Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.
Heald, Emerson F.
1978-01-01
Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)
International Nuclear Information System (INIS)
Choi, C. Y.
1997-01-01
A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis
Evaluation of the accuracy of the free-energy-minimization method
International Nuclear Information System (INIS)
Najafabadi, R.; Srolovitz, D.J.
1995-01-01
We have made a detailed comparison between three competing methods for determining the free energies of solids and their defects: the thermodynamic integration of Monte Carlo (TIMC) data, the quasiharmonic (QH) model, and the free-energy-minimization (FEM) method. The accuracy of these methods decreases from the TIMC to QH to FEM method, while the computational efficiency improves in that order. All three methods yield perfect crystal lattice parameters and free energies at finite temperatures which are in good agreement for three different Cu interatomic potentials [embedded atom method (EAM), Morse and Lennard-Jones]. The FEM error (relative to the TIMC) in the (001) surface free energy and in the vacancy formation energy were found to be much larger for the EAM potential than for the other two potentials. Part of the errors in the FEM determination of the free energies are associated with anharmonicities in the interatomic potentials, with the remainder attributed to decoupling of the atomic vibrations. The anharmonicity of the EAM potential was found to be unphysically large compared with experimental vacancy formation entropy determinations. Based upon these results, we show that the FEM method provides a reasonable compromise between accuracy and computational demands. However, the accuracy of this approach is sensitive to the choice of interatomic potential and the nature of the defect to which it is being applied. The accuracy of the FEM is best in high-symmetry environments (perfect crystal, high-symmetry defects, etc.) and when used to describe materials where the anharmonicity is not too large
International Nuclear Information System (INIS)
Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun
2014-01-01
Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models
A Method for Online Steady State Energy Minimization with Application to Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, Lars Finn Slot; Thybo, Claus; Stoustrup, Jakob
2004-01-01
Energy efficiency of refrigeration systems has gradually been improved with the help of control schemes utilizing the more flexible components; the efficiency is though yet far from optimal. The flexibility initiates a higher degree of freedom in choosing the operating set points while obtaining...... applies to a broader range of process systems where the lower level set-points (in the control hierarchy) can be chosen within a degree of freedom allowing an optimization of a steady state performance index....
Economic and energy assessment of minimalized soil tillage methods in maize cultivation
Piotr Szulc; Andrzej Dubas
2014-01-01
Grain yield of maize cultivated in the years 1997-2009 in monoculture and with annual tillage simplifications was assessed in energy and economy terms. Effects of no-tillage system and direct sowing (D) with cultivation with autumn deep (A) and shallow (B) ploughing and cultivation with spring pre-sowing ploughing (C) were compared. It was demonstrated that the 13-year maize grain yield in no-tillage system and direct sowing was lower by 10.4% than the yield obtained in conventional tillage s...
Fast online generalized multiscale finite element method using constraint energy minimization
Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat
2018-02-01
Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.
Waste minimization in analytical methods
International Nuclear Information System (INIS)
Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S. Schilling, J.B.
1995-01-01
The US Department of Energy (DOE) will require a large number of waste characterizations over a multi-year period to accomplish the Department's goals in environmental restoration and waste management. Estimates vary, but two million analyses annually are expected. The waste generated by the analytical procedures used for characterizations is a significant source of new DOE waste. Success in reducing the volume of secondary waste and the costs of handling this waste would significantly decrease the overall cost of this DOE program. Selection of appropriate analytical methods depends on the intended use of the resultant data. It is not always necessary to use a high-powered analytical method, typically at higher cost, to obtain data needed to make decisions about waste management. Indeed, for samples taken from some heterogeneous systems, the meaning of high accuracy becomes clouded if the data generated are intended to measure a property of this system. Among the factors to be considered in selecting the analytical method are the lower limit of detection, accuracy, turnaround time, cost, reproducibility (precision), interferences, and simplicity. Occasionally, there must be tradeoffs among these factors to achieve the multiple goals of a characterization program. The purpose of the work described here is to add waste minimization to the list of characteristics to be considered. In this paper the authors present results of modifying analytical methods for waste characterization to reduce both the cost of analysis and volume of secondary wastes. Although tradeoffs may be required to minimize waste while still generating data of acceptable quality for the decision-making process, they have data demonstrating that wastes can be reduced in some cases without sacrificing accuracy or precision
Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F
2018-05-22
We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.
International Nuclear Information System (INIS)
Okano, Yasushi
1999-08-01
In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen
Minimal nuclear energy density functional
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas
2018-04-01
We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.
International Nuclear Information System (INIS)
Lima da Silva, Aline; De Fraga Malfatti, Celia; Heck, Nestor Cesar
2003-01-01
The use of fuel cells is a promising technology in the conversion of chemical to electrical energy. Due to environmental concerns related to the reduction of atmospheric pollution and greenhouse gases emissions such as CO 2 , NO x and hydrocarbons, there have been many researches about fuel cells using hydrogen as fuel. Hydrogen gas can be produced by several routes; a promising one is the steam reforming of ethanol. This route may become an important industrial process, especially for sugarcane producing countries. Ethanol is renewable energy and presents several advantages over other sources related to natural availability, storage and handling safety. In order to contribute to the understanding of the steam reforming of ethanol inside the reformer, this work displays a detailed thermodynamic analysis of the ethanol/water system, in the temperature range of 500-1200K, considering different H 2 O/ethanol reforming ratios. The equilibrium determinations were done with the help of the Gibbs energy minimization method using the Generalized Reduced Gradient algorithm (GRG). Based on literature data, the species considered in calculations were: H 2 , H 2 O, CO, CO 2 , CH 4 , C 2 H 4 , CH 3 CHO, C 2 H 5 OH (gas phase) and C gr . (graphite phase). The thermodynamic conditions for carbon deposition (probably soot) on catalyst during gas reforming were analyzed, in order to establish temperature ranges and H 2 O/ethanol ratios where carbon precipitation is not thermodynamically feasible. Experimental results from literature show that carbon deposition causes catalyst deactivation during reforming. This deactivation is due to encapsulating carbon that covers active phases on a catalyst substrate, e.g. Ni over Al 2 O 3 . In the present study, a mathematical relationship between Lagrange multipliers and the carbon activity (with reference to the graphite phase) was deduced, unveiling the carbon activity in the reformer atmosphere. From this, it is possible to foreseen if soot
DEFF Research Database (Denmark)
Schneller, Mikkel Bo; Pedersen, Mogens Theisen; Gupta, Nidhi
2015-01-01
We compared the accuracy of five objective methods, including two newly developed methods combining accelerometry and activity type recognition (Acti4), against indirect calorimetry, to estimate total energy expenditure (EE) of different activities in semi-standardized settings. Fourteen particip...
DEFF Research Database (Denmark)
Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan
2015-01-01
This study proposes an optimal control method for variable speed wind turbines (VSWTs) based wind farm (WF) to support temporary primary frequency control. This control method consists of two layers: temporary frequency support control (TFSC) of the VSWT, and temporary support power optimal...... dispatch (TSPOD) of the WF. With TFSC, the VSWT could temporarily provide extra power to support system frequency under varying and wide-range wind speed. In the WF control centre, TSPOD optimally dispatches the frequency support power orders to the VSWTs that operate under different wind speeds, minimises...... the wind energy cost of frequency support, and satisfies the support capabilities of the VSWTs. The effectiveness of the whole control method is verified in the IEEE-RTS built in MATLABSimulink, and compared with a published de-loading method....
Directory of Open Access Journals (Sweden)
Shanshan He
2015-10-01
Full Text Available Piecewise linear (G01-based tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1 an improved technique for initial control point determination over Dominant Point Method, (2 an algorithm that updates foot point parameters as needed, (3 analysis of the degrees of freedom of control points to insert new control points only when needed, (4 chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.
Microgrids: Energy management by loss minimization technique
Energy Technology Data Exchange (ETDEWEB)
Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)
2011-07-01
Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.
He, Shanshan; Ou, Daojiang; Yan, Changya; Lee, Chen-Han
2015-01-01
Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical...
Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization
Fornasier, Massimo
2009-01-01
This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Minimizing convex functions by continuous descent methods
Directory of Open Access Journals (Sweden)
Sergiu Aizicovici
2010-01-01
Full Text Available We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.
Energy minimization in medical image analysis: Methodologies and applications.
Zhao, Feng; Xie, Xianghua
2016-02-01
Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.
Periodic-cylinder vesicle with minimal energy
International Nuclear Information System (INIS)
Xiao-Hua, Zhou
2010-01-01
We give some details about the periodic cylindrical solution found by Zhang and Ou-Yang in [1996 Phys. Rev. E 53 4206] for the general shape equation of vesicle. Three different kinds of periodic cylindrical surfaces and a special closed cylindrical surface are obtained. Using the elliptic functions contained in mathematic, we find that this periodic shape has the minimal total energy for one period when the period–amplitude ratio β ≈ 1.477, and point out that it is a discontinuous deformation between plane and this periodic shape. Our results also are suitable for DNA and multi-walled carbon nanotubes (MWNTs). (cross-disciplinary physics and related areas of science and technology)
Wormholes minimally violating the null energy condition
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-López, Mariam [Departamento de Física, Universidade da Beira Interior, 6200 Covilhã (Portugal); Lobo, Francisco S N; Martín-Moruno, Prado, E-mail: mariam.bouhmadi@ehu.es, E-mail: fslobo@fc.ul.pt, E-mail: pmmoruno@fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal)
2014-11-01
We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted {sup t}he little sibling of the big rip{sup ,} where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyse the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalization of the equation of state considered above and analyse the respective stability regions. In particular, we obtain a specific wormhole solution with an asymptotic behaviour corresponding to a global monopole.
Minimal residual method stronger than polynomial preconditioning
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others
1994-12-31
Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.
Efficient modified Jacobi relaxation for minimizing the energy functional
International Nuclear Information System (INIS)
Park, C.H.; Lee, I.; Chang, K.J.
1993-01-01
We present an efficient scheme of diagonalizing large Hamiltonian matrices in a self-consistent manner. In the framework of the preconditioned conjugate gradient minimization of the energy functional, we replace the modified Jacobi relaxation for preconditioning and use for band-by-band minimization the restricted-block Davidson algorithm, in which only the previous wave functions and the relaxation vectors are included additionally for subspace diagonalization. Our scheme is found to be comparable with the preconditioned conjugate gradient method for both large ordered and disordered Si systems, while it is more rapidly converged for systems with transition-metal elements
Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization
Directory of Open Access Journals (Sweden)
Vaiju Kalkhambkar
2017-03-01
Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.
Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos
2017-06-23
This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.
3D motion analysis via energy minimization
Energy Technology Data Exchange (ETDEWEB)
Wedel, Andreas
2009-10-16
This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to
Rigid Body Energy Minimization on Manifolds for Molecular Docking.
Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima
2012-11-13
Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.
Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization
Fornasier, Massimo; Schö nlieb, Carola-Bibiane
2009-01-01
This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a
Energy Resources Consumption Minimization in Housing Construction
Directory of Open Access Journals (Sweden)
Balastov Alexey
2017-01-01
Full Text Available The article deals with the energy savings analysis during operation of buildings, provides the heat balance of residential premises, considers options for energy-efficient solutions for hot water supply systems in buildings. As technical facilities that allow the use of secondary heat sources and solar energy, there are also considered the systems with heat recovery of “gray” wastewater, heat pumps, solar collectors and photoelectric converters.
A strategy to find minimal energy nanocluster structures.
Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel
2013-11-05
An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.
Unused energy sources inducing minimal pollution
Energy Technology Data Exchange (ETDEWEB)
Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic
1974-01-01
The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.
Low energy implications of minimal superstring unification
International Nuclear Information System (INIS)
Khalil, S.; Vissani, F.; Masiero, A.
1995-11-01
We study the phenomenological implications of effective supergravities based on string vacua with spontaneously broken N =1 supersymmetry by dilation and moduli F-terms. We further require Minimal String Unification, namely that large string threshold corrections ensure the correct unification of the gauge couplings at the grand unification scale. The whole supersymmetric mass spectrum turns out to be determined in terms of only two independent parameters, the dilaton-moduli mixing angle and the gravitino mass. In particular we discuss the region of the parameter space where at least one superpartner is ''visible'' at LEPII. We find that the most likely candidates are the scalar partner of the right-handed electron and the lightest chargino, with interesting correlations between their masses and with the mass of the lightest higgs. We show how discovering SUSY particles at LEPII might rather sharply discriminate between scenarios with pure dilaton SUSY breaking and mixed dilaton-moduli breaking. (author). 10 refs, 7 figs
Dimensionality of Local Minimizers of the Interaction Energy
Balagué, D.
2013-05-22
In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.
Dimensionality of Local Minimizers of the Interaction Energy
Balagué , D.; Carrillo, J. A.; Laurent, T.; Raoul, G.
2013-01-01
In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.
Secondary waste minimization in analytical methods
International Nuclear Information System (INIS)
Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S.; Schilling, J.B.
1995-01-01
The characterization phase of site remediation is an important and costly part of the process. Because toxic solvents and other hazardous materials are used in common analytical methods, characterization is also a source of new waste, including mixed waste. Alternative analytical methods can reduce the volume or form of hazardous waste produced either in the sample preparation step or in the measurement step. The authors are examining alternative methods in the areas of inorganic, radiological, and organic analysis. For determining inorganic constituents, alternative methods were studied for sample introduction into inductively coupled plasma spectrometers. Figures of merit for the alternative methods, as well as their associated waste volumes, were compared with the conventional approaches. In the radiological area, the authors are comparing conventional methods for gross α/β measurements of soil samples to an alternative method that uses high-pressure microwave dissolution. For determination of organic constituents, microwave-assisted extraction was studied for RCRA regulated semivolatile organics in a variety of solid matrices, including spiked samples in blank soil; polynuclear aromatic hydrocarbons in soils, sludges, and sediments; and semivolatile organics in soil. Extraction efficiencies were determined under varying conditions of time, temperature, microwave power, moisture content, and extraction solvent. Solvent usage was cut from the 300 mL used in conventional extraction methods to about 30 mL. Extraction results varied from one matrix to another. In most cases, the microwave-assisted extraction technique was as efficient as the more common Soxhlet or sonication extraction techniques
Obendorf, Hartmut
2009-01-01
The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.
Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction.
Nikolova, Mila; Ng, Michael K; Tam, Chi-Pan
2010-12-01
Nonconvex nonsmooth regularization has advantages over convex regularization for restoring images with neat edges. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonconvex nonsmooth minimization. In this paper, we deal with nonconvex nonsmooth minimization methods for image restoration and reconstruction. Our theoretical results show that the solution of the nonconvex nonsmooth minimization problem is composed of constant regions surrounded by closed contours and neat edges. The main goal of this paper is to develop fast minimization algorithms to solve the nonconvex nonsmooth minimization problem. Our experimental results show that the effectiveness and efficiency of the proposed algorithms.
On the convergence of nonconvex minimization methods for image recovery.
Xiao, Jin; Ng, Michael Kwok-Po; Yang, Yu-Fei
2015-05-01
Nonconvex nonsmooth regularization method has been shown to be effective for restoring images with neat edges. Fast alternating minimization schemes have also been proposed and developed to solve the nonconvex nonsmooth minimization problem. The main contribution of this paper is to show the convergence of these alternating minimization schemes, based on the Kurdyka-Łojasiewicz property. In particular, we show that the iterates generated by the alternating minimization scheme, converges to a critical point of this nonconvex nonsmooth objective function. We also extend the analysis to nonconvex nonsmooth regularization model with box constraints, and obtain similar convergence results of the related minimization algorithm. Numerical examples are given to illustrate our convergence analysis.
Hoelder continuity of energy minimizer maps between Riemannian polyhedra
International Nuclear Information System (INIS)
Bouziane, Taoufik
2004-10-01
The goal of the present paper is to establish some kind of regularity of an energy minimizer map between Riemannian polyhedra. More precisely, we will show the Hoelder continuity of local energy minimizers between Riemannian polyhedra with the target spaces without focal points. With this new result, we also complete our existence theorem obtained elsewhere, and consequently we generalize completely, to the case of target polyhedra without focal points (which is a weaker geometric condition than the nonpositivity of the curvature), the Eells-Fuglede's existence and regularity theorem which is the new version of the famous Eells-Sampson's theorem. (author)
Balancing related methods for minimal realization of periodic systems
Varga, A.
1999-01-01
We propose balancing related numerically reliable methods to compute minimal realizations of linear periodic systems with time-varying dimensions. The first method belongs to the family of square-root methods with guaranteed enhanced computational accuracy and can be used to compute balanced minimal order realizations. An alternative balancing-free square-root method has the advantage of a potentially better numerical accuracy in case of poorly scaled original systems. The key numerical co...
Ahmad, Enas M.
2013-01-01
, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU
Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing
2015-03-01
Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
An existence result of energy minimizer maps between Riemannian polyhedra
International Nuclear Information System (INIS)
Bouziane, T.
2004-06-01
In this paper, we prove the existence of energy minimizers in each free homotopy class of maps between polyhedra with target space without focal points. Our proof involves a careful study of some geometric properties of Riemannian polyhedra without focal points. Among other things, we show that on the relevant polyhedra, there exists a convex supporting function. (author)
Minimal Self-Models and the Free Energy Principle
Directory of Open Access Journals (Sweden)
Jakub eLimanowski
2013-09-01
Full Text Available The term "minimal phenomenal selfhood" describes the basic, pre-reflective experience of being a self (Blanke & Metzinger, 2009. Theoretical accounts of the minimal self have long recognized the importance and the ambivalence of the body as both part of the physical world, and the enabling condition for being in this world (Gallagher, 2005; Grafton, 2009. A recent account of minimal phenomenal selfhood (MPS, Metzinger, 2004a centers on the consideration that minimal selfhood emerges as the result of basic self-modeling mechanisms, thereby being founded on pre-reflective bodily processes. The free energy principle (FEP, Friston, 2010 is a novel unified theory of cortical function that builds upon the imperative that self-organizing systems entail hierarchical generative models of the causes of their sensory input, which are optimized by minimizing free energy as an approximation of the log-likelihood of the model. The implementation of the FEP via predictive coding mechanisms and in particular the active inference principle emphasizes the role of embodiment for predictive self-modeling, which has been appreciated in recent publications. In this review, we provide an overview of these conceptions and illustrate thereby the potential power of the FEP in explaining the mechanisms underlying minimal selfhood and its key constituents, multisensory integration, interoception, agency, perspective, and the experience of mineness. We conclude that the conceptualization of MPS can be well mapped onto a hierarchical generative model furnished by the free energy principle and may constitute the basis for higher-level, cognitive forms of self-referral, as well as the understanding of other minds.
A convergent overlapping domain decomposition method for total variation minimization
Fornasier, Massimo; Langer, Andreas; Schö nlieb, Carola-Bibiane
2010-01-01
In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation
Linearly convergent stochastic heavy ball method for minimizing generalization error
Loizou, Nicolas
2017-10-30
In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss and not on finite-sum minimization, which is typically a much harder problem. While in the analysis we constrain ourselves to quadratic loss, the overall objective is not necessarily strongly convex.
Minimization of local impact of energy systems through exergy analysis
International Nuclear Information System (INIS)
Cassetti, Gabriele; Colombo, Emanuela
2013-01-01
Highlights: • The model proposed aims at minimizing local impact of energy systems. • The model is meant to minimize the impact starting from system thermodynamics. • The formulation combines exergy analysis and quantitative risk analysis. • The approach of the model is dual to Thermoeconomics. - Abstract: For the acceptability of energy systems, environmental impacts are becoming more and more important. One primary way for reducing impacts related to processes is by improving efficiency of plants. A key instrument currently used to verify such improvements is exergy analysis, extended to include also the environmental externalities generated by systems. Through exergy-based analyses, it is possible indeed to evaluate the overall amount of resources consumed along all the phases of the life cycle of a system, from construction to dismantling. However, resource consumption is a dimension of the impact of a system at global level, while it may not be considered a measure of its local impact. In the paper a complementary approach named Combined Risk and Exergy Analysis (CRExA) to assess impacts from major accidents in energy systems is proposed, based on the combination of classical exergy analysis and quantitative risk analysis (QRA). Impacts considered are focused on effects on human health. The approach leads to the identification of solutions to minimize damages of major accidents by acting on the energy system design
Minimizing Energy Spread In The REX/HIE-ISOLDE Linac
Yucemoz, Mert
2017-01-01
This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.
A Matrix Splitting Method for Composite Function Minimization
Yuan, Ganzhao
2016-12-07
Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.
A Matrix Splitting Method for Composite Function Minimization
Yuan, Ganzhao; Zheng, Wei-Shi; Ghanem, Bernard
2016-01-01
Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.
Cooperative relay-based multicasting for energy and delay minimization
Atat, Rachad
2012-08-01
Relay-based multicasting for the purpose of cooperative content distribution is studied. Optimized relay selection is performed with the objective of minimizing the energy consumption or the content distribution delay within a cluster of cooperating mobiles. Two schemes are investigated. The first consists of the BS sending the data only to the relay, and the second scheme considers the scenario of threshold-based multicasting by the BS, where a relay is selected to transmit the data to the mobiles that were not able to receive the multicast data. Both schemes show significant superiority compared to the non-cooperative scenarios, in terms of energy consumption and delay reduction. © 2012 IEEE.
Energy consumption assessment methods
Energy Technology Data Exchange (ETDEWEB)
Sutherland, K S
1975-01-01
The why, what, and how-to aspects of energy audits for industrial plants, and the application of energy accounting methods to a chemical plant in order to assess energy conservation possibilities are discussed. (LCL)
Minimal processing - preservation methods of the future: an overview
International Nuclear Information System (INIS)
Ohlsson, T.
1994-01-01
Minimal-processing technologies are modern techniques that provide sufficient shelf life to foods to allow their distribution, while also meeting the demands of the consumers for convenience and fresh-like quality. Minimal-processing technologies can be applied at various stages of the food distribution chain, in storage, in processing and/or in packaging. Examples of methods will be reviewed, including modified-atmosphere packaging, high-pressure treatment, sous-vide cooking and active packaging
Linearly convergent stochastic heavy ball method for minimizing generalization error
Loizou, Nicolas; Richtarik, Peter
2017-01-01
In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss
Free energy minimization to predict RNA secondary structures and computational RNA design.
Churkin, Alexander; Weinbrand, Lina; Barash, Danny
2015-01-01
Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.
Minimizing the Energy Consumption in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Mohammed Saad Talib
2017-12-01
Full Text Available Energy in Wireless Sensor networks (WSNs represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. WSNs operate with battery powered sensors. Sensors batteries have not easily rechargeable even though having restricted power. Frequently the network failure occurs due to the sensors energy insufficiency. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup times. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure efficient network throughput. Prediction of the WSN lifetime previously to its installation represents a significant concern. To ensure energy efficiency the sensors duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and the idle states were also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the sensor node energy consumption. Results for these states with many performance metrics were also studied and discussed
Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks
Directory of Open Access Journals (Sweden)
Fan Zhang
2017-01-01
Full Text Available The incorporation of cognitive radio (CR capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs, which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation. The energy harvesting technique, which gathers energy from the ambient environment, is regarded as a promising solution to perpetually power-up energy-limited devices with a continual source of energy. Therefore, applying the energy harvesting (EH technique in CRSNs is able to facilitate the self-sustainability of the energy-limited sensors. The primary concern of this study is to design sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and propose an ϵ-optimal sensing-transmission (ST policy through using the value iteration algorithm. ϵ is the error bound between the ST policy and the optimal policy, which can be pre-defined according to the actual need. Moreover, for a special case that the signal-to-noise (SNR power ratio is sufficiently high, we present an efficient transmission (ET policy and prove that the ET policy achieves the same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the performance of the proposed policies and the impaction of various network parameters.
Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies
Directory of Open Access Journals (Sweden)
Bang Wang
2016-01-01
Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.
Inference with minimal Gibbs free energy in information field theory
International Nuclear Information System (INIS)
Ensslin, Torsten A.; Weig, Cornelius
2010-01-01
Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the Gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from Poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a Gaussian signal with unknown spectrum, and (iii) inference of a Poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-Gaussian posterior.
Molecular mechanics calculations of proteins. Comparison of different energy minimization strategies
DEFF Research Database (Denmark)
Christensen, I T; Jørgensen, Flemming Steen
1997-01-01
A general strategy for performing energy minimization of proteins using the SYBYL molecular modelling program has been developed. The influence of several variables including energy minimization procedure, solvation, dielectric function and dielectric constant have been investigated in order...... to develop a general method, which is capable of producing high quality protein structures. Avian pancreatic polypeptide (APP) and bovine pancreatic phospholipase A2 (BP PLA2) were selected for the calculations, because high quality X-ray structures exist and because all classes of secondary structure...... for this protein. Energy minimized structures of the trimeric PLA2 from Indian cobra (N.n.n. PLA2) were used for assessing the impact of protein-protein interactions. Based on the above mentioned criteria, it could be concluded that using the following conditions: Dielectric constant epsilon = 4 or 20; a distance...
Interactive seismic interpretation with piecewise global energy minimization
Hollt, Thomas
2011-03-01
Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.
Interactive seismic interpretation with piecewise global energy minimization
Hollt, Thomas; Beyer, Johanna; Gschwantner, Fritz M.; Muigg, Philipp; Doleisch, Helmut; Heinemann, Gabor F.; Hadwiger, Markus
2011-01-01
Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.
Free-energy minimization and the dark-room problem.
Friston, Karl; Thornton, Christopher; Clark, Andy
2012-01-01
Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).
Directory of Open Access Journals (Sweden)
Thanh Tung Ha
2018-03-01
Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.
Methods evaluated to minimize emissions from preplant soil fumigation
Directory of Open Access Journals (Sweden)
Suduan Gao
2008-05-01
Full Text Available Many commodities depend on preplant soil fumigation for pest control to achieve healthy crops and profitable yields. Under California regulations, minimizing emissions is essential to maintain the practical use of soil fumigants, and more stringent regulations are likely in the future. The phase-out of methyl bromide as a broad-spectrum soil fumigant has created formidable challenges. Most alternatives registered today are regulated as volatile organic compounds because of their toxicity and mobile nature. We review research on methods for minimizing emissions from soil fumigation, including the effectiveness of their emission reductions, impacts on pest control and cost. Low-permeability plastic mulches are highly effective but are generally affordable only in high-value cash crops such as strawberry. Crops with low profit margins such as stone-fruit orchards may require lower-cost methods such as water treatment or target-area fumigation.
Discretized energy minimization in a wave guide with point sources
Propst, G.
1994-01-01
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.
Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints
Directory of Open Access Journals (Sweden)
Jordi Serra
2014-01-01
of heating, ventilation, and air conditioning (HVAC systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.
A convergent overlapping domain decomposition method for total variation minimization
Fornasier, Massimo
2010-06-22
In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles. © 2010 Springer-Verlag.
Energy minimization strategies and renewable energy utilization for desalination: a review.
Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G
2011-02-01
Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
Minimizers with discontinuous velocities for the electromagnetic variational method
International Nuclear Information System (INIS)
De Luca, Jayme
2010-01-01
The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.
Energy Technology Data Exchange (ETDEWEB)
Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.
2002-02-25
Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.
International Nuclear Information System (INIS)
Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.
2002-01-01
Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities
Cooperative Content Distribution over Wireless Networks for Energy and Delay Minimization
Atat, Rachad
2012-06-01
Content distribution with mobile-to-mobile cooperation is studied. Data is sent to mobile terminals on a long range link then the terminals exchange the content using an appropriate short range wireless technology. Unicasting and multicasting are investigated, both on the long range and short range links. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form. Moreover, the schemes are applied in public safety vehicular networks, where Long Term Evolution (LTE) network is used for the long range link, while IEEE 802.11 p is considered for inter-vehicle collaboration on the short range links. Finally, relay-based multicasting is applied in high speed trains for energy and delay minimization. Results show that cooperative schemes outperform non-cooperative ones and other previous related work in terms of energy and delay savings. Furthermore, practical implementation aspects of the proposed methods are also discussed.
Sochi, Taha
2016-09-01
Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.
Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation
Energy Technology Data Exchange (ETDEWEB)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
2016-10-15
The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.
Minimal Residual Disease Assessment in Lymphoma: Methods and Applications.
Herrera, Alex F; Armand, Philippe
2017-12-01
Standard methods for disease response assessment in patients with lymphoma, including positron emission tomography and computed tomography scans, are imperfect. In other hematologic malignancies, particularly leukemias, the ability to detect minimal residual disease (MRD) is increasingly influencing treatment paradigms. However, in many subtypes of lymphoma, the application of MRD assessment techniques, like flow cytometry or polymerase chain reaction-based methods, has been challenging because of the absence of readily detected circulating disease or canonic chromosomal translocations. Newer MRD detection methods that use next-generation sequencing have yielded promising results in a number of lymphoma subtypes, fueling the hope that MRD detection may soon be applicable in clinical practice for most patients with lymphoma. MRD assessment can provide real-time information about tumor burden and response to therapy, noninvasive genomic profiling, and monitoring of clonal dynamics, allowing for many possible applications that could significantly affect the care of patients with lymphoma. Further validation of MRD assessment methods, including the incorporation of MRD assessment into clinical trials in patients with lymphoma, will be critical to determine how best to deploy MRD testing in routine practice and whether MRD assessment can ultimately bring us closer to the goal of personalized lymphoma care. In this review article, we describe the methods available for detecting MRD in patients with lymphoma and their relative advantages and disadvantages. We discuss preliminary results supporting the potential applications for MRD testing in the care of patients with lymphoma and strategies for including MRD assessment in lymphoma clinical trials.
Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization
International Nuclear Information System (INIS)
Moghadam, Ahmad; Seifi, Ali Reza
2014-01-01
Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function
Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min
2014-09-01
In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.
Ahmad, Enas M.
2013-05-15
Modern smartphones are being designed with increasing processing power, memory capacity, network communication, and graphics performance. Although all of these features are enriching and expanding the experience of a smartphone user, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated, which implies relying on the GPU power for rendering all application graphics. In addition, the GPUs installed in smartphones are becoming more and more powerful by the day. This raises an energy consumption concern. We present a novel implementation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) scheme implemented in the Android kernel to dynamically scale the GPU. The scheme includes four main governors: Performance, Powersave, Ondmand, and Conservative. Unlike previous studies which looked into the power efficiency of mobile GPUs only through simulation and power estimations, we have implemented our approach on a real modern smartphone GPU, and acquired actual energy measurements using an external power monitor. Our results show that the energy consumption of smartphones can be reduced up to 15% using the Conservative governor in 2D rendering mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.
Minimizing energy consumption of accelerators and storage ring facilities
International Nuclear Information System (INIS)
The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities
Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.
Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos
2014-01-01
Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.
Le, Khanh Chau
2012-01-01
The above examples should make clear the necessity of understanding the mechanism of vibrations and waves in order to control them in an optimal way. However vibrations and waves are governed by differential equations which require, as a rule, rather complicated mathematical methods for their analysis. The aim of this textbook is to help students acquire both a good grasp of the first principles from which the governing equations can be derived, and the adequate mathematical methods for their solving. Its distinctive features, as seen from the title, lie in the systematic and intensive use of Hamilton's variational principle and its generalizations for deriving the governing equations of conservative and dissipative mechanical systems, and also in providing the direct variational-asymptotic analysis, whenever available, of the energy and dissipation for the solution of these equations. It will be demonstrated that many well-known methods in dynamics like those of Lindstedt-Poincare, Bogoliubov-Mitropolsky, Ko...
International Nuclear Information System (INIS)
Yang Chao; Meza, Juan C.; Wang Linwang
2006-01-01
A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration
Free energy minimization and information gain: The devil is in the details
Kwisthout, J.H.P.; Rooij, I.J.E.I. van
2015-01-01
Contrary to Friston's previous work, this paper describes free energy minimization using categorical probability distributions over discrete states. This alternative mathematical framework exposes a fundamental, yet unnoticed challenge for the free energy principle. When considering discrete state
Predicting Consensus Structures for RNA Alignments Via Pseudo-Energy Minimization
Directory of Open Access Journals (Sweden)
Junilda Spirollari
2009-01-01
Full Text Available Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed to improve on RNA secondary structure prediction, such as covariance scores obtained from multiple sequence alignments. We present in this paper a new approach to predicting the consensus secondary structure of a set of aligned RNA sequences via pseudo-energy minimization. Our tool, called RSpredict, takes into account sequence covariation and employs effective heuristics for accuracy improvement. RSpredict accepts, as input data, a multiple sequence alignment in FASTA or ClustalW format and outputs the consensus secondary structure of the input sequences in both the Vienna style Dot Bracket format and the Connectivity Table format. Our method was compared with some widely used tools including KNetFold, Pfold and RNAalifold. A comprehensive test on different datasets including Rfam sequence alignments and a multiple sequence alignment obtained from our study on the Drosophila X chromosome reveals that RSpredict is competitive with the existing tools on the tested datasets. RSpredict is freely available online as a web server and also as a jar file for download at http:// datalab.njit.edu/biology/RSpredict.
Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David
2015-08-01
We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.
Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy
Energy Technology Data Exchange (ETDEWEB)
Fay, Stéphane, E-mail: steph.fay@gmail.com [Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, 75008 Paris (France)
2013-09-01
We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.
Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy
International Nuclear Information System (INIS)
Fay, Stéphane
2013-01-01
We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion
Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P
1994-02-01
We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and
Probing gravitational non-minimal coupling with dark energy surveys
International Nuclear Information System (INIS)
Geng, Chao-Qiang; Lee, Chung-Chi; Wu, Yi-Peng
2017-01-01
We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G_e_f_f subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G_e_f_f/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G_e_f_f/G < 2.2 x 10"-"5 when combining with Solar System tests. (orig.)
Probing gravitational non-minimal coupling with dark energy surveys
Energy Technology Data Exchange (ETDEWEB)
Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Hsinchu (China); Lee, Chung-Chi [National Center for Theoretical Sciences, Hsinchu (China); Wu, Yi-Peng [Academia Sinica, Institute of Physics, Taipei (China)
2017-03-15
We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G{sub eff} subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G{sub eff}/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G{sub eff}/G < 2.2 x 10{sup -5} when combining with Solar System tests. (orig.)
Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.
Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang
2017-12-01
Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.
Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.
2017-09-01
Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.
An alternating minimization method for blind deconvolution from Poisson data
International Nuclear Information System (INIS)
Prato, Marco; La Camera, Andrea; Bonettini, Silvia
2014-01-01
Blind deconvolution is a particularly challenging inverse problem since information on both the desired target and the acquisition system have to be inferred from the measured data. When the collected data are affected by Poisson noise, this problem is typically addressed by the minimization of the Kullback-Leibler divergence, in which the unknowns are sought in particular feasible sets depending on the a priori information provided by the specific application. If these sets are separated, then the resulting constrained minimization problem can be addressed with an inexact alternating strategy. In this paper we apply this optimization tool to the problem of reconstructing astronomical images from adaptive optics systems, and we show that the proposed approach succeeds in providing very good results in the blind deconvolution of nondense stellar clusters
Minimizing the water and air impacts of unconventional energy extraction
Jackson, R. B.
2014-12-01
Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.
A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization
National Research Council Canada - National Science Library
Du, Qian; Ren, Hsuan; Chang, Chein-I
2003-01-01
...: orthogonal subspace projection (OSP) and constrained energy minimization (CEM). It is shown that they are closely related and essentially equivalent provided that the noise is white with large SNR...
The Use of Trust Regions in Kohn-Sham Total Energy Minimization
International Nuclear Information System (INIS)
Yang, Chao; Meza, Juan C.; Wang, Lin-wang
2006-01-01
The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF
An iterative method for determination of a minimal eigenvalue
DEFF Research Database (Denmark)
Kristiansen, G.K.
1968-01-01
Kristiansen (1963) has discussed the convergence of a group of iterative methods (denoted the Equipoise methods) for the solution of reactor criticality problems. The main result was that even though the methods are said to work satisfactorily in all practical cases, examples of divergence can be...
Primal Interior Point Method for Minimization of Generalized Minimax Functions
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2010-01-01
Roč. 46, č. 4 (2010), s. 697-721 ISSN 0023-5954 R&D Projects: GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * nonsmooth optimization * generalized minimax optimization * interior-point methods * modified Newton methods * variable metric methods * global convergence * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://dml.cz/handle/10338.dmlcz/140779
Comparison of 3 Minimally Invasive Methods for Distal Tibia Fractures.
Fang, Jun-Hao; Wu, Yao-Sen; Guo, Xiao-Shan; Sun, Liao-Jun
2016-07-01
This study compared the results of external fixation combined with limited open reduction and internal fixation (EF + LORIF), minimally invasive percutaneous plate osteosynthesis (MIPPO), and intramedullary nailing (IMN) for distal tibia fractures. A total of 84 patients with distal tibia shaft fractures were randomized to operative stabilization using EF + LORIF (28 cases), MIPPO (28 cases), or IMN (28 cases). The 3 groups were comparable with respect to patient demographics. Data were collected on operative time and radiation time, union time, complications, time of recovery to work, secondary operations, and measured joint function using the American Orthopaedic Foot and Ankle Society (AOFAS) score. There was no significant difference in time to union, incidence of union status, time of recovery to work, and AOFAS scores among the 3 groups (P>.05). Mean operative time and radiation time in the MIPPO group were longer than those in the IMN or EF + LORIF groups (Pknee pain occurred frequently after IMN (32.1%), and irritation symptoms were encountered more frequently after MIPPO (46.4%). Although EF + LORIF was associated with fewer secondary procedures vs MIPPO or IMN, it was related with more pin-tract infections (14.3%). Findings indicated that EF + LORIF, MIPPO, and IMN all achieved similar good functional results. However, EF + LORIF had some advantages over MIPPO and IMN in reducing operative and radiation times, postoperative complications, and reoperation rate. [Orthopedics. 2016; 39(4):e627-e633.]. Copyright 2016, SLACK Incorporated.
Entropy resistance minimization: An alternative method for heat exchanger analyses
International Nuclear Information System (INIS)
Cheng, XueTao
2013-01-01
In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional
Variational method for the minimization of entropy generation in solar cells
Energy Technology Data Exchange (ETDEWEB)
Smit, Sjoerd; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2015-04-07
In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.
Minimizing Dispersion in FDTD Methods with CFL Limit Extension
Sun, Chen
The CFL extension in FDTD methods is receiving considerable attention in order to reduce the computational effort and save the simulation time. One of the major issues in the CFL extension methods is the increased dispersion. We formulate a decomposition of FDTD equations to study the behaviour of the dispersion. A compensation scheme to reduce the dispersion in CFL extension is constructed and proposed. We further study the CFL extension in a FDTD subgridding case, where we improve the accuracy by acting only on the FDTD equations of the fine grid. Numerical results confirm the efficiency of the proposed method for minimising dispersion.
THE MINIMALLY INVASIVE METHODS OF TREATMENT OF ANTERIOR URETHRA STRICTURES
Directory of Open Access Journals (Sweden)
V. L. Medvedev
2017-01-01
Full Text Available This review is to evaluate literature concerning different methods of treatment of anterior urethra strictures: internal optical urethrotomy (OIU, laser urethrotomy, urethra stenting, urethra dilatation, OIU in combination with selfdilatation, OIU combined with chemicals injection. Evaluation of expedience, advisability and reasonableness of the chosen methods and techniques. Hereby presented statistical assessment of longtime postoperative data, low efficiency researches analysis. This research is compiled using Medline, PubMed and Embase databases.
Systems and methods for mirror mounting with minimized distortion
Antonille, Scott R. (Inventor); Wallace, Thomas E. (Inventor); Content, David A. (Inventor); Wake, Shane W. (Inventor)
2012-01-01
A method for mounting a mirror for use in a telescope includes attaching the mirror to a plurality of adjustable mounts; determining a distortion in the mirror caused by the plurality adjustable mounts, and, if the distortion is determined to be above a predetermined level: adjusting one or more of the adjustable mounts; and determining the distortion in the mirror caused by the adjustable mounts; and in the event the determined distortion is determined to be at or below the predetermined level, rigidizing the adjustable mounts.
Duijns, S.; Dijk, van J.G.B.; Spaans, B.; Jukema, J.; Boer, de W.F.; Piersma, Th.
2009-01-01
Different spatial distributions of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been
Duijns, Sjoerd; van Dijk, Jacintha G. B.; Spaans, Bernard; Jukema, Joop; de Boer, Willem F.; Piersma, Theunis
2009-01-01
Different spatial distributions Of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been
Three-Dimensional Dirac Oscillator with Minimal Length: Novel Phenomena for Quantized Energy
Directory of Open Access Journals (Sweden)
Malika Betrouche
2013-01-01
Full Text Available We study quantum features of the Dirac oscillator under the condition that the position and the momentum operators obey generalized commutationrelations that lead to the appearance of minimal length with the order of the Planck length, ∆xmin=ℏ3β+β′, where β and β′ are two positive small parameters. Wave functions of the system and the corresponding energy spectrum are derived rigorously. The presence of the minimal length accompanies a quadratic dependence of the energy spectrum on quantum number n, implying the property of hard confinement of the system. It is shown that the infinite degeneracy of energy levels appearing in the usual Dirac oscillator is vanished by the presence of the minimal length so long as β≠0. Not only in the nonrelativistic limit but also in the limit of the standard case (β=β′=0, our results reduce to well known usual ones.
International Nuclear Information System (INIS)
Lima da Silva, Aline; Heck, Nestor Cesar
2003-01-01
Equilibrium concentrations are traditionally calculated with the help of equilibrium constant equations from selected reactions. This procedure, however, is only useful for simpler problems. Analysis of the equilibrium state in a multicomponent and multiphase system necessarily involves solution of several simultaneous equations, and, as the number of system components grows, the required computation becomes more complex and tedious. A more direct and general method for solving the problem is the direct minimization of the Gibbs energy function. The solution for the nonlinear problem consists in minimizing the objective function (Gibbs energy of the system) subjected to the constraints of the elemental mass-balance. To solve it, usually a computer code is developed, which requires considerable testing and debugging efforts. In this work, a simple method to predict equilibrium composition in multicomponent systems is presented, which makes use of an electronic spreadsheet. The ability to carry out these calculations within a spreadsheet environment shows several advantages. First, spreadsheets are available 'universally' on nearly all personal computers. Second, the input and output capabilities of spreadsheets can be effectively used to monitor calculated results. Third, no additional systems or programs need to be learned. In this way, spreadsheets can be as suitable in computing equilibrium concentrations as well as to be used as teaching and learning aids. This work describes, therefore, the use of the Solver tool, contained in the Microsoft Excel spreadsheet package, on computing equilibrium concentrations in a multicomponent system, by the method of direct Gibbs energy minimization. The four phases Fe-Cr-O-C-Ni system is used as an example to illustrate the method proposed. The pure stoichiometric phases considered in equilibrium calculations are: Cr 2 O 3 (s) and FeO C r 2 O 3 (s). The atmosphere consists of O 2 , CO e CO 2 constituents. The liquid iron
International Nuclear Information System (INIS)
Nazareth, J. L.
1979-01-01
1 - Description of problem or function: OCOPTR and DRVOCR are computer programs designed to find minima of non-linear differentiable functions f: R n →R with n dimensional domains. OCOPTR requires that the user only provide function values (i.e. it is a derivative-free routine). DRVOCR requires the user to supply both function and gradient information. 2 - Method of solution: OCOPTR and DRVOCR use the variable metric (or quasi-Newton) method of Davidon (1975). For OCOPTR, the derivatives are estimated by finite differences along a suitable set of linearly independent directions. For DRVOCR, the derivatives are user- supplied. Some features of the codes are the storage of the approximation to the inverse Hessian matrix in lower trapezoidal factored form and the use of an optimally-conditioned updating method. Linear equality constraints are permitted subject to the initial Hessian factor being chosen correctly. 3 - Restrictions on the complexity of the problem: The functions to which the routine is applied are assumed to be differentiable. The routine also requires (n 2 /2) + 0(n) storage locations where n is the problem dimension
Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng
2017-07-01
The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.
Sectors of solutions and minimal energies in classical Liouville theories for strings
International Nuclear Information System (INIS)
Johansson, L.; Kihlberg, A.; Marnelius, R.
1984-01-01
All classical solutions of the Liouville theory for strings having finite stable minimum energies are calculated explicitly together with their minimal energies. Our treatment automatically includes the set of natural solitonlike singularities described by Jorjadze, Pogrebkov, and Polivanov. Since the number of such singularities is preserved in time, a sector of solutions is not only characterized by its boundary conditions but also by its number of singularities. Thus, e.g., the Liouville theory with periodic boundary conditions has three different sectors of solutions with stable minimal energies containing zero, one, and two singularities. (Solutions with more singularities have no stable minimum energy.) It is argued that singular solutions do not make the string singular and therefore may be included in the string quantization
Energy-minimized design in all-optical networks using unicast/multicast traffic grooming
Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.
2013-09-01
The increased bandwidth required by applications, tends to raise the amount of optical equipment, for this reason, it is essential to maintain a balance between the wavelength allocation, available capacity and number of optical devices to achieve the lowest power consumption. You could say that we propose a model that minimizes energy consumption, using unicast / multicast traffic grooming in optical networks.
Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy
DEFF Research Database (Denmark)
Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.
2013-01-01
This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...
International Nuclear Information System (INIS)
Xu, Peng; Gordon, Mark S.
2013-01-01
The charge transfer (CT) interaction, the most time-consuming term in the general effective fragment potential method, is made much more computationally efficient. This is accomplished by the projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) as the atomic basis onto the self-consistent field virtual molecular orbital (MO) space to select a subspace of the full virtual space called the valence virtual space. The diagonalization of the Fock matrix in terms of QUAMBOs recovers the canonical occupied orbitals and, more importantly, gives rise to the valence virtual orbitals (VVOs). The CT energies obtained using VVOs are generally as accurate as those obtained with the full virtual space canonical MOs because the QUAMBOs span the valence part of the virtual space, which can generally be regarded as “chemically important.” The number of QUAMBOs is the same as the number of minimal-basis MOs of a molecule. Therefore, the number of VVOs is significantly smaller than the number of canonical virtual MOs, especially for large atomic basis sets. This leads to a dramatic decrease in the computational cost
Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm
International Nuclear Information System (INIS)
Min, Jong Hwan
2011-02-01
Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections
New method for minimizing regular functions with constraints on parameter region
International Nuclear Information System (INIS)
Kurbatov, V.S.; Silin, I.N.
1993-01-01
The new method of function minimization is developed. Its main features are considered. It is possible minimization of regular function with the arbitrary structure. For χ 2 -like function the usage of simplified second derivatives is possible with the control of correctness. The constraints of arbitrary structure can be used. The means for fast movement along multidimensional valleys are used. The method is tested on real data of K π2 decay of the experiment on rare K - -decays. 6 refs
Canonical Primal-Dual Method for Solving Non-convex Minimization Problems
Wu, Changzhi; Li, Chaojie; Gao, David Yang
2012-01-01
A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. %It is proved that the popular SDP method is indeed a special case of the canonical duality theory. Numerical examples are illustrated. Comparing...
International Nuclear Information System (INIS)
Hubbard, Linda M.; Galen, Glen R.
1992-01-01
Waste minimization has become an important consideration in the management of hazardous waste because of regulatory as well as cost considerations. Waste minimization techniques are often process specific or industry specific and generally are not applicable to site remediation activities. This paper will examine ways in which waste can be minimized in a remediation setting such as the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, where the bulk of the waste produced results from remediating existing contamination, not from generating new waste. (author)
Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu
2016-11-01
Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.
Directory of Open Access Journals (Sweden)
Cobaugh Christian W
2004-08-01
Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.
2018-05-01
Based on the minimal length concept, inspired by Heisenberg algebra, a closed analytical formula is derived for the energy spectrum of the prolate γ-rigid Bohr-Mottelson Hamiltonian of nuclei, within a quantum perturbation method (QPM), by considering a scaled Davidson potential in β shape variable. In the resulting solution, called X(3)-D-ML, the ground state and the first β-band are all studied as a function of the free parameters. The fact of introducing the minimal length concept with a QPM makes the model very flexible and a powerful approach to describe nuclear collective excitations of a variety of vibrational-like nuclei. The introduction of scaling parameters in the Davidson potential enables us to get a physical minimum of this latter in comparison with previous works. The analysis of the corrected wave function, as well as the probability density distribution, shows that the minimal length parameter has a physical upper bound limit.
Energy forecasts, perspectives and methods
Energy Technology Data Exchange (ETDEWEB)
Svensson, J E; Mogren, A
1984-01-01
The authors have analyzed different methods for long term energy prognoses, in particular energy consumption forecasts. Energy supply and price prognoses are also treated, but in a less detailed manner. After defining and discussing the various methods/models used in forecasts, a generalized discussion of the influence on the prognoses from the perspectives (background factors, world view, norms, ideology) of the prognosis makers is given. Some basic formal demands that should be asked from any rational forecast are formulated and discussed. The authors conclude that different forecasting methodologies are supplementing each other. There is no best method, forecasts should be accepted as views of the future from differing perspectives. The primary prognostic problem is to show the possible futures, selecting the wanted future is a question of political process.
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson A.M. [Federal University of Western Para (Brazil); Physics Institute, Rio de Janeiro State University (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, Rio de Janeiro State University (Brazil); Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Almeida, Carlos E. de [Radiological Sciences Laboratory, Rio de Janeiro State University (Brazil); Barroso, Regina C. [Physics Institute, Rio de Janeiro State University (Brazil)
2012-07-15
The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-{mu}CT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-{mu}CT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: Black-Right-Pointing-Pointer Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation {mu}CT imaging. Black-Right-Pointing-Pointer The present work is part of a research on the effects of radiotherapy on the thoracic region. Black-Right-Pointing-Pointer Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.
DEFF Research Database (Denmark)
Terp, G E; Christensen, I T; Jørgensen, Flemming Steen
2000-01-01
Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...
Market clearing of joint energy and reserves auctions using augmented payment minimization
International Nuclear Information System (INIS)
Amjady, N.; Aghaei, J.; Shayanfar, H.A.
2009-01-01
This paper presents the market clearing of joint energy and reserves auctions and its mathematical formulation, focusing on a possible implementation of the Payment Cost Minimization (PCM). It also discusses another key point in debate: whether market clearing algorithm should minimize offer costs or payment costs? An aggregated simultaneous market clearing approach is proposed for provision of ancillary services as well as energy, which is in the form of Mixed Integer Nonlinear Programming (MINLP) formulation. In the MINLP formulation of the market clearing process, the objective function (Payment cost or offer cost) are optimized while meeting AC power flow constraints, system reserve requirements and lost opportunity cost (LOC) considerations. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS), and simulation studies are carried out to examine the effectiveness of each objective function. (author)
International Nuclear Information System (INIS)
Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.
2012-01-01
The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.
A non-minimally coupled quintom dark energy model on the warped DGP brane
International Nuclear Information System (INIS)
Nozari, K; Azizi, T; Setare, M R; Behrouz, N
2009-01-01
We construct a quintom dark energy model with two non-minimally coupled scalar fields, one quintessence and the other phantom field, confined to the warped Dvali-Gabadadze-Porrati (DGP) brane. We show that this model accounts for crossing of the phantom divide line in appropriate subspaces of the model parameter space. This crossing occurs for both normal and self-accelerating branches of this DGP-inspired setup.
Directory of Open Access Journals (Sweden)
Xinfeng Ruan
2013-01-01
Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.
Directory of Open Access Journals (Sweden)
V. N. Nagornov
2012-01-01
Full Text Available The paper contains a classification of internal and external threats for thermal power plants and recommendations on minimization of these risks. A set of concrete measures aimed at ensuring TPP energy security has been presented in the paper. The system comprises preventive measures aimed at reducing the possibilities of emergence and implementation of internal and external threats. The system also presupposes to decrease susceptibility of fuel- and energy supply systems to the threats, and application of liquidation measures that ensure elimination of emergency situation consequences and restoration of the conditions concerning fuel- and power supply to consumers.
Power allocation strategies to minimize energy consumption in wireless body area networks.
Kailas, Aravind
2011-01-01
The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.
Wai, C. M.; Hutchinson, S. G.
1989-01-01
Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)
New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle
International Nuclear Information System (INIS)
Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.
2015-01-01
In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits
Czech Academy of Sciences Publication Activity Database
Vlček, Jan; Lukšan, Ladislav
2015-01-01
Roč. 30, č. 3 (2015), s. 616-633 ISSN 1055-6788 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained minimization * variable metric methods * limited-memory methods * the BFGS update * conjugate directions * numerical results Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015
Projected Gauss-Seidel subspace minimization method for interactive rigid body dynamics
DEFF Research Database (Denmark)
Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We formulate the contact force problem as a nonlinear complementarity problem, and discretize the problem to derive the Projected Gauss–Seidel method. We combine the Projected Gauss......–Seidel method with a subspace minimization method. Our new method shows improved qualities and superior convergence properties for specific configurations....
Directory of Open Access Journals (Sweden)
Tarek FOUDA
2015-06-01
Full Text Available The experimental work was carried out through agricultural summer season of 2014 at the experimental farm of Gemmiza Research Station, Gharbiya governorate to minimize energy and costs in weeding and fertilizing processes for fiber crops (Kenaf and Roselle in small farms. The manufactured multipurpose unit performance was studied as a function of change in machine forward speed (2.2, 2.8, 3.4 and 4 Km/h fertilizing rates (30,45 and 60 Kg.N.fed-1,and constant soil moisture content was 20%(d.b in average. Performance of the manufactured machine was evaluated in terms of fuel consumption, power and energy requirements, effective field capacity, theoretical field capacity, field efficiency, and operational costs as a machine measurements .The experiment results reveled that the manufactured machine decreased energy and increased effective field capacity and efficiency under the following conditions: -machine forward speed 2.2Kmlh. -moisture content average 20%.
Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao
If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.
Optimal design method to minimize users' thinking mapping load in human-machine interactions.
Huang, Yanqun; Li, Xu; Zhang, Jie
2015-01-01
The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.
International Nuclear Information System (INIS)
Tselios, Kostas; Simos, T.E.
2007-01-01
In this Letter a new explicit fourth-order seven-stage Runge-Kutta method with a combination of minimal dispersion and dissipation error and maximal accuracy and stability limit along the imaginary axes, is developed. This method was produced by a general function that was constructed to satisfy all the above requirements and, from which, all the existing fourth-order six-stage RK methods can be produced. The new method is more efficient than the other optimized methods, for acoustic computations
Determination method of inactivating minimal dose of gama radiation for Salmonella typhimurium
International Nuclear Information System (INIS)
Araujo, E.S.; Campos, H. de; Silva, D.M.
1979-01-01
A method for determination of minimal inactivating dose (MID) with Salmonella typhimurium is presented. This is a more efficient way to improve the irradiated vaccines. The MID found for S. thyphimurium 6.616 by binomial test was 0.55 MR. The method used allows to get a definite value for MID and requires less consumption of material, work and time in comparison with the usual procedure [pt
Minimizing the energy spread within a single bunch by shaping its charge distribution
International Nuclear Information System (INIS)
Loew, G.A.; Wang, J.
1984-06-01
When electrons or positrons in a bunch pass through the periodic structure of a linear accelerator, they leave behind them energy in the form of longitudinal wake fields. The longitudinal fields left behind by early particles in a bunch decrease the energy of later particles. For a linear collider, the energy spread introduced within the bunches by this beam loading effect must be minimized because it limits the degree to which the particles can be focused to a small spot due to chromatic effects in the final focus system. For example, for the SLC, the allowable energy spread is +-0.5%. It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this report shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave
Minimizing the magnetohydrodynamic potential energy for the current hole region in tokamaks
International Nuclear Information System (INIS)
Chu, M.S.; Parks, P.B.
2004-01-01
The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n≠0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n=0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma, or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region.'' The relevance of the present work to computer simulations of plasma with a current hole region is also discussed
MINIMIZING THE MHD POTENTIAL ENERGY FOR THE CURRENT HOLE REGION IN TOKAMAKS
International Nuclear Information System (INIS)
CHU, M.S; PARKS, P.B
2004-01-01
The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n ≠ 0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n = 0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region''. The relevance of the present work to computer simulations of plasma with a current hole region is also discussed
Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks
International Nuclear Information System (INIS)
Giannadakis, K; Varna, J
2012-01-01
The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.
Is the climate system an anticipatory system that minimizes free energy?
Rubin, Sergio; Crucifix, Michel
2017-04-01
All systems, whether they are alive or not are structured determined systems, i.e. their present states [x (t)] depends of past states [x (t - α)]. However it has been suggested [Rosen, 1985; Friston, 2013] that systems that contain life are capable of anticipation and active inference. The underlying principle is that state changes in living systems are best modelled as a function of past and future states [ x(t) = f (x (t - α), x(t), x (t + β)) ]. The reason for this is that living systems contain a predictive model of their ambiance on which they are active: they appear to model their ambiance to preserve their integrity and homeorhesis. We therefore formulate the following hypothesis: can the climate system be interpreted as an anticipatory system that minimizes free energy? Can its variability (catastrophe, bifurcation and/or tipping points) be interpreted in terms of active inference and anticipation failure? Here we present a mathematical formulation of the climate system as an anticipatory system that minimizes free energy and its possible implication in the future climate predictability. References Rosen, R. (1985). Anticipatory systems. In Anticipatory systems (pp. 313-370). Springer New York. Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.
COMPUTATIONAL MODELS USED FOR MINIMIZING THE NEGATIVE IMPACT OF ENERGY ON THE ENVIRONMENT
Directory of Open Access Journals (Sweden)
Oprea D.
2012-04-01
Full Text Available Optimizing energy system is a problem that is extensively studied for many years by scientists. This problem can be studied from different views and using different computer programs. The work is characterized by one of the following calculation methods used in Europe for modelling, power system optimization. This method shall be based on reduce action of energy system on environment. Computer program used and characterized in this article is GEMIS.
Energy-efficient cooking methods
Energy Technology Data Exchange (ETDEWEB)
De, Dilip K. [Department of Physics, University of Jos, P.M.B. 2084, Jos, Plateau State (Nigeria); Muwa Shawhatsu, N. [Department of Physics, Federal University of Technology, Yola, P.M.B. 2076, Yola, Adamawa State (Nigeria); De, N.N. [Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019 (United States); Ikechukwu Ajaeroh, M. [Department of Physics, University of Abuja, Abuja (Nigeria)
2013-02-15
Energy-efficient new cooking techniques have been developed in this research. Using a stove with 649{+-}20 W of power, the minimum heat, specific heat of transformation, and on-stove time required to completely cook 1 kg of dry beans (with water and other ingredients) and 1 kg of raw potato are found to be: 710 {+-}kJ, 613 {+-}kJ, and 1,144{+-}10 s, respectively, for beans and 287{+-}12 kJ, 200{+-}9 kJ, and 466{+-}10 s for Irish potato. Extensive researches show that these figures are, to date, the lowest amount of heat ever used to cook beans and potato and less than half the energy used in conventional cooking with a pressure cooker. The efficiency of the stove was estimated to be 52.5{+-}2 %. Discussion is made to further improve the efficiency in cooking with normal stove and solar cooker and to save food nutrients further. Our method of cooking when applied globally is expected to contribute to the clean development management (CDM) potential. The approximate values of the minimum and maximum CDM potentials are estimated to be 7.5 x 10{sup 11} and 2.2 x 10{sup 13} kg of carbon credit annually. The precise estimation CDM potential of our cooking method will be reported later.
Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-09
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.
Directory of Open Access Journals (Sweden)
Anwar Khan
2018-01-01
Full Text Available Interference and energy holes formation in underwater wireless sensor networks (UWSNs threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.
On minimal energy Hartree-Fock states for the 2DEG at fractional fillings
International Nuclear Information System (INIS)
Cabo Montes Oca, A. de.
1995-08-01
Approximate minimal energy solutions of the previously discussed general class of Hartree-Fock (HF) states of the 2DEG at 1/3 and 2/3 filling factors are determined. Their selfenergy spectrum is evaluated. Wannier states associated to the filled Bloch states are introduced in a lattice having three flux quanta per cell. They allow to rewrite approximately the ν = 1/3 HF Hamiltonian as sum of three independent tight-binding model Hamiltonians, one describing the dynamics in the band of occupied states and the other ones in the tow bands of excited states. The magnitude of the hopping integral indicates the enhanced role which should have the correlation energy in the present situation with respect to the case of the Yoshioka and Lee second order energy calculation for the lowest energy HF state. Finally, the discussion also suggests the Wannier function, which spreads an electron into a three quanta area, as a physical model for the composite fermion mean field one particle state. (author). 11 refs, 5 figs
Tang, Dunbing; Dai, Min
2015-09-01
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
International Nuclear Information System (INIS)
Schmidt, M.; Dinnebier, R.; Kalkhof, H.
2007-01-01
Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was
Evaluation of binding energies by using quantum mechanical methods
International Nuclear Information System (INIS)
Postolache, Cristian; Matei, Lidia; Postolache, Carmen
2002-01-01
Evaluation of binding energies (BE) in molecular structure is needed for modelling chemical and radiochemical processes by quantum-chemical methods. An important field of application is evaluation of radiolysis and autoradiolysis stability of organic and inorganic compounds as well as macromolecular structures. The current methods of calculation do not allow direct determination of BE but only of total binding energies (TBE) and enthalpies. BEs were evaluated indirectly by determining the homolytic dissociation energies. The molecular structures were built and geometrically optimized by the molecular mechanics methods MM+ and AMBER. The energy minimizations were refined by semi-empirical methods. Depending on the chosen molecular structure, the CNDO, INDO, PM3 and AM1 methods were used. To reach a high confidence level the minimizations were done for gradients lower than 10 -3 RMS. The energy values obtained by the difference of the fragment TBLs, of the transition states and initial molecular structures, respectively, were associated to the hemolytic fragmentation energy and BE, respectively. In order to evaluate the method's accuracy and to establish the application fields of the evaluation methods, the obtained values of BEs were compared with the experimental data taken from literature. To this goal there were built, geometrically optimized by semi-empirical methods and evaluated the BEs for 74 organic and inorganic compounds (alkanes, alkene, alkynes, halogenated derivatives, alcohols, aldehydes, ketones, carboxylic acids, nitrogen and sulfur compounds, water, hydrogen peroxide, ammonia, hydrazine, etc. (authors)
Minimization of energy and surface roughness of the products machined by milling
Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.
2017-08-01
Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.
International Nuclear Information System (INIS)
Gatti, R; UhlIk, F; Montalenti, F
2008-01-01
We present a novel computational method for finding the concentration profile which minimizes the elastic energy stored in heteroepitaxial islands. Based on a suitable combination of continuum elasticity theory and configurational Monte Carlo, we show that such profiles can be readily found by a simple, yet fully self-consistent, iterative procedure. We apply the method to SiGe/Si islands, considering realistic three-dimensional shapes (pyramids, domes and barns), finding strongly non-uniform distributions of Si and Ge atoms, in qualitative agreement with several experiments. Moreover, our simulated selective-etching profiles display, in some cases, a remarkable resemblance to the experimental ones, opening intriguing questions on the interplay between kinetic, entropic and elastic effects
International Nuclear Information System (INIS)
Falconer, K.L.; Lane, T.C.
1991-01-01
A Waste Minimization Program Plan for the U.S. Department of Energy's (DOE) Naval Petroleum Reserve No. 3 (NPR-3) was prepared in response to DOE Order 5400.1, open-quotes General Environmental Protection Program close-quote The NPR-3 Waste Minimization Program Plan encompasses all ongoing operations at the Naval Petroleum Reserve and is consistent with the principles set forth in the mission statement for NPR-3. The mission of the NPR-3 is to apply project management, engineering and scientific capabilities to produce oil and gas from subsurface zones at the maximum efficiency rate for the United States Government. NPR-3 generates more than 60 discrete waste streams, many of significant volume. Most of these waste streams are categorized as wastes from the exploration, development and production of oil and gas and, as such, are exempt from Subtitle C of RCRA as indicated in the regulatory determination published in the Federal Register on July 6, 1988. However, because so many of these waste streams contain hazardous substances and because of an increasingly more restrictive regulatory environment, in 1990 an overall effort was made to characterize all waste streams produced and institute the best waste management practice economically practical to reduce the volume and toxicity of the waste generated
Directory of Open Access Journals (Sweden)
Novita Astin
2016-12-01
Full Text Available This paper presents about the transmission of Digital Video Broadcasting system with streaming video resolution 640x480 on different IQ rate and modulation. In the video transmission, distortion often occurs, so the received video has bad quality. Key frames selection algorithm is flexibel on a change of video, but on these methods, the temporal information of a video sequence is omitted. To minimize distortion between the original video and received video, we aimed at adding methodology using sequential distortion minimization algorithm. Its aim was to create a new video, better than original video without significant loss of content between the original video and received video, fixed sequentially. The reliability of video transmission was observed based on a constellation diagram, with the best result on IQ rate 2 Mhz and modulation 8 QAM. The best video transmission was also investigated using SEDIM (Sequential Distortion Minimization Method and without SEDIM. The experimental result showed that the PSNR (Peak Signal to Noise Ratio average of video transmission using SEDIM was an increase from 19,855 dB to 48,386 dB and SSIM (Structural Similarity average increase 10,49%. The experimental results and comparison of proposed method obtained a good performance. USRP board was used as RF front-end on 2,2 GHz.
Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias
2013-04-24
Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.
Energy consumption during simulated minimal access surgery with and without using an armrest.
Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie
2013-03-01
Minimal access surgery (MAS) can be a lengthy procedure when compared to open surgery and therefore surgeon fatigue becomes an important issue and surgeons may expose themselves to chronic injuries and making errors. There have been few studies on this topic and they have used only questionnaires and electromyography rather than direct measurement of energy expenditure (EE). The aim of this study was to investigate whether the use of an armrest could reduce the EE of surgeons during MAS. Sixteen surgeons performed simulated MAS with and without using an armrest. They were required to perform the time-consuming task of using scissors to cut a rubber glove through its top layer in a triangular fashion with the help of a laparoscopic camera. Energy consumptions were measured using the Oxycon Mobile system during all the procedures. Error rate and duration time for simulated surgery were recorded. After performing the simulated surgery, subjects scored how comfortable they felt using the armrest. It was found that O(2) uptake (VO(2)) was 5 % less when surgeons used the armrest. The error rate when performing the procedure with the armrest was 35 % compared with 42.29 % without the armrest. Additionally, comfort levels with the armrest were higher than without the armrest. 75 % of surgeons indicated a preference for using the armrest during the simulated surgery. The armrest provides support for surgeons and cuts energy consumption during simulated MAS.
Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant
International Nuclear Information System (INIS)
Preda, Marius Cristian
2006-01-01
ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected
IMPROVING THE TRANSMISSION PERFORMANCE BASED ON MINIMIZING ENERGY IN MOBILE ADHOC NETWORKS
Directory of Open Access Journals (Sweden)
Gundala Swathi
2015-06-01
Full Text Available Networking is collectively no of mobile nodes allocate users to correctly detect a distant environment. These wireless mobile networks want strong but simple, scalable, energy efficient and also self organize routing algorithms. In Mobile technology small quantity of power electronics and less power radio frequency have permit the expansion of small, comparatively economical and less power nodes, are associated in a wireless mobile networkIn this study we proposed method are: energy effectiveness, energetic occurrence zone and multiple hop TRANSMIT, taking into concern between the energy of transmit nodes and distance from the transmit node to the trusted neighbor node, link weight energy utilization and distance are measured as most important constraint for decide on greatest possible path from Zone Head (ZH to the neighbor node. In this we use the different constraints and lessen the quantity of distribution messages during the Transmit node choice point to decrease the energy utilization of the complete network.
Potential pollution prevention and waste minimization for Department of Energy operations
International Nuclear Information System (INIS)
Griffin, J.; Ischay, C.; Kennicott, M.; Pemberton, S.; Tull, D.
1995-10-01
With the tightening of budgets and limited resources, it is important to ensure operations are carried out in a cost-effective and productive manner. Implementing an effective Pollution Prevention strategy can help to reduce the costs of waste management and prevent harmful releases to the environment. This document provides an estimate of the Department of Energy's waste reduction potential from the implementation of Pollution Prevention opportunities. A team of Waste Minimization and Pollution Prevention professionals was formed to collect the data and make the estimates. The report includes a list of specific reduction opportunities for various waste generating operations and waste types. A generic set of recommendations to achieve these reduction opportunities is also provided as well as a general discussion of the approach and assumptions made for each waste generating operation
Directory of Open Access Journals (Sweden)
W. L. Silva
2008-09-01
Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.
Is spontaneous breaking of R-parity feasible in minimal low-energy supergravity
International Nuclear Information System (INIS)
Gato, B.; Leon, J.; Perez-Mercader, J.; Quiros, M.
1985-01-01
Spontaneous violation of lepton number without breaking Lorentz invariance can, in principle, be incorporated in models with softly broken supersymmetry. We study the situation for minimal low-energy supergravity models coming from a GUT (hence not having hierarchy destabilizing light singlets) and where the SU(2)xU(1) breaking is radiative. It is found that for this type of model, R-parity breaking requires either too heavy a top quark for a realistic superpartner spectrum or too light a superpartner spectrum for a realistic top quark, making the spontaneous violation of lepton number in the third generation incompatible with present experimental data. We do not discard the possibility of having it in a fourth, heavier, generation. (orig.)
Renewable energy: Method and measures
International Nuclear Information System (INIS)
Nilsen, Trond Hartvedt
2003-01-01
The thesis presents various possibilities for renewable energy in Norway. The wind power would give a practical and economic alternative. The external costs for the wind power would be moderate. In chapter 3 the utility cost analysis for renewable alternatives are studied relative to the macroeconomic efficiency. Some methodical problems and how these analyses are used are reviewed. In the practical utility cost analyses wind power is studied relative to gas power which is the non-renewable alternative present in Norway today. A qualitative part is included. It is not possible to determine whether wind power is preferable to gas power in the macroeconomic perspective. Wind power would be the choice if high environmental and CO2 cleaning costs are expected. The first conclusion to be drawn is that it is difficult to decide whether wind power is the best solution based on cost benefit analysis. However, the alternative seems to be quite robust in the analysis. Due to the central position the energy supplies have in the society this business should be heavily regulated. The sector is also overtaxed as a reduction in consumption is desired. The analysis shows that the system does not function perfectly. The thesis surveys various measures for improving the renewable energy supply and focuses on the wind power. A model for and analysis of the measures are carried out and resulted in a second conclusion. The measures have various properties as to the influence on the market. A subsidy is a fine measure for stimulation production of green power while a tax reduces efficiently the production of black power. A system with green licenses in combination with a subsidy and a tax would be preferable as to increasing the part of renewable energy of the total production. It is therefore necessary to have clearly defined goals and use suitable measures for achieving them. The costs of wind power is falling and it would therefore soon be macroeconomic profitable. It is also
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L(-1)/10 min), peracetic acid (100 mg L(-1)/15 min) and ozonated water (1.2 mg L(-1)/1 min) as alternative sanitizers to sodium hypochlorite (150 mg L(-1) free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.
Directory of Open Access Journals (Sweden)
Mara Lígia Biazotto Bachelli
2013-09-01
Full Text Available Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L-1/10 min, peracetic acid (100 mg L-1/15 min and ozonated water (1.2 mg L-1 /1 min as alternative sanitizers to sodium hypochlorite (150 mg L-1 free chlorine/15 min were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 ºC with the product packaged on LDPE bags of 60 µm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.
Energy models: methods and trends
Energy Technology Data Exchange (ETDEWEB)
Reuter, A [Division of Energy Management and Planning, Verbundplan, Klagenfurt (Austria); Kuehner, R [IER Institute for Energy Economics and the Rational Use of Energy, University of Stuttgart, Stuttgart (Germany); Wohlgemuth, N [Department of Economy, University of Klagenfurt, Klagenfurt (Austria)
1997-12-31
Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of `energy models`, computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning. 2 figs., 19 refs.
Energy models: methods and trends
International Nuclear Information System (INIS)
Reuter, A.; Kuehner, R.; Wohlgemuth, N.
1996-01-01
Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of 'energy models', computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning
Systematic process synthesis and design methods for cost effective waste minimization
International Nuclear Information System (INIS)
Biegler, L.T.; Grossman, I.E.; Westerberg, A.W.
1995-01-01
We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents
Systematic process synthesis and design methods for cost effective waste minimization
Energy Technology Data Exchange (ETDEWEB)
Biegler, L.T.; Grossman, I.E.; Westerberg, A.W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)
1995-12-31
We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents.
International Nuclear Information System (INIS)
Li Min; Lai, Alvin C.K.
2013-01-01
Highlights: ► A second-law-based analysis is performed for single U-tube ground heat exchangers. ► Two expressions for the optimal length and flow velocity are developed for GHEs. ► Empirical velocities of GHEs are large compared to thermodynamic optimum values. - Abstract: This paper investigates thermodynamic performance of borehole ground heat exchangers with a single U-tube by the entropy generation minimization method which requires information of heat transfer and fluid mechanics, in addition to thermodynamics analysis. This study first derives an expression for dimensionless entropy generation number, a function that consists of five dimensionless variables, including Reynolds number, dimensionless borehole length, scale factor of pressures, and two duty parameters of ground heat exchangers. The derivation combines a heat transfer model and a hydraulics model for borehole ground heat exchangers with the first law and the second law of thermodynamics. Next, the entropy generation number is minimized to produce two analytical expressions for the optimal length and the optimal flow velocity of ground heat exchangers. Then, this paper discusses and analyzes implications and applications of these optimization formulas with two case studies. An important finding from the case studies is that widely used empirical velocities of circulating fluid are too large to operate ground-coupled heat pump systems in a thermodynamic optimization way. This paper demonstrates that thermodynamic optimal parameters of ground heat exchangers can probably be determined by using the entropy generation minimization method.
Non-minimal derivative coupling scalar field and bulk viscous dark energy
Energy Technology Data Exchange (ETDEWEB)
Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-08-15
Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)
Liu, Gang; Bao, Jie
2017-12-01
Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Zeming; He, Bingwei; Chen, Jiang; D u, Zhibin; Zheng, Jingyi; Li, Yanqin
2012-08-01
To guide doctors in precisely positioning surgical operation, a new production method of minimally invasive implant guide template was presented. The mandible of patient was scanned by CT scanner, and three-dimensional jaw bone model was constructed based on CT images data The professional dental implant software Simplant was used to simulate the plant based on the three-dimensional CT model to determine the location and depth of implants. In the same time, the dental plaster models were scanned by stereo vision system to build the oral mucosa model. Next, curvature registration technology was used to fuse the oral mucosa model and the CT model, then the designed position of implant in the oral mucosa could be determined. The minimally invasive implant guide template was designed in 3-Matic software according to the design position of implant and the oral mucosa model. Finally, the template was produced by rapid prototyping. The three-dimensional registration technology was useful to fuse the CT data and the dental plaster data, and the template was accurate that could provide the doctors a guidance in the actual planting without cut-off mucosa. The guide template which fabricated by comprehensive utilization of three-dimensional registration, Simplant simulation and rapid prototyping positioning are accurate and can achieve the minimally invasive and accuracy implant surgery, this technique is worthy of clinical use.
de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre
2015-01-01
One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Renewable energy delivery systems and methods
Walker, Howard Andrew
2013-12-10
A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.
International Nuclear Information System (INIS)
De Kleine, Robert D.; Keoleian, Gregory A.; Kelly, Jarod C.
2011-01-01
A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: → Optimal replacement schedules for residential central air conditioners were found. → Minimizing energy required more frequent replacement than minimizing consumer cost. → Significant variation in optimal replacement was observed for Michigan and Texas. → Rebates for altering replacement patterns are not cost effective for GHG abatement. → Maintenance levels were significant in determining the energy and GHG impacts.
Directory of Open Access Journals (Sweden)
Jie Shen
2015-01-01
Full Text Available We describe an extension of the redistributed technique form classical proximal bundle method to the inexact situation for minimizing nonsmooth nonconvex functions. The cutting-planes model we construct is not the approximation to the whole nonconvex function, but to the local convexification of the approximate objective function, and this kind of local convexification is modified dynamically in order to always yield nonnegative linearization errors. Since we only employ the approximate function values and approximate subgradients, theoretical convergence analysis shows that an approximate stationary point or some double approximate stationary point can be obtained under some mild conditions.
Note: A method for minimizing oxide formation during elevated temperature nanoindentation
Energy Technology Data Exchange (ETDEWEB)
Cheng, I. C.; Hodge, A. M., E-mail: ahodge@usc.edu [Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue OHE430, Los Angeles, California 90089 (United States); Garcia-Sanchez, E. [Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue OHE430, Los Angeles, California 90089 (United States); Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, NL 66450 (Mexico)
2014-09-15
A standardized method to protect metallic samples and minimize oxide formation during elevated-temperature nanoindentation was adapted to a commercial instrument. Nanoindentation was performed on Al (100), Cu (100), and W (100) single crystals submerged in vacuum oil at 200 °C, while the surface morphology and oxidation was carefully monitored using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results were compared to room temperature and 200 °C nanoindentation tests performed without oil, in order to evaluate the feasibility of using the oil as a protective medium. Extensive surface characterization demonstrated that this methodology is effective for nanoscale testing.
International Nuclear Information System (INIS)
Grohs, J.G.; Krepler, P.
2004-01-01
Minimal invasive stabilizations represent a new alternative for the treatment of osteoporotic compression fractures. Vertebroplasty and balloon kyphoplasty are two methods to enhance the strength of osteoporotic vertebral bodies by the means of cement application. Vertebroplasty is the older and technically easier method. The balloon kyphoplasty is the newer and more expensive method which does not only improve pain but also restores the sagittal profile of the spine. By balloon kyphoplasty the height of 101 fractured vertebral bodies could be increased up to 90% and the wedge decreased from 12 to 7 degrees. Pain was reduced from 7,2 to 2,5 points. The Oswestry disability index decreased from 60 to 26 points. This effects persisted over a period of two years. Cement leakage occurred in only 2% of vertebral bodies. Fractures of adjacent vertebral bodies were found in 11%. Good preinterventional diagnostics and intraoperative imaging are necessary to make the balloon kyphoplasty a successful application. (orig.) [de
Lee, Hee Chang; Lee, Ji Yeoun; Ryu, Seul Ki; Lim, Jang Mi; Chong, Sangjoon; Phi, Ji Hoon; Kim, Seung-Ki; Wang, Kyu-Chang
2016-12-01
The posterior fossa dural opening requires the ligation of the occipital sinus to gain successful exposure. However, there could be a prominent occipital sinus which is functioning as the main drainage route and is harboring the risk of unpredictable massive hemorrhage during the dural opening. We introduce a safe method of posterior fossa dural incision to minimize hemorrhage from the occipital sinus using four curved hemostat clamps. For the dural incision at the midline part of the posterior cranial fossa, we used four curved hemostat clamps to occlude the prominent occipital sinus: one pair of clamps at the proximal part and the other pair at the distal part to occlude the occipital sinus. Dural incision was made between the two pairs of the curved hemostat clamps. By clamping of the sinus, it allows observation of possible brain swelling after occlusion of the occipital sinus as well as minimizes hemorrhage during incision of the midline dura of the posterior fossa. This method allows observation of brain swelling after occipital sinus occlusion and is an easy and safe incision of the midline dura minimizing hemorrhage in selected cases with a prominent occipital sinus.
Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D
2008-02-08
We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.
Reduction of very large reaction mechanisms using methods based on simulation error minimization
Energy Technology Data Exchange (ETDEWEB)
Nagy, Tibor; Turanyi, Tamas [Institute of Chemistry, Eoetvoes University (ELTE), P.O. Box 32, H-1518 Budapest (Hungary)
2009-02-15
A new species reduction method called the Simulation Error Minimization Connectivity Method (SEM-CM) was developed. According to the SEM-CM algorithm, a mechanism building procedure is started from the important species. Strongly connected sets of species, identified on the basis of the normalized Jacobian, are added and several consistent mechanisms are produced. The combustion model is simulated with each of these mechanisms and the mechanism causing the smallest error (i.e. deviation from the model that uses the full mechanism), considering the important species only, is selected. Then, in several steps other strongly connected sets of species are added, the size of the mechanism is gradually increased and the procedure is terminated when the error becomes smaller than the required threshold. A new method for the elimination of redundant reactions is also presented, which is called the Principal Component Analysis of Matrix F with Simulation Error Minimization (SEM-PCAF). According to this method, several reduced mechanisms are produced by using various PCAF thresholds. The reduced mechanism having the least CPU time requirement among the ones having almost the smallest error is selected. Application of SEM-CM and SEM-PCAF together provides a very efficient way to eliminate redundant species and reactions from large mechanisms. The suggested approach was tested on a mechanism containing 6874 irreversible reactions of 345 species that describes methane partial oxidation to high conversion. The aim is to accurately reproduce the concentration-time profiles of 12 major species with less than 5% error at the conditions of an industrial application. The reduced mechanism consists of 246 reactions of 47 species and its simulation is 116 times faster than using the full mechanism. The SEM-CM was found to be more effective than the classic Connectivity Method, and also than the DRG, two-stage DRG, DRGASA, basic DRGEP and extended DRGEP methods. (author)
Integrating Solar Heating into an Air Handling Unit to Minimize Energy Consumption
Wilson, Scott A
2010-01-01
The purpose of this project was to test a method of integrating solar heating with a small commercial air handling unit (AHU). In order to accomplish this a heat exchanger was placed in the reheat position of the AHU and piped to the solar heating system. This heat exchanger is used to supplement or replace the existing electric reheat. This method was chosen for its ability to utilize solar energy on a more year round basis when compared to a traditional heating system. It allows solar h...
An Approximate Proximal Bundle Method to Minimize a Class of Maximum Eigenvalue Functions
Directory of Open Access Journals (Sweden)
Wei Wang
2014-01-01
Full Text Available We present an approximate nonsmooth algorithm to solve a minimization problem, in which the objective function is the sum of a maximum eigenvalue function of matrices and a convex function. The essential idea to solve the optimization problem in this paper is similar to the thought of proximal bundle method, but the difference is that we choose approximate subgradient and function value to construct approximate cutting-plane model to solve the above mentioned problem. An important advantage of the approximate cutting-plane model for objective function is that it is more stable than cutting-plane model. In addition, the approximate proximal bundle method algorithm can be given. Furthermore, the sequences generated by the algorithm converge to the optimal solution of the original problem.
Approximate k-NN delta test minimization method using genetic algorithms: Application to time series
Mateo, F; Gadea, Rafael; Sovilj, Dusan
2010-01-01
In many real world problems, the existence of irrelevant input variables (features) hinders the predictive quality of the models used to estimate the output variables. In particular, time series prediction often involves building large regressors of artificial variables that can contain irrelevant or misleading information. Many techniques have arisen to confront the problem of accurate variable selection, including both local and global search strategies. This paper presents a method based on genetic algorithms that intends to find a global optimum set of input variables that minimize the Delta Test criterion. The execution speed has been enhanced by substituting the exact nearest neighbor computation by its approximate version. The problems of scaling and projection of variables have been addressed. The developed method works in conjunction with MATLAB's Genetic Algorithm and Direct Search Toolbox. The goodness of the proposed methodology has been evaluated on several popular time series examples, and also ...
Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.
2018-01-01
One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper
Enhanced Multi-Objective Energy Optimization by a Signaling Method
Soares, João; Borges, Nuno; Vale, Zita; Oliveira, P.B.
2016-01-01
In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensi...
New hybrid frequency reuse method for packet loss minimization in LTE network.
Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H
2015-11-01
This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement.
Ren, Bangyue; Hao, Yansong; Wang, Huaqing; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-03-28
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.
Minimization of municipal solid waste transportation route in West Jakarta using Tabu Search method
Chaerul, M.; Mulananda, A. M.
2018-04-01
Indonesia still adopts the concept of collect-haul-dispose for municipal solid waste handling and it leads to the queue of the waste trucks at final disposal site (TPA). The study aims to minimize the total distance of waste transportation system by applying a Transshipment model. In this case, analogous of transshipment point is a compaction facility (SPA). Small capacity of trucks collects the waste from waste temporary collection points (TPS) to the compaction facility which located near the waste generator. After compacted, the waste is transported using big capacity of trucks to the final disposal site which is located far away from city. Problem related with the waste transportation can be solved using Vehicle Routing Problem (VRP). In this study, the shortest distance of route from truck pool to TPS, TPS to SPA, and SPA to TPA was determined by using meta-heuristic methods, namely Tabu Search 2 Phases. TPS studied is the container type with total 43 units throughout the West Jakarta City with 38 units of Armroll truck with capacity of 10 m3 each. The result determines the assignment of each truck from the pool to the selected TPS, SPA and TPA with the total minimum distance of 2,675.3 KM. The minimum distance causing the total cost for waste transportation to be spent by the government also becomes minimal.
Self-organization, free energy minimization, and optimal grip on a field of affordances
Directory of Open Access Journals (Sweden)
Jelle eBruineberg
2014-08-01
Full Text Available In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism’s tendency towards an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston’s work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the brain-body-environment system. Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism’s selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients.
Self-organization, free energy minimization, and optimal grip on a field of affordances.
Bruineberg, Jelle; Rietveld, Erik
2014-01-01
In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism's tendency toward an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston's work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the system "brain-body-landscape of affordances." Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism's selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients.
Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.
1996-11-01
Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.
A detailed survey of numerical methods for unconstrained minimization. Pt. 1
International Nuclear Information System (INIS)
Mika, K.; Chaves, T.
1980-01-01
A detailed description of numerical methods for unconstrained minimization is presented. This first part surveys in particular conjugate direction and gradient methods, whereas variable metric methods will be the subject of the second part. Among the results of special interest we quote the following. The conjugate direction methods of Powell, Zangwill and Sutti can be best interpreted if the Smith approach is adopted. The conditions for quadratic termination of Powell's first procedure are analyzed. Numerical results based on nonlinear least squares problems are presented for the following conjugate direction codes: VA04AD from Harwell Subroutine Library and ZXPOW from IMSL, both implementations of Powell's second procedure, DFMND from IBM-SILMATH (Zangwill's method) and Brent's algorithm PRAXIS. VA04AD turns out to be superior in all cases, PRAXIS improves for high-dimensional problems. All codes clearly exhibit superlinear convergence. Akaike's result for the method of steepest descent is derived directly from a set of nonlinear recurrence relations. Numerical results obtained with the highly ill conditioned Hilbert function confirm the theoretical predictions. Several properties of the conjugate gradient method are presented and a new derivation of the equivalence of steepest descent partan and the CG method is given. A comparison of numerical results from the CG codes VA08AD (Fletcher-Reeves), DFMCG (the SSP version of the Fletcher-Reevens algorithm) and VA14AD (Powell's implementation of the Polak-Ribiere formula) reveals that VA14AD is clearly superior in all cases, but that the convergence rate of these codes is only weakly superlinear such that high accuracy solutions require extremely large numbers of function calls. (orig.)
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Nuclear methods in environmental and energy research
Energy Technology Data Exchange (ETDEWEB)
Vogt, J. R. [ed.
1977-01-01
The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)
Nuclear methods in environmental and energy research
International Nuclear Information System (INIS)
Vogt, J.R.
1980-01-01
A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research
Nuclear methods in environmental and energy research
Energy Technology Data Exchange (ETDEWEB)
Vogt, J R [ed.
1980-01-01
A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.
Method for producing chemical energy
Jorgensen, Betty S.; Danen, Wayne C.
2004-09-21
Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.
Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy
Li, Xiang; Garraghan, Peter; Jiang, Xiaohong; Wu, Zhaohui; Xu, Jie
2018-01-01
Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, tradi...
Uncertainty Quantification in Alchemical Free Energy Methods.
Bhati, Agastya P; Wan, Shunzhou; Hu, Yuan; Sherborne, Brad; Coveney, Peter V
2018-05-02
Alchemical free energy methods have gained much importance recently from several reports of improved ligand-protein binding affinity predictions based on their implementation using molecular dynamics simulations. A large number of variants of such methods implementing different accelerated sampling techniques and free energy estimators are available, each claimed to be better than the others in its own way. However, the key features of reproducibility and quantification of associated uncertainties in such methods have barely been discussed. Here, we apply a systematic protocol for uncertainty quantification to a number of popular alchemical free energy methods, covering both absolute and relative free energy predictions. We show that a reliable measure of error estimation is provided by ensemble simulation-an ensemble of independent MD simulations-which applies irrespective of the free energy method. The need to use ensemble methods is fundamental and holds regardless of the duration of time of the molecular dynamics simulations performed.
RE-EDUCATIVE METHOD IN THE PROCESS OF MINIMIZING OF AUTOAGRESIVE WAYS OF BEHAVIOR
Directory of Open Access Journals (Sweden)
Nenad GLUMBIC
1999-05-01
Full Text Available Autoagressive behavior is a relatively frequent symptom of mental disturbances and behavior disturbances which are the subject of professional engagement of clinically oriented defectologists. In the process of rehabilitation numerous methods are used, from behavioral to psychopharmacological ones by which the above mentioned problems are eliminated of softened.The paper deals with four children with different diagnosis (autism, disintegrative psychosis, Patau syndrome and amaurosis that have the same common denominator-mental retardation and autoagression.We have tried to point out-by the description of a study case as well as the ways od work with these children-an application possibly of the particular methods of general and special re-education of psychomotorics in the process of autoagressive ways of behavior minimizing.The paper gives the autor’s notion of indications for re-educative method application with in the multihandicapped children population. Defectological treatment discovers new forms of existence in the existential field, not only to the retarded child but also to the very therapist. Epistemological consequences of the mentioned transfer are given in details in the paper.
Cauliflower ear – a minimally invasive treatment method in a wrestling athlete: a case report
Directory of Open Access Journals (Sweden)
Haik J
2018-01-01
Full Text Available Josef Haik,1–4 Or Givol,2 Rachel Kornhaber,1,5 Michelle Cleary,6 Hagit Ofir,1,2 Moti Harats1–3 1Department of Plastic and Reconstructive Surgery, Sheba Medical Center, Tel Hashomer, Ramat Gan, 2Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Burn Injury Research Node, Institute for Health Research University of Notre Dame Fremantle, Fremantle WA, Australia; 4Talpiot Leadership Program, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; 5Faculty of Health, 6School of Health Sciences, College of Health and Medicine, University of Tasmania, Sydney, NSW, Australia Abstract: Acute auricular hematoma can be caused by direct blunt trauma or other injury to the external ear. It is typically seen in those who practice full contact sports such as boxing, wrestling, and rugby. “Cauliflower ear” deformity, fibrocartilage formation during scarring, is a common complication of auricular hematomas. Therefore, acute drainage of the hematoma and postprocedural techniques for preventing recurrence are necessary for preventing the deformity. There are many techniques although no superior method of treatment has been found. In this case report, we describe a novel method using needle aspiration followed by the application of a magnet and an adapted disc to the affected area of the auricular. This minimally invasive, simple, and accessible method could potentially facilitate the treatment of cauliflower ear among full contact sports athletes. Keywords: cauliflower ear, hematoma, ear deformity, athletic injuries, wrestling, case report
Econometric methods for energy planning and policy
International Nuclear Information System (INIS)
Bhatia, R.
1989-01-01
The paper reports on the following: econometric models are often used in energy planning and policy for energy demand analysis at the macro and sectorial levels; estimating income and price elasticities of demand which can be used to analyze effects of growth and price changes; assessing interfuel and interfactor substitutions; forecasting energy demand; and estimating cost functions and forecasting supply. The illustrations in the paper are confined to single equation systems estimated by least squares method as used in analyzing changes in aggregate energy demand and sectorial energy demand. The use of econometric methods is illustrated with the help of empirical studies from a few countries (notably India). 2 tabs
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the
Sid, S; Volant, A; Lesage, G; Heran, M
2017-11-01
Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.
Effective Energy Methods for Global Optimization for Biopolymer Structure Prediction
National Research Council Canada - National Science Library
Shalloway, David
1998-01-01
.... Its main strength is that it uncovers and exploits the intrinsic "hidden structures" of biopolymer energy landscapes to efficiently perform global minimization using a hierarchical search procedure...
Radio frequency energy for non-invasive and minimally invasive skin tightening.
Mulholland, R Stephen
2011-07-01
This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.
Construction of molecular potential energy curves by an optimization method
Wang, J.; Blake, A. J.; McCoy, D. G.; Torop, L.
1991-01-01
A technique for determining the potential energy curves for diatomic molecules from measurements of diffused or continuum spectra is presented. It is based on a numerical procedure which minimizes the difference between the calculated spectra and the experimental measurements and can be used in cases where other techniques, such as the conventional RKR method, are not applicable. With the aid of suitable spectral data, the associated dipole electronic transition moments can be simultaneously obtained. The method is illustrated by modeling the "longest band" of molecular oxygen to extract the E 3Σ u- and B 3Σ u- potential curves in analytical form.
International Nuclear Information System (INIS)
2001-01-01
The objective of this report is to provide Member States and their decision makers (ranging from regulators, strategists, planners and designers, to operators) with relevant information on opportunities for minimizing radioactive wastes arising from the D and D of nuclear facilities. This will allow waste minimization options to be properly planned and assessed as part of national, site and plant waste management policies. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from D and D activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during D and D
Directory of Open Access Journals (Sweden)
HYOUNGJU YOON
2013-02-01
Full Text Available It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.
Three methods to measure RH bond energies
International Nuclear Information System (INIS)
Berkowitz, J.; Ellison, G.B.; Gutman, D.
1993-01-01
In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies
A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace
Kruskopf, Ari; Visuri, Ville-Valtteri
2017-12-01
In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.
The Adaptation of Ways and Methods of Risk Minimization in Local Payment Systems in Public Transport
Directory of Open Access Journals (Sweden)
Avdaev Mausar Yushaevich
2014-12-01
Full Text Available The problems of risk management gain special relevance in the conditions of payment systems development in public passenger transport in Russia. The risk carriers as well as the sources of their occurrence are revealed; the characteristics of private risks of individual participants in the system of public passenger transport are presented. The directions of risk management in relation to the payment system in public transport are reasoned and structured. It is proved that the choice of specific ways to minimize the risks in local payment systems in public transport is conditioned by the following factors – the nature of the payment system integration in public transport areas, the temporary nature of risk components effect due to the improvement of organizational, economic and technological factors, the change of the stages of payment systems development, the evaluation of risks effects. The article reasons the possibility of using and adjusting traditional ways (risk evasion, risk compensation, decrease in risk level, risk transfer, distribution of risk between participants and the methods of risk management in the payment systems in public transport according to the stages of their development and functioning for the processing center, passenger motor transport organizations, financial center and passengers (payers. The authors justify the directions of integrating the local payment systems of public transport in the national payment system, taking into account the risks involved in the activity of its members.
International Nuclear Information System (INIS)
Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.
1979-01-01
A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)
Method for optimising the energy of pumps
Skovmose Kallesøe, Carsten; De Persis, Claudio
2011-01-01
The method involves determining whether pumps (pu1, pu5) are directly assigned to loads (v1, v3) as pilot pumps (pu2, pu3) and hydraulically connected upstream of the pilot pumps. The upstream pumps are controlled with variable speed for energy optimization. Energy optimization circuits are selected
Czech Academy of Sciences Publication Activity Database
Vlček, Jan; Lukšan, Ladislav
Online: 02 April (2018) ISSN 1017-1398 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : Unconstrained minimization * Block variable metric methods * Limited-memory methods * BFGS update * Global convergence * Numerical results Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016
DEFF Research Database (Denmark)
Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya
2015-01-01
. An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss......, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of LCOE is achieved for the system when the power limit is optimized to a certain level of the designed maximum feed-in power (i.e., 3 kW). In addition, the proposed...
Energy Technology Data Exchange (ETDEWEB)
Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)
2013-07-01
Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.
Energy Technology Data Exchange (ETDEWEB)
Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)
2013-07-01
Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.
Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L
2017-11-01
Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Methods for Distributed Optimal Energy Management
DEFF Research Database (Denmark)
Brehm, Robert
The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast to convent......The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast...... to conventional centralised optimal energy flow management systems, here-in, focus is set on how optimal energy management can be achieved in a decentralised distributed architecture such as a multi-agent system. Distributed optimisation methods are introduced, targeting optimisation of energy flow in virtual......-consumption of renewable energy resources in low voltage grids. It can be shown that this method prevents mutual discharging of batteries and prevents peak loads, a supervisory control instance can dictate the level of autarchy from the utility grid. Further it is shown that the problem of optimal energy flow management...
International Nuclear Information System (INIS)
Boeri, Marco; Longo, Alberto
2017-01-01
This study provides a methodologically rigorous attempt to disentangle the impact of various factors – unobserved heterogeneity, information and environmental attitudes – on the inclination of individuals to exhibit either a utility maximization or a regret minimization behaviour in a discrete choice experiment for renewable energy programmes described by four attributes: greenhouse gas emissions, power outages, employment in the energy sector, and electricity bill. We explore the ability of different models – multinomial logit, random parameters logit, and hybrid latent class – and of different choice paradigms – utility maximization and regret minimization – in explaining people's choices for renewable energy programmes. The “pure” random regret random parameters logit model explains the choices of our respondents better than other models, indicating that regret is an important choice paradigm, and that choices for renewable energy programmes are mostly driven by regret, rather than by rejoice. In particular, we find that our respondents' choices are driven more by changes in greenhouse gas emissions than by reductions in power outages. Finally, we find that changing the level of information to one attribute has no effect on choices, and that being a member of an environmental organization makes a respondent more likely to be associated with the utility maximization choice framework. - Highlights: • The first paper to use the Random Regret Minimization choice paradigm in energy economics • With a hybrid latent class model, choices conform to either utility or pure random regret. • The pure random regret random parameters logit model outperforms other models. • Reducing greenhouse gas emissions is more important than reducing power outages.
Methods for risk estimation in nuclear energy
Energy Technology Data Exchange (ETDEWEB)
Gauvenet, A [CEA, 75 - Paris (France)
1979-01-01
The author presents methods for estimating the different risks related to nuclear energy: immediate or delayed risks, individual or collective risks, risks of accidents and long-term risks. These methods have attained a highly valid level of elaboration and their application to other industrial or human problems is currently under way, especially in English-speaking countries.
Thermodynamic free-energy minimization for unsupervised fusion of dual-color infrared breast images
Szu, Harold; Miao, Lidan; Qi, Hairong
2006-04-01
function [A] may vary from the point tumor to its neighborhood, we could not rely on neighborhood statistics as did in a popular unsupervised independent component analysis (ICA) mathematical statistical method, we instead impose the physics equilibrium condition of the minimum of Helmholtz free-energy, H = E - T °S. In case of the point breast cancer, we can assume the constant ground state energy E ° to be normalized by those benign neighborhood tissue, and then the excited state can be computed by means of Taylor series expansion in terms of the pixel I/O data. We can augment the X-ray mammogram technique with passive IR imaging to reduce the unwanted X-rays during the chemotherapy recovery. When the sequence is animated into a movie, and the recovery dynamics is played backward in time, the movie simulates the cameras' potential for early detection without suffering the PD=0.1 search uncertainty. In summary, we applied two satellite-grade dual-color IR imaging cameras and advanced military (automatic target recognition) ATR spectrum fusion algorithm at the middle wavelength IR (3 - 5μm) and long wavelength IR (8 - 12μm), which are capable to screen malignant tumors proved by the time-reverse fashion of the animated movie experiments. On the contrary, the traditional thermal breast scanning/imaging, known as thermograms over decades, was IR spectrum-blind, and limited to a single night-vision camera and the necessary waiting for the cool down period for taking a second look for change detection suffers too many environmental and personnel variabilities.
Energy Technology Data Exchange (ETDEWEB)
Grohs, J.G.; Krepler, P. [Orthopaedische Klinik, Universitaet Wien (Austria)
2004-03-01
Minimal invasive stabilizations represent a new alternative for the treatment of osteoporotic compression fractures. Vertebroplasty and balloon kyphoplasty are two methods to enhance the strength of osteoporotic vertebral bodies by the means of cement application. Vertebroplasty is the older and technically easier method. The balloon kyphoplasty is the newer and more expensive method which does not only improve pain but also restores the sagittal profile of the spine. By balloon kyphoplasty the height of 101 fractured vertebral bodies could be increased up to 90% and the wedge decreased from 12 to 7 degrees. Pain was reduced from 7,2 to 2,5 points. The Oswestry disability index decreased from 60 to 26 points. This effects persisted over a period of two years. Cement leakage occurred in only 2% of vertebral bodies. Fractures of adjacent vertebral bodies were found in 11%. Good preinterventional diagnostics and intraoperative imaging are necessary to make the balloon kyphoplasty a successful application. (orig.) [German] Minimal-invasive Stabilisierungen stellen eine Alternative zur bisherigen Behandlung osteoporotischer Wirbelfrakturen dar. Die Vertebroplastie und die Ballonkyphoplastik sind 2 Verfahren, um die Festigkeit der Wirbelkoerper nach osteoporotischen Kompressionsfrakturen durch Einbringen von Knochenzement wieder herzustellen. Die Vertebroplastie ist die aeltere, technisch einfachere und kostenguenstigere Technik, geht allerdings regelmaessig mit Zementaustritt einher. Die Ballonkyphoplastik ist die neuere kostenintensivere Technologie, mit der abgesehen von der Schmerzreduktion auch die Wiederherstellung des sagittalen Profils der Wirbelsaeule angestrebt werden kann. Mit der Ballonkyphoplastik konnten bei 101 frakturierten Wirbelkoerpern die Hoehe auf fast 90% des Sollwertes angehoben und die lokale Kyphose von 12 auf 7 vermindert werden. Die Schmerzen wurden - gemessen anhand einer 10-teiligen Skala - von 7,2 auf 2,5 reduziert. Der Oswestry disability
Bhattacharya, Somnath; Mukherjee, Pradip; Roy, Amit Singha; Saha, Anirban
2018-03-01
We consider a scalar field which is generally non-minimally coupled to gravity and has a characteristic cubic Galilean-like term and a generic self-interaction, as a candidate of a Dark Energy model. The system is dynamically analyzed and novel fixed points with perturbative stability are demonstrated. Evolution of the system is numerically studied near a novel fixed point which owes its existence to the Galileon character of the model. It turns out that demanding the stability of this novel fixed point puts a strong restriction on the allowed non-minimal coupling and the choice of the self-interaction. The evolution of the equation of state parameter is studied, which shows that our model predicts an accelerated universe throughout and the phantom limit is only approached closely but never crossed. Our result thus extends the findings of Coley, Dynamical systems and cosmology. Kluwer Academic Publishers, Boston (2013) for more general NMC than linear and quadratic couplings.
An optimization based method for line planning to minimize travel time
DEFF Research Database (Denmark)
Bull, Simon Henry; Lusby, Richard Martin; Larsen, Jesper
2015-01-01
The line planning problem is to select a number of lines from a potential pool which provides sufficient passenger capacity and meets operational requirements, with some objective measure of solution line quality. We model the problem of minimizing the average passenger system time, including...
An applied optimization based method for line planning to minimize travel time
DEFF Research Database (Denmark)
Bull, Simon Henry; Rezanova, Natalia Jurjevna; Lusby, Richard Martin
The line planning problem in rail is to select a number of lines froma potential pool which provides sufficient passenger capacity and meetsoperational requirements, with some objective measure of solution linequality. We model the problem of minimizing the average passenger systemtime, including...
Stars of bosons with non-minimal energy-momentum tensor
International Nuclear Information System (INIS)
van der Bij, J.J.; Gleiser, M.
1987-02-01
We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling ξ absolute value of phi 2 R to gravity. We find, for fields of mass m, maximum masses and number of particles of order M/sub max/ ∼ 0.73ξ/sup 1/2/ M/sub Planck/ 2 /m, and N/sub max/ ∼ 0.88ξ/sup 1/2/ M/sub Planck/ 2 /m 2 respectively, for large positive ξ. For large negative ξ we find, M/sub max/ ∼ 0.66 absolute value of ξ/sup 1/2/ M/sub Planck/ 2 /m, and N/sub max/ ∼ 0.72 absolute value of ξ/sup 1/2/ M/sub Planck/ 2 /m 2
Stars of bosons with non-minimal energy-momentum tensor
International Nuclear Information System (INIS)
Van der Bij, J.J.; Gleiser, M.
1987-01-01
We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling ξvertical strokeφvertical stroke 2 R to gravity. We find, for zeronode fields of mass m, maximum masses and number of particles of order M max ≅ 0.73ξ 1/2 M Planck 2 /m, and N max ≅ 0.88ξ 1/2 x M Planck 2 /m 2 respectively, for large positive ξ. For large negative ξ we find M max ≅ 0.66vertical strokeξvertical stroke 1/2 M Planck 2 /m, and N max ≅ 0.72vertical strokeξvertical stroke 1/2 x M Planck 2 /m 2 . We also calculate the critical mass and particle number for higher radial nodes of the scalar field and find that both quantities grow approximately linearly for large node number n. (orig.)
Energy and environment in the 21st century : minimizing climate change.
CERN. Geneva
2003-01-01
Energy demand and economic output are coupled. Both are expected to vastly increase in this century, driven primarily by the economic and population growth of the developing world. If the present reliance on carbon-based fuels as primary energy sources continues, average global temperatures are projected to rise between 3Â° C and 6Â° C. Limiting climate change will require reduction in greenhouse gas emissions far beyond the Kyoto commitments. Time scales and options, including nuclear, will be reviewed.
Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort
Energy Technology Data Exchange (ETDEWEB)
Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2012-08-01
Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.
2016-01-01
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A
2016-08-25
There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.
Two methods for decreasing the flexibility gap in national energy systems
International Nuclear Information System (INIS)
Batas Bjelić, Ilija; Rajaković, Nikola; Krajačić, Goran; Duić, Neven
2016-01-01
More variable renewable energy sources and energy efficiency measures create an additional flexibility gap and require a novel energy planning method for sustainable national energy systems. The firstly presented method uses only EnergyPLAN tool in order to decrease the flexibility gap in a national energy system. Generic Optimization program (GenOpt"®) is an optimization program for the minimization of a cost function that is evaluated by an external simulation program, such as EnergyPLAN, which was used as the second method in this research. Successful strategies to decrease the flexibility gap are verified on the case of the Serbian national energy system using two methods for its structure design: (1) the iterative method, based on heuristics and manual procedure of using only EnergyPLAN, and (2) the optimization method, based on soft-linking of EnergyPLAN with GenOpt"®. The latter method, named EPOPT (EnergyPlan-genOPT), found the solution for the structure of the sustainable national energy system at the total cost of 8190 M€, while the iterative method was only able to find solutions at the cost in the range of 8251–8598 M€ by targeting only one sustainability goal. The advantages of the EPOPT method are its accuracy, user-friendliness and minimal costs, are valuable for planners. - Highlights: • Heuristic and optimization method for sustainable national energy system structure. • The same input assumptions resulting in different energy system structure. • Both methods are successful in decreasing of the flexibility gap. • The EPOPT method advantages are in the speed, accuracy and planner comfort. • Advanced method for the sustainable national energy policy planning.
Boob, Ankush Ramnarayan; Manjula, M; Reddy, E Rajendra; Srilaxmi, N; Rani, Tabitha
2014-01-01
Many chemomechanical caries removal (CMCR) agents have been introduced and marketed since 1970s, with each new one being better and effective than the previously introduced. Papacarie and Carisolv are new systems in the field of CMCR techniques. These are reportedly minimally invasive methods of removing carious dentin while preserving sound dentin. To compare the Efficiency (time taken for caries removal) and effectiveness (Knoop hardness number of the remaining dentin) of caries removal by three minimally invasive methods, i.e. hand excavation and chemomechanical caries removal using Carisolv and Papacarie. Thirty recently extracted human permanent molars with occlusal carious lesions were divided randomly in three equal groups and bisected through the middle of the lesion mesiodistally and excavated by two methods on each tooth. Statistically significant difference was present among three methods with respect to time and knoop hardness values (KHN) of the remaining dentin. The Efficiency of Hand method is better compared to CMCR techniques and effectiveness of CMCR techniques is better than Hand method in terms of dentin preservation so the chances of maintaining vitality of the pulp will be enhanced. How to cite this article: Boob AR, Manjula M, Reddy ER, Srilaxmi N, Rani T. Evaluation of the Efficiency and Effectiveness of Three Minimally Invasive Methods of Caries Removal: An in vitro Study. Int J Clin Pediatr Dent 2014;7(1):11-18.
Particle identification methods in High Energy Physics
Energy Technology Data Exchange (ETDEWEB)
Va' Vra, J.
2000-01-27
This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.
Silver nanoparticles: an alternative method for sanitization of minimally processed cabbage
Directory of Open Access Journals (Sweden)
Emiliane Andrade Araújo
2015-06-01
Full Text Available The minimal processing of vegetables basically aims to extend food shelf life, which depends on a number of factors, such as sanitization, that is considered a critical step for food microbiological quality. However, the usual antimicrobial agents reduce the microbial population in a maximum of two logarithmic cycles. Therefore, it is necessary to develop alternative sanitizers. This study aimed to increase the innocuity of minimally processed cabbage through sanitization with silver nanoparticles. It was observed that the nanoparticles promoted three logarithmic reductions, i.e. a 99.9 % reduction rate, in the Escherichia coli population inoculated on the cabbage surface. When compared to other antimicrobial agents (sodium dichloroisocyanurate and sodium hypochlorite, the nanoparticles were more efficient in sanitizing minimally processed cabbage, showing a lower count of aerobic mesophils. It was also observed that the cabbage surface presents hydrophobic characteristics, resulting in a higher propension for bacterial adhesion, which was confirmed in the thermodynamic evaluation of favorable adhesion for Staphylococcus aureus, Escherichia coli and Listeria innocua.
Energy saving baking methods. Energibesparende bagemetoder
Energy Technology Data Exchange (ETDEWEB)
Gry, P.
1988-01-01
The project ''Energy Saving Baking Methods'', run as part of the Energy Research Project-1984, and has as its aim to investigate potentials for energy saving by employing microwaves in the baking process. The project is a follow-up of the Nordic Industry Fund project which was completed in 1983. Smaller test ovens with IR long waves, warm air convection and microwaves of 2,47 GHz were used. Measurements of heat distribution from all three energy sources have been made. Extensive experiments have been carried out in order to develope baking methods for white loaves which are energy saving, but where the quality of the bread does not undergo any form of deterioration. Tests were made using microwaves alone, and in combination with hot air and IR. A resulting saving 35% baking time was achieved, and a further reduction of baking time can be reached where a greater improvement of energy distribution can take place, especially in the case of microwaves and IR. (AB).
Directory of Open Access Journals (Sweden)
Jie Zhang
2015-08-01
Full Text Available An intra-urban hierarchy of activity centers interconnected by non-motorized and public transportation is broadly believed to be the ideal urban spatial structure for sustainable cities. However, the proper hinterland area for centers at each level lacks empirical study. Based on the concentric structure of everyday travel distances, working centers, shopping centers, and neighborhood centers are extracted from corresponding types of POIs in 286 Chinese cities at the prefectural level and above. A U-shaped curve between Household Transportation Energy Consumption (HTEC per capita and center density at each of the three levels has been found through regression analysis. An optimal intra-urban hierarchy of activity centers is suggested to construct energy-efficient cities.
Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint
Energy Technology Data Exchange (ETDEWEB)
Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.
2014-08-01
This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.
Excitation methods for energy dispersive analysis
International Nuclear Information System (INIS)
Jaklevic, J.M.
1976-01-01
The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed
International Nuclear Information System (INIS)
Chandramohan, S.; Atturulu, Naresh; Devi, R.P. Kumudini; Venkatesh, B.
2010-01-01
In the future, mechanisms for trade in ancillary services such as reactive power will be implemented in many deregulated power systems. In such an operating framework, a Distribution Corporation (DisCo) would have to purchase reactive power along with real power from the connected transmission corporation. A DisCo would want to minimize its operating costs by minimizing the total amount of real and reactive power drawn from the connected transmission system. Optimally reconfiguring the network will achieve such a goal. In this work, we use a non-dominated sorting genetic algorithm (NSGA) for reconfiguring a radial DisCo to minimize its operating costs considering real and reactive power costs while maximizing its operating reliability and satisfying the regular operating constraints. This method is tested on sample test systems and reported. (author)
Systems and methods for wave energy conversion
MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.
2017-02-28
Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.
Radiation energy calibrating system and method
International Nuclear Information System (INIS)
Jacobson, A.F.
1980-01-01
A radiation energy calibrating system and method which uses a pair of calibrated detectors for measurements of radiation intensity from x-ray tubes for a non-invasive determination of the electrical characteristics; I.E., the tube potential and/or current
Solar energy utilization by physical methods.
Wolf, M
1974-04-19
On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will
Minimizing the energy spread within a single bunch by shaping its charge distribution
International Nuclear Information System (INIS)
Loew, G.A.; Wang, J.W.
1985-03-01
It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this paper shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave. 3 refs., 5 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Aiyun Gao
2017-01-01
Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.
Li, Mengmeng; Bijker, Wietske; Stein, Alfred
2015-04-01
Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.
DEFF Research Database (Denmark)
Lauridsen, Mette Enok Munk; Thiele, Maja; Kimer, N
2013-01-01
Abstract Existing tests for minimal/covert hepatic encephalopathy (m/cHE) are time- and expertise consuming and primarily useable for research purposes. An easy-to-use, fast and reliable diagnostic and grading tool is needed. We here report on the background, experience, and ongoing research......-10) percentile) as a parameter of reaction time variability. The index is a measure of alertness stability and is used to assess attention and cognition deficits. The CRTindex identifies half of patients in a Danish cohort with chronic liver disease, as having m/cHE, a normal value safely precludes HE, it has...
Energy Technology Data Exchange (ETDEWEB)
Susan J. Foulk
2012-07-24
Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie
2016-01-01
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
International Nuclear Information System (INIS)
Sandoval, W.; Quintana, B.D.; Ortega, L.
1997-01-01
As part of the technical support CST-12 provides for a wide variety of defense and nondefense programs within Los Alamos National Laboratory (LANL) and the Department of Energy (DOE) complex, new waste minimization technique is under development for radiological volatile organic analysis (Hot VOA). Currently all HOT VOA must be run in a glovebox. Several types of sample contain TRU radiological waste in the form of particulates. By prefiltering the samples through a 1.2 micron syringe and counting the radioactivity, it has been found that many of the samples can be analyzed outside a glovebox. In the present investigation, the types of Hot VOA samples that can take advantage of this new technique, the volume and types of waste reduced and the experimental parameters will be discussed. Overall, the radioactive waste generated is minimized
International Nuclear Information System (INIS)
Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.
2016-01-01
Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.
B.Bavishna*1, Mrs.M.Agalya2 & Dr.G.Kavitha3
2018-01-01
A lot of research has been done in the field of cloud computing in computing domain. For its effective performance, variety of algorithms has been proposed. The role of virtualization is significant and its performance is dependent on VM Migration and allocation. More of the energy is absorbed in cloud; therefore, the utilization of numerous algorithms is required for saving energy and efficiency enhancement in the proposed work. In the proposed work, green algorithm has been considered with ...
Revisiting a model-independent dark energy reconstruction method
Energy Technology Data Exchange (ETDEWEB)
Lazkoz, Ruth; Salzano, Vincenzo; Sendra, Irene [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain)
2012-09-15
In this work we offer new insights into the model-independent dark energy reconstruction method developed by Daly and Djorgovski (Astrophys. J. 597:9, 2003; Astrophys. J. 612:652, 2004; Astrophys. J. 677:1, 2008). Our results, using updated SNeIa and GRBs, allow to highlight some of the intrinsic weaknesses of the method. Conclusions on the main dark energy features as drawn from this method are intimately related to the features of the samples themselves, particularly for GRBs, which are poor performers in this context and cannot be used for cosmological purposes, that is, the state of the art does not allow to regard them on the same quality basis as SNeIa. We find there is a considerable sensitivity to some parameters (window width, overlap, selection criteria) affecting the results. Then, we try to establish what the current redshift range is for which one can make solid predictions on dark energy evolution. Finally, we strengthen the former view that this model is modest in the sense it provides only a picture of the global trend and has to be managed very carefully. But, on the other hand, we believe it offers an interesting complement to other approaches, given that it works on minimal assumptions. (orig.)
Comment on "Inference with minimal Gibbs free energy in information field theory".
Iatsenko, D; Stefanovska, A; McClintock, P V E
2012-03-01
Enßlin and Weig [Phys. Rev. E 82, 051112 (2010)] have introduced a "minimum Gibbs free energy" (MGFE) approach for estimation of the mean signal and signal uncertainty in Bayesian inference problems: it aims to combine the maximum a posteriori (MAP) and maximum entropy (ME) principles. We point out, however, that there are some important questions to be clarified before the new approach can be considered fully justified, and therefore able to be used with confidence. In particular, after obtaining a Gaussian approximation to the posterior in terms of the MGFE at some temperature T, this approximation should always be raised to the power of T to yield a reliable estimate. In addition, we show explicitly that MGFE indeed incorporates the MAP principle, as well as the MDI (minimum discrimination information) approach, but not the well-known ME principle of Jaynes [E.T. Jaynes, Phys. Rev. 106, 620 (1957)]. We also illuminate some related issues and resolve apparent discrepancies. Finally, we investigate the performance of MGFE estimation for different values of T, and we discuss the advantages and shortcomings of the approach.
Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles
Directory of Open Access Journals (Sweden)
Habibur Rehman
2015-08-01
Full Text Available This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV. An Indirect Field Oriented (IFO drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.
Annual Waste Minimization Summary Report
International Nuclear Information System (INIS)
Haworth, D.M.
2011-01-01
This report summarizes the waste minimization efforts undertaken by National Security TechnoIogies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2010. The NNSA/NSO Pollution Prevention Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment.
Chronic Morel-Lavallée Lesion: A Novel Minimally Invasive Method of Treatment.
Mettu, Ramireddy; Surath, Harsha Vardhan; Chayam, Hanumantha Rao; Surath, Amaranth
2016-11-01
A Morel-Lavallée lesion is a closed internal degloving injury resulting from a shearing force applied to the skin. The etiology of this condition may be motor vehicle accidents, falls, contact sports (ie, football, wrestling),1 and iatrogenic after mammoplasty or abdominal liposuction.2 Common sites of the lesions include the pelvis and/or thigh.3 Isolated Morel-Lavallée lesions without underlying fracture are likely to be missed, which result in chronicity. Management of this condition often requires extensive surgical procedures such as debridement, sclerotherapy, serial percutaneous drainage, negative pressure wound therapy (NPWT), and skin grafting.4,5 The authors wish to highlight a minimally invasive technique for the treatment of chronic Morel-Lavallée lesions.
Boob, Ankush Ramnarayan; Manjula, M; Reddy, E Rajendra; Srilaxmi, N; Rani, Tabitha
2014-01-01
ABSTRACT Background: Many chemomechanical caries removal (CMCR) agents have been introduced and marketed since 1970s, with each new one being better and effective than the previously introduced. Papacarie and Carisolv are new systems in the field of CMCR techniques. These are reportedly minimally invasive methods of removing carious dentin while preserving sound dentin. Aim: To compare the Efficiency (time taken for caries removal) and effectiveness (Knoop hardness number of the remaining den...
By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?
Czech Academy of Sciences Publication Activity Database
Gutknecht, M. H.; Rozložník, Miroslav
2001-01-01
Roč. 27, - (2001), s. 189-213 ISSN 1017-1398 R&D Projects: GA ČR GA201/98/P108 Institutional research plan: AV0Z1030915 Keywords : system of linear algebraic equations * iterative method * Krylov space method * conjugate gradient method * biconjugate gradient method * CG * CGNE * CGNR * CGS * FOM * GMRes * QMR * TFQMR * residual smoothing * MR smoothing * QMR smoothing Subject RIV: BA - General Mathematics Impact factor: 0.438, year: 2001
Spacecraft Dynamic Characterization by Strain Energies Method
Bretagne, J.-M.; Fragnito, M.; Massier, S.
2002-01-01
In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven
Directory of Open Access Journals (Sweden)
HyungSup Shim
2013-07-01
Full Text Available Background Axillary osmidrosis is characterized by unpleasant odors originating from the axillary apocrine glands, resulting in psychosocial stress. The main treatment modality is apocrine gland removal. Until now, of the various surgical techniques have sometimes caused serious complications. We describe herein the favorable outcomes of a new method for ablating apocrine glands by minimal subdermal shaving using sclerotherapy with absolute ethanol.Methods A total of 12 patients underwent the procedure. The severity of osmidrosis was evaluated before surgery. Conventional subdermal shaving was performed on one side (control group and ablation by means of minimal subdermal shaving and absolute ethanol on the other side (study group. Postoperative outcomes were compared between the study and control groups.Results The length of time to removal of the drain was 1 day shorter in the study group than in the control group. There were no serious complications, such as hematoma or seroma, in either group, but flap margin necrosis and flap desquamation occurred in the control group, and were successfully managed with conservative treatment. Six months after surgery, we and our patients were satisfied with the outcomes.Conclusions Sclerotherapy using absolute ethanol combined with minimal subdermal shaving may be useful for the treatment of axillary osmidrosis. It can reduce the incidence of seroma and hematoma and allow the skin flap to adhere to its recipient site. It can degrade and ablate the remaining apocrine glands and eliminate causative organisms. Furthermore, since this technique is relatively simple, it takes less time than the conventional method.
Araújo, M. M.; Duarte, R. C.; Silva, P. V.; Marchioni, E.; Villavicencio, A. L. C. H.
2009-07-01
Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a 60Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.
International Nuclear Information System (INIS)
Araujo, M.M.; Duarte, R.C.; Silva, P.V.; Marchioni, E.; Villavicencio, A.L.C.H.
2009-01-01
Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a 60 Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.
Energy Technology Data Exchange (ETDEWEB)
Araujo, M.M.; Duarte, R.C.; Silva, P.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Centro de Tecnologia das Radiacoes, Laboratorio de Deteccao de Alimentos Irradiados, Cidade Universitaria, Av. Prof. Lineu Prestes 2242, Butanta Zip Code 05508-000 Sao Paulo (Brazil); Marchioni, E. [Laboratoire de Chimie Analytique et Sciences de l' Aliment (UMR 7512), Faculte de Pharmacie, Universite Louis Pasteur, 74, route du Rhin, F-67400 Illkirch (France); Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Centro de Tecnologia das Radiacoes, Laboratorio de Deteccao de Alimentos Irradiados, Cidade Universitaria, Av. Prof. Lineu Prestes 2242, Butanta Zip Code 05508-000 Sao Paulo (Brazil)], E-mail: villavic@ipen.br
2009-07-15
Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a {sup 60}Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
GeLC-MS: A Sample Preparation Method for Proteomics Analysis of Minimal Amount of Tissue.
Makridakis, Manousos; Vlahou, Antonia
2017-10-10
Application of various proteomics methodologies have been implemented for the global and targeted proteome analysis of many different types of biological samples such as tissue, urine, plasma, serum, blood, and cell lines. Among the aforementioned biological samples, tissue has an exceptional role into clinical research and practice. Disease initiation and progression is usually located at the tissue level of different organs, making the analysis of this material very important for the understanding of the disease pathophysiology. Despite the significant advances in the mass spectrometry instrumentation, tissue proteomics still faces several challenges mainly due to increased sample complexity and heterogeneity. However, the most prominent challenge is attributed to the invasive procedure of tissue sampling which restricts the availability of fresh frozen tissue to minimal amounts and limited number of samples. Application of GeLC-MS sample preparation protocol for tissue proteomics analysis can greatly facilitate making up for these difficulties. In this chapter, a step by step guide for the proteomics analysis of minute amounts of tissue samples using the GeLC-MS sample preparation protocol, as applied by our group in the analysis of multiple different types of tissues (vessels, kidney, bladder, prostate, heart) is provided.
A METHOD OF THE MINIMIZING OF THE TOTAL ACQUISITIONS COST WITH THE INCREASING VARIABLE DEMAND
Directory of Open Access Journals (Sweden)
ELEONORA IONELA FOCȘAN
2015-12-01
Full Text Available Over time, mankind has tried to find different ways of costs reduction. This subject which we are facing more often nowadays, has been detailed studied, without reaching a general model, and also efficient, regarding the costs reduction. Costs reduction entails a number of benefits over the entity, the most important being: increase revenue and default to the profit, increase productivity, a higher level of services / products offered to clients, and last but not least, the risk mitigation of the economic deficit. Therefore, each entity search different modes to obtain most benefits, for the company to succeed in a competitive market. This article supports the companies, trying to make known a new way of minimizing the total cost of acquisitions, by presenting some hypotheses about the increasing variable demand, proving them, and development of formulas for reducing the costs. The hypotheses presented in the model described below, can be maximally exploited to obtain new models of reducing the total cost, according to the modes of the purchase of entities which approach it.
Energy Technology Data Exchange (ETDEWEB)
Hogan, C.M.; Mes-Hartree, M.; Saddler, J.N. (Forintek Canada Corp., Ottawa, ON (Canada). Biotechnology and Chemistry Dept.); Kushner, D.J. (Toronto Univ., Ontario (Canada). Dept. of Microbiology)
1990-02-01
The enzyme loading needed to achieve substrate saturation appeared to be the most economical enzyme concentration to use for hydrolysis, based on percentage hydrolysis. Saturation was reached at 25 filter paper units per gram substrate on Solka Floc BW300, as determined by studying (a) initial adsorption of the cellulase preparation onto the substrate, (b) an actual hydrolysis or (c) a combined hydrolysis and fermentation (CHF) process. Initial adsorption of the cellulases onto the substrate can be used to determine the minimal cellulase requirements for efficient hydrolysis since enzymes initially adsorbed to the substrate have a strong role in governing the overall reaction. Trichoderma harzianum E58 produces high levels of {beta}-glucosidase and is able to cause high conversion of Solka Floc BW300 to glucose without the need for exogenous {beta}-glucosidase. End-product inhibition of the cellulase and {beta}-glucosidase can be more effectively reduced by employing a CHF process than by supplemental {beta}-glucosidase. (orig.).
Lahuerta, Juan J.; Pepin, François; González, Marcos; Barrio, Santiago; Ayala, Rosa; Puig, Noemí; Montalban, María A.; Paiva, Bruno; Weng, Li; Jiménez, Cristina; Sopena, María; Moorhead, Martin; Cedena, Teresa; Rapado, Immaculada; Mateos, María Victoria; Rosiñol, Laura; Oriol, Albert; Blanchard, María J.; Martínez, Rafael; Bladé, Joan; San Miguel, Jesús; Faham, Malek; García-Sanz, Ramón
2014-01-01
We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD– by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD+. When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10−3 27 months, MRD 10−3 to 10−5 48 months, and MRD <10−5 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD+. In complete response patients, the TTP remained significantly longer for MRD– compared with MRD+ patients (131 vs 35 months; P = .0009). PMID:24646471
Energy Technology Data Exchange (ETDEWEB)
Liu, Yang; Shibutan, Yoji [Osaka University, Osaka (Japan); Shimoda, Masatoshi [Toyota Technological Institute, Nagoya (Japan)
2015-04-15
This paper presents a parameter-free shape optimization method for the strength design of stiffeners on thin-walled structures. The maximum von Mises stress is minimized and subjected to the volume constraint. The optimum design problem is formulated as a distributed-parameter shape optimization problem under the assumptions that a stiffener is varied in the in-plane direction and that the thickness is constant. The issue of nondifferentiability, which is inherent in this min-max problem, is avoided by transforming the local measure to a smooth differentiable integral functional by using the Kreisselmeier-Steinhauser function. The shape gradient functions are derived by using the material derivative method and adjoint variable method and are applied to the H{sup 1} gradient method for shells to determine the optimal free-boundary shapes. By using this method, the smooth optimal stiffener shape can be obtained without any shape design parameterization while minimizing the maximum stress. The validity of this method is verified through two practical design examples.
An Alternative Method to Gauss-Jordan Elimination: Minimizing Fraction Arithmetic
Smith, Luke; Powell, Joan
2011-01-01
When solving systems of equations by using matrices, many teachers present a Gauss-Jordan elimination approach to row reducing matrices that can involve painfully tedious operations with fractions (which I will call the traditional method). In this essay, I present an alternative method to row reduce matrices that does not introduce additional…
Variational method for the minimization of entropy generation in solar cells
Smit, S.; Kessels, W.M.M.
2015-01-01
In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy
Uwizeye, U.A.; Groen, E.A.; Gerber, P.J.; Schulte, Rogier P.O.; Boer, de I.J.M.
2016-01-01
The study aims to illustrate a method to identify important input parameters that explain most of the output variance ofenvironmental assessment models. The method is tested for the computation of life-cycle nitrogen (N) use efficiencyindicators among mixed dairy production systems in Rwanda. We
Directory of Open Access Journals (Sweden)
Jose R. Garcia, MS
2017-10-01
Full Text Available Biomaterials are a new treatment strategy for cardiovascular diseases but are difficult to deliver to the heart in a safe, precise, and translatable way. We developed a method to deliver hydrogels to the epicardium through the pericardial space. Our device creates a temporary compartment for hydrogel delivery and gelation using anatomic structures. The method minimizes risk to patients from embolization, thrombotic occlusion, and arrhythmia. In pigs there were no clinically relevant acute or subacute adverse effects from pericardial hydrogel delivery, making this a translatable strategy to deliver biomaterials to the heart.
International Nuclear Information System (INIS)
Samrout, M.; Yalaoui, F.; Cha-hat telet, E.; Chebbo, N.
2005-01-01
This article is based on a previous study made by Bris, Chatelet and Yalaoui [Bris R, Chatelet E, Yalaoui F. New method to minimise the preventive maintenance cost of series-parallel systems. Reliab Eng Syst Saf 2003;82:247-55]. They use genetic algorithm to minimize preventive maintenance cost problem for the series-parallel systems. We propose to improve their results developing a new method based on another technique, the Ant Colony Optimization (ACO). The resolution consists in determining the solution vector of system component inspection periods, T P . Those calculations were applied within the programming tool Matlab. Thus, highly interesting results and improvements of previous studies were obtained
International Nuclear Information System (INIS)
Nie, S.; Li, Y.P.; Liu, J.; Huang, Charley Z.
2017-01-01
An interval-stochastic risk management (ISRM) method is launched to control the variability of the recourse cost as well as to capture the notion of risk in stochastic programming. The ISRM method can examine various policy scenarios that are associated with economic penalties under uncertainties presented as probability distributions and interval values. An ISRM model is then formulated to identify the optimal power mix for the Beijing's energy system. Tradeoffs between risk and cost are evaluated, indicating any change in targeted cost and risk level would yield different expected costs. Results reveal that the inherent uncertainty of system components and risk attitude of decision makers have significant effects on the city's energy-supply and electricity-generation schemes as well as system cost and probabilistic penalty. Results also disclose that import electricity as a recourse action to compensate the local shortage would be enforced. The import electricity would increase with a reduced risk level; under every risk level, more electricity would be imported with an increased demand. The findings can facilitate the local authority in identifying desired strategies for the city's energy planning and management in association with financial-cost minimization and environmental-impact mitigation. - Highlights: • Interval-stochastic risk management method is launched to identify optimal power mix. • It is advantageous in capturing the notion of risk in stochastic programming. • Results reveal that risk attitudes can affect optimal power mix and financial cost. • Developing renewable energies would enhance the sustainability of energy management. • Import electricity as an action to compensate the local shortage would be enforced.
Abadi, Shaivad Shabee Hulhasan; Moin, Afrasim; Veerabhadrappa, Gangadharappa Hosahalli
2016-01-01
inflammatory diseases which provide constant and prolonged therapeutic effects that reduce dosing frequency and thereby minimize potential adverse effects of NSAIDs such as GI irritation and insufficient patient compliance. The present review describes the latest developments in microparticulate drug delivery systems and the best alternatives for safe and effective microcapsular systems in a controlled manner for the delivery of NSAIDs.
A novel minimally-invasive method to sample human endothelial cells for molecular profiling.
Directory of Open Access Journals (Sweden)
Stephen W Waldo
Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.
Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.
Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young
2014-02-04
The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.
Target injection methods for inertial fusion energy
International Nuclear Information System (INIS)
Petzoldt, R.W.; Moir, R.W.
1994-06-01
We have studied four methods to inject IFE targets: the gas gun, electrostatic accelerator, induction accelerator, and rail gun. We recommend a gas gun for indirect drive targets because they can support a gas pressure load on one end and can slide along the gun barrel without damage. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable; for other types of targets, a sabot would be necessary. A cam and poppet valve arrangement is recommended for gas flow control. An electrostatic accelerator is attractive for use with lightweight spherical direct drive targets. Since there is no physical contact between the target and the injector, there will be no wear of either component during the injection process. An induction accelerator has an advantage of no electrical contact between the target and the injector. Physical contact is not even necessary, so the wear should be minimal. It requires a cylindrical conductive target sleeve which is a substantial added mass. A rail gun is a simpler device than an electrostatic accelerator or induction accelerator. It requires electrical contact between the target and the rails and may have a significant wear rate. The wear in a vacuum could be reduced by use of a solid lubricant such as MoS 2 . The total required accuracy of target injection, tracking and beam pointing of ±0.4 mm appears achievable but will require development and experimental verification
International Nuclear Information System (INIS)
Mazziotti, David A.
2002-01-01
Atomic and molecular ground-state energies are variationally determined by constraining the two-particle reduced density matrix (2-RDM) to satisfy positivity conditions. Because each positivity condition corresponds to correcting the ground-state energies for a class of Hamiltonians with two-particle interactions, these conditions collectively provide a new approach to many-body theory that, unlike perturbation theory, can capture significantly correlated phenomena including the multireference effects of potential-energy surfaces. The D, Q, and G conditions for the 2-RDM are extended through generalized lifting operators inspired from the formal solution of N-representability. These lifted conditions agree with the hierarchy of positivity conditions presented by Mazziotti and Erdahl [Phys. Rev. A 63, 042113 (2001)]. The connection between positivity and the formal solution explains how constraining higher RDMs to be positive semidefinite improves the N representability of the 2-RDM and suggests using pieces of higher positivity conditions that computationally scale like the D condition. With the D, Q, and G conditions as well as pieces of higher positivity the electronic energies for Be, LiH, H 2 O, and BH are computed through a primal-dual interior-point algorithm for positive semidefinite programming. The variational method produces potential-energy surfaces that are highly accurate even far from the equilibrium geometry where single-reference perturbation-based methods often fail to produce realistic energies
The stochastic energy-Casimir method
Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.
2018-04-01
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"
Advanced Analysis Methods in High Energy Physics
Energy Technology Data Exchange (ETDEWEB)
Pushpalatha C. Bhat
2001-10-03
During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.
Evaluation of Restoration Methods to Minimize Canada Thistle (Cirsium arvense) Infestation
Larson, Diane L.
2009-01-01
The National Wildlife Refuge System has an active habitat restoration program and annually seeds thousands of hectares with native plant species. The noxious weed, Canada thistle (Cirsium arvense), plagues these restorations. This study evaluates planting methodology and seed mixes with the goal of recommending optimal methods to reduce infestation of noxious weeds, especially Canada thistle, in new restorations. Three planting methods (dormant season broadcast, growing season [summer] broadcast, and growing season [summer] drill) were fully crossed with three levels of seed diversity (10, 20, and 34 species [plus a fourth level, 58 species, on the three sites in Iowa]) in a completely randomized design replicated on nine sites in Minnesota and Iowa. The propagule bank of Canada thistle was evaluated at each site. Planting occurred in winter 2004 and spring-summer 2005. Here I report on results through summer 2007. None of the planting methods or seed mix diversities consistently resulted in reduced abundance of Canada thistle. Soil texture had the strongest influence; sites with greater proportions of clay had greater frequency and cover of Canada thistle than did sandy sites. At the Minnesota study sites, the dormant broadcast planting method combined with the highest seed diversity resulted in both the greatest cover of planted species as well as the greatest richness of planted species. At the Iowa sites, planted species richness was slightly greater in the summer drill plots, but cover of planted species was greatest in the dormant broadcast plots. Richness of planted species at the Iowa sites was maximized in the high diversity plots, with the extra-high diversity seed mix resulting in significantly lower species richness. Individual species responded to planting methods idiosyncratically, which suggests that particular species could be favored by tailoring planting methods to that species.
Method to minimize the organic waste in liquid-liquid extraction processes
International Nuclear Information System (INIS)
Schoen, J.; Ochsenfeld, W.
1978-01-01
In order to free the aqueous phases, accuring in the Purex process of the reprocessing of irradiated nuclear and breeder materials, from the most interfering tri-n-butyl phosphate (TBP) only present in small amounts, and its decomposition products, a suggestion is made to add macroporous sorption resin based on polystyrene which was cross-linked with divinyl benzene, to the former. A method is also described how to reprocess these resins so that almost all components can be recycled. 7 detailed examples explain the method. (UWI) [de
DEFF Research Database (Denmark)
Liu, Chengxi; Qin, Nan; Bak, Claus Leth
2015-01-01
This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...
The improved oval forceps suture-guiding method for minimally invasive Achilles tendon repair.
Liu, Yang; Lin, Lixiang; Lin, Chuanlu; Weng, Qihao; Hong, Jianjun
2018-06-01
To discuss the effect and advantage of the improved oval forceps suture-guiding method combined with anchor nail in the treatment of acute Achilles tendon rupture. A retrospective research was performed on 35 cases of acute Achilles tendon rupture treated with the improved oval forceps suture-guiding method from January 2013 to October 2016. Instead of the Achillon device, we perform the Achillon technique with the use of simple oval forceps, combined with absorbable anchor nail, percutaneously to repair the acute Achilles tendon rupture. All patients were followed up for at least 12 months (range, 12-19 months), and all the patients underwent successful repair of their acute Achilles tendon rupture using the improved oval forceps suture-guiding method without any major intra- or postoperative complications. All the patients returned to work with pre-injury levels of activity at a mean of 12.51 ± 0.76 weeks. Mean AOFAS ankle-hindfoot scores improved from 63.95 (range, 51-78) preoperatively to 98.59 (range, 91-100) at last follow-up. This was statistically significant difference (P anchor nail, the improved technique has better repair capacity and expands the operation indication of oval forceps method. Copyright © 2018 Elsevier Ltd. All rights reserved.
A time-minimizing hybrid method for fitting complex Moessbauer spectra
International Nuclear Information System (INIS)
Steiner, K.J.
2000-07-01
The process of fitting complex Moessbauer-spectra is known to be time-consuming. The fitting process involves a mathematical model for the combined hyperfine interaction which can be solved by an iteration method only. The iteration method is very sensitive to its input-parameters. In other words, with arbitrary input-parameters it is most unlikely that the iteration method will converge. Up to now a scientist has to spent her/his time to guess appropriate input parameters for the iteration process. The idea is to replace the guessing phase by a genetic algorithm. The genetic algorithm starts with an initial population of arbitrary input parameters. Each parameter set is called an individual. The first step is to evaluate the fitness of all individuals. Afterwards the current population is recombined to form a new population. The process of recombination involves the successive application of genetic operators which are selection, crossover, and mutation. These operators mimic the process of natural evolution, i.e. the concept of the survival of the fittest. Even though there is no formal proof that the genetic algorithm will eventually converge, there is an excellent chance that there will be a population with very good individuals after some generations. The hybrid method presented in the following combines a very modern version of a genetic algorithm with a conventional least-square routine solving the combined interaction Hamiltonian i.e. providing a physical solution with the original Moessbauer parameters by a minimum of input. (author)
Optimization of design and erection methods to minimize the construction time-schedule of EPR plants
International Nuclear Information System (INIS)
Pierrat, Michel; L'Huby, Yvan; Decelle, Alain
1999-01-01
This paper presents the results of the investigations made during the Basic Design of the EPR project (European Pressurized water Reactor) to shorten the construction schedule. A 57 months construction schedule can be reached for the first unit. The investigations concern both design and construction methods. (author)
Stability of bioactive compounds in minimally processed beet according to the cooking methods
Directory of Open Access Journals (Sweden)
Juliana Arruda RAMOS
2017-10-01
Full Text Available Abstract The current study aimed to determine the functional propriety of fresh beets under different cooking methods through the quantification of bioactives compounds. Beets were chosen for uniformity of size, color and absence of defects. They were thoroughly washed in running water to remove dirt, manually peeled with a knife, sliced through a stainless-steel food processor (5 mm slicing disc and submitted to four different cooking methods: steaming, pressure, oven-baked and hot-water immersion. Analysis were performed in both uncooked and cooked beets to evaluate antioxidant activity, total phenolic content, carotenoids, flavonoids and betalains. The experiment was completely randomized design (CRD. Data were subjected to analysis of variance (F test and means were compared by Tukey test (p < 0.05. Oven-baked beets preserve most of the bioactive coumpouds, maintaining better levels of carotenoids, flavonoids, betacyanin and betaxanthin than the other cooking methods. The antioxidant activity was similar between the treatments, except in the pressure. Moreover, different cooking methods did not affect phenolic compounds concentration in beets.
Directory of Open Access Journals (Sweden)
Hyung-Sup Shim
2013-07-01
Full Text Available BackgroundAxillary osmidrosis is characterized by unpleasant odors originating from the axillary apocrine glands, resulting in psychosocial stress. The main treatment modality is apocrine gland removal. Until now, of the various surgical techniques have sometimes caused serious complications. We describe herein the favorable outcomes of a new method for ablating apocrine glands by minimal subdermal shaving using sclerotherapy with absolute ethanol.MethodsA total of 12 patients underwent the procedure. The severity of osmidrosis was evaluated before surgery. Conventional subdermal shaving was performed on one side (control group and ablation by means of minimal subdermal shaving and absolute ethanol on the other side (study group. Postoperative outcomes were compared between the study and control groups.ResultsThe length of time to removal of the drain was 1 day shorter in the study group than in the control group. There were no serious complications, such as hematoma or seroma, in either group, but flap margin necrosis and flap desquamation occurred in the control group, and were successfully managed with conservative treatment. Six months after surgery, we and our patients were satisfied with the outcomes.ConclusionsSclerotherapy using absolute ethanol combined with minimal subdermal shaving may be useful for the treatment of axillary osmidrosis. It can reduce the incidence of seroma and hematoma and allow the skin flap to adhere to its recipient site. It can degrade and ablate the remaining apocrine glands and eliminate causative organisms. Furthermore, since this technique is relatively simple, it takes less time than the conventional method.
International Nuclear Information System (INIS)
Sasaki, Shinobu
1987-01-01
This paper proposes a new approach to solve the inverse kinematics of a type of sixlink manipulator. Directing our attention to features of joint structures of the manipulator, the original problem is first formulated by a system of equations with four variables and solved by means of a minimization technique. The remaining two variables are determined from constrained conditions involved. This is the basic idea in the present approach. The results of computer simulation of the present algorithm showed that the accuracies of solutions and convergence speed are much higher and quite satisfactory for practical purposes, as compared with the linearization-iteration method based on the conventional inverse Jacobian matrix. (author)
International Nuclear Information System (INIS)
Quirion, R.; Robitaille, Y.; Martial, J.; Chabot, J.G.; Lemoine, P.; Pilapil, C.; Dalpe, M.
1987-01-01
A general method for the preparation of high-quality, mostly ice-crystal-artefact-free whole human brain hemisphere sections is described. Upon receipt, hemispheres are divided; one is then fixed in buffered 10% formalin for neuropathological analysis while the other is cut in 8-10-mm-thick coronal slices that are then rapidly frozen in 2-methylbutane at -40 degrees C (10-15 sec) before being placed in the brain bank at -80 degrees C. Such rapid freezing markedly decreases the formation of ice-crystal artefacts. Whole-hemisphere 20-micron thick sections are then cut and mounted onto lantern-type gelatin-coated slides. These sections are subsequently used for both qualitative and quantitative in vitro receptor autoradiography. Examples of data obtained are given by using various radioligands labelling classical neutrotransmitter, neuropeptide, enzyme, and ion channel receptor binding sites. This method should be useful for the obtention of various receptor maps in human brain. Such information could be most useful for in vivo receptor visualization studies using positron emission tomography (PET) scanning. It could also indicate if a given receptor population is specifically and selectively altered in certain brain diseases, eventually leading to the development of new therapeutic approaches
Directory of Open Access Journals (Sweden)
Mazyar Peyda
2016-06-01
Full Text Available Background: Water treatment sometimes needs a coagulation and flocculation process to remove suspended and colloidal materials. Inorganic coagulants used create concerns about pollution of the environment and harmful effects on the human’s health. The studies carried out previously indicated the capability of an active coagulant agent extracted from Descurainia Sophia seed to remove turbidity of water. Methods: The purpose of this study was to investigate the effect of NaCl (0.05-1 gL-1, NaOH (0.01-0.1 gL-1, extraction duration (1-25 min and the ultrasound frequency (0-45-75 kHz, used in the extraction of Descurainia Sophia seed, on the generation of color in purified water and to provide a model to predict the effects of the studied variables on color generation. Extraction was performed using water as solvent, supplemented with NaCl and NaOH and irradiated by ultrasound. Design of experiments and analysis of results were conducted by the D-optimal method based on the response surface methodology (RSM. Results: The results demonstrated that only the effect of concentration of NaOH is significant in color generation (with p<0.05. Conclusion: The effect of NaOH on color generation in purified water is predictable by the use of a statistically valid linear model at a confidence level of 95%.
Nahar, J.; Rusyaman, E.; Putri, S. D. V. E.
2018-03-01
This research was conducted at Perum BULOG Sub-Divre Medan which is the implementing institution of Raskin program for several regencies and cities in North Sumatera. Raskin is a program of distributing rice to the poor. In order to minimize rice distribution costs then rice should be allocated optimally. The method used in this study consists of the Improved Vogel Approximation Method (IVAM) to analyse the initial feasible solution, and Modified Distribution (MODI) to test the optimum solution. This study aims to determine whether the IVAM method can provide savings or cost efficiency of rice distribution. From the calculation with IVAM obtained the optimum cost is lower than the company's calculation of Rp945.241.715,5 while the cost of the company's calculation of Rp958.073.750,40. Thus, the use of IVAM can save rice distribution costs of Rp12.832.034,9.
Alfadhlani; Samadhi, T. M. A. Ari; Ma’ruf, Anas; Setiasyah Toha, Isa
2018-03-01
Assembly is a part of manufacturing processes that must be considered at the product design stage. Design for Assembly (DFA) is a method to evaluate product design in order to make it simpler, easier and quicker to assemble, so that assembly cost is reduced. This article discusses a framework for developing a computer-based DFA method. The method is expected to aid product designer to extract data, evaluate assembly process, and provide recommendation for the product design improvement. These three things are desirable to be performed without interactive process or user intervention, so product design evaluation process could be done automatically. Input for the proposed framework is a 3D solid engineering drawing. Product design evaluation is performed by: minimizing the number of components; generating assembly sequence alternatives; selecting the best assembly sequence based on the minimum number of assembly reorientations; and providing suggestion for design improvement.
KEELE, Minimization of Nonlinear Function with Linear Constraints, Variable Metric Method
International Nuclear Information System (INIS)
Westley, G.W.
1975-01-01
1 - Description of problem or function: KEELE is a linearly constrained nonlinear programming algorithm for locating a local minimum of a function of n variables with the variables subject to linear equality and/or inequality constraints. 2 - Method of solution: A variable metric procedure is used where the direction of search at each iteration is obtained by multiplying the negative of the gradient vector by a positive definite matrix which approximates the inverse of the matrix of second partial derivatives associated with the function. 3 - Restrictions on the complexity of the problem: Array dimensions limit the number of variables to 20 and the number of constraints to 50. These can be changed by the user
International Nuclear Information System (INIS)
Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.
2008-01-01
The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)
Waste minimization methods for treating analytical instrumentation effluents at the source
International Nuclear Information System (INIS)
Ritter, J.A.; Barnhart, C.
1995-01-01
The primary goal of this project was to reduce the amount of hazardous waste being generated by the Savannah River Siste Defense Waste Processing Technology-analytical Laboratory (DWPT-AL). A detailed characterization study was performed on 12 of the liquid effluent streams generated within the DWPT-AL. Two of the streams were not hazardous, and are now being collected separately from the 10 hazardous streams. A secondary goal of the project was to develop in-line methods using primarily adsorption/ion exchange columns to treat liquid effluent as it emerges from the analytical instrument as a slow, dripping flow. Samples from the 10 hazardous streams were treated by adsorption in an experimental apparatus that resembled an in-line or at source column apparatus. The layered adsorbent bed contained activated carbon and ion exchange resin. The column technique did not work on the first three samples of the spectroscopy waste stream, but worked well on the next three samples which were treated in a different column. It was determined that an unusual form of mercury was present in the first three samples. Similarly, two samples of a combined waste stream were rendered nonhazardous, but the last two samples contained acetylnitrile that prevented analysis. The characteristics of these streams changed from the initial characterization study; therefore, continual, in-deptch stream characterization is the key to making this project successful
George, Mark S
2002-08-01
Over the past 20 years, new methods have been developed that have allowed scientists to visualize the human brain in action. Initially positron emission tomography (PET) and now functional magnetic resonance imaging (fMRI) are causing a paradigm shift in psychiatry and the neurosciences. Psychiatry is abandoning the pharmacological model of 'brain as soup', used for much of the past 20 years. Instead, there is new realization that both normal and abnormal behavior arise from chemical processes that occur within parallel distributed networks in specific brain regions. Many of these pathological circuits are becoming well characterized, in disorders ranging from Parkinson's disease, to obsessive-compulsive disorder, to depression. Most recently, there has been an explosion of new techniques that allow for direct stimulation of these brain circuits, without the need for open craniotomy and neurosurgical ablation. The techniques include transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), vagus nerve stimulation (VNS), and deep brain stimulation (DBS). This review will describe these new tools, and overview their current and future potential for research and clinical neuropsychiatric use. The psychiatry of the future will be better grounded in a firm understanding of neuroanatomy and neurophysiology (as well as pharmacology). These brain stimulation tools, or their next iterations, will play an ever-larger role in clinical neuropsychiatric practice.
Sanitation methods using high energy electron beams
International Nuclear Information System (INIS)
Levaillant, C.; Gallien, C.L.
1979-01-01
Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)
Method and system of nuclear energy generation
International Nuclear Information System (INIS)
Wilke, W.
1975-01-01
The method is based on the nuclear reaction Li 6 (n,α)H 3 . Thermal neutrons, whose generation require a power reactor, are fed to a lithium deuterite target in such a manner that part of the tritons produced in this reaction undergo nuclear fusion of the kind d(T,n)α with the deuterons of the target. The remaining tritons are reacted with additional deuterons. The tritium produced in this reaction is processed and fed back to the lithium target over a triton source. It is also possible to process the tritium to a target, feed deuterons to it, and in addition to give the neutrons produced from the T(d,n)α reaction after slowing down to thermal energy to the lithium target. (DG/LH) [de
Directory of Open Access Journals (Sweden)
Saket Jati
2016-12-01
Full Text Available BACKGROUND Tibial pilon fracture though requires operative treatment is difficult to manage. Conventional osteosynthesis is not suitable, because distal tibia is subcutaneous bone with poor vascularity. Closed reduction and Minimally Invasive Plate Osteosynthesis (MIPO for distal tibia has emerged as an alternative treatment option because it respects fracture biology and haematoma and also provides biomechanically stable construct. The aim of the study is to evaluate the results of minimally invasive plate osteosynthesis using locking plates in treating tibial pilon fractures in terms of fracture union, restoration of ankle function and complications. MATERIALS AND METHODS 30 patients with closed tibial pilon fractures (Ruedi and Allgower type I (14, type II (13, type III (3 treated with MIPO with Locking Compression Plates (LCP were prospectively followed for average duration of 18 months. RESULTS Average duration of injury-hospital and injury-surgery interval was as 12.05 hrs. and 3.50 days, respectively. All fractures got united with an average duration of 20.8 weeks (range 14-28 weeks. Olerud and Molander score was used for evaluation at 3 months, 6 months and 18 months. One patient had union with valgus angulation of 15 degrees, but no nonunion was found. CONCLUSION The present study shows that MIPO with LCP is an effective treatment method in terms of union time and complications rate for tibial pilon fracture promoting early union and early weight bearing.
International Nuclear Information System (INIS)
Lisnianski, Anatoly; Frenkel, Ilia; Khvatskin, Lev
2015-01-01
This paper considers a reliability importance evaluation for components in an aging multi-state system. In practical reliability engineering a “curse of dimensionality” (the large number of states that should be analyzed for a multi-state system model) is a main obstacle for importance assessment. In order to challenge the problem, this paper proposes a new method that is based on an L Z -transform of the discrete-state continuous-time Markov process and on Ushakov's Universal Generating Operator. The paper shows that the proposed method can drastically reduce a computational burden. In order to illustrate the method, a solution of a real world problem is presented as a numerical example. - Highlights: • Aging multi-state system under minimal repair is studied. • A new method for Birnbaum importance assessment is developed. • The method is based on the L Z -transform. • The proposed method provides a drastic reduction of computation burden. • Numerical example is presented in order to illustrate the method
Bahamonde, Sebastian; Marciu, Mihai; Rudra, Prabir
2018-04-01
Within this work, we propose a new generalised quintom dark energy model in the teleparallel alternative of general relativity theory, by considering a non-minimal coupling between the scalar fields of a quintom model with the scalar torsion component T and the boundary term B. In the teleparallel alternative of general relativity theory, the boundary term represents the divergence of the torsion vector, B=2∇μTμ, and is related to the Ricci scalar R and the torsion scalar T, by the fundamental relation: R=‑T+B. We have investigated the dynamical properties of the present quintom scenario in the teleparallel alternative of general relativity theory by performing a dynamical system analysis in the case of decomposable exponential potentials. The study analysed the structure of the phase space, revealing the fundamental dynamical effects of the scalar torsion and boundary couplings in the case of a more general quintom scenario. Additionally, a numerical approach to the model is presented to analyse the cosmological evolution of the system.
International Nuclear Information System (INIS)
Bascietto, J.J.; Martin, J.F.; Duke, C.S.; Gray, S.I.
1991-01-01
Fifty years of research, development and production in support of national defense have left the Department of Energy (DOE) with numerous radioactive, hazardous and mixed waste sites requiring environmental restoration and remediation. The responsibilities for DOE associated with releases of these wastes into the environment are driving major efforts to characterize contamination problems and identify and implement environmental restoration and remediation alternatives. The subject of this paper is the recently issued DOE guidance to minimize the basis for damage claims for injuries to natural resources on, over and under lands owned or controlled by DOE associated with the releases of hazardous substances from DOE facilities. Depending on the regulatory authority governing the facility, the preferred means of evaluating the possibility of injury to natural resources is the preparation of an ecological risk assessment or an environmental evaluation. As both the natural resource trustee and lead agency at facilities under its control, DOE receives dual responsibility requiring site remediation if necessary, and that any injured natural resources be restored, or that compensation for the injuries is made. Several executive and legislative sources of authority and responsibility with regard to lead agencies and trustees of natural resources will be detailed. Also, ongoing remedial investigation/feasibility study work at the DOE Fernald Environmental Management Project near Fernald, Ohio will be described as an example of how this guidance can be applied
Efremenko, E N; Azizov, R E; Makhlis, T A; Abbasov, V M; Varfolomeev, S D
2005-01-01
By using a bioluminescence ATP assay, we have determined the minimal concentrations of some biocorrosion inhibitors (Katon, Khazar, VFIKS-82, Nitro-1, Kaspii-2, and Kaspii-4) suppressing most common microbial corrosion agents: Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Pseudomonas putida, Pseudomonas fluorescens, and Acidithiobacillus ferrooxidans. The cell titers determined by the bioluminescence method, including not only dividing cells but also their dormant living counterparts, are two- to sixfold greater than the values determined microbiologically. It is shown that the bioluminescence method can be applied to determination of cell titers in samples of oil-field waters in the presence of iron ions (up to 260 mM) and iron sulfide (to 186 mg/l) and in the absence or presence of biocidal corrosion inhibitors.
Improved methods to evaluate realised energy savings
Boonekamp, P.G.M.
2005-01-01
This thesis regards the calculation of realised energy savings at national and sectoral level, and the policy contribution to total savings. It is observed that the results of monitoring and evaluation studies on realised energy savings are hardly applied in energy saving policy. Causes are the lack
Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht
2010-01-01
Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently
Jones, Jo; Jackson, Janet; Tudor, Terry; Bates, Margaret
2012-09-01
Strategies for enhancing environmental management are a key focus for the government in the UK. Using a manufacturing company from the construction sector as a case study, this paper evaluates selected interventionist techniques, including environmental teams, awareness raising and staff training to improve environmental performance. The study employed a range of methods including questionnaire surveys and audits of energy consumption and generation of waste to examine the outcomes of the selected techniques. The results suggest that initially environmental management was not a focus for either the employees or the company. However, as a result of employing the techniques, the company was able to reduce energy consumption, increase recycling rates and achieve costs savings in excess of £132,000.
International Nuclear Information System (INIS)
Jarungthammachote, S.; Dutta, A.
2008-01-01
Spouted beds have been found in many applications, one of which is gasification. In this paper, the gasification processes of conventional and modified spouted bed gasifiers were considered. The conventional spouted bed is a central jet spouted bed, while the modified spouted beds are circular split spouted bed and spout-fluid bed. The Gibbs free energy minimization method was used to predict the composition of the producer gas. The major six components, CO, CO 2 , CH 4 , H 2 O, H 2 and N 2 , were determined in the mixture of the producer gas. The results showed that the carbon conversion in the gasification process plays an important role in the model. A modified model was developed by considering the carbon conversion in the constraint equations and in the energy balance calculation. The results from the modified model showed improvements. The higher heating values (HHV) were also calculated and compared with the ones from experiments. The agreements of the calculated and experimental values of HHV, especially in the case of the circular split spouted bed and the spout-fluid bed were observed
Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C
2017-10-18
Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.
Directory of Open Access Journals (Sweden)
Reddy Sreenivasulu
2015-06-01
Full Text Available Traditionally, burr problems had been considered unavoidable so that most efforts had been made on removal of the burr as a post process. Nowadays, a trend of manufacturing is an integration of the whole production flow from design to end product. Manufacturing problem issues are handled in various stages even from design stage. Therefore, the methods of describing the burr are getting much attention in recent years for the systematic approach to resolve the burr problem at various manufacturing stages. The main objective of this paper is to explore the basic concepts of MADM methods. In this study, five parameters namely speed, feed, drill size, drill geometry such as point angle and clearance angle were identified to influence more on burr formation during drilling. L 18 orthogonal array was selected and experiments were conducted as per Taguchi experimental plan for Aluminium alloy of 2014, 6061, 5035 and 7075 series. The experiment performed on a CNC Machining center with HSS twist drills. The burr size such as height and thickness were measured on exit of each hole. An optimal combination of process parameters was obtained to minimize the burr size via grey relational analysis. The output from grey based- taguchi method fed as input to the MADM. Apart from burr size strength and temperature are also considered as attributes. Finally, the results generated in MADM suggests the suitable alternative of aluminium alloy, which results in less deburring cost, high strength and high resistance at elevated temperatures.
Directory of Open Access Journals (Sweden)
Ahmed Kibria
2015-01-01
Full Text Available The reliability modeling of a module in a turbine engine requires knowledge of its failure rate, which can be estimated by identifying statistical distributions describing the percentage of failure per component within the turbine module. The correct definition of the failure statistical behavior per component is highly dependent on the engineer skills and may present significant discrepancies with respect to the historical data. There is no formal methodology to approach this problem and a large number of labor hours are spent trying to reduce the discrepancy by manually adjusting the distribution’s parameters. This paper addresses this problem and provides a simulation-based optimization method for the minimization of the discrepancy between the simulated and the historical percentage of failures for turbine engine components. The proposed methodology optimizes the parameter values of the component’s failure statistical distributions within the component’s likelihood confidence bounds. A complete testing of the proposed method is performed on a turbine engine case study. The method can be considered as a decision-making tool for maintenance, repair, and overhaul companies and will potentially reduce the cost of labor associated to finding the appropriate value of the distribution parameters for each component/failure mode in the model and increase the accuracy in the prediction of the mean time to failures (MTTF.
Method for the transmission of energy
International Nuclear Information System (INIS)
Weissenbach, B.
1976-01-01
According ot the invention, chemical energy and/or chemically bound latent energy from a heat source (preferably from a nuclear reactor), is conveyed to a consumer by means of ordinary, saturated hydrocarbons, or their oxygen-containing derivates (preferably methanol), or synthesis gas in open- or closed-cycle systems. (GG) [de
International Nuclear Information System (INIS)
1988-09-01
The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling
International Nuclear Information System (INIS)
Azad-Farsani, Ehsan; Agah, S.M.M.; Askarian-Abyaneh, Hossein; Abedi, Mehrdad; Hosseinian, S.H.
2016-01-01
LMP (Locational marginal price) calculation is a serious impediment in distribution operation when private DG (distributed generation) units are connected to the network. A novel policy is developed in this study to guide distribution company (DISCO) to exert its control over the private units when power loss and green-house gases emissions are minimized. LMP at each DG bus is calculated according to the contribution of the DG to the reduced amount of loss and emission. An iterative algorithm which is based on the Shapley value method is proposed to allocate loss and emission reduction. The proposed algorithm will provide a robust state estimation tool for DISCOs in the next step of operation. The state estimation tool provides the decision maker with the ability to exert its control over private DG units when loss and emission are minimized. Also, a stochastic approach based on the PEM (point estimate method) is employed to capture uncertainty in the market price and load demand. The proposed methodology is applied to a realistic distribution network, and efficiency and accuracy of the method are verified. - Highlights: • Reduction of the loss and emission at the same time. • Fair allocation of loss and emission reduction. • Estimation of the system state using an iterative algorithm. • Ability of DISCOs to control DG units via the proposed policy. • Modeling the uncertainties to calculate the stochastic LMP.
A Method for Determining Optimal Residential Energy Efficiency Packages
Energy Technology Data Exchange (ETDEWEB)
Polly, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gestwick, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2011-04-01
This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.
Methods of Comprehensive Assessment for China’s Energy Sustainability
Xu, Zhijin; Song, Yankui
2018-02-01
In order to assess the sustainable development of China’s energy objectively and accurately, we need to establish a reasonable indicator system for energy sustainability and make a targeted comprehensive assessment with the scientific methods. This paper constructs a comprehensive indicator system for energy sustainability from five aspects of economy, society, environment, energy resources and energy technology based on the theory of sustainable development and the theory of symbiosis. On this basis, it establishes and discusses the assessment models and the general assessment methods for energy sustainability with the help of fuzzy mathematics. It is of some reference for promoting the sustainable development of China’s energy, economy and society.
Energy Technology Data Exchange (ETDEWEB)
Fallone, B; Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S [Cross Cancer Institute, Edmonton, AB (Canada)
2016-06-15
Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth of 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)
An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry
Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua
2016-01-01
According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...
Heavy Bearings Exploitation Energy and Reduction Methods
Szekely, V. G.; Cioară, R.
2016-11-01
The global trend of resource conservation so as “not to compromise the ability of future generation's development” is the fundamental basis of the concept of sustainable development. Concordant with this, the energy efficiency of products is increasingly discussed and frequently taken into account in the design stage. In more cases a product is more appreciated and more attractive as the energy consumption and its associated materials are lower. In the production stage, said consumption advantages primarily the manufacturer, particularly through low consumption thereof. In the operational phase, low energy and materials consumption represents an user advantage and it's a major argument in the decision to purchase and use a particular product. Heavy bearings are frequent products used in wind turbines that are producing non-conventional “clean” energy, as windmills. An enhanced energy efficiency bearing contributes to the enhancement of the overall efficiency of the wind turbines. Based on a suitable mathematical model, this paper identifies and recommends courses of action to reduce the operating energy of heavy bearing through the “cage” - which is the subject of a much larger research - with the highest priority. The identified actions may constitute from a set of requirements for the design stage of the heavy bearing predominantly oriented towards innovation-invention.
Method for energy recovery of spent ERL beams
Energy Technology Data Exchange (ETDEWEB)
Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy
2018-01-16
A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.
The e/h method of energy reconstruction for combined calorimeter
International Nuclear Information System (INIS)
Kul'chitskij, Yu.A.; Kuz'min, M.V.; Vinogradov, V.B.
1999-01-01
The new simple method of the energy reconstruction for a combined calorimeter, which we called the e/h method, is suggested. It uses only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. The method has been tested on the basis of the 1996 test beam data of the ATLAS barrel combined calorimeter and demonstrated the correctness of the reconstruction of the mean values of energies. The obtained fractional energy resolution is [(58 ± 3)%/√E + (2.5 ± 0.3)%] O+ (1.7 ± 0.2) GeV/E. This algorithm can be used for the fast energy reconstruction in the first level trigger
Thermal energy storage devices, systems, and thermal energy storage device monitoring methods
Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.
2016-09-13
Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.
Method of osmotic energy harvesting using responsive compounds and molecules
Hu, Xiao; Cai, Yufeng; Lai, Zhiping; Zhong, Yujiang
2017-01-01
The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli
DEFF Research Database (Denmark)
2010-01-01
Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna.......Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna....
The method of planning the energy consumption for electricity market
Russkov, O. V.; Saradgishvili, S. E.
2017-10-01
The limitations of existing forecast models are defined. The offered method is based on game theory, probabilities theory and forecasting the energy prices relations. New method is the basis for planning the uneven energy consumption of industrial enterprise. Ecological side of the offered method is disclosed. The program module performed the algorithm of the method is described. Positive method tests at the industrial enterprise are shown. The offered method allows optimizing the difference between planned and factual consumption of energy every hour of a day. The conclusion about applicability of the method for addressing economic and ecological challenges is made.
METHOD FOR OPTIMIZING THE ENERGY OF PUMPS
Skovmose Kallesøe, Carsten; De Persis, Claudio
2013-01-01
The device for energy-optimization on operation of several centrifugal pumps controlled in rotational speed, in a hydraulic installation, begins firstly with determining which pumps as pilot pumps are assigned directly to a consumer and which pumps are hydraulically connected in series upstream of
Different methods for waste to energy transformation
Koning, J. de
1998-01-01
In the past 25 years, many technological developments have taken place in the thermal treatment of Municipal Solid Waste (MSW). Apart from the initials goal of the technology (i.e., volume reduction and inertisation), flue gas emissions, solid residues, energy efficiency and economics became
Wang, Gang-Jin; Xie, Chi; Han, Feng; Sun, Bo
2012-08-01
In this study, we employ a dynamic time warping method to study the topology of similarity networks among 35 major currencies in international foreign exchange (FX) markets, measured by the minimal spanning tree (MST) approach, which is expected to overcome the synchronous restriction of the Pearson correlation coefficient. In the empirical process, firstly, we subdivide the analysis period from June 2005 to May 2011 into three sub-periods: before, during, and after the US sub-prime crisis. Secondly, we choose NZD (New Zealand dollar) as the numeraire and then, analyze the topology evolution of FX markets in terms of the structure changes of MSTs during the above periods. We also present the hierarchical tree associated with the MST to study the currency clusters in each sub-period. Our results confirm that USD and EUR are the predominant world currencies. But USD gradually loses the most central position while EUR acts as a stable center in the MST passing through the crisis. Furthermore, an interesting finding is that, after the crisis, SGD (Singapore dollar) becomes a new center currency for the network.
Klaassen, M.R.J.; Lindstrom, A.
1996-01-01
Lindstrom & Alerstam (1992 Am. Nat. 140, 477-491) presented a model that predicts optimal departure fuel loads as a function of the rate of fuel deposition in time-minimizing migrants. The basis of the model is that the coverable distance per unit of fuel deposited, diminishes with increasing fuel
Li, Y P; Huang, G H
2010-09-15
Considerable public concerns have been raised in the past decades since a large amount of pollutant emissions from municipal solid waste (MSW) disposal of processes pose risks on surrounding environment and human health. Moreover, in MSW management, various uncertainties exist in the related costs, impact factors and objectives, which can affect the optimization processes and the decision schemes generated. In this study, an interval-based possibilistic programming (IBPP) method is developed for planning the MSW management with minimized system cost and environmental impact under uncertainty. The developed method can deal with uncertainties expressed as interval values and fuzzy sets in the left- and right-hand sides of constraints and objective function. An interactive algorithm is provided for solving the IBPP problem, which does not lead to more complicated intermediate submodels and has a relatively low computational requirement. The developed model is applied to a case study of planning a MSW management system, where mixed integer linear programming (MILP) technique is introduced into the IBPP framework to facilitate dynamic analysis for decisions of timing, sizing and siting in terms of capacity expansion for waste-management facilities. Three cases based on different waste-management policies are examined. The results obtained indicate that inclusion of environmental impacts in the optimization model can change the traditional waste-allocation pattern merely based on the economic-oriented planning approach. The results obtained can help identify desired alternatives for managing MSW, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty. Copyright 2010 Elsevier B.V. All rights reserved.
Energy-pointwise discrete ordinates transport methods
International Nuclear Information System (INIS)
Williams, M.L.; Asgari, M.; Tashakorri, R.
1997-01-01
A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects
Non-conventional energy and propulsion methods
International Nuclear Information System (INIS)
Valone, T.
1991-01-01
From the disaster of the Space Shuttle, Challenger, to the Kuwaiti oil well fires, we are reminded constantly of our dependence on dangerous, combustible fuels for energy and propulsion. Over the past ten years, there has been a considerable production of new and exciting inventions which defy conventional analysis. The term non-conventional was coined in 1980 by a Canadian engineer to designate a separate technical discipline for this type of endeavor. Since then, several conferences have been devoted solely to these inventions. Integrity Research Corp., an affiliate of the Institute, has made an effort to investigate each viable product, develop business plans for several to facilitate development and marketing, and in some cases, assign an engineering student intern to building a working prototype. Each inventor discussed in this presentation has produced a unique device for free energy generation or highly efficient force production. Included in this paper is also a short summary for non-specialists explaining the physics of free energy generation along with a working definition. The main topics of discussion include: space power, inertial propulsion, kinetobaric force, magnetic motors, thermal fluctuations, over-unity hat pumps, ambient temperature superconductivity and nuclear battery
Hadron Energy Reconstruction for ATLAS Barrel Combined Calorimeter Using Non-Parametrical Method
Kulchitskii, Yu A
2000-01-01
Hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter in the framework of the non-parametrical method is discussed. The non-parametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to fast energy reconstruction in a first level trigger. The reconstructed mean values of the hadron energies are within \\pm1% of the true values and the fractional energy resolution is [(58\\pm 3)%{\\sqrt{GeV}}/\\sqrt{E}+(2.5\\pm0.3)%]\\bigoplus(1.7\\pm0.2) GeV/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74\\pm0.04. Results of a study of the longitudinal hadronic shower development are also presented.
Energy Technology Data Exchange (ETDEWEB)
Bergdahl, B G; Liao, B; Sieurin, J [EuroSim AB, Nykoeping (Sweden)
1996-05-01
A Decision Support System to reduce NO{sub x} emission from combustion processes with SNCR system have been developed and tested in full scale at Oerebro Energy. The boiler is a 165 MWh{sub th} CFB and have been fired with a mixture of biomass, peat and coal. The results proves that the EuroSim method works to calculate the derivative included in the Decision Support System. The Decision Support System is a tool for the operator of the plant, he will be informed of the advantage of making an increase or decrease of the ammonia flow or excess air. The trend curves that are presented to the operator includes information about the economic value to make an adjustment of the ammonia flow. The derivative dNO{sub x}/dO{sub 2} shows the advantage of making a reduction in the excess air level, concerning the fee for NO{sub x}. In this case it is important to take into consideration the risk for understoichiometric combustion and corrosion. The results from the full scale test in the Oerebro Plant shows that during some time periods it is economical to shut off the ammonia flow. The derivative dNO{sub x}/dAF is under the profitability limit. This indicate that the cost for the ammonia is higher than the fee for the NO{sub x} emission. If the ammonia flow is added in excess, the emission of ammonia and N{sub 2}O will increase. During other time periods the Decision Support System shows that it is profitable to increase the ammonia flow, the derivative is lower than -0,2. The derivative dNO{sub x}/dO{sub 2} is normally between 10 and 20 (ppm/%). This indicate that it is a great potential to reduce the NO{sub x} fee by decreasing the excess air level in the boiler. 3 refs, 23 figs
Electrical appliance energy consumption control methods and electrical energy consumption systems
Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA
2006-03-07
Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.
Electrical appliance energy consumption control methods and electrical energy consumption systems
Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA
2008-09-02
Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.
Geothermal energy control system and method
Matthews, Hugh B.
1977-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.
Gauss Seidel-type methods for energy states of a multi-component Bose Einstein condensate
Chang, Shu-Ming; Lin, Wen-Wei; Shieh, Shih-Feng
2005-01-01
In this paper, we propose two iterative methods, a Jacobi-type iteration (JI) and a Gauss-Seidel-type iteration (GSI), for the computation of energy states of the time-independent vector Gross-Pitaevskii equation (VGPE) which describes a multi-component Bose-Einstein condensate (BEC). A discretization of the VGPE leads to a nonlinear algebraic eigenvalue problem (NAEP). We prove that the GSI method converges locally and linearly to a solution of the NAEP if and only if the associated minimized energy functional problem has a strictly local minimum. The GSI method can thus be used to compute ground states and positive bound states, as well as the corresponding energies of a multi-component BEC. Numerical experience shows that the GSI converges much faster than JI and converges globally within 10-20 steps.
Systems and methods for energy cost optimization in a building system
Energy Technology Data Exchange (ETDEWEB)
Turney, Robert D.; Wenzel, Michael J.
2016-09-06
Methods and systems to minimize energy cost in response to time-varying energy prices are presented for a variety of different pricing scenarios. A cascaded model predictive control system is disclosed comprising an inner controller and an outer controller. The inner controller controls power use using a derivative of a temperature setpoint and the outer controller controls temperature via a power setpoint or power deferral. An optimization procedure is used to minimize a cost function within a time horizon subject to temperature constraints, equality constraints, and demand charge constraints. Equality constraints are formulated using system model information and system state information whereas demand charge constraints are formulated using system state information and pricing information. A masking procedure is used to invalidate demand charge constraints for inactive pricing periods including peak, partial-peak, off-peak, critical-peak, and real-time.
Comparison of gas dehydration methods based on energy ...
African Journals Online (AJOL)
Comparison of gas dehydration methods based on energy consumption. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... This study compares three conventional methods of natural gas (Associated Natural Gas) dehydration to carry out ...
A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems
International Nuclear Information System (INIS)
Dittrich, R.; Schrefl, T.; Suess, D.; Scholz, W.; Forster, H.; Fidler, J.
2002-01-01
Minimum energy paths and energy barriers are calculated for complex micromagnetic systems. The method is based on the nudged elastic band method and uses finite-element techniques to represent granular structures. The method was found to be robust and fast for both simple test problems as well as for large systems such as patterned granular media. The method is used to estimate the energy barriers in CoCr-based perpendicular recording media
Chowdhury, Nahid -UR-Rahman; Reza, Syed Enam; Nitol, Tofaeel Ahamed; Mahabub, Abd-Al-Fattah IBNE
2016-01-01
Abstract- Bangladesh is a densely populated country located at the South-East corner of Asia. Only 48.5% of people here have access to the grid electricity. This paper provides a comprehensive study of the contemporary renewable energy scenario in Bangladesh in terms of distribution, research and infrastructural development in the country. Renewable energy is the smartest solution of increasing energy crisis caused by using fossil fuels. But sometimes it faces question of reliability which ca...
Method for Determining Optimal Residential Energy Efficiency Retrofit Packages
Energy Technology Data Exchange (ETDEWEB)
Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.
2011-04-01
Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.
Method II : The energy-momentum map
Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.
2003-01-01
In this chapter we apply the energy–momentum map reduction method to the same class of systems as in Chap. 2, namely two degree-of-freedom systems with optional symmetry, near equilibrium and close to resonance. We calculate the tangent space and nondegeneracy conditions for the 1:2, 1:3 and 1:4
Optimization Models and Methods Developed at the Energy Systems Institute
N.I. Voropai; V.I. Zorkaltsev
2013-01-01
The paper presents shortly some optimization models of energy system operation and expansion that have been created at the Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences. Consideration is given to the optimization models of energy development in Russia, a software package intended for analysis of power system reliability, and model of flow distribution in hydraulic systems. A general idea of the optimization methods developed at the Energy Systems Institute...
A novel iterative energy calibration method for composite germanium detectors
International Nuclear Information System (INIS)
Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S.
2004-01-01
An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam γ-ray spectroscopy experiment is presented
A novel iterative energy calibration method for composite germanium detectors
Energy Technology Data Exchange (ETDEWEB)
Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S. E-mail: ssg@alpha.iuc.res.in
2004-07-01
An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam {gamma}-ray spectroscopy experiment is presented.
Energy Technology Data Exchange (ETDEWEB)
Barkenbus, J.N.; Leff, H.S.
1983-01-01
Since the oil embargo of 1973, state governments have increased their efforts to track and understand energy flows within their boundaries. There is a commonly perceived need to comprehend the status of present and expected future energy availability, demand, and price and to be prepared to exercise responsible and effective management during energy emergencies. This responsibility has brought with it new needs for accurate and timely state-level information on energy transactions and the external parameters that effect energy availability and disposition. What energy data are needed by a state, regardless of its idiosyncracies, during both normal and energy emergency periods, and to what extent are these data available now. The authors find that needed ongoing (core) data are only partially available at present, and that emergency data can be obtained only with a carefully planned monitoring program that can be fitted to specific emergency conditions. Overall, this paper provides a realistic assessment of the state-level energy data needed to provide state policy makers with sufficient information to make considered judgments.
Energy Technology Data Exchange (ETDEWEB)
Barkenbus, J.N.; Leff, H.S.
1983-01-01
Since the oil embargo of 1973, state governments have increased their efforts to track and understand energy flows within their boundaries. There is a commonly perceived need to comprehend the status of present and expected future energy availability, demand, and price and to be prepared to exercise responsible and effective management during energy emergencies. This responsibility has brought with it new needs for accurate and timely state-level information on energy transactions and the external parameters that effect energy availability and disposition. Hence, we ask: what energy data are needed by a state, regardless of its idiosyncracies, during both normal and energy emergency periods, and to what extent are these data available now. We find that needed ongoing (core) data are only partially available at present, and that emergency data can be obtained only with a carefully planned monitoring program that can be fitted to specific emergency conditions. Overall, this paper provides a realistic assessment of the state-level energy data needed to provide state policy makers with sufficient information to make considered judgments. 7 references, 6 tables.
Energy based methods for determining elastic plastic fracture
International Nuclear Information System (INIS)
Witt, F.J.
1979-01-01
Several methods are currently in use or under study for calculating various conditions of fracturing for varying degrees of plasticity. Among these are innovations on the J-integral concept, crack opening displacement or angle, the two parameter concept and the equivalent energy method. Methods involving crack arrest and ductile tearing also fall in this category. Each of these methods have many salient points and some efforts are underway to establish the underlying relationship between them. In this paper, the current research directions of J-integral and equivalent energy methodologies are reviewed with a broader discussion presented for the equivalent energy methodology. The fundamental basis of equivalent energy methodology rests with the volumetric energy ratio. For fractures governed by linear elastic fracture mechanics, the volumetric energy ratio is independent of flaw size and geometry and depends only on the scale factor between model and prototype and temperature. The behavioral aspects of the volumetric energy ratios have been investigated throughout the temperature range from brittle fracture to fully ductile fracture. For five different specimen and structural configurations it has been shown experimentally that the volumetric energy ratio retains its basic properties. That is, the volumetric energy ratio while changing in actual value, maintains its independence of geometry and flaw size while retaining a unique dependence on scale factor and temperature. This property interpreted in terms of fracture mechanics leads to the equivalent energy method. (orig.)
Thorlton, Janet; Colby, David A; Devine, Paige
2014-07-01
Energy drink sales are expected to reach $52 billion by 2016. These products, often sold as dietary supplements, typically contain stimulants. The Dietary Supplement Protection Act claims an exemplary public health safety record. However, in 2011 the number of emergency department visits related to consumption of energy drinks exceeded 20,000. Nearly half of these visits involved adverse effects occurring from product misuse. Political, social, economic, practical, and legal factors shape the landscape surrounding this issue. In this policy analysis, we examine 3 options: capping energy drink caffeine levels, creating a public education campaign, and increasing regulatory scrutiny regarding the manufacture and labeling of energy drinks. Increased regulatory scrutiny may be in order, especially in light of wrongful death lawsuits related to caffeine toxicity resulting from energy drink consumption.
Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA
2011-12-06
Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.
An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry
Directory of Open Access Journals (Sweden)
Dong-mei Yao
2016-01-01
Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
Estimating building energy consumption using extreme learning machine method
International Nuclear Information System (INIS)
Naji, Sareh; Keivani, Afram; Shamshirband, Shahaboddin; Alengaram, U. Johnson; Jumaat, Mohd Zamin; Mansor, Zulkefli; Lee, Malrey
2016-01-01
The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN. - Highlights: • Buildings consume huge amounts of energy for operation. • Envelope materials and insulation influence building energy consumption. • Extreme learning machine is used to estimate energy usage of a sample building. • The key effective factors in this study are insulation thickness and K-value.
Quang-Hung, Nguyen; Thoai, Nam
2016-01-01
Infrastructure-as-a-Service (IaaS) clouds have become more popular enabling users to run applications under virtual machines. Energy efficiency for IaaS clouds is still challenge. This paper investigates the energy-efficient scheduling problems of virtual machines (VMs) onto physical machines (PMs) in IaaS clouds along characteristics: multiple resources, fixed intervals and non-preemption of virtual machines. The scheduling problems are NP-hard. Most of existing works on VM placement reduce ...
Thermal energy storage apparatus, controllers and thermal energy storage control methods
Hammerstrom, Donald J.
2016-05-03
Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.
Household energy studies: the gap between theory and method
Energy Technology Data Exchange (ETDEWEB)
Crosbie, T.
2006-09-15
At the level of theory it is now widely accepted that energy consumption patterns are a complex technical and socio-cultural phenomenon and to understand this phenomenon, it must be viewed from both engineering and social science perspectives. However, the methodological approaches taken in household energy studies lag behind the theoretical advances made in the last ten or fifteen years. The quantitative research methods traditionally used within the fields of building science, economics, and psychology continue to dominate household energy studies, while the qualitative ethnographic approaches to examining social and cultural phenomena traditionally used within anthropology and sociology are most frequently overlooked. This paper offers a critical review of the research methods used in household energy studies which illustrates the scope and limitations of both qualitative and quantitative research methods in this area of study. In doing so it demonstrates that qualitative research methods are essential to designing effective energy efficiency interventions. [Author].
International Nuclear Information System (INIS)
El Bouanani, Mohamed; Hult, Mikael; Persson, Leif; Swietlicki, Erik; Andersson, Margaretha; Oestling, Mikael; Lundberg, Nils; Zaring, Carina; Cohen, D.D.; Dytlewski, Nick; Johnston, P.N.; Walker, S.R.; Bubb, I.F.; Whitlow, H.J.
1994-01-01
Heavy ion recoil spectrometry is rapidly becoming a well established analysis method, but the associated data analysis processing is still not well developed. The pronounced nonlinear response of silicon detectors for heavy ions leads to serious limitation and complication in mass gating, which is the principal factor in obtaining energy spectra with minimal cross talk between elements. To overcome the above limitation, a simple empirical formula with an associated multiple regression method is proposed for the absolute energy calibration of the time of flight-energy dispersive detector telescope used in recoil spectrometry. A radical improvement in mass assignment was realized, which allows a more accurate and improved depth profiling with the important feature of making the data processing much easier. ((orig.))
Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, L.S; Thybo, C.; Stoustrup, Jakob
2003-01-01
The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....
International Nuclear Information System (INIS)
Alagoz, B. Baykant; Kaygusuz, Asim; Akcin, Murat; Alagoz, Serkan
2013-01-01
Future smart grids will require a flexible, observable, and controllable network for reliable and efficient energy delivery under uncertain generation and demand conditions. One of the mechanisms for efficient and reliable energy generation is dynamic demand-responsive generation management based on energy price adjustments that creates a balance in energy markets. This study presents a closed-loop PID (proportional–integral–derivative) controller-based price control method for autonomous and real-time balancing of energy demand and generation in smart grid electricity markets. The PID control system can regulate energy prices online to respond dynamically and instantaneously to the varying energy demands of grid consumers. Independent energy suppliers in the smart grid decide whether to sell their energy to the grid according to the energy prices declared by the closed-loop PID controller system. Energy market simulations demonstrate that PID-controlled energy price regulation can effectively maintain an energy balance for hourly demand fluctuations of consumers. - Highlights: • This study presents a control theoretic approach for management of energy balance. • A closed-loop PID controller-based price controlling method is used in smart grid. • The simulation results demonstrate advantages of PID-based energy price control. • This method is appropriate for demand responsive management of smart grid markets
2012-05-30
...-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating... regulations authorizing the use of alternative methods of determining energy efficiency or energy consumption... alternative methods of determining energy efficiency or energy consumption of various consumer products and...
Beattle, A J; Oliver, I
1994-12-01
Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Whitaker, Thomas J.; Beltran, Chris; Tryggestad, Erik; Kruse, Jon J.; Remmes, Nicholas B.; Tasson, Alexandria; Herman, Michael G.; Bues, Martin
2014-01-01
Purpose: Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. Methods: The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Results: Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37–0.39 Gy and 0.03–0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose
Measurement of ion energy by a calorimetric method
Energy Technology Data Exchange (ETDEWEB)
Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Bunak, Suwat
1996-12-01
In calorimetric method, ion energy is determined based on the temperature changes during radiation of an absorbing material, radiation current and heat capacity of the calorimeter. This method is convenient and its measuring procedures are simple as well as the measuring apparatus. Here, the temperature changes of the calorimeter during {sup 14}N ion beam radiation were determined. The temperature increased linearly when irradiated with {sup 14}N{sup 3+}, 8.3 MeV or {sup 14}N{sup 2+}, 6 MeV, but not linearly for {sup 14}N{sup 1+}, 3.6 MeV, resulting in a comparatively large error. Thus, the measurement of ion energy by calorimetric method was found available as a convenient method for an accelerator having an energy stability less than 10{sup -3}. Especially this method seems to be useful for low-energy ion accelerator or ion injecting apparatus. (M.N.)
Energy Technology Data Exchange (ETDEWEB)
Malinowski, Jacek
2004-05-01
A coherent system with independent components and known minimal paths (cuts) is considered. In order to compute its reliability, a tree structure T is constructed whose nodes contain the modified minimal paths (cuts) and numerical values. The value of a non-leaf node is a function of its child nodes' values. The values of leaf nodes are calculated from a simple formula. The value of the root node is the system's failure probability (reliability). Subsequently, an algorithm computing the system's failure probability (reliability) is constructed. The algorithm scans all nodes of T using a stack structure for this purpose. The nodes of T are alternately put on and removed from the stack, their data being modified in the process. Once the algorithm has terminated, the stack contains only the final modification of the root node of T, and its value is equal to the system's failure probability (reliability)
International Nuclear Information System (INIS)
Malinowski, Jacek
2004-01-01
A coherent system with independent components and known minimal paths (cuts) is considered. In order to compute its reliability, a tree structure T is constructed whose nodes contain the modified minimal paths (cuts) and numerical values. The value of a non-leaf node is a function of its child nodes' values. The values of leaf nodes are calculated from a simple formula. The value of the root node is the system's failure probability (reliability). Subsequently, an algorithm computing the system's failure probability (reliability) is constructed. The algorithm scans all nodes of T using a stack structure for this purpose. The nodes of T are alternately put on and removed from the stack, their data being modified in the process. Once the algorithm has terminated, the stack contains only the final modification of the root node of T, and its value is equal to the system's failure probability (reliability)
Model-independent determination of dissociation energies: method and applications
International Nuclear Information System (INIS)
Vogel, Manuel; Hansen, Klavs; Herlert, Alexander; Schweikhard, Lutz
2003-01-01
A number of methods are available for the purpose of extracting dissociation energies of polyatomic particles. Many of these techniques relate the rate of disintegration at a known excitation energy to the value of the dissociation energy. However, such a determination is susceptible to systematic uncertainties, mainly due to the unknown thermal properties of the particles and the potential existence of 'dark' channels, such as radiative cooling. These problems can be avoided with a recently developed procedure, which applies energy-dependent reactions of the decay products as an uncalibrated thermometer. Thus, it allows a direct measurement of dissociation energies, without any assumption on properties of the system or on details of the disintegration process. The experiments have been performed in a Penning trap, where both rate constants and branching ratios have been measured. The dissociation energies determined with different versions of the method yield identical values, within a small uncertainty
A novel dual energy method for enhanced quantitative computed tomography
Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.
2018-01-01
Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.
Developing energy forecasting model using hybrid artificial intelligence method
Institute of Scientific and Technical Information of China (English)
Shahram Mollaiy-Berneti
2015-01-01
An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.
Research on Operation Assessment Method for Energy Meter
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
A Method of Evaluating Operation of Electric Energy Meter
Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin
2018-05-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
Statistical learning methods in high-energy and astrophysics analysis
Energy Technology Data Exchange (ETDEWEB)
Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)
2004-11-21
We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.
Statistical learning methods in high-energy and astrophysics analysis
International Nuclear Information System (INIS)
Zimmermann, J.; Kiesling, C.
2004-01-01
We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application
Whitaker, Thomas J; Beltran, Chris; Tryggestad, Erik; Bues, Martin; Kruse, Jon J; Remmes, Nicholas B; Tasson, Alexandria; Herman, Michael G
2014-08-01
Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37-0.39 Gy and 0.03-0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose difference increased at a rate
Energy Technology Data Exchange (ETDEWEB)
McClelland, L
1980-10-01
Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)
Coordinated Optimal Operation Method of the Regional Energy Internet
Directory of Open Access Journals (Sweden)
Rishang Long
2017-05-01
Full Text Available The development of the energy internet has become one of the key ways to solve the energy crisis. This paper studies the system architecture, energy flow characteristics and coordinated optimization method of the regional energy internet. Considering the heat-to-electric ratio of a combined cooling, heating and power unit, energy storage life and real-time electricity price, a double-layer optimal scheduling model is proposed, which includes economic and environmental benefit in the upper layer and energy efficiency in the lower layer. A particle swarm optimizer–individual variation ant colony optimization algorithm is used to solve the computational efficiency and accuracy. Through the calculation and simulation of the simulated system, the energy savings, level of environmental protection and economic optimal dispatching scheme are realized.
Hybrid radical energy storage device and method of making
Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw
2015-01-27
Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
Perturbation method for calculating impurity binding energy in an ...
Indian Academy of Sciences (India)
Nilanjan Sil
2017-12-18
Dec 18, 2017 ... Abstract. In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity, which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-AlxGa1−xAs. Perturbation method is used to calculate the binding energy within the framework of effective mass ...
A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
Directory of Open Access Journals (Sweden)
Giovanni Carabin
2017-12-01
Full Text Available In the last decades, increasing energy prices and growing environmental awareness have driven engineers and scientists to find new solutions for reducing energy consumption in manufacturing. Although many processes of a high energy consumption (e.g., chemical, heating, etc. are considered to have reached high levels of efficiency, this is not the case for many other industrial manufacturing activities. Indeed, this is the case for robotic and automatic systems, for which, in the past, the minimization of energy demand was not considered a design objective. The proper design and operation of industrial robots and automation systems represent a great opportunity for reducing energy consumption in the industry, for example, by the substitution with more efficient systems and the energy optimization of operation. This review paper classifies and analyses several methodologies and technologies that have been developed with the aim of providing a reference of existing methods, techniques and technologies for enhancing the energy performance of industrial robotic and mechatronic systems. Hardware and software methods, including several subcategories, are considered and compared, and emerging ideas and possible future perspectives are discussed.
International Nuclear Information System (INIS)
Nema, Pragya; Rangnekar, Saroj; Nema, R.K.
2010-01-01
Cellular mobile service is a rapidly expanding and a very competitive business worldwide, including developing countries. This paper proposes that the suitable alternative solution of grid power is the stand-alone PV/wind hybrid energy system with diesel generator as a backup for cellular mobile telephony base station site in isolated areas. It is expected that the newly developed and installed system would provide very good opportunities for mobile telephony base station in near future. In addition, protecting the environment and combating climate change are two of the most pressing challenges facing humankind. As energy prices soar, network operators are increasingly scrutinizing their environmental and social responsibilities. This system will be more cost effective and environmental friendly over the conventional diesel generator. Approximately 70-80% fuel cost over conventional diesel generator and the emission of CO 2 and other harmful gasses in environments were reduced. (author)
Unfolding methods in high-energy physics experiments
International Nuclear Information System (INIS)
Blobel, V.
1985-01-01
Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)
Unfolding methods in high-energy physics experiments
International Nuclear Information System (INIS)
Blobel, V.
1984-12-01
Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We consider the problem of minimizing a convex separable logarithmic function over a region defined by a convex inequality constraint or linear equality constraint, and two-sided bounds on the variables (box constraints. Such problems are interesting from both theoretical and practical point of view because they arise in some mathematical programming problems as well as in various practical problems such as problems of production planning and scheduling, allocation of resources, decision making, facility location problems, and so forth. Polynomial algorithms are proposed for solving problems of this form and their convergence is proved. Some examples and results of numerical experiments are also presented.
Method for calculating annual energy efficiency improvement of TV sets
International Nuclear Information System (INIS)
Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.
2006-01-01
The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification
Method for calculating annual energy efficiency improvement of TV sets
Energy Technology Data Exchange (ETDEWEB)
Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)
2006-10-15
The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.
Evaluation of methods used to determine realized energy savings
International Nuclear Information System (INIS)
Boonekamp, Piet G.M.
2006-01-01
Most methods to determine realized total energy savings at national or sectoral level make choices, or neglect problems, which hamper the calculation of sound and useful energy-saving figures. Issues are the choice of the right aggregation level, the appropriate variables to construct a reference energy consumption trend, the energy quantities to be applied and interaction between various effects. Uncertainty margins for results lack in most presentations as well. This paper presents six methods, illustrates the adverse effects of certain choices and problems, and investigates how these methods deal with them. The methods are scored with respect to the issues mentioned above. Finally, a number of improvements are suggested, among which the use of final energy demand expressed in primary energy units, and bottom-up analyses at the level of real saving options. The last option is the more important, as it could provide top-down evaluation results (total savings from decomposition) as well as bottom-up policy monitoring results, both being crucial to new European energy-saving policy
A New Method for Local Energy Planning in Developing Countries
International Nuclear Information System (INIS)
Van Beeck, N.
2001-01-01
Energy planning is an essential tool in the economic development of industrialized as well as developing countries. Energy planning in this paper is restricted to the selection of new energy systems for the production of proper energy forms in order to meet increased energy demand. This demand is actually the desire for certain energy services, which are the starting point of the new decision support method for local energy planning presented in this paper. In the decision making process concerning energy planning at the local level it is important to include context-related issues because the context determines for a large part the viability of the technologies or systems used. The context, in turn, is represented by the aims of the relevant actors, which are translated into measurable indicators to compare the different options. The impact assessment must allow for inclusion of all the indicators, either quantitative or qualitative in order to find the most appropriate technology for a region rather than the technically best or economically most optimal one. Appropriateness is defined by the context and is thus case specific, but the framework described in this paper is generally applicable within the given limitations. Note that the new method described in this paper is a decision support tool, implying that it does not decide for the energy planner which actions to take. The ultimate decision must be made by the planners themselves
Accelerated weight histogram method for exploring free energy landscapes
Energy Technology Data Exchange (ETDEWEB)
Lindahl, V.; Lidmar, J.; Hess, B. [Department of Theoretical Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, 10691 Stockholm (Sweden)
2014-07-28
Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.
A Laplace transform method for energy multigroup hybrid discrete ordinates
International Nuclear Information System (INIS)
Segatto, C.F.; Vilhena, M.T.; Barros, R.C.
2010-01-01
In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.
Energy Technology Data Exchange (ETDEWEB)
Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Khawaja, M. Sami [The Cadmus Group, Portland, OR (United States); Rushton, Josh [The Cadmus Group, Portland, OR (United States); Keeling, Josh [The Cadmus Group, Portland, OR (United States)
2017-09-01
Evaluating an energy efficiency program requires assessing the total energy and demand saved through all of the energy efficiency measures provided by the program. For large programs, the direct assessment of savings for each participant would be cost-prohibitive. Even if a program is small enough that a full census could be managed, such an undertaking would almost always be an inefficient use of evaluation resources. The bulk of this chapter describes methods for minimizing and quantifying sampling error. Measurement error and regression error are discussed in various contexts in other chapters.
International Nuclear Information System (INIS)
May, Gökan; Barletta, Ilaria; Stahl, Bojan; Taisch, Marco
2015-01-01
Highlights: • We propose a 7-step methodology to develop firm-tailored energy-related KPIs (e-KPIs). • We provide a practical guide for companies to identify their most important e-KPIs. • e-KPIs support identification of energy efficiency improvement areas in production. • The method employs an action plan for achieving energy saving targets. • The paper strengthens theoretical base for energy-based decision making in manufacturing. - Abstract: Measuring energy efficiency performance of equipments, processes and factories is the first step to effective energy management in production. Thus, enabled energy-related information allows the assessment of the progress of manufacturing companies toward their energy efficiency goals. In that respect, the study addresses this challenge where current industrial approaches lack the means and appropriate performance indicators to compare energy-use profiles of machines and processes, and for the comparison of their energy efficiency performance to that of competitors’. Focusing on this challenge, the main objective of the paper is to present a method which supports manufacturing companies in the development of energy-based performance indicators. For this purpose, we provide a 7-step method to develop production-tailored and energy-related key performance indicators (e-KPIs). These indicators allow the interpretation of cause-effect relationships and therefore support companies in their operative decision-making process. Consequently, the proposed method supports the identification of weaknesses and areas for energy efficiency improvements related to the management of production and operations. The study therefore aims to strengthen the theoretical base necessary to support energy-based decision making in manufacturing industries
On the method of calibration of the energy dispersive EXAFS ...
Indian Academy of Sciences (India)
samples, whose absorption edge energies are well-established. .... bend the crystal to take shape of an ellipse (Lee et al 1994). ..... Kelly S D, Hesterberg D and Ravel B 2008 Methods of Soil Analysis, Part 5, Mineralogical Methods,. Chapter ...
Aparecida de Oliveira, Maria; Abeid Ribeiro, Eliana Guimarães; Morato Bergamini, Alzira Maria; Pereira De Martinis, Elaine Cristina
2010-02-01
Modern lifestyle markedly changed eating habits worldwide, with an increasing demand for ready-to-eat foods, such as minimally processed fruits and leafy greens. Packaging and storage conditions of those products may favor the growth of psychrotrophic bacteria, including the pathogen Listeria monocytogenes. In this work, minimally processed leafy vegetables samples (n = 162) from retail market from Ribeirão Preto, São Paulo, Brazil, were tested for the presence or absence of Listeria spp. by the immunoassay Listeria Rapid Test, Oxoid. Two L. monocytogenes positive and six artificially contaminated samples of minimally processed leafy vegetables were evaluated by the Most Probable Number (MPN) with detection by classical culture method and also culture method combined with real-time PCR (RTi-PCR) for 16S rRNA genes of L. monocytogenes. Positive MPN enrichment tubes were analyzed by RTi-PCR with primers specific for L. monocytogenes using the commercial preparation ABSOLUTE QPCR SYBR Green Mix (ABgene, UK). Real-time PCR assay presented good exclusivity and inclusivity results and no statistical significant difference was found in comparison with the conventional culture method (p < 0.05). Moreover, RTi-PCR was fast and easy to perform, with MPN results obtained in ca. 48 h for RTi-PCR in comparison to 7 days for conventional method.
Comparison of three methods to reduce energy density: effects on daily energy intake
Williams, Rachel A.; Roe, Liane S.; Rolls, Barbara J.
2013-01-01
Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for four weeks. Across conditions, the entrées were either sta...
Assessment of Cultivation Method for Energy Beet Based on LCA Method
Zhang, Chunfeng; Liu, Feng; Zu, Yuangang; Meng, Qingying; Zhu, Baoguo; Wang, Nannan
2014-01-01
In order to establish a supply system for energy resource coupled with the environment, the production technology of sugar beets was explored as a biological energy source. The low-humic andosol as the experimental soil, the panting method was direct planting, and cultivation technique was minimum tillage direct planting method. The control was conventional tillage transplant and no tillage direct planting. The results demonstrated that data revealed that the energy cost of no tillage and a d...
Directory of Open Access Journals (Sweden)
Zhifeng Dai
2014-01-01
Full Text Available Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1 search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2 the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising.
Simplified DFT methods for consistent structures and energies of large systems
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
New energy replacement method for resonant power supplies
International Nuclear Information System (INIS)
Karady, G.G.; Thiessen, H.A.
1989-01-01
The Resonant Power Supply is an economically and technically advanced solution for Rapid Cycling Accelerators. Several papers dealt with the design and operation of these power supplies, however, the energy replacement methods were not discussed in the past. This paper analyzes different energy-replacement methods and presents a new method. This method uses a 24-pulse converter to regulate the magnet current during flat-top and injection periods and replaces the energy loss by charging the accelerator capacitor bank during the flat-top, reset and injection periods, charge is injected in the circuit during the acceleration period, when it replaces the energy loss. This paper compares the new method with the existing ones. The analyses proved the feasibility of the proposed method. The operation of the proposed method was verified by a model experiment, which showed that the new circuit can be controlled accurately and operates with smaller disturbances to the power line than the existing systems. 2 refs., 6 figs., 1 tab
Assessment of proposed electromagnetic quantum vacuum energy extraction methods
Moddel, Garret
2009-01-01
In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None has been reliably demonstrated, but the proposals remain largely unchallenged. In this paper the feasibility of these methods is assessed in terms of underlying thermodynamics principles of equilibrium, detailed balance, and conservation laws. The methods are separated into three classes: nonlinear processing of the zero-point field, mechanical extraction using Cas...
Three numerical methods for the computation of the electrostatic energy
International Nuclear Information System (INIS)
Poenaru, D.N.; Galeriu, D.
1975-01-01
The FORTRAN programs for computation of the electrostatic energy of a body with axial symmetry by Lawrence, Hill-Wheeler and Beringer methods are presented in detail. The accuracy, time of computation and the required memory of these methods are tested at various deformations for two simple parametrisations: two overlapping identical spheres and a spheroid. On this basis the field of application of each method is recomended
The equivalent energy method: an engineering approach to fracture
International Nuclear Information System (INIS)
Witt, F.J.
1981-01-01
The equivalent energy method for elastic-plastic fracture evaluations was developed around 1970 for determining realistic engineering estimates for the maximum load-displacement or stress-strain conditions for fracture of flawed structures. The basis principles were summarized but the supporting experimental data, most of which were obtained after the method was proposed, have never been collated. This paper restates the original bases more explicitly and presents the validating data in graphical form. Extensive references are given. The volumetric energy ratio, a modelling parameter encompassing both size and temperature, is the fundamental parameter of the equivalent energy method. It is demonstrated that, in an engineering sense, the volumetric energy ratio is a unique material characteristic for a steel, much like a material property except size must be taken into account. With this as a proposition, the basic formula of the equivalent energy method is derived. Sufficient information is presented so that investigators and analysts may judge the viability and applicability of the method to their areas of interest. (author)
Susyanto, N.; Veldhuis, R.N.J.; Spreeuwers, L.J.; Klaassen, C.A.J.; Fierrez, J.; Li, S.Z.; Ross, A.; Veldhuis, R.; Alonso-Fernandez, F.; Bigun, J.
2016-01-01
We propose a new method for combining multi-algorithm score-based face recognition systems, which we call the two-step calibration method. Typically, algorithms for face recognition systems produce dependent scores. The two-step method is based on parametric copulas to handle this dependence. Its
Energy-Based Acoustic Source Localization Methods: A Survey
Directory of Open Access Journals (Sweden)
Wei Meng
2017-02-01
Full Text Available Energy-based source localization is an important problem in wireless sensor networks (WSNs, which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE and nonlinear-least-squares (NLS methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions.
Energy expenditures of plasma method of isotope separation
International Nuclear Information System (INIS)
Karchevskij, A.I.; Potanin, E.P.
1986-01-01
The estimations are performed of specific energy expenditares in isotope separation of binary mixtures in different plasma systems with weak medium ionization (plasma centrifuge, gas discharge system with travelling magnetic field, direct current discharge). Potential advantages of plasma centrifuge over other gas discharge facilities are pointed out. The comparison of specific energy expenditure values in case of using plasma and conventional methods of isotope separation is carried out
Energy spectra of fast neutrons by nuclear emulsion method
International Nuclear Information System (INIS)
Quaresma, A.A.
1977-01-01
An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)
Electrical energy consumption control apparatuses and electrical energy consumption control methods
Hammerstrom, Donald J.
2012-09-04
Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.
Development of a method for holistic energy renovation
DEFF Research Database (Denmark)
Morelli, Martin
recovery. The long-term performance of the renovation may be reduced due to mould growth behind the interior insulation or decay of the wooden beams. The energy saving potential in two multi-family buildings was investigated by parameter studies of existing energy saving measures for both the building....... Measurements of temperature and relative humidity showed that conditions for mould growth were present. However, no signs of mould growth were documented at dismantling of the interior insulation. A method was developed for the design of energy saving measures based on both Failure Mode and Effect Analysis...
DEFF Research Database (Denmark)
Gobalasingham, Nemal S.; Carlé, Jon Eggert; Krebs, Frederik C
2017-01-01
of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which...... is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations...
Correlation of energy balance method to dynamic pipe rupture analysis
International Nuclear Information System (INIS)
Kuo, H.H.; Durkee, M.
1983-01-01
When using an energy balance approach in the design of pipe rupture restraints for nuclear power plants, the NRC specifies in its Standard Review Plan 3.6.2 that the input energy to the system must be multiplied by a factor of 1.1 unless a lower value can be justified. Since the energy balance method is already quite conservative, an across-the-board use of 1.1 to amplify the energy input appears unneccessary. The paper's purpose is to show that this 'correlation factor' could be substantially less than unity if certain design parameters are met. In this paper, result of nonlinear dynamic analyses were compared to the results of the corresponding analyses based on the energy balance method which assumes constant blowdown forces and rigid plastic material properties. The appropriate correlation factors required to match the energy balance results with the dynamic analyses results were correlated to design parameters such as restraint location from the break, yield strength of the energy absorbing component, and the restraint gap. It is shown that the correlation factor is related to a single nondimensional design parameter and can be limited to a value below unity if appropriate design parameters are chosen. It is also shown that the deformation of the restraints can be related to dimensionless system parameters. This, therefore, allows the maximum restraint deformation to be evaluated directly for design purposes. (orig.)
Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin
2017-11-01
Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking
Energy Technology Data Exchange (ETDEWEB)
Sun Ye [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506 (United States); Balk, T. John [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506 (United States)], E-mail: balk@engr.uky.edu
2008-05-15
We report a simple two-step dealloying method for producing bulk nanoporous gold with no volume change and no significant cracking. The galvanostatic dealloying method used here appears superior to potentiostatic methods for fabricating millimeter-scale samples. Care must be taken when imaging the nanoscale, interconnected sponge-like structure with a focused ion beam, as even brief exposure caused immediate and extensive cracking of nanoporous gold, as well as ligament coarsening at the surface00.
Methods for converging correlation energies within the dielectric matrix formalism
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
A Method to Measure the Bracelet Based on Feature Energy
Liu, Hongmin; Li, Lu; Wang, Zhiheng; Huo, Zhanqiang
2017-12-01
To measure the bracelet automatically, a novel method based on feature energy is proposed. Firstly, the morphological method is utilized to preprocess the image, and the contour consisting of a concentric circle is extracted. Then, a feature energy function, which is relevant to the distances from one pixel to the edge points, is defined taking into account the geometric properties of the concentric circle. The input image is subsequently transformed to the feature energy distribution map (FEDM) by computing the feature energy of each pixel. The center of the concentric circle is thus located by detecting the maximum on the FEDM; meanwhile, the radii of the concentric circle are determined according to the feature energy function of the center pixel. Finally, with the use of a calibration template, the internal diameter and thickness of the bracelet are measured. The experimental results show that the proposed method can measure the true sizes of the bracelet accurately with the simplicity, directness and robustness compared to the existing methods.
Split kinetic energy method for quantum systems with competing potentials
International Nuclear Information System (INIS)
Mineo, H.; Chao, Sheng D.
2012-01-01
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.
Belaid, D; Vendeuvre, T; Bouchoucha, A; Brémand, F; Brèque, C; Rigoard, P; Germaneau, A
2018-05-08
Treatment for fractures of the tibial plateau is in most cases carried out by stable fixation in order to allow early mobilization. Minimally invasive technologies such as tibioplasty or stabilization by locking plate, bone augmentation and cement filling (CF) have recently been used to treat this type of fracture. The aim of this paper was to determine the mechanical behavior of the tibial plateau by numerically modeling and by quantifying the mechanical effects on the tibia mechanical properties from injury healing. A personalized Finite Element (FE) model of the tibial plateau from a clinical case has been developed to analyze stress distribution in the tibial plateau stabilized by balloon osteoplasty and to determine the influence of the cement injected. Stress analysis was performed for different stages after surgery. Just after surgery, the maximum von Mises stresses obtained for the fractured tibia treated with and without CF were 134.9 MPa and 289.9 MPa respectively on the plate. Stress distribution showed an increase of values in the trabecular bone in the treated model with locking plate and CF and stress reduction in the cortical bone in the model treated with locking plate only. The computed results of stresses or displacements of the fractured models show that the cement filling of the tibial depression fracture may increase implant stability, and decrease the loss of depression reduction, while the presence of the cement in the healed model renders the load distribution uniform. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Paola Castillo
Full Text Available Complete diagnostic autopsies (CDA remain the gold standard in the determination of cause of death (CoD. However, performing CDAs in developing countries is challenging due to limited facilities and human resources, and poor acceptability. We aimed to develop and test a simplified minimally invasive autopsy (MIA procedure involving organ-directed sampling with microbiology and pathology analyses implementable by trained technicians in low- income settings.A standardized scheme for the MIA has been developed and tested in a series of 30 autopsies performed at the Maputo Central Hospital, Mozambique. The procedure involves the collection of 20 mL of blood and cerebrospinal fluid (CSF and puncture of liver, lungs, heart, spleen, kidneys, bone marrow and brain in all cases plus uterus in women of childbearing age, using biopsy needles.The sampling success ranged from 67% for the kidney to 100% for blood, CSF, lung, liver and brain. The amount of tissue obtained in the procedure varied from less than 10 mm2 for the lung, spleen and kidney, to over 35 mm2 for the liver and brain. A CoD was identified in the histological and/or the microbiological analysis in 83% of the MIAs.A simplified MIA technique allows obtaining adequate material from body fluids and major organs leading to accurate diagnoses. This procedure could improve the determination of CoD in developing countries.
Energy demand forecasting method based on international statistical data
International Nuclear Information System (INIS)
Glanc, Z.; Kerner, A.
1997-01-01
Poland is in a transition phase from a centrally planned to a market economy; data collected under former economic conditions do not reflect a market economy. Final energy demand forecasts are based on the assumption that the economic transformation in Poland will gradually lead the Polish economy, technologies and modes of energy use, to the same conditions as mature market economy countries. The starting point has a significant influence on the future energy demand and supply structure: final energy consumption per capita in 1992 was almost half the average of OECD countries; energy intensity, based on Purchasing Power Parities (PPP) and referred to GDP, is more than 3 times higher in Poland. A method of final energy demand forecasting based on regression analysis is described in this paper. The input data are: output of macroeconomic and population growth forecast; time series 1970-1992 of OECD countries concerning both macroeconomic characteristics and energy consumption; and energy balance of Poland for the base year of the forecast horizon. (author). 1 ref., 19 figs, 4 tabs
Energy demand forecasting method based on international statistical data
Energy Technology Data Exchange (ETDEWEB)
Glanc, Z; Kerner, A [Energy Information Centre, Warsaw (Poland)
1997-09-01
Poland is in a transition phase from a centrally planned to a market economy; data collected under former economic conditions do not reflect a market economy. Final energy demand forecasts are based on the assumption that the economic transformation in Poland will gradually lead the Polish economy, technologies and modes of energy use, to the same conditions as mature market economy countries. The starting point has a significant influence on the future energy demand and supply structure: final energy consumption per capita in 1992 was almost half the average of OECD countries; energy intensity, based on Purchasing Power Parities (PPP) and referred to GDP, is more than 3 times higher in Poland. A method of final energy demand forecasting based on regression analysis is described in this paper. The input data are: output of macroeconomic and population growth forecast; time series 1970-1992 of OECD countries concerning both macroeconomic characteristics and energy consumption; and energy balance of Poland for the base year of the forecast horizon. (author). 1 ref., 19 figs, 4 tabs.
International Nuclear Information System (INIS)
Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.
1985-01-01
A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs
Computational methods for planning and evaluating geothermal energy projects
International Nuclear Information System (INIS)
Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.
1999-01-01
In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)
Comparison of three methods to reduce energy density. Effects on daily energy intake.
Williams, Rachel A; Roe, Liane S; Rolls, Barbara J
2013-07-01
Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for 4 weeks. Across conditions, the entrées were either standard in energy density or were reduced in energy density by 20% using one of the three methods. Each meal included a manipulated entrée along with unmanipulated side dishes, and all foods were consumed ad libitum. Reducing the energy density of entrées significantly decreased daily energy intake compared to standard entrées (mean intake 2667 ± 77 kcal/day; 11,166 ± 322 kJ/day). The mean decrease was 396 ± 44 kcal/day (1658 ± 184 kJ/day) when fat was reduced, 308 ± 41 kcal/day (1290 ± 172 kJ/day) when fruit and vegetables were increased, and 230 ± 35 kcal/day (963 ± 147 kJ/day) when water was added. Daily energy intake was lower when fat was decreased compared to the other methods. These findings indicate that a variety of diet compositions can be recommended to reduce overall dietary energy density in order to moderate energy intake. Copyright © 2013 Elsevier Ltd. All rights reserved.
A method for evaluating transport energy consumption in suburban areas
Energy Technology Data Exchange (ETDEWEB)
Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be
2012-02-15
Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by
A method for evaluating transport energy consumption in suburban areas
International Nuclear Information System (INIS)
Marique, Anne-Françoise; Reiter, Sigrid
2012-01-01
Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: ► The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. ► Home-to-work travels represent the most important part of calculated transport energy consumption. ► Energy savings can be achieved by reducing distances to travel through a good mix between activities at the
International Nuclear Information System (INIS)
Van Keuren, M.L.; Goldman, D.; Merril, C.R.
1981-01-01
Silver staining methods for protein detection in polyacrylamide gels have a quenching effect on autoradiography and fluorography. This effect was quantitated for proteins in two-dimensional gels by microdensitometry using a computer equipped with an image processor and by scintillation counting of proteins solubilized from the gels. The original histologically derived silver stain had a quenching effect that was severe and irreversible for 3 H detection and moderate for 14 C detection. A silver stain based on photochemical methods had minimal quenching of 14 C detection and less of a quenching effect than the histological stain for 3 H detection. The 3 H quenching effect was partially reversible for the photochemical stain
Directory of Open Access Journals (Sweden)
Nian Liu
2018-04-01
Full Text Available In order to facilitate the local sharing of renewable energy, an energy sharing management method of multiple microgrids (MGs with a battery energy storage system (BESS and renewable energy sources (RESs is developed. First, a virtual entity named the energy sharing provider (ESP, which acts as an agent for MGs, is introduced to minimize the power loss cost. Second, a distributed optimal model and a two-level iterative algorithm for the MGs and ESP are proposed, which minimize the total operation cost including purchasing electricity cost, energy storage cost and power loss cost. Based on the energy sharing framework, considering the local objectives of MGs and the objective of ESP, the optimal scheduling can be achieved through the bidirectional interaction between MGs and ESP. During the optimization, the shared information between MGs and ESP is limited to expected exchange power, which protects the privacy of MGs and ESP. Finally, the effectiveness of the proposed model and algorithm in different scenarios is verified through a case study.
Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
Fukuoka, Yasuhiro; Fukino, Kota; Habu, Yasushi; Mori, Yoshikazu
2015-08-04
We have proposed a bio-inspired gait modulation method, by means of which a simulated quadruped model can successfully perform smooth, autonomous gait transitions from a walk to a trot to a gallop, as observed in animals. The model is equipped with a rhythm generator called a central pattern generator (CPG) for each leg. The lateral neighbouring CPGs are mutually and inhibitorily coupled, and the CPG network is hardwired to produce a trot. Adding only the simple feedback of body tilt to each CPG, which was based on input from the postural reflex, led to the emergence of un-programmed walking and galloping at low and high speeds, respectively. Although this autonomous gait transition was a consequence of postural adaptation, it coincidentally also resulted in the minimization of energy consumption, as observed in real animals. In simulations at a variety of constant speeds the energy cost was lower for walking at low speeds and for galloping at high speeds than it was for trotting. Moreover, each gait transition occurred at the optimal speed, such that the model minimised its energy consumption. Thus, gait transitions in simulations that included the bio-inspired gait modulation method were similar to those observed in animals, even from the perspective of energy consumption. This method should therefore be a preferred choice for motion generation and control in biomimetic quadrupedal locomotion.
International Nuclear Information System (INIS)
Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.
2000-01-01
The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to
International Nuclear Information System (INIS)
Thompson, P.
1991-01-01
This article discusses ways to reduce the economic risk of independent energy projects. The topics of the article include risk categorization into areas of property, boiler and machinery, business income, and general liability, choosing a broker, choosing an insurer, and helping an insurer develop the best portfolio for the project. The author feels that attention to the guidelines for the right insurance coverage is as vital to a plant's economic stability as attention to the details of the blueprints is to its physical stability
DEFF Research Database (Denmark)
Jørgensen, Anders Stuhr; Doré, Guy
2009-01-01
Since the beginning of the 1990s an important increase in the mean annual air temperatures has been recorded in Nunavik, Québec, Canada. This has lead to the degradation of permafrost, which is threatening the stability of airport and road embankments in the region. In the summer of 2007 a test......-site was established at Tasiujaq Airport to study the effect of three different mitigations methods: heat drain, air convection embankment, and gentle slope (8:1). The methods were constructed in the shoulder of the runway embankment, each method over a distance of 50 m. In each section thermistors were installed...
Image denoising by a direct variational minimization
Directory of Open Access Journals (Sweden)
Pilipović Stevan
2011-01-01
Full Text Available Abstract In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.
A fuzzy levelised energy cost method for renewable energy technology assessment
International Nuclear Information System (INIS)
Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.
2013-01-01
Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. -- Highlights: •Proposes a fuzzy levelised energy cost (F-LEC) methodology to support energy project development. •Incorporates the terms and cost of project finance into the F-LEC method. •Applies the F-LEC method to an example bioenergy project development case
Strategy on review method for JENDL High Energy File
Energy Technology Data Exchange (ETDEWEB)
Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan)
1998-11-01
Status on review method and problems for a High Energy File of Japanese Evaluated Nuclear Data Library (JENDL-HE File) has been described. Measurements on differential and integral data relevant to the review work for the JENDL-HE File have been examined from a viewpoint of data quality and applicability. In order to achieve the work effectively, strategy on development of standard review method has been discussed as well as necessity of tools to be used in the review scheme. (author)
Energy Consumptions of Text Input Methods on Smartphones
Obison, Henry; Ajuorah, Chiagozie
2013-01-01
Mobile computing devices, in particular smartphones are powered from Lithium-ion batteries, which are limited in capacity. With the increasing popularity of mobile systems, various text input methods have been developed to improve user experience and performance. Briefly, text input method is a user interface that can be used to compose an electronic mail, configure mobile Virtual Private Network, and carryout bank transactions and online purchases. Efficient energy management in these system...
Martyushev, Leonid M.
2018-03-01
The paper [1] is certainly very useful and important for understanding living systems (e.g. brain) as adaptive, self-organizing patterns. There is no need to enumerate all advantages of the paper, they are obvious. The purpose of my brief comment is to discuss one issue which, as I see it, was not thought out by the authors well enough. As a consequence, their ideas do not find as wide distribution as they otherwise could have found. This issue is related to the name selected for the principle forming the basis of their approach: free-energy principle (FEP). According to the sec. 2.1 [1]: "It asserts that all biological systems maintain their integrity by actively reducing the disorder or dispersion (i.e., entropy) of their sensory and physiological states by minimizing their variational free energy." Let us note that the authors suggested different names for the principle in their earlier works (an objective function, a function of the ensemble density encoded by the organism's configuration and the sensory data to which it is exposed, etc.), and explicitly and correctly mentioned that the free energy and entropy considered by them had nothing in common with the quantities employed in physics [2,3]. It is also obvious that a purely information-theoretic approach used by the authors with regard to the problems under study allows many other wordings and interpretations. However, in spite of this fact, in their last papers as well as in the present paper, the authors choose specifically FEP. Apparently, it may be explained by the intent to additionally base their approach on the foundation of statistical thermodynamics and therefore to demonstrate the universality of the described method. However, this is exactly what might cause misunderstandings specifically among physicists and consequently in their rejection and ignoring of FEP. The physical analogy employed by the authors has the following fundamental inconsistencies: In physics, free energy is used to describe
Computation of Hemagglutinin Free Energy Difference by the Confinement Method
2017-01-01
Hemagglutinin (HA) mediates membrane fusion, a crucial step during influenza virus cell entry. How many HAs are needed for this process is still subject to debate. To aid in this discussion, the confinement free energy method was used to calculate the conformational free energy difference between the extended intermediate and postfusion state of HA. Special care was taken to comply with the general guidelines for free energy calculations, thereby obtaining convergence and demonstrating reliability of the results. The energy that one HA trimer contributes to fusion was found to be 34.2 ± 3.4kBT, similar to the known contributions from other fusion proteins. Although computationally expensive, the technique used is a promising tool for the further energetic characterization of fusion protein mechanisms. Knowledge of the energetic contributions per protein, and of conserved residues that are crucial for fusion, aids in the development of fusion inhibitors for antiviral drugs. PMID:29151344
Two methods of space--time energy densification
International Nuclear Information System (INIS)
Sahlin, R.L.
1976-01-01
With a view to the goal of net energy production from a DT microexplosion, we study two ideas (methods) through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. We first discuss the advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy and identify the amplification of laser pulses as a key factor in energy compression. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea we discuss is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target
Two methods of space-time energy densification
International Nuclear Information System (INIS)
Sahlin, H.L.
1975-01-01
With a view to the goal of net energy production from a DT microexplosion, two ideas (methods) are studied through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. The advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy are studied and the amplification of laser pulses as a key factor in energy compression is discussed. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea discussed is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target. (auth)
Sampling point selection for energy estimation in the quasicontinuum method
Beex, L.A.A.; Peerlings, R.H.J.; Geers, M.G.D.
2010-01-01
The quasicontinuum (QC) method reduces computational costs of atomistic calculations by using interpolation between a small number of so-called repatoms to represent the displacements of the complete lattice and by selecting a small number of sampling atoms to estimate the total potential energy of
International Nuclear Information System (INIS)
Oszwaldowski, R; Vazquez, H; Pou, P; Ortega, J; Perez, R; Flores, F
2003-01-01
A new DF-LCAO (density functional with local combination of atomic orbitals) method is used to calculate the electronic properties of 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA), C 6 H 6 , CH 4 , and CO. The method, called the OO (orbital occupancy) method, is a DF-based theory, which uses the OOs instead of ρ(r) to calculate the exchange and correlation energies. In our calculations, we compare the OO method with the conventional local density approximation approach. Our results show that, using a minimal basis set, we obtain equilibrium bond lengths and binding energies for PTCDA, C 6 H 6 , and CH 4 which are respectively within 6, and 10-15% of the experimental values. We have also calculated the affinity and ionization levels, as well as the optical gap, for benzene and PTCDA and have found that a variant of Koopmans' theorem works well for these molecules. Using this theorem we calculate the Koopmans relaxation energies of the σ- and π-orbitals for PTCDA and have obtained this molecule's density of states which compares well with experimental evidence
International Nuclear Information System (INIS)
Araujo, Michel Mozeika
2008-01-01
Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent healthy. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and inactivation of food-borne pathogens, Its combination with minimal processing could improve the safety and quality of MPV. Two different food irradiation detection methods, a biological, the DEFT/APC, and another biochemical, the DNA Comet Assay were applied to MPV in order to test its applicability to detect irradiation treatment. DEFT/APC is a microbiological screening method based on the use of the direct epi fluorescent filter technique (DEFT) and the aerobic plate count (APC). DNA Comet Assay detects DNA damage due to ionizing radiation. Samples of lettuce, chard, watercress, dandelion, kale, chicory, spinach, cabbage from retail market were irradiated O.5 kGy and 1.0 kGy using a 60 Co facility. Irradiation treatment guaranteed at least 2 log cycle reduction for aerobic and psychotropic microorganisms. In general, with increasing radiation doses, DEFT counts remained similar independent of irradiation processing while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. DNA Comet Assay allowed distinguishing non-irradiated samples from irradiated ones, which showed different types of comets owing to DNA fragmentation. Both DEFT/APC method and DNA Comet Assay would be satisfactorily used as a screening method for indicating irradiation processing. (author)
An unfolding method for high energy physics experiments
International Nuclear Information System (INIS)
Blobel, V.
2002-06-01
Finite detector resolution and limited acceptance require one to apply unfolding methods in high energy physics experiments. Information on the detector resolution is usually given by a set of Monte Carlo events. Based on the experience with a widely used unfolding program (RUN) a modified method has been developed. The first step of the method is a maximum likelihood fit of the Monte Carlo distributions to the measured distribution in one, two or three dimensions; the finite statistics of the Monte Carlo events is taken into account by the use of Barlow's method with a new method of solution. A clustering method is used before combining bins in sparsely populated areas. In the second step a regularization is applied to the solution, which introduces only a small bias. The regularization parameter is determined from the data after a diagonalization and rotation procedure. (orig.)
Comparison of vibrational conductivity and radiative energy transfer methods
Le Bot, A.
2005-05-01
This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.
Energy conservation for houses and its calculation methods
Energy Technology Data Exchange (ETDEWEB)
Lee, S H
1981-04-01
The concept of energy conservation of houses has been developed and began to be applied widely since the first oil crisis. Now we can say definitely that insulating a house is the most effective way of saving energy, and the renewable energy sources are useful only when the demand for space heating and hot water is minimized by insulating. If a house is well insulated, it will need a much smaller, simpler and cheaper heating system. So it will be less efficient to put a solar collector and wind generator on a poorly insulated house. Architects and engineers should have a certain level of practical knowledge of insulation for house to persuade customers using insulating materials and structure. Moreover, it is very essential to amend the existing building codes in order to facilitate this basic necessity. For instance, the Building Regulations of Denmark requires a U-value of 0.4 W/m/sup 2/ degC for heavy weight external wall. If the cavity wall has outer and inner leaf of just normal brick with internal finish of 20 mm cement mortar, which is a typical wall construction for houses in Korea, the thickness of insulation materials to the cavity can be calculated in order to fullfil the U-value of 0.4 W/m/sup 2/ degC in addition to the cavity of the external heavy wall: expanded polyurethane 58 mm, urea formaldehyde foam 67 mm, expanded polystyrene 78 mm, mineral wool 94 mm. The economic feasibility of solar heating system has been calculated. By applying 25% of the year inflation ratio for fuel cost, the result turns out economically comparable with solar heating systems.
Magnetic flux concentration methods for magnetic energy harvesting module
Directory of Open Access Journals (Sweden)
Wakiwaka Hiroyuki
2013-01-01
Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an aircore Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the aircore coil, our designed magnetic core makes the harvested energy tenfold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.
Energy-dependent applications of the transfer matrix method
International Nuclear Information System (INIS)
Oeztunali, O.I.; Aronson, R.
1975-01-01
The transfer matrix method is applied to energy-dependent neutron transport problems for multiplying and nonmultiplying media in one-dimensional plane geometry. Experimental cross sections are used for total, elastic, and inelastic scattering and fission. Numerical solutions are presented for the problem of a unit point isotropic source in an infinite medium of water and for the problem of the critical 235 U slab with finite water reflectors. No iterations were necessary in this method. Numerical results obtained are consistent with physical considerations and compare favorably with the moments method results for the problem of the unit point isotropic source in an infinite water medium. (U.S.)
Computational methods for high-energy source shielding
International Nuclear Information System (INIS)
Armstrong, T.W.; Cloth, P.; Filges, D.
1983-01-01
The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given
Cross section recondensation method via generalized energy condensation theory
International Nuclear Information System (INIS)
Douglass, Steven; Rahnema, Farzad
2011-01-01
Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development
Directory of Open Access Journals (Sweden)
Deepa Devasenapathy
2015-01-01
Full Text Available The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.
Dynamic model based on Bayesian method for energy security assessment
International Nuclear Information System (INIS)
Augutis, Juozas; Krikštolaitis, Ričardas; Pečiulytė, Sigita; Žutautaitė, Inga
2015-01-01
Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method
Continuous energy Monte Carlo method based lattice homogeinzation
International Nuclear Information System (INIS)
Li Mancang; Yao Dong; Wang Kan
2014-01-01
Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)
Methods of performing downhole operations using orbital vibrator energy sources
Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.
2004-02-17
Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.
Monitoring Ion Implantation Energy Using Non-contact Characterization Methods
Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.
2011-01-01
State-of-the-art ultra-shallow junctions are produced using extremely low ion implant energies, down to the range of 1-3 keV. This can be achieved by a variety of production techniques; however there is a significant risk that the actual implantation energy differs from the desired value. To detect this, sensitive measurement methods need to be utilized. Experiments show that both Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are suitable for this purpose.
Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao
2015-10-01
Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.
Bifurcation-free design method of pulse energy converter controllers
International Nuclear Information System (INIS)
Kolokolov, Yury; Ustinov, Pavel; Essounbouli, Najib; Hamzaoui, Abdelaziz
2009-01-01
In this paper, a design method of pulse energy converter (PEC) controllers is proposed. This method develops a classical frequency domain design, based on the small signal modeling, by means of an addition of a nonlinear dynamics analysis stage. The main idea of the proposed method consists in fact that the PEC controller, designed with an application of the small signal modeling, is tuned after with taking into the consideration an essentially nonlinear nature of the PEC that makes it possible to avoid bifurcation phenomena in the PEC dynamics at the design stage (bifurcation-free design). Also application of the proposed method allows an improvement of the designed controller performance. The application of this bifurcation-free design method is demonstrated on an example of the controller design of direct current-direct current (DC-DC) buck converter with an input electromagnetic interference filter.
Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.;
2016-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.
Dynamics of energy systems: Methods of analysing technology change
Energy Technology Data Exchange (ETDEWEB)
Neij, Lena
1999-05-01
Technology change will have a central role in achieving a sustainable energy system. This calls for methods of analysing the dynamics of energy systems in view of technology change and policy instruments for effecting and accelerating technology change. In this thesis, such methods have been developed, applied, and assessed. Two types of methods have been considered, methods of analysing and projecting the dynamics of future technology change and methods of evaluating policy instruments effecting technology change, i.e. market transformation programmes. Two methods are focused on analysing the dynamics of future technology change; vintage models and experience curves. Vintage models, which allow for complex analysis of annual streams of energy and technological investments, are applied to the analysis of the time dynamics of electricity demand for lighting and air-distribution in Sweden. The results of the analyses show that the Swedish electricity demand for these purposes could decrease over time, relative to a reference scenario, if policy instruments are used. Experience curves are used to provide insight into the prospects of diffusion of wind turbines and photo voltaic (PV) modules due to cost reduction. The results show potential for considerable cost reduction for wind-generated electricity, which, in turn, could lead to major diffusion of wind turbines. The results also show that major diffusion of PV modules, and a reduction of PV generated electricity down to the level of conventional base-load electricity, will depend on large investments in bringing the costs down (through R D and D, market incentives and investments in niche markets) or the introduction of new generations of PV modules (e.g. high-efficiency mass-produced thin-film cells). Moreover, a model has been developed for the evaluation of market transformation programmes, i.e. policy instruments that effect technology change and the introduction and commercialisation of energy
Shaver, Aaron C; Greig, Bruce W; Mosse, Claudio A; Seegmiller, Adam C
2015-05-01
Optimizing a clinical flow cytometry panel can be a subjective process dependent on experience. We develop a quantitative method to make this process more rigorous and apply it to B lymphoblastic leukemia/lymphoma (B-ALL) minimal residual disease (MRD) testing. We retrospectively analyzed our existing three-tube, seven-color B-ALL MRD panel and used our novel method to develop an optimized one-tube, eight-color panel, which was tested prospectively. The optimized one-tube, eight-color panel resulted in greater efficiency of time and resources with no loss in diagnostic power. Constructing a flow cytometry panel using a rigorous, objective, quantitative method permits optimization and avoids problems of interdependence and redundancy in a large, multiantigen panel. Copyright© by the American Society for Clinical Pathology.
Methods for Probing New Physics at High Energies
Denton, Peter B.
This dissertation covers two broad topics. The title, " Methods for Probing New Physics at High Energies," hopefully encompasses both of them. The first topic is located in part I of this work and is about integral dispersion relations. This is a technique to probe for new physics at energy scales near to the machine energy of a collider. For example, a hadron collider taking data at a given energy is typically only sensitive to new physics occurring at energy scales about a factor of five to ten beneath the actual machine energy due to parton distribution functions. This technique is sensitive to physics happening directly beneath the machine energy in addition to the even more interesting case: directly above. Precisely where this technique is sensitive is one of the main topics of this area of research. The other topic is located in part II and is about cosmic ray anisotropy at the highest energies. The unanswered questions about cosmic rays at the highest energies are numerous and interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is determining their sources. This work looks to determine if and when the use of spherical harmonics becomes sensitive enough to determine these sources. The completed papers for this work can be found online. For part I on integral dispersion relations see reference published in Physical Review D. For part II on cosmic ray anisotropy, there are conference proceedings published in the Journal of Physics: Conference Series. The analysis of the location of an experiment on anisotropy reconstruction is, and the comparison of different experiments' abilities to reconstruct anisotropies is published in The Astrophysical Journal and the Journal of High Energy Astrophysics respectively. While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt University, other papers were completed at the same time. The first was with Nicusor Arsene, Lauretiu Caramete, and
Structures, systems and methods for harvesting energy from electromagnetic radiation
Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO
2011-12-06
Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.
ANALYSIS METHODS OF BANKRUPTCY RISK IN ROMANIAN ENERGY MINING INDUSTRY
Directory of Open Access Journals (Sweden)
CORICI MARIAN CATALIN
2016-12-01
Full Text Available The study is an analysis of bankruptcy risk and assessing the economic performance of the entity in charge of energy mining industry from southwest region. The scientific activity assesses the risk of bankruptcy using score’s method and some indicators witch reflecting the results obtained and elements from organization balance sheet involved in mining and energy which contributes to the stability of the national energy system. Analysis undertaken is focused on the application of the business organization models that allow a comprehensive assessment of the risk of bankruptcy and be an instrument of its forecast. In this study will be highlighted developments bankruptcy risk within the organization through the Altman model and Conan-Holder model in order to show a versatile image on the organization's ability to ensure business continuity
Kinematic method for beam energy determination at electrostatic generators
International Nuclear Information System (INIS)
Thomas, H.J.; Gersch, H.U.; Hentschel, E.; Wohlfahrt, D.
1975-06-01
The applicability of the kinematics of nuclear reactions to the energy determination of a particle beam is discussed. Most favourable conditions are obtained for the kinematic cross over of particles elastically and inelastically scattered at targets with different masses. At tandem energies between 4 and 15 MeV this method permits an exact determination with a precision of about 1 keV. The scattered particles must be measured at about 170 0 with a precision of the scattering angle of 0.1 0 . For the energy determination of a proton beam the compounds LiF, LiCl, or deuterium enriched hydrocarbons are found to be proper target materials. Experimental results with a LiF-target are described. (author)
Multi-fluid renewable geo-energy systems and methods
Buscheck, Thomas A.
2017-08-22
A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portion of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.
Method of osmotic energy harvesting using responsive compounds and molecules
Hu, Xiao
2017-07-27
The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli responsive draw solutions that are competent in terms of energy production, geographic location flexibility, and the affordable, efficient and economical production and delivery of osmotic power. Specifically, the present invention is a novel osmotic power system that uses stimuli responsive draw solutions, economically feasible larger permeable membranes, and low grade heat sources to deliver osmotic power more efficiently and economically with less negative environmental impact, greater power output, and located in more geographically diverse areas of the world than previously thought possible for supporting such a power source.
International Nuclear Information System (INIS)
Giangaspero, Giorgio; Sciubba, Enrico
2013-01-01
This paper presents an application of the entropy generation minimization method to the pseudo-optimization of the configuration of the heat exchange surfaces in a Solar Rooftile. An initial “standard” commercial configuration is gradually improved by introducing design changes aimed at the reduction of the thermodynamic losses due to heat transfer and fluid friction. Different geometries (pins, fins and others) are analysed with a commercial CFD (Computational Fluid Dynamics) code that also computes the local entropy generation rate. The design improvement process is carried out on the basis of a careful analysis of the local entropy generation maps and the rationale behind each step of the process is discussed in this perspective. The results are compared with other entropy generation minimization techniques available in the recent technical literature. It is found that the geometry with pin-fins has the best performance among the tested ones, and that the optimal pin array shape parameters (pitch and span) can be determined by a critical analysis of the integrated and local entropy maps and of the temperature contours. - Highlights: ► An entropy generation minimization method is applied to a solar heat exchanger. ► The approach is heuristic and leads to a pseudo-optimization process with CFD as main tool. ► The process is based on the evaluation of the local entropy generation maps. ► The geometry with pin-fins in general outperforms all other configurations. ► The entropy maps and temperature contours can be used to determine the optimal pin array design parameters
Novel DNA sequence detection method based on fluorescence energy transfer
International Nuclear Information System (INIS)
Kobayashi, S.; Tamiya, E.; Karube, I.
1987-01-01
Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred
Funnel metadynamics as accurate binding free-energy method
Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele
2013-01-01
A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839
Application of Indenting Method for Calculation of Activation Energy
International Nuclear Information System (INIS)
Kim, Jong-Seog; Kim, Tae-Ryong
2006-01-01
For the calculation of activation energy of cable materials, we used to apply the break-elongation test in accordance with ASTM D412(Stand Test Methods for Rubber Properties in Tension). For the cable jacket and insulation which have regular thickness, break-elongation test had been preferred since it showed linear character in the activation energy curve. But, for the cable which has irregular thickness or rugged surface of cable inside, break-elongation test show scattered data which can not be used for the calculation of activation energy. It is not easy to prepare break-elongation specimen for the cable smaller than 13mm diameter in accordance with ASTM D412. In the cases of above, we sometime use TGA method which heat the specimen from 50 .deg. C to 700 .deg. C at heating rates of 10, 15, 20 .deg. C/min. But, TGA is suspected for the representative of natural aging in the plant since it measure the weight decreasing rate during burning which may have different aging mechanism with that of natural aging. To solve above problems, we investigated alternatives such as indenter test. Indenter test is very convenient since it does not ask for a special test specimen as the break-elongation test does. Regular surface of cable outside is the only requirement of indenter test. Experience of activation energy calculation by using the indenter test is described herein
Directory of Open Access Journals (Sweden)
Louise Rose
2016-11-01
Full Text Available Abstract Background Critically ill patients frequently experience severe agitation placing them at risk of harm. Physical restraint is common in intensive care units (ICUs for clinician concerns about safety. However, physical restraint may not prevent medical device removal and has been associated with negative physical and psychological consequences. While professional society guidelines, legislation, and accreditation standards recommend physical restraint minimization, guidelines for critically ill patients are over a decade old, with recommendations that are non-specific. Our systematic review will synthesize evidence on physical restraint in critically ill adults with the primary objective of identifying effective minimization strategies. Methods Two authors will independently search from inception to July 2016 the following: Ovid MEDLINE, CINAHL, Embase, Web of Science, Cochrane Library, PROSPERO, Joanna Briggs Institute, grey literature, professional society websites, and the International Clinical Trials Registry Platform. We will include quantitative and qualitative study designs, clinical practice guidelines, policy documents, and professional society recommendations relevant to physical restraint of critically ill adults. Authors will independently perform data extraction in duplicate and complete risk of bias and quality assessment using recommended tools. We will assess evidence quality for quantitative studies using the Grading of Recommendations Assessment, Development and Evaluation (GRADE approach and for qualitative studies using the Confidence in the Evidence from Reviews of Qualitative Research (CERQual guidelines. Outcomes of interest include (1 efficacy/effectiveness of physical restraint minimization strategies; (2 adverse events (unintentional device removal, psychological impact, physical injury and associated benefits including harm prevention; (3 ICU outcomes (ventilation duration, length of stay, and mortality; (4
Optimum strategies for nuclear energy system development (method of synthesis)
International Nuclear Information System (INIS)
Belenky, V.Z.
1983-01-01
The problem of optimum long-term development of the nuclear energy system is considered. The optimum strategies (i.e. minimum total uranium consumption) for the transition phase leading to a stationary regime of development are found. For this purpose the author has elaborated a new method of solving linear problems of optimal control which can include jumps in trajectories. The method gives a possibility to fulfil a total synthesis of optimum strategies. A key characteristic of the problem is the productivity function of the nuclear energy system which connects technological system parameters with its growth rate. There are only two types of optimum strategies, according to an increasing or decreasing productivity function. Both cases are illustrated with numerical examples. (orig.) [de
Methods of the Water-Energy-Food Nexus
Directory of Open Access Journals (Sweden)
Aiko Endo
2015-10-01
Full Text Available This paper focuses on a collection of methods that can be used to analyze the water-energy-food (WEF nexus. We classify these methods as qualitative or quantitative for interdisciplinary and transdisciplinary research approaches. The methods for interdisciplinary research approaches can be used to unify a collection of related variables, visualize the research problem, evaluate the issue, and simulate the system of interest. Qualitative methods are generally used to describe the nexus in the region of interest, and include primary research methods such as Questionnaire Surveys, as well as secondary research methods such as Ontology Engineering and Integrated Maps. Quantitative methods for examining the nexus include Physical Models, Benefit-Cost Analysis (BCA, Integrated Indices, and Optimization Management Models. The authors discuss each of these methods in the following sections, along with accompanying case studies from research sites in Japan and the Philippines. Although the case studies are specific to two regions, these methods could be applicable to other areas, with appropriate calibration.
σ-SCF: A direct energy-targeting method to mean-field excited states.
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy
2017-12-07
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
σ-SCF: A direct energy-targeting method to mean-field excited states
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy
2017-12-01
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
Directory of Open Access Journals (Sweden)
Michal Romaniszyn
2017-01-01
Full Text Available Purpose. The purpose of this paper is to present results of a single-center, nonrandomized, prospective study of the video-assisted anal fistula treatment (VAAFT. Methods. 68 consecutive patients with perianal fistulas were operated on using the VAAFT technique. 30 of the patients had simple fistulas, and 38 had complex fistulas. The mean follow-up time was 31 months. Results. The overall healing rate was 54.41% (37 of the 68 patients healed with no recurrence during the follow-up period. The results varied depending on the type of fistula. The success rate for the group with simple fistulas was 73.3%, whereas it was only 39.47% for the group with complex fistulas. Female patients achieved higher healing rates for both simple (81.82% versus 68.42% and complex fistulas (77.78% versus 27.59%. There were no major complications. Conclusions. The results of VAAFT vary greatly depending on the type of fistula. The procedure has some drawbacks due to the rigid construction of the fistuloscope and the diameter of the shaft. The electrocautery of the fistula tract from the inside can be insufficient to close wide tracts. However, low risk of complications permits repetition of the treatment until success is achieved. Careful selection of patients is advised.
Economic Evaluation for Energy Business Using Real Options Pricing Method
Energy Technology Data Exchange (ETDEWEB)
Yun, W.C. [Korea Energy Economics Institute, Euiwang (Korea)
2001-11-01
Recently, facing the new era of restructuring, privatization, and liberalization the energy industry in the world is changing rapidly, and thus the uncertain factors tend to increase. This would imply that energy-related business is now confronted with new market risks as well as the simple price risks. The traditional investment valuation method using the concept of net present value (NPV) or internal rate of revenue (IRR) might not incorporate the managerial alternatives which enable managers to respond flexibly to the changes in business environment. This study pointed out the problems of the traditional discounted cash flow (DCF) method when evaluating a certain capital investment in energy industry. As an alternative, the real option pricing method (ROPM) was proposed, which is widely adopted in the field of profit projection for the venture business. In addition, when applying to energy sector the feasibility of ROPM was discussed, and the frameworks and major results of previous related studies were described. For those using the ROPM in real business, I explained the detailed procedures and solutions of ROPM, and introduced the log-transformed binomial model which provides a more efficient solution. In order to verify the usefulness of the ROPM, this study performed an empirical analysis for a virtual construction and operation project of power plant. And, the results from the ROPM was compared to those from the traditional DCF method. Based on the empirical results, the values of various investment opportunities were shown to be high. Therefore, the project not justified in terms of traditional DCF would turn into the project with a positive gross project value, properly reflecting managerial flexibilities inherent in the original project. (author). 58 refs., 32 figs., 33 tabs.
Method of making a low energy gamma ray collimator
International Nuclear Information System (INIS)
Muehllehner, Gerd.
1975-01-01
Described herein is a method for making a low energy gamma ray collimator which involves corrugating lead foil strips by passing them through pinion wire rollers and gluing corrugated strips between straight strips using an adhesive such as epoxy to build up a honeycomb-like structure. A thin aluminum sheet is glued to both edges of the strips to protect them and to provide a more rigid assembly which may be sawed to a desired shape. (Patent Office Record)
Examining ion channel properties using free-energy methods.
Domene, Carmen; Furini, Simone
2009-01-01
Recent advances in structural biology have revealed the architecture of a number of transmembrane channels, allowing for these complex biological systems to be understood in atomistic detail. Computational simulations are a powerful tool by which the dynamic and energetic properties, and thereby the function of these protein architectures, can be investigated. The experimentally observable properties of a system are often determined more by energetic than dynamics, and therefore understanding the underlying free energy (FE) of biophysical processes is of crucial importance. Critical to the accurate evaluation of FE values are the problems of obtaining accurate sampling of complex biological energy landscapes, and of obtaining accurate representations of the potential energy of a system, this latter problem having been addressed through the development of molecular force fields. While these challenges are common to all FE methods, depending on the system under study, and the questions being asked of it, one technique for FE calculation may be preferable to another, the choice of method and simulation protocol being crucial to achieve efficiency. Applied in a correct manner, FE calculations represent a predictive and affordable computational tool with which to make relevant contact with experiments. This chapter, therefore, aims to give an overview of the most widely implemented computational methods used to calculate the FE associated with particular biochemical or biophysical events, and to highlight their recent applications to ion channels. Copyright © 2009 Elsevier Inc. All rights reserved.
Low energy methods of molecular laser isotope separation
International Nuclear Information System (INIS)
Makarov, G N
2015-01-01
Of the many proposals to date for laser-assisted isotope separation methods, isotope-selective infrared (IR) multiphoton dissociation (MPD) of molecules has been the most fully developed. This concept served as the basis for the development and operation of the carbon isotope separation facility in Kaliningrad, Russia. The extension of this method to heavy elements, including uranium, is hindered by, among other factors, the high power consumption and the lack of high-efficiency high-power laser systems. In this connection, research and development covering low energy methods for the laser separation of isotopes (including those of heavy atoms) is currently in high demand. This paper reviews approaches to the realization of IR-laser-induced isotope-selective processes, some of which are potentially the basis on which low-energy methods for molecular laser isotope separation can be developed. The basic physics and chemistry, application potential, and strengths and weaknesses of these approaches are discussed. Potentially promising alternatives to the title methods are examined. (reviews of topical problems)
Application of unsupervised learning methods in high energy physics
Energy Technology Data Exchange (ETDEWEB)
Koevesarki, Peter; Nuncio Quiroz, Adriana Elizabeth; Brock, Ian C. [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)
2011-07-01
High energy physics is a home for a variety of multivariate techniques, mainly due to the fundamentally probabilistic behaviour of nature. These methods generally require training based on some theory, in order to discriminate a known signal from a background. Nevertheless, new physics can show itself in ways that previously no one thought about, and in these cases conventional methods give little or no help. A possible way to discriminate between known processes (like vector bosons or top-quark production) or look for new physics is using unsupervised machine learning to extract the features of the data. A technique was developed, based on the combination of neural networks and the method of principal curves, to find a parametrisation of the non-linear correlations of the data. The feasibility of the method is shown on ATLAS data.
Utilization of net energy analysis as a method of evaluating energy systems
International Nuclear Information System (INIS)
Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon
1994-01-01
It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making
Directory of Open Access Journals (Sweden)
Milenković Saša
2013-01-01
Full Text Available Background/Aim. Distal tibial pilon fractures include extra-articular fractures of the tibial metaphysis and the more severe intra-articular tibial pilon fractures. There is no universal method for treating distal tibial pilon fractures. These fractures are treated by means of open reduction, internal fixation (ORIF and external skeletal fixation. The high rate of soft-tissue complications associated with primary ORIF of pilon fractures led to the use of external skeletal fixation, with limited internal fixation as an alternative technique for definitive management. The aim of this study was to estimate efficacy of distal tibial pilon fratures treatment using the external skeletal and minimal internal fixation method. Methods. We presented a series of 31 operated patients with tibial pilon fractures. The patients were operated on using the method of external skeletal fixation with a minimal internal fixation. According to the AO/OTA classification, 17 patients had type B fracture and 14 patients type C fractures. The rigid external skeletal fixation was transformed into a dynamic external skeletal fixation 6 weeks post-surgery. Results. This retrospective study involved 31 patients with tibial pilon fractures, average age 41.81 (from 21 to 60 years. The average follow-up was 21.86 (from 12 to 48 months. The percentage of union was 90.32%, nonunion 3.22% and malunion 6.45%. The mean to fracture union was 14 (range 12-20 weeks. There were 4 (12.19% infections around the pins of the external skeletal fixator and one (3.22% deep infections. The ankle joint arthrosis as a late complication appeared in 4 (12.90% patients. All arthroses appeared in patients who had type C fractures. The final functional results based on the AOFAS score were excellent in 51.61%, good in 32.25%, average in 12.90% and bad in 3.22% of the patients. Conclusion. External skeletal fixation and minimal internal fixation of distal tibial pilon fractures is a good method for
Method and apparatus for in-situ characterization of energy storage and energy conversion devices
Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT
2010-03-09
Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.
Directory of Open Access Journals (Sweden)
Knol Dirk L
2006-08-01
Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.
International Nuclear Information System (INIS)
Swisher, J.N.; Martino Jannuzzi, G. de; Redlinger, R.Y.
1997-01-01
This book resulted from our recognition of the need to have systematic teaching and training materials on energy efficiency, end-use analysis, demand-side management (DSM) and integrated resource planning (IRP). This book addresses energy efficiency programs and IRP, exploring their application in the electricity sector. We believe that these methods will provide powerful and practical tools for designing efficient and environmentally-sustainable energy supply and demand-side programs to minimize the economic, environmental and other social costs of electricity conversion and use. Moreover, the principles of IRP can be and already are being applied in other areas such as natural gas, water supply, and even transportation and health services. Public authorities can use IRP principles to design programs to encourage end-use efficiency and environmental protection through environmental charges and incentives, non-utility programs, and utility programs applied to the functions remaining in monopoly concessions such as the distribution wires. Competitive supply firms can use IRP principles to satisfy customer needs for efficiency and low prices, to comply with present and future environmental restrictions, and to optimize supply and demand-side investments and returns, particularly at the distribution level, where local-area IRP is now being actively practiced. Finally, in those countries where a strong planning function remains in place, IRP provides a way to integrate end-use efficiency and environmental protection into energy development. (EG) 181 refs
Energy Technology Data Exchange (ETDEWEB)
Swisher, J N; Martino Jannuzzi, G de; Redlinger, R Y
1997-11-01
This book resulted from our recognition of the need to have systematic teaching and training materials on energy efficiency, end-use analysis, demand-side management (DSM) and integrated resource planning (IRP). This book addresses energy efficiency programs and IRP, exploring their application in the electricity sector. We believe that these methods will provide powerful and practical tools for designing efficient and environmentally-sustainable energy supply and demand-side programs to minimize the economic, environmental and other social costs of electricity conversion and use. Moreover, the principles of IRP can be and already are being applied in other areas such as natural gas, water supply, and even transportation and health services. Public authorities can use IRP principles to design programs to encourage end-use efficiency and environmental protection through environmental charges and incentives, non-utility programs, and utility programs applied to the functions remaining in monopoly concessions such as the distribution wires. Competitive supply firms can use IRP principles to satisfy customer needs for efficiency and low prices, to comply with present and future environmental restrictions, and to optimize supply and demand-side investments and returns, particularly at the distribution level, where local-area IRP is now being actively practiced. Finally, in those countries where a strong planning function remains in place, IRP provides a way to integrate end-use efficiency and environmental protection into energy development. (EG) 181 refs.
Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian
2017-12-01
Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.
Akhmadaliev, S Z; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Crouau, M; Daudon, F; David, J; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Evans, H; Eynard, G; Fassi, F; Fassnacht, P; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E; Gaspar, M; Giakoumopoulou, V; Gianotti, F; Gildemeister, O; Giokaris, N; Glagolev, V; Glebov, V Yu; Gomes, A; González, V; González de la Hoz, S; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Hervás, L; Higón, E; Holmgren, Sven Olof; Hostachy, J Y; Hoummada, A; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kopikov, S V; Kostrikov, M E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Laforge, B; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Li, J; Liablin, M V; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; López-Amengual, J M; Lund-Jensen, B; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquim, F; Martin, P; Maslennikov, A L; Massol, N; Mataix, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Moynot, M; Muanza, G S; Nayman, P; Némécek, S; Nessi, Marzio; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Roda, C; Rodier, S; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rossel, F; Rusakovitch, N A; Sala, P; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A; Serin, L; Shaldaev, E; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Snopkov, R; Söderqvist, J; Solodkov, A A; Soloviev, A; Soloviev, I V; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Suk, M; Surkov, A; Sykora, I; Takai, H; Tang, F; Tardell, S; Tartarelli, F; Tas, P; Teiger, J; Thaler, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y
2002-01-01
This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the nonparametrical method. The nonparametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within +or-1% of the true values and the fractional energy resolution is [(58+or-3)%/ square root E+(2.5+or-0.3)%](+)(1.7+or-0.2)/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74+or-0.04 and agrees with the prediction that e/h >1.66 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam...