen-neon bubble chamber exposure to neutrinos---E-632---has concluded its second and final run yielding interactions from the Tevatron-neutrino spectrum generated by more than 4 /times/ 10 17 protons on target. This set of filmed events is unique for its high neutrino energy and is, moreover, augmented by electronic data identifying energetic muons from charged-current processes and by subsets of high-resolution recordings from specialized holographic and conventional cameras. The Soudan-II nucleon decay program has brought significant portions of its central calorimeter and its Tufts-manufactured veto shield into operation on-line and is preparing to enter an extended data-collection period this summer. These experimental accomplishments, each of them as part of an international collaboration, promise us a flow of new and interesting results during the coming years. Our small theory sub-group continues its prolific activities in several areas of high energy phenomenology. Our progress in each of these activities will be described in more detail in the report

  7. Progressive changes in patients with skeletal Class III malocclusion treated by 2-jaw surgery with minimal and conventional presurgical orthodontics: A comparative study.

    Science.gov (United States)

    Zhou, Yang; Li, Zili; Wang, Xiaoxia; Zou, Bingshuang; Zhou, Yanheng

    2016-02-01

    In this study, we aimed to compare treatment efficacy and postsurgical stability between minimal presurgical orthodontics and conventional presurgical orthodontics for patients with skeletal Class III malocclusion. Forty patients received minimal presurgical orthodontics (n = 20) or conventional presurgical orthodontics (n = 20). Lateral cephalograms were obtained before treatment, before orthognathic surgery, and at 1 week, 3 months, 6 months, and 12 months after surgery. Changes of overjet and mandibular incisal angle before surgery were greater in the conventional presurgical orthodontics group than in the minimal presurgical orthodontics group. Postsurgical horizontal changes in Points A and B, overjet, and mandibular incisal angle showed significant differences among the time points. Most of the horizontal and vertical relapses in the maxilla and the mandible occurred within the first 6 months in both groups. Minimal presurgical orthodontics and conventional presurgical orthodontics showed similar extents and directions of skeletal changes in patients with Class III malocclusion. However, orthodontists and surgeons should preoperatively consider the postsurgical counterclockwise rotation of the mandible when using minimal presurgical orthodontics. Close and frequent observations are recommended in the early postsurgical stages. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  8. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  9. Relationship between Admission Selection Criteria and Academic Progression for Student Nurse Anesthetists

    Science.gov (United States)

    Burns, Sharon M.

    2009-01-01

    Today's admission selection criteria require refinement with the intention of fostering academic progression for students entering nurse anesthesia programs (Reese, 2002).With the escalating cost of graduate education coupled with the current economic crisis, efforts by educational leaders to minimize attrition remains pivotal (Andrews, Johansson,…

  10. Wind Energy Department annual progress report 2002

    DEFF Research Database (Denmark)

    2004-01-01

    This report covers the scientific work of the Wind Energy Department in 2002. It contains departmental programmes as well as brief summaries of all non-confidential projects and a review of this year’s key issues.......This report covers the scientific work of the Wind Energy Department in 2002. It contains departmental programmes as well as brief summaries of all non-confidential projects and a review of this year’s key issues....

  11. Wind Energy Department annual progress report 2003

    DEFF Research Database (Denmark)

    2004-01-01

    This report covers the scientific work of the Wind Energy Department in 2003. It comprises departmental programmes as well as brief summaries of all non-confidential projects and a review of the key issues of 2003.......This report covers the scientific work of the Wind Energy Department in 2003. It comprises departmental programmes as well as brief summaries of all non-confidential projects and a review of the key issues of 2003....

  12. Appearance of a Minimal Length in $e^+ e^-$ Annihilation

    CERN Document Server

    Dymnikova, Irina; Ulbricht, Jürgen

    2014-01-01

    Experimental data reveal with a 5$\\sigma$ significance the existence of a characteristic minimal length $l_e$= 1.57 × 10$^{−17}$ cm at the scale E = 1.253 TeV in the annihilation reaction $e^+e^- \\to \\gamma\\gamma(\\gamma)$ . Nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratio g=2 . Its internal structure includes a rotating equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives some idea about the physical origin of a minimal length in annihilation.

  13. Experimental Medium Energy Physics annual progress report, June 1984-May 1985

    International Nuclear Information System (INIS)

    1985-01-01

    During the past year the principal activities of the CMU Medium Energy Physics Group have included the running of three previously approved experiments, the development of hardware and software for these experiments, and final analysis of previously accumulated data. In a two week run at LEAR at the beginning of this year 100 data tapes were collected on experiment PS-185. This spring sigma hyperon production in Lithium was studied in a run on AGS experiment E-774. We are currently setting up AGS experiment E-788 in an investigation of Lambda weak decay in Helium hypernuclei. In addition a new experiment to search for strangeness S = -2 dibaryon production was presented and approved by the AGS program advisory committee for 1000 h (E-813). For these experiments extensive hardware and software development has taken place, requiring much of the group's effort. Analysis of LEAR experiment PS-185 is in full progress at CMU. Both the weak decay studies of 12 C (AGS E-759) and the pion annihilation studies in Lithium and Oxygen have now been fully analyzed with the results submitted for publication in several papers. All of these activities are described. Specific hardware and software projects are discussed

  14. Progress during ten years of National Laboratory for High Energy Physics

    International Nuclear Information System (INIS)

    1981-01-01

    Ten years have elapsed since the birth of the National Laboratory for High Energy Physics. For the growth to the present status, the researchers concerned, the Science Council of Japan, the Ministry of Education, the National Diet and many enterprises, all contributed greatly. The proton synchrotron was completed as scheduled, and its performance largely exceeded the initial target. The results of the common utilization experiments started in 1977 have been obtained successively, and the applied research other than the field of elementary particles also has advanced along the right line steadily, such as booster utilization facility and radiated beam experiment facility. In this year, the construction of the Tristan project has been started, and the pet name ''KEK'' is internationally well known now. The 21st century is said to be the age of elementary particles, and the mission and responsibility put on the researchers concerned will be heavier. In this book, the progress of the KEK during ten years is reviewed, and many persons who took part in the establishment of the KEK contributed their memoirs. Also, the round-table talk held on this occasion, the history of each research group, the future plans, the results of researches and the related materials are described. (Kako, I.)

  15. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  16. Biogas Opportunities Roadmap Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-01

    In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.

  17. Tools for tracking progress. Indicators for sustainable energy development

    International Nuclear Information System (INIS)

    Khan, A.; Rogner, H.H.; Aslanian, G.

    2000-01-01

    A project on 'Indicators for Sustainable Energy Development (ISED)' was introduced by the IAEA as a part of its work programme on Comparative Assessment of Energy Sources for the biennium 1999-2000. It is being pursued by the Planning and Economic Studies Section of the Department of Nuclear Energy. The envisaged tasks are to: (1) identify the main components of sustainable energy development and derive a consistent set of appropriate indicators, keeping in view the indicators for Agenda 21, (2) establish relationship of ISED with those of the Agenda 21, and (3) review the Agency's databases and tools to determine the modifications required to apply the ISED. The first two tasks are being pursued with the help of experts from various international organizations and Member States. In this connection two expert group meetings were held, one in May 1999 and the other in November 1999. The following nine topics were identified as the key issues: social development; economic development; environmental congeniality and waste management; resource depletion; adequate provision of energy and disparities; energy efficiency; energy security; energy supply options; and energy pricing. A new conceptual framework model specifically tuned to the energy sector was developed, drawing upon work by other organizations in the environmental area. Within the framework of this conceptual model, two provisional lists of ISED - a full list and a core list - have been prepared. They cover indicators for the following energy related themes and sub-themes under the economic, social and environmental dimensions of sustainable energy development: Economic dimension: Economic activity levels; End-use energy intensities of selected sectors and different manufacturing industries; energy supply efficiency; energy security; and energy pricing. Social dimension: Energy accessibility and disparities. Environmental dimension: Air pollution (urban air quality; global climate change concern); water

  18. Legal incentives for minimizing waste

    International Nuclear Information System (INIS)

    Clearwater, S.W.; Scanlon, J.M.

    1991-01-01

    Waste minimization, or pollution prevention, has become an integral component of federal and state environmental regulation. Minimizing waste offers many economic and public relations benefits. In addition, waste minimization efforts can also dramatically reduce potential criminal requirements. This paper addresses the legal incentives for minimizing waste under current and proposed environmental laws and regulations

  19. Minimization of energy and surface roughness of the products machined by milling

    Science.gov (United States)

    Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.

    2017-08-01

    Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.

  20. MOCUS, Minimal Cut Sets and Minimal Path Sets from Fault Tree Analysis

    International Nuclear Information System (INIS)

    Fussell, J.B.; Henry, E.B.; Marshall, N.H.

    1976-01-01

    1 - Description of problem or function: From a description of the Boolean failure logic of a system, called a fault tree, and control parameters specifying the minimal cut set length to be obtained MOCUS determines the system failure modes, or minimal cut sets, and the system success modes, or minimal path sets. 2 - Method of solution: MOCUS uses direct resolution of the fault tree into the cut and path sets. The algorithm used starts with the main failure of interest, the top event, and proceeds to basic independent component failures, called primary events, to resolve the fault tree to obtain the minimal sets. A key point of the algorithm is that an and gate alone always increases the number of path sets; an or gate alone always increases the number of cut sets and increases the size of path sets. Other types of logic gates must be described in terms of and and or logic gates. 3 - Restrictions on the complexity of the problem: Output from MOCUS can include minimal cut and path sets for up to 20 gates