WorldWideScience

Sample records for energy management

  1. Guide to energy management

    International Nuclear Information System (INIS)

    2006-03-01

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  2. Energy Management. Special. Magazine for energy supply and energy management

    International Nuclear Information System (INIS)

    Van Mil, R.

    2000-05-01

    The special Energy Management was issued in cooperation with many participating businesses in the Netherlands which provided articles on recent developments and new services and products with respect to the liberalized energy market in the Netherlands and Europe

  3. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  4. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  5. Energy management in Lucknow city

    International Nuclear Information System (INIS)

    Zia, Hina; Devadas, V.

    2007-01-01

    In this paper, an attempt is made to prepare an energy management model for Lucknow city along with policy recommendations for optimal energy utilization and management. At the outset, the authors have reviewed the related literature on energy management in the urban system. The entire collected literature is divided into the following sections, such as, energy resource assessment, energy consumption, energy and economy, energy and environment, energy and transportation, forecasting the energy demand and supply, alternate energy sources and technologies, energy conservation and demand-side management and energy management measures in India, and are reviewed thoroughly and presented. Subsequently, an attempt is made to establish the importance of energy in urban development by using Systems concept. Lucknow city has been chosen for investigation in this study. A detailed methodology is developed for organizing the survey at the grassroots level to evolve feasible strategies for optimal energy management in the study area. An attempt is further made to assess the available energy resource in the city, and the energy consumption by source wise in the city and estimating the energy gap in the year 2011. The paper concludes with preparation of a detailed energy management model for Lucknow city to reduce the expected energy gap for the year 2011. The recommendations are made for supply augmentation, demand-side management and policy measures to be taken by the government authorities

  6. Energy management manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Pueblo of Laguna lies in the Grants Uranium Belt. The Grants belt is the source of more than half of all uranium produced in the US. Currently the Pueblo has development agreements with Conoco and Anaconda. Only the Anaconda leasehold has been developed - an open pit mine and 2 underground mines. The Pueblo has several areas of concern in managing mineral development. These include monitoring and enforcing performance standards, and taxing severance of uranium from the land. Constraints on tribal regulation of energy development are discussed in Chapter 1. Energy management program needs of the Pueblo of Laguna are discussed in Chapter 2. Chapter three contains the energy management plan to be used by the Pueblo as it formulates and implements an energy development and management strategy. (DMC)

  7. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  8. Municipal energy managers; Responsables energie municipaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  9. Municipal energy managers

    International Nuclear Information System (INIS)

    2004-01-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  10. Energy management in municipal heritage; Management de l'energie dans le patrimoine municipal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  11. Towards an energy management maturity model

    International Nuclear Information System (INIS)

    Antunes, Pedro; Carreira, Paulo; Mira da Silva, Miguel

    2014-01-01

    Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001. - Highlights: • Real-world energy management activities are not aligned with the literature. • An Energy Management Maturity Model is proposed to overcome this alignment gap. • The completeness and relevance of proposed model are validated

  12. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  13. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  14. Energy management in municipal heritage; Management de l'energie dans le patrimoine municipal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  15. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  16. Industrial energy management; Betriebliches Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, D.

    2007-07-01

    Effective and successful energy and facility management uses a holistic view in which the life cycles of plants and buildings are considered, plus efficient controlling and reporting. The challenge is not in short-term cost reduction but in ensuring long-term effects. This requires management strategies which make use of synergy effects by means of interdisciplinary measures. Main topics: management of energy utilization, energy conversion and energy supply. (GL)

  17. Energy management in municipal heritage

    International Nuclear Information System (INIS)

    2004-01-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  18. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  19. Responding to high energy prices: energy management services

    International Nuclear Information System (INIS)

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  20. Energy Management Curriculum Starter Kit

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.C.

    1987-02-01

    The Energy Management Curriculum Starter Kit was designed to help engineering educators develop and teach energy management courses. Montana State University and Oklahoma State University courses are embodied in the model curriculum given. The curricula offered at many other universities throughout the United States are also presented. The kit was designed specifically to train engineering students to be good energy managers. Courses at both the undergraduate and postgraduate level are presented.

  1. Trends in Energy Management Technology - Part 3: State of Practiceof Energy Management, Control, and Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2004-02-01

    In this report, the third in a series, we provide an evaluation of several products that exemplify the current state of practice of Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the federal sector. The first report [1] covered enabling technologies for emerging energy management systems. The second report [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. Part 4 of this series will discuss applications software from a user's perspective. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of reports provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  2. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  3. Five paradox on energy system management

    International Nuclear Information System (INIS)

    Frisch, J.R.

    1995-01-01

    Five paradox are detailed on energy management: internationalization of energy questions but always regional management is present, short term problems must be solved but without forgetting long term problems in environment, the third paradox is : we have time but we are in a hurry, we have reserves but ten, twenty or thirty years are necessary to adapt our energy system; the fourth paradox is : we cannot manage energy by managing only energy, for example : finances system development and environment importance. The last and fifth paradox is : the market, yes, but state too, as regulative force

  4. Energy management manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Jacarilla reservation lies on the San Juan Basin in New Mexico, with vast oil and gas deposits, actively developed since the late 1950s. Constraints on Tribal regulation of energy development are discussed in Section I. Section II describes the relationship between Federal agencies and the Tribe; identifies energy management problems; recommends management activities to address the problems; and points out skill requirements. The Tribe has now adopted a formal statement of goals and objectives for its minerals management program and details of the program are described in Section III. Information on the legal analysis of oil and gas development on the land of the Tribe is given in the appendix. (MCW)

  5. Guide to energy management; Veiledning for energiledelse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  6. Evaluation of corporate energy management practices of energy intensive industries in Turkey

    International Nuclear Information System (INIS)

    Ates, Seyithan Ahmet; Durakbasa, Numan M.

    2012-01-01

    Turkey is one of a number of countries who still lack a national management standard for energy. Industrial energy consumption accounts for 42% of Turkey's total energy consumption. With the help of a questionnaire and analytical framework, this paper investigates Industrial Energy Management Practice in Turkey and highlights significant bottlenecks and shortcomings of energy intensive industries in terms of energy management application. The survey was carried out as a multiple case study of the Turkish iron, steel, cement, paper, ceramics and textile industries. Outcomes of the questionnaire are evaluated according to the analytical framework which covers company characteristics, regulations, external relations of the companies and internal organizational conditions. After analyzing these elements on the basis of a minimum requirement list, it was found that only 22% of the surveyed companies actually practice corporate energy management in Turkey. The main barriers to proper energy management implementation were identified as lack of synergy between the stakeholders, the extent and scope of energy manager courses, and inadequate awareness of and lack of financial support for energy management activities. As a guideline to overcome present obstacles, a set of policy options are offered: strengthening and restructuring of legal and institutional frameworks, promotion of energy efficiency, education, training and capacity building and facilitating implementation of the international energy management standard ISO 50001. -- Highlights: ► Developing an analytical scheme to assess degree of Energy Management Application. ► Investigation of Energy Management Practices in Turkish Energy Intensive Industries. ► Analysis of challenges which hinder full implementation of energy management in Turkey. ► Presenting a set of essential policy options thought for all stakeholders.

  7. PROJECT APPROACH TO ENERGY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Інга Борисівна СЕМКО

    2016-02-01

    Full Text Available Project management is widely used around the world as a tool to improve business performance. Correct implementation of the program of implementation of energy efficiency is accompanied by the adoption of an appropriate legislative framework, support programs, the approval of market-based instruments. Currently, it is paying enough attention to the effective application of market-based instruments, although most of the activities in the field of energy efficiency from the economic side are quite profitable. The authors suggested the use of the methodology of project management to the management of energy-saving measures, new approaches to the place and role of project management in the hierarchy of guidance. As a result, this innovation can improve the competitiveness of enterprises. The conclusions that the energy-saving project management allows you to get the best results for their implementation by reducing the time, resources, risk reduction.

  8. The effectiveness of energy management system on energy efficiency in the building

    Science.gov (United States)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  9. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  10. Energy manager's handbook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, G A

    1977-01-01

    The handbook provides sufficient guidance on the principles involved for readers to tailor a program to meet their own requirement. The following chapters are included: Energy Conservation; Management of Energy; Delivery, Storage, and Handling of Fuels; Boilers; Furnaces; Heat Distribution and Utilization; Industrial Space Heating; Electricity; Services; and Road Transport. (MCW)

  11. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  12. Intelligent energy management; Intelligentes Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carsten [Siemens AG, Nuernberg (Germany). Bereich Sales and Marketing; Kunzmann, Geo [Siemens AG, Nuernberg (Germany). Bereich Business Development

    2010-03-15

    As energy is getting shorter and increasingly expensive while consumption is increasing and legal regulations are getting stricter, intelligent energy management is becoming more necessary than ever. The autors propose an integrated strategy of ''identification - evaluation - saving''. They present a scalable energy management software that works also with existing hardware and helps to develop even savings potentials that are not identifiable at first glance. (orig.)

  13. Energy management and cooperation in microgrids

    Science.gov (United States)

    Rahbar, Katayoun

    Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management

  14. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  15. Coordinated Energy Management in Heterogeneous Processors

    Directory of Open Access Journals (Sweden)

    Indrani Paul

    2014-01-01

    Full Text Available This paper examines energy management in a heterogeneous processor consisting of an integrated CPU–GPU for high-performance computing (HPC applications. Energy management for HPC applications is challenged by their uncompromising performance requirements and complicated by the need for coordinating energy management across distinct core types – a new and less understood problem. We examine the intra-node CPU–GPU frequency sensitivity of HPC applications on tightly coupled CPU–GPU architectures as the first step in understanding power and performance optimization for a heterogeneous multi-node HPC system. The insights from this analysis form the basis of a coordinated energy management scheme, called DynaCo, for integrated CPU–GPU architectures. We implement DynaCo on a modern heterogeneous processor and compare its performance to a state-of-the-art power- and performance-management algorithm. DynaCo improves measured average energy-delay squared (ED2 product by up to 30% with less than 2% average performance loss across several exascale and other HPC workloads.

  16. Energy management in a commercial organization

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, C. W.

    1979-07-01

    Implementation of energy management programs by the Debenhams Group, operators of a chain of department stores in England, Scotland, and Wales, is discussed. How the systems relate to building operations is considered in the following subjects: group activities and energy costs; energy management; information base; standards action; lighting and energy; new store design; development (control of services). (MCW)

  17. Energy management of a large estate

    Energy Technology Data Exchange (ETDEWEB)

    Oughton, R J

    1986-01-01

    The paper outlines energy management of the Property Services Agency (PSA) estate, which has been pursued since 1972. PSA's current expenditure on energy in buildings is Pound 235M per annum (1983-1984), and while energy management has been in operation the aggregate annual saving achieved across the civil and armed services estate is estimated at 33%. The development of energy management is described; the initial organisation concentrated on the existing estate. An Energy Database was generated for the whole of the civil estate and routine monitoring and targetting of consumption was instituted. Regional Energy Conservation Officers were appointed with responsibilities for energy management of defined areas of the estate and a headquarters group was set up to direct the campaign and determine policy. The funding of all energy efficiency applications depends on a favourable value analysis. The calculations used in establishing investment priorities were based on CIBSE (Chartered Institution of Building Services Engineers) methods. This was quickly followed by the introduction of design techniques to promote energy efficiency in new building work. The use of Design Energy Targets is a prominent feature. Over the period to date an in-house training programme in energy conservation has been established for technical staff involved in building design and operation and for general staff. An expanding range of in-house publications on energy efficiency is also available.

  18. D5.4 – Energy management system

    DEFF Research Database (Denmark)

    Madsen, Per Printz; Andersen, Palle

    This report will focus on strategies for energy management as well at the building level and at the microgrid level. The designed energy management controller will manage energy flow such that generated power in the microgrid is mainly consumed by local consumers and the power trade between...... the microgrid and the grid is shrunk to minimum. Buildings’ role is to provide flexibility to the energy management controller so that this controller can use this flexibility to enhance the local use of the local produced energy and by that mean lower the energy bill for each house in the microgrid....... The Optimization of building loads are based on electricity price signal and shedding, shifting or rescheduling the power consumption pattern. The main shiftable loads are the HVAC systems. This system will be the primary controllable load for the energy management controller but also curtailable load and non...

  19. Embedded Systems for Smart Appliances and Energy Management

    CERN Document Server

    Neumann, Peter; Mahlknecht, Stefan

    2013-01-01

    This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering.  Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.   Provides a comprehensive, multidisciplinary introduction to embedded systems for smart appliances and energy management; Equips researchers and engineers with information required to succeed in designing energy management for smart appliances; Includes coverage of resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.  

  20. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  1. Specification of Energy Assessment Methodologies to Satisfy ISO 50001 Energy Management Standard

    Science.gov (United States)

    Kanneganti, Harish

    Energy management has become more crucial for industrial sector as a way to lower their cost of production and in reducing their carbon footprint. Environmental regulations also force the industrial sector to increase the efficiency of their energy usage. Hence industrial sector started relying on energy management consultancies for improvements in energy efficiency. With the development of ISO 50001 standard, the entire energy management took a new dimension involving top level management and getting their commitment on energy efficiency. One of the key requirements of ISO 50001 is to demonstrate continual improvement in their (industry) energy efficiency. The major aim of this work is to develop an energy assessment methodology and reporting format to tailor the needs of ISO 50001. The developed methodology integrates the energy reduction aspect of an energy assessment with the requirements of sections 4.4.3 (Energy Review) to 4.4.6 (Objectives, Targets and Action Plans) in ISO 50001 and thus helping the facilities in easy implementation of ISO 50001.

  2. DEM - distribution energy management

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A; Kekkonen, V; Koreneff, G [VTT Energy, Espoo (Finland); and others

    1998-08-01

    The electricity market was de-regulated in Finland at the end of 1995 and the customers can now freely choose their power suppliers. The national grid and local distribution network operators are now separated from the energy business. The network operators transmit the electric power to the customers on equal terms regardless from whom the power is purchased. The Finnish national grid is owned by one company Finnish Power Grid PLC (Fingrid). The major shareholders of Fingrid are the state of Finland, two major power companies and institutional investors. In addition there are about 100 local distribution utilities operating the local 110 kV, 20 kV and 0.4 kV networks. The distribution utilities are mostly owned by the municipalities and towns. In each network one energy supplier is always responsible for the hourly energy balance in the network (a `host`) and it also has the obligation to provide public energy prices accessible to any customer in the network`s area. The Finnish regulating authorities nominate such a supplier who has a dominant market share in the network`s area as the supplier responsible for the network`s energy balance. A regulating authority, called the Electricity Market Centre, ensures that the market is operating properly. The transmission prices and public energy prices are under the Electricity Market Centre`s control. For domestic and other small customers the cost of hourly metering (ca. 1000 US$) would be prohibitive and therefore the use of conventional energy metering and load models is under consideration by the authorities. Small customer trade with the load models (instead of the hourly energy recording) is scheduled to start in the first half of 1998. In this presentation, the problems of energy management from the standpoint of the energy trading and distributing companies in the new situation are first discussed. The topics covered are: the hourly load data management, the forecasting and estimation of hourly energy demands

  3. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  4. Securing a Home Energy Managing Platform

    DEFF Research Database (Denmark)

    Mikkelsen, Søren Aagaard; Jacobsen, Rune Hylsberg

    2016-01-01

    Energy management in households gets increasingly more attention in the struggle to integrate more sustainable energy sources. Especially in the electrical system, smart grid towards a better utilisation of the energy production and distribution infrastructure. The Home Energy Management System...... (HEMS) is a critical infrastructure component in this endeavour. Its main goal is to enable energy services utilising smart devices in the households based on the interest of the residential consumers and external actors. With the role of being both an essential link in the communication infrastructure...... for balancing the electrical grid and a surveillance unit in private homes, security and privacy become essential to address. In this chapter, we identify and address potential threats Home Energy Management Platform (HEMP) developers should consider in the progress of designing architecture, selecting hardware...

  5. Savings impact of a corporate energy manager

    International Nuclear Information System (INIS)

    Sikorski, B.D.; O'Donnell, B.A.

    1999-01-01

    This paper discusses the cost savings impact of employing an energy manager with a 16,000-employee corporation. The corporation, Canada's second largest airline, is currently operating nearly 3,000,000 ft 2 of mixed-use facilities spread across the country, with an annual energy budget for ground facilities of over Cdn $4,000,000. This paper outlines the methodology used by the energy manager to deploy an energy management program over a two-year period between April 1995 and May 1997. The paper examines the successes and the lessons learned during the period and summarizes the costs and benefits of the program. The energy manager position was responsible for developing an energy history database with more than 100 active accounts and for monitoring and verifying energy savings. The energy manager implemented many relatively low-cost energy conservation measures, as well as some capital projects, during the first two years of the program. In total, these measures provided energy cost savings of $210,000 per year, or 5% of the total budget. In each case, technologies installed as part of the energy retrofit projects provided not only cost savings but also better control, reduced maintenance, and improved working conditions for employees

  6. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    Science.gov (United States)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  7. Intelligent energy management control for independent microgrid

    Indian Academy of Sciences (India)

    Energy management control; multi-agent system; microgrid; energy forecast; hybrid power ... power to the local load most of the time in this energy management strategy. ... Electrical and Electronics Engineering Department, PSG College of ...

  8. Energy efficiency public lighting management in the cities

    International Nuclear Information System (INIS)

    Radulovic, Dusko; Skok, Srdjan; Kirincic, Vedran

    2011-01-01

    Cities all around the world are faced with a rapid increase of urban population, and their crucial sustainable development issue becomes energy management. Moreover, the national energy management sector is slowly passing from government surveillance to the responsibility of local municipalities. The energy efficiency management in cities helps local governments to focus on important energy projects that have strong environmental aspects and financial feasibility. This paper analyzes the public lighting energy management in the Croatian city of Rijeka in order to determine the connection of the energy market liberalization and sustainable development in urban areas. Research results indicate a significant connection between investments in energy management of public lighting and its influence on lower emissions of carbon dioxide (CO 2 ).

  9. Energy Management; La maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Yves [Commissariat General du Plan, Paris (France)

    2000-02-02

    Struck by the first oil shock, France engaged itself since 1974 on a nuclear course associated to a policy of energy management. Twenty years later one can ascertain that the rates of energy savings has strongly declined since 1986 and that the energy consumption per point of national income has even increased after 1991. The evaluation conducted by the group presided by Yves Martin has found out that there is an important field of profitable economies, clearing at the same time the ways of improving the tools used. An ensemble of general operations able to give a new impetus to energy management policy is revealed. The document contains two sections, - The evaluation device and - Constants and improvement proposals. The latter presents: - the global approach; - evaluation of tools and the improvement ways; - aids to decision; - actions on offer of energy saving equipment; - aids for investment; - transports; - renewable energies. The reports concludes with the following general recommendations: - curving the fossil energy short-sighting by embodying in the price of this energy, by means of fiscal measures, the externalities and future costs which are not taken into account; - encouraging R and D aiming at an increased energy efficiency of equipment; - assist the energy users to get the necessary information in order to optimize their investments and behavior; - revise the electricity pricing and policy of rural electrification in order to avoid an unfair competition in zones of low population density and isles non-connected to metropolitan grid; - endowing the administration with an organization enabling the integration of energy management within the fiscal and sectorial policies with high impact upon the energy consumption (transports, dwellings, urbanism); - giving to ADEME the necessary stability of its means for accomplishing its mission. Finally, the report points out the tasks of the authorities implied: - The inter-ministerial agency for evaluation of

  10. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  11. Sustainable energy management - a prerequisite for the realization Kyoto Protocol

    Directory of Open Access Journals (Sweden)

    Mirjana Golušin

    2012-07-01

    Full Text Available Energy management can be defined as the process of planning, directing, implementing and controlling the process of generation, transmission and energy consumption. Energy management is a kind of synthesis of phenomena and concepts of modern energy management (management, or the use of modern settings management in the energy sector. Furthermore, when outlining the basic settings for power management Modern management is based on the assumptions of sustainability and conservation of energy stability for present and future generations. Therefore, modern energy management can be seen as a kind of synthesis of three actuarial sciences: energy, sustainable development and management. Sustainable Energy Management is a unique new concept, idea and approach that require many changes in the traditional way of understanding and interpretation of energy management at all levels. Sustainable energy management concept can not therefore be construed as an adopted and defined the concept, but must be constantly modified and adjusted in accordance with changes in the three areas that define it, and in accordance with the specific country or region where applicable. Accordingly, sustainable energy management can be defined as the process of energy management that is based on fundamental principles of sustainable development.

  12. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  13. Effective energy management system using ISO 9000/14000 concept industries

    International Nuclear Information System (INIS)

    Asfaazam Kasbani; Kamaruzzaman Sopian

    2006-01-01

    Energy management is a system of managing energy utilization wisely and it includes issues such as energy efficiency (conservation), use of renewable energy, use of technology and development of energy policy. Its benefits has been well known for cost reduction and increase competitiveness and also other indirect impact such as preserving the natural resources and reduction of green-house gases. Although various strategies have been formulated by the government for the industries to adopt energy management, the result seems to be minimal and stagnant in some ways due to the various barriers which exists. Industries on the other hand, have successfully welcomed two famous management system namely the Environmental Management System ISO 14000 and the Quality Management System ISO 9000 to be implemented at their premises. This paper shows how energy management system can be effectively implemented by comparing similar generic management elements of energy management to ISO 9000/14000 standards. The seven (7) elements of energy management system discussed are top management commitment, policy establishment, energy management team, energy audit, energy efficiency projects, monitoring and training

  14. Comprehensive energy management eco routing & velocity profiles

    CERN Document Server

    Brandstätter, Bernhard

    2017-01-01

    The book discusses the emerging topic of comprehensive energy management in electric vehicles from the viewpoint of academia and from the industrial perspective. It provides a seamless coverage of all relevant systems and control algorithms for comprehensive energy management, their integration on a multi-core system and their reliability assurance (validation and test). Relevant European projects contributing to the evolvement of comprehensive energy management in fully electric vehicles are also included.

  15. Methods for Distributed Optimal Energy Management

    DEFF Research Database (Denmark)

    Brehm, Robert

    The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast to convent......The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast...... to conventional centralised optimal energy flow management systems, here-in, focus is set on how optimal energy management can be achieved in a decentralised distributed architecture such as a multi-agent system. Distributed optimisation methods are introduced, targeting optimisation of energy flow in virtual......-consumption of renewable energy resources in low voltage grids. It can be shown that this method prevents mutual discharging of batteries and prevents peak loads, a supervisory control instance can dictate the level of autarchy from the utility grid. Further it is shown that the problem of optimal energy flow management...

  16. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  17. Smart and usable home energy management systems

    NARCIS (Netherlands)

    Van Dam, S.S.

    2009-01-01

    This paper reviews research into Home Energy Management Systems (HEMS). These are intermediary products that can visualize, manage, and/or monitor the energy use of other products or whole households. HEMS have lately received increasing attention for their possible role in conserving energy within

  18. Solutions for environmental reporting and energy management

    International Nuclear Information System (INIS)

    Suhonen, T.

    2004-01-01

    Especially two areas of energy applications - environmental reporting and energy management - are emphasized due to the current EU legislation and opening energy markets. Emissions reporting is driven by several EU directives and international agreements, like Emissions Trading Scheme. The directives guide implementation of the emission information management and reporting procedures, but requirements and differences defined by the local authorities are challenging both for the system supplier and for the energy producer. Energy management of industrial energy production (CHP) is an application, which offers real-time tools for forecasting mill's energy need and optimizing the energy balance between a mill's own production, purchases and consumption. This can bring significant reductions in mill energy costs and consumption. For these applications, the exact and well-managed information is needed. Data is retrieved from plant historians and event databases, ERP's and external sources. Calculation applications generate characteristic values (KPI's), which are used for monitoring operation, improving plant availability and boosting performance. Common office tools, like MS Excel, are the most convenient tools for reporting and processing information. Integration tools are needed to combine data from several sources to a single channel, handling messaging between applications and distributing information. (author)

  19. Energy Consumption Management in Design

    NARCIS (Netherlands)

    Smit, Jaap

    1997-01-01

    A survey of the basic issues in low power design is presented, including techniques for the analysis of energy consumption in the early design phase of analog and digital circuits. The concept of energy complexity will be introduced in conjunction with techniques for parameterized energy management.

  20. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  1. Buildings energy management program workshop design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    This document describes activities undertaken by Honeywell's Energy Resources Center for design and development of the format, content, and materials that were used in conducting 129 one-day energy management workshops for specific commercial business audiences. The Building Energy Management Workshop Program was part of a National Workshop Program that was intended to increase awareness of energy-related issues and to encourage energy-conservation actions on the part of commercial and industrial sectors. The total effort included executive conferences for chief executive officers and other senior management personnel; industrial energy-conservation workshops directed at plant management and engineering personnel; vanpooling workshops designed to inform and encourage business in implementing a vanpooling program for employees; and the building energy-management workshops specifically developed for managers, owners, and operators of office and retail facilities, restaurants, and supermarkets. The total program spanned nearly two years and reached approximately 2,500 participants from all parts of the U.S. A detailed followup evaluation is still being conducted to determine the impact of this program in terms of conservation action undertaken by workshop participants.

  2. Energy managing of outsourcing principle

    International Nuclear Information System (INIS)

    Uran, Vedran

    2004-01-01

    Outsourcing means ownership or rent, management and user transmission of one type of operation of a certain company whose core-business is not that to another company bearing that business as the core one. That kind of operation and management relationship among certain activities in this work paper is described between companies of public, services and industrial sector and outsourcing company for energy supply. Benefits and barriers of outsourcing company for energy supply in Croatia are discussed. (Author)

  3. Managing environmental aspects resulting from energy consumption

    International Nuclear Information System (INIS)

    2001-01-01

    Human health and environmental impacts of fossil fuel energy consumptions are examined and the ongoing effort to align energy management plans with sustainable development strategies and environmental management systems is described. Human health impacts are manifested in mortality rates, hospital admissions, visits to emergency rooms and physicians' offices, reduced physical performance, increase in the use of medications, impaired pulmonary function and a variety of lesser (or less perceptible) effects. Environmental impacts are demonstrated through climatic change, increase in greenhouse gas emissions, increase in smog, acid rain, and soil, groundwater and surface water contamination. The importance of commitment, integrated planning, measurement and evaluation, periodic review and improvement and documentation in aligning energy and environmental management plans are highlighted, along with the need for behavioral and operational changes, the creation of employee awareness and training, and the adoption of green procurement and life cycle costing. Adoption of the ISO 14000 approach to managing energy consumption is also seen as an important step in the direction of integrated energy and environmental management and sustainable development

  4. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  5. Guidelines for education in energy management

    Directory of Open Access Journals (Sweden)

    Morales, C. M.

    2014-01-01

    Full Text Available Although educating for energy management is nowadays recognized as an important topic, the process of training is far from the ideal. One of the main shortcomings identified in the research is related to procedures selection, aside from the consensus of academic authorities of its inter-disciplinary character. This article aims to highlight the guidelines for education in energy management, as well as to advance the workshops for its implementation. The results of the research are only a part of a Ph D studied completed by the writer. The effectiveness of the proposal was appraised experimentally and subjected to specialists’ valuation. Key words: education in energy management, guidelines, environmental education.

  6. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  7. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  8. Energy conservation: its planning and management

    International Nuclear Information System (INIS)

    Nanda, K.S.; Patra, K.C.

    1995-01-01

    Energy conservation, its planning and management and the development of renewable energy systems of proven design are very worthy challenges for all. Energy education at various levels is most important particularly in the development of renewable energy technology. 2 refs., 3 tabs

  9. Harvesting-Aware Energy Management for Environmental Monitoring WSN

    Directory of Open Access Journals (Sweden)

    James Rodway

    2017-05-01

    Full Text Available Wireless sensor networks can be used to collect data in remote locations, especially when energy harvesting is used to extend the lifetime of individual nodes. However, in order to use the collected energy most effectively, its consumption must be managed. In this work, forecasts of diurnal solar energies were made based on measurements of atmospheric pressure. These forecasts were used as part of an adaptive duty cycling scheme for node level energy management. This management was realized with a fuzzy logic controller that has been tuned using differential evolution. Controllers were created using one and two days of energy forecasts, then simulated in software. These controllers outperformed a human-created reference controller by taking more measurements while using less reserve energy during the simulated period. The energy forecasts were comparable to other available methods, while the method of tuning the fuzzy controller improved overall node performance. The combination of the two is a promising method of energy management.

  10. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov (United States)

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL researchers are developing tools to understand the impact of changes in home and building energy use and how researchers who received a record of invention for a home energy management system in a smart home laboratory

  11. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  12. Necessity for training of experts on energy efficiency and energy management

    International Nuclear Information System (INIS)

    Gramatikov, Plamen

    2015-01-01

    The energy intensity of the Bulgarian GDP is the highest one in comparison with other EU countries. This fact leads to low competitiveness of Bulgarian goods at the international markets. The country lacks a sufficient number of well trained experts on energy efficiency and energy management which requires development of such educational programs in Bachelor and Master's curricula of the universities. The Master's program on Energy Management and Sustainable Energy Development developed in the Physics Department is shortly presented in this paper. This curriculum must be introduced in all technical areas of SWU if it likes to be adequate to current needs of the country and society.

  13. Study on Government Management Mechanism of Energy ...

    African Journals Online (AJOL)

    of energy conservation and emission reduction, and propose legal guarantees, management innovation, technology innovation, service system construction and upgrading of industrial structure are the critical factors to energy conservation and emission reduction management mechanism's performance. Then discuss the ...

  14. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  15. Energy conservation prospects through electric load management

    Energy Technology Data Exchange (ETDEWEB)

    El-Shirbeeny, E H.T.

    1984-04-01

    In this paper, concepts of electric load management are discussed for effective energy conservation. It is shown that the conservation program must be comprehensive to provide solutions to the problems facing the electric consumer, the electric utility and the society by reducing the rate of growth of energy consumption and power system peak demand requirements. The impact of energy management programs on electric energy conservation is examined, with emphasis on efficiency, storage, cogeneration and controls with computers.

  16. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  17. Future of energy managers groups

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, T.

    1979-07-01

    The objectives of the Energy Managers Groups, formed to provide a regular opportunity for industry and commerce to exchange views and experiences on energy conservation matters are discussed. Group procedure, liaison and cooperation, government support, and options for the future are discussed. (MCW)

  18. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  19. Research challenges for energy data management (panel)

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Lehner, Wolfgang

    2013-01-01

    This panel paper aims at initiating discussion at the Second International Workshop on Energy Data Management (EnDM 2013) about the important research challenges within Energy Data Management. The authors are the panel organizers, extra panelists will be recruited before the workshop...

  20. Energy Consumption Management of Virtual Cloud Computing Platform

    Science.gov (United States)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  1. Efficient, LON-based energy information management system; Effektives Energie-Informations-Management-System auf LON-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, A.; Kalla, H. [Weidmueller GmbH, Paderborn (Germany)

    1999-08-01

    In these days of globalisation and increasing competition, intelligent concepts have become indispensable. The decentralized energy information management system offered by Weidmueller stores consumption data in a database that makes consumption transparent both to the utility and its customers. [Deutsch] Die Maerkte werden globaler, der Wettbewerb immer haerter. Wer hier als Energielieferant `im Rennen` bleiben will, muss intelligente, zukunftsweisende Konzepte zusammen mit seinen Kunden erarbeiten. Das dezentrale Energie-Informations-Management-System von Weidmueller erfasst dazu die Verbrauchsdaten, die wiederum die Datenbasis mit entsprechender Verbrauchstransparenz sowohl fuer den Energieversorger als auch fuer den Kunden bilden. (orig.)

  2. Optimal energy management strategy for self-reconfigurable batteries

    International Nuclear Information System (INIS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2017-01-01

    This paper proposes a novel energy management strategy for multi-cell high voltage batteries where the current through each cell can be controlled, called self-reconfigurable batteries. An optimized control strategy further enhances the energy efficiency gained by the hardware architecture of those batteries. Currently, achieving cell equalization by using the active balancing circuits is considered as the best way to optimize the energy efficiency of the battery pack. This study demonstrates that optimizing the energy efficiency of self-reconfigurable batteries is no more strongly correlated to the cell balancing. According to the features of this novel battery architecture, the energy management strategy is formulated as nonlinear dynamic optimization problem. To solve this optimal control, an optimization algorithm that generates the optimal discharge policy for a given driving cycle is developed based on dynamic programming and code vectorization. The simulation results show that the designed energy management strategy maximizes the system efficiency across the battery lifetime over conventional approaches. Furthermore, the present energy management strategy can be implemented online due to the reduced complexity of the optimization algorithm. - Highlights: • The energy efficiency of self-reconfigurable batteries is maximized. • The energy management strategy for the battery is formulated as optimal control problem. • Developing an optimization algorithm using dynamic programming techniques and code vectorization. • Simulation studies are conducted to validate the proposed optimal strategy.

  3. China's rural energy system and management

    International Nuclear Information System (INIS)

    Catania, Peter

    1999-01-01

    The issues related to rural energy development and the corresponding escalating economic activities have given rise to a complex, interrelationship among societal, economics, energy, environment and rural policies. With 7% of the world's farm land to produce food for 23% of the world's population, combined with the increasing energy demands for modernised farming has resulted in a dynamic rural energy policy for China. This paper discusses the characteristics of a rural society, outlines the relationship for rural energy supply and demand management, and discusses the interrelationship between energy and the environment utilisation. An illustration of the diffusion of biomass as a success story highlights some of the policies related to self-building, self-managing and self-using. Also discussed in this paper are the results of the integrated rural energy-policy, that is, the social benefits to farmers and the decrease of energy consumption per unit of output. Emerging nations must undertake a comprehensive analysis and synthesis of their respective rural energy developments and the corresponding interrelationships between technology, economics and the environment. (Author)

  4. The peculiar economics of federal energy management

    International Nuclear Information System (INIS)

    Canes, Michael E.

    2016-01-01

    US federal agency energy managers face different constraints than do comparable private sector managers. They are faced with energy consumption goals mandated via legislation or directed via Presidential Executive Order that encourage if not compel them to invest more in energy efficiency or renewables than would be cost effective from a private sector perspective. To make such investments, they also are provided access to private capital that is additional to their agency budgets. The encouragement to invest beyond what is cost effective may be a source of waste in some instances, and the financing mechanisms appear more expensive than necessary. A rough estimate of the magnitude of the waste is offered, as well as a mechanism to reduce the costs of agency access to capital. - Highlights: •Legislative and regulatory initiatives that constrain federal agency energy investments. •Economic calculus facing a federal agency energy manager. •Magnitude of federal energy investments and of possible waste. •Financing mechanisms and how their costs might be reduced.

  5. 75 FR 45111 - Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing...

    Science.gov (United States)

    2010-08-02

    .... ER00-167-000; Docket No. ER03- 752-000] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice of Revocation of Market- Based Rate Tariff July 23, 2010. On... FERC ] 61,334 (2003). In the June 25 Order, the Commission directed Strategic Energy Management Corp...

  6. 77 FR 32994 - Bureau of Ocean Energy Management

    Science.gov (United States)

    2012-06-04

    ... managed by BOEM: oil and gas exploration and development; renewable energy; and marine minerals. BOEM is... development; (2) renewable energy; and (3) marine minerals. A Notice of Availability for the Draft PEIS was... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical...

  7. Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance

    International Nuclear Information System (INIS)

    Gliedt, Travis; Hoicka, Christina E.

    2015-01-01

    Highlights: • Energy Star property owners/managers view energy as strategic or financial investments. • Energy performance improvements and motivations differ by property type. • Energy projects are most often funded by internal cash reserves. • Motivations and funding sources differ by type of energy project. • Environmental sustainability is an important criterion in many energy projects. - Abstract: Due to its significant carbon footprint and cost-effectiveness for upgrades, the commercial property sector is important for climate change mitigation. Although barriers to energy system changes, such as funding, financing and information, are well recognized, Energy Star property owners and managers are successfully overcoming these barriers and instigating energy efficiency upgrades, renewable energy installations, and behavior and management programs. To examine the decision-making process that leads to energy performance improvements, a national survey of property owners and management organizations of buildings that earned an Energy Star score of 75 or higher was conducted. The extent to which energy upgrades were considered strategic investments motivated by environmental sustainability or corporate social responsibility, or financial investments motivated by payback period or return-on-investment criteria, was contingent upon the property type and type of energy project. Environmental sustainability was found to be an important motivation for energy projects in office spaces in general, but in the case of smaller office spaces was often combined with motivations for corporate social responsibility. Energy projects on education properties were motivated by financial investment. Building envelope and mechanical efficiency upgrades were considered financial investments, while renewable energy, green roofs, and water conservation technologies were considered environmental sustainability initiatives

  8. Stargate: Energy Management Techniques

    OpenAIRE

    Vijay Raghunathan; Mani Srivastava; Trevor Pering; Roy Want

    2004-01-01

    This poster presents techniques for energy efficient operation of the Stargate wireless platform. In addition to conventional power management techniques such as dynamic voltage and scaling and processor shutdown, the Stargate features several mechanisms for energy efficient operation of the communication subsystem, such as support for hierarchical radios, Bluetooth based remote wakeup, mote based wakeup, etc. Finally, design optimizations including the use of power gating, and provision for ...

  9. Smart Distribution Boxes, Complete Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    Platise, Uros

    2010-09-15

    Present households demand side management implementations are turning conventional appliances into smart ones to support auto demand (AutoDR) response function. Present concept features a direct link between the power meters and appliances. In this paper new concept and example of implementation of a so-called Smart Distribution Box (SmartDB) is represented for complete energy and power management. SmartDBs, as an intermediate layer, are extending smart grid power meter functionality to support AutoDR with fast and guaranteed response times, distributed power sources, and besides provide full control over energy management and extra safety functions to the consumers.

  10. 2008 Federal Energy Management Program (FEMP) Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Tremper, C.

    2009-07-01

    This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.

  11. Study and Analysis of an Intelligent Microgrid Energy Management Solution with Distributed Energy Sources

    Directory of Open Access Journals (Sweden)

    Swaminathan Ganesan

    2017-09-01

    Full Text Available In this paper, a robust energy management solution which will facilitate the optimum and economic control of energy flows throughout a microgrid network is proposed. The increased penetration of renewable energy sources is highly intermittent in nature; the proposed solution demonstrates highly efficient energy management. This study enables precise management of power flows by forecasting of renewable energy generation, estimating the availability of energy at storage batteries, and invoking the appropriate mode of operation, based on the load demand to achieve efficient and economic operation. The predefined mode of operation is derived out of an expert rule set and schedules the load and distributed energy sources along with utility grid.

  12. Development of energy management system - Case study of Serbian car manufacturer

    International Nuclear Information System (INIS)

    Gordic, Dusan; Babic, Milun; Jovicic, Nebojsa; Sustersic, Vanja; Koncalovic, Davor; Jelic, Dubravka

    2010-01-01

    The procedure of development of energy management system applied to an existing company (Serbian car producer 'Zastava') is shown in the paper. The aim of the paper is to provide a guideline for entrepreneurs in metal-working industry in implementing energy management system. First of all, paper includes: critical analysis of existing energy management system (energy matrix), principles of effective energy management organization (with energy manager and energy team in its structure) and energy management politics. Based on the results of energy auditing and performed technological and economical feasibility studies several energy saving measures related to different energy sources (steam, hot water, compressed air, electricity and water) were proposed, implemented and valuated. The proposed measures are not exclusively related to car assembly industry; they can be easily applied to other metal-working facilities with minor modifications. Such energy management system reduces energy costs and increase profitability of a factory.

  13. Accounting for unobserved management in renewable energy and growth

    International Nuclear Information System (INIS)

    Menegaki, Angeliki N.

    2013-01-01

    The paper employs a management random parameters frontier stochastic frontier and a simple frontier stochastic model to benchmark European countries according to their management efficiency in growth and renewable energy development. The results come from an empirical application of a panel with 31 European countries over a 14 year old period using a translog type stochastic frontier production function. In particular the paper focuses on results from a management random coefficients model and compares results with the conventional stochastic frontier model with inputs such as renewable energy, fossil fuel energy, employment and capital. The results suggest that the interaction of renewable energy with management affects growth in Europe and that the technical efficiency estimated by the management model is by 6.05% higher than the one produced by the simple stochastic frontier model. - Highlights: • Application of management random coefficients frontier model in growth-renewable energy nexus. • Comparison with the simple frontier efficiency model. • Technical efficiency is higher by 6.05% in the management model

  14. Urban energy management: a course on the administration of public energy programs. An instructor's guide

    Energy Technology Data Exchange (ETDEWEB)

    Mandelbaum, Dr., Len; Olsen, Dr., Marvin; Hyman, Dr., Barry; Sheridan, Mimi; Dahlberg, Judy; O' Brien, Jeremy

    1980-12-01

    The course provides local government administrators, staff, and students with the background knowledge to deal with a broad range of energy management concerns and is not to train technical energy conservation specialists. Section II contains the Instructor's Guide and Section III provides the Student Outlines and Handouts on the following subjects: The Energy Problem; National Energy Politics and Programs; State and Local Energy Programs; Techniques of Energy Planning; Techniques of Energy Conservation; Techniques of Renewable Energy Production; Strategies for Voluntary Energy Management; Strategies for Finan. Energy Management; and Strategies for Mandatory Energy Management. (MCW)

  15. Heat management in motor cars VIII. Energy management; Waermemanagement des Kraftfahrzeugs VIII. Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Peter (ed.) [Brandenburgische Technische Univ., Cottbus (Germany). Lehrstuhl fuer Fahrzeugtechnik

    2012-11-01

    The heat management and energy management play a key role in the intelligent organization of the growing energy demand while simultaneously energy supply in the vehicle decreases. In the book under consideration, experts from industry and research report on new methods and current developments. The book guarantees an interesting insight into solutions of heat management. Improved and novel components as well as optimization strategies are presented. Finally, the book reports on calculation methods and calculation applications.

  16. Gap analysis of industrial energy management systems in Slovenia

    International Nuclear Information System (INIS)

    Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.

    2016-01-01

    Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.

  17. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  18. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  19. Energy management in multi-commodity smart energy systems with a greedy approach

    NARCIS (Netherlands)

    Shi, H.; Blaauwbroek, N.; Nguyen, H.P.; Kamphuis, I.G.

    2016-01-01

    Along with the development of Smart Energy System (SES), the advancing popularity of hybrid energy appliances, such as micro-combined heat and power (CHP) and electric heaters, requires an overall energy management strategy to optimize the energy using while guaranteeing energy supply for both the

  20. Research on Factors Influencing Individual's Behavior of Energy Management

    Science.gov (United States)

    Fan, Yanfeng

    With the rapid rise of distributed generation, Internet of Things, and mobile Internet, both U.S. and European smart home manufacturers have developed energy management solutions for individual usage. These applications help people manage their energy consumption more efficiently. Domestic manufacturers have also launched similar products. This paper focuses on the factors influencing Energy Management Behaviour (EMB) at the individual level. By reviewing academic literature, conducting surveys in Beijing, Shanghai and Guangzhou, the author builds an integrated behavioural energy management model of the Chinese energy consumers. This paper takes the vague term of EMB and redefines it as a function of two separate behavioural concepts: Energy Management Intention (EMI), and the traditional Energy Saving Intention (ESI). Secondly, the author conducts statistical analyses on these two behavioural concepts. EMI is the main driver behind an individual's EMB. EMI is affected by Behavioural Attitudes, Subjective Norms, and Perceived Behavioural Control (PBC). Among these three key factors, PBC exerts the strongest influence. This implies that the promotion of the energy management concept is mainly driven by good application user experience (UX). The traditional ESI also demonstrates positive influence on EMB, but its impact is weaker than the impacts arising under EMI's three factors. In other words, the government and manufacturers may not be able to change an individual's energy management behaviour if they rely solely on their traditional promotion strategies. In addition, the study finds that the government may achieve better promotional results by launching subsidies to the manufacturers of these kinds of applications and smart appliances.

  1. Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination

    Directory of Open Access Journals (Sweden)

    Patrik Thollander

    2015-06-01

    Full Text Available Improved industrial energy efficiency is a cornerstone in climate change mitigation. Research results suggest that there is still major untapped potential for improved industrial energy efficiency. The major model used to explain the discrepancy between optimal level of energy efficiency and the current level is the barrier model, e.g., different barriers to energy efficiency inhibit adoption of cost-effective measures. The measures outlined in research and policy action plans are almost exclusively technology-oriented, but great potential for energy efficiency improvements is also found in operational measures. Both technology and operational measures are combined in successful energy management practices. Most research in the field of energy management is grounded in engineering science, and theoretical models on how energy management in industry is carried out are scarce. One way to further develop and improve energy management, both theoretically as well as practically, is to explore how a socio-technical perspective can contribute to this understanding. In this article we will further elaborate this potential of cross-pollinating these fields. The aim of this paper is to relate energy management to two theoretical models, situated action and transaction analysis. We conclude that the current model for energy management systems, the input-output model, is insufficient for understanding in-house industrial energy management practices. By the incorporation of situated action and transaction analysis to the currently used input-output model, an enhanced understanding of the complexity of energy management is gained. It is not possible to find a single energy management solution suitable for any industrial company, but rather the idea is to find a reflexive model that can be adjusted from time to time. An idea for such a reflexive model would contain the structural elements from energy management models with consideration for decisions being

  2. Shaping a sustainable energy future for India: Management challenges

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2010-01-01

    Most of the studies on the Indian energy sector focus on the possible future scenarios of Indian energy system development without considering the management dimension to the problem-how to ensure a smooth transition to reach the desired future state. The purpose of this paper is to highlight some sector management concerns to a sustainable energy future in the country. The paper follows a deductive approach and reviews the present status and possible future energy outlooks from the existing literature. This is followed by a strategy outline to achieve long-term energy sustainability. Management challenges on the way to such a sustainable future are finally presented. The paper finds that the aspiration of becoming an economic powerhouse and the need to eradicate poverty will necessarily mean an increase in energy consumption unless a decoupling of energy and GDP growth is achieved. Consequently, the energy future of the country is eminently unsustainable. A strategy focussing on demand reduction, enhanced access, use of local resources and better management practices is proposed here. However, a sustainable path faces a number of challenges from the management and policy perspectives.

  3. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  4. Energy management does save money

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, A

    1989-07-01

    A brief article reviews the importance of various types of control systems in conserving energy in industry. A wide range of examples is quoted including expert systems, oxygen trim systems and building energy management systems. The examples are chosen to span a wide range of industrial sectors with particular mention of the food and drink industry. The importance of energy efficiency in combatting the growing concern over environmental issues and the greenhouse effect is also stressed. (UK).

  5. Energy management: the big picture

    International Nuclear Information System (INIS)

    Vesma, Vilnis.

    1997-01-01

    Since the recent dramatic fall in energy prices may have come to an end, energy managers will have to turn to a range of non-price cost reduction techniques. A framework to aid this process is provided. It rests on ten categories of activity. These are: obtaining a refund; negotiating cheaper tariffs; modifying patterns of demand; inspection and maintenance; operating practices; training awareness and motivation; waste avoidance; retrofit technology; modifying plant and equipment; energy-efficient design. (UK)

  6. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  7. Sustainable development in Pemex: energy management

    International Nuclear Information System (INIS)

    Hernandez, C.E.R.

    2002-01-01

    In this paper, the author reviewed the energy management activities, over the last two years, of Petroleos Mexicanos, also known as Pemex. These activities generated substantial savings. A brief overview of Pemex was provided. The State Oil Company of Mexico, Pemex occupies the third rank of the world oil producers, and is in seventh place in terms of proven reserves. The gas production has earned the company the ninth spot, and it is in tenth place as far as its refining capacity is concerned. Pemex has annual revenues of 50, 000 million American dollars and operates in excess of 1,000 facilities. The energy management program implemented covered an experts network, training, campaigns, and information and monitoring system. Each of the components of the energy management system were reviewed. Linking each facility, the experts network was created to enhance the efficient use of energy. The Energy Saving and Environmental Protection campaign was held over the period 1999-2000 and involved the participation of 209 work sites. For its part, the Energy Efficient Use and Savings campaign took place in 2000-2001, involving 205 work sites. Both resulted in substantial savings. An internal carbon dioxide trading system was also implemented to improve air quality, and was designed to provide a cap and trade carbon dioxide emissions. The next phase involved the implementation of an information and monitoring system, which defined an Energy Consumption Index used in monthly reports. The next steps in the process were briefly outlined. 5 figs

  8. Open energy management systems as a tool for competition

    International Nuclear Information System (INIS)

    Podmore, R.

    1995-01-01

    Energy Management Systems (EMSs) have been called the nerve center for an electric utility. These systems have the capacity to monitor the electrical grid by retrieving tens of thousands of MW/MVar flows, voltages and breaker/switch positions every few seconds. With data interchange agreements utilities can also monitor performance of neighboring systems. System dispatchers need to access more and more information sources and their job is becoming more complicated. Other departments need to access EMS related data and work more closely with system dispatch. To date, the role of Energy Management Systems has not been affected significantly by the prospect of competition. With the clean air act, emission allowance trading, open transmission access, and potential for customer choice it is likely that Energy Management Systems will play a more strategic business role in the future. In particular, Open Energy Management Systems that allow the utility the freedom to select applications from multiple vendors will have special advantages. This paper will address potential areas, where an Open Energy Management System can be used to obtain a competitive edge. It will also outline how competition is likely to affect Energy Management System architectures and procurement practices

  9. Design of a dynamic model for nuclear energy management based on European Foundation for Quality Management

    International Nuclear Information System (INIS)

    Fam, I. M.; Shekari, A.

    2008-01-01

    The Business excellence model has been developed to improve and promote business levels. In business excellence model such as European Foundation for Quality Management model, the important role of resource management is emphasizes. In this paper, we have tried with consideration to tendency progressive concepts of nuclear energy management; a dynamic model has been presented for energy management within the scope of European Foundation for Quality Management model. Population growth could cause increasing of the level of energy demands. No doubt, the confidence of this developed phenomenon with the limits of environment will create greater challenges for the world and its inhabitants. Considering the shortage of energy supply all over the world, nuclear energy management has been studied with a view to fourth and fifth criterions included in European Foundation for Quality Management model (Partnership and resource and Process criteria's). In addition to it, a dynamic model has been presented for nuclear energy management within the scope of European Foundation for Quality Management model. In this dynamic model, with differential equation definition for each of the presented communications of defined causal model, input variable impacts on output ones have been determined and considered. They can be reviewed, based on six scenario plans, the importance of nuclear energy management of a business has been properly shown, and similarly the rate of investment on systems as a factor affecting the level of attention paid to the future of business enterprises, has been specified. This paper conceives nuclear energy management as an instrument to contribute to the growth and fall of a business. It is therefore, imperative to attach more importance at nuclear energy demand management in the business and an attempt should be made to keep it under our control

  10. Integrating Energy and Environmental Management in Wood Furniture Industry

    Science.gov (United States)

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  11. Integrating energy and environmental management in wood furniture industry.

    Science.gov (United States)

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  12. Super Energy Savings Performance Contracts: Federal Energy Management Program (FEMP) Program Overview (revision)

    International Nuclear Information System (INIS)

    Pitchford, P.

    2001-01-01

    This four-page publication describes the U.S. Department of Energy's (DOE's) streamlined energy savings performance contracting, or ''Super ESPC,'' process, which is managed by DOE's Federal Energy Management Program (FEMP). Under a Super ESPC, a qualifying energy service company (ESCO) from the private sector pays for energy efficiency improvements or advanced renewable energy technologies (e.g., photovoltaic systems, wind turbines, or geothermal heat pumps, among others) for a facility of a government agency. The ESCO is then repaid over time from the agency's resulting energy cost savings. Delivery orders under these contracts specify the level of performance (energy savings) and the repayment schedule; the contract term can be up to 25 years, although many Super ESPCs are for about 10 years or less

  13. Chinese hotel general managers' perspectives on energy-saving practices

    Science.gov (United States)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  14. Consumer Acceptance Analysis of the Home Energy Management System

    Directory of Open Access Journals (Sweden)

    Eung-Suk Park

    2017-12-01

    Full Text Available The purpose of this paper is to study consumer acceptance of the Home Energy Management System, which is the next generation electronic management system that the Korean government plans to implement in households. The Home Energy Management System is a critical device in maximizing the efficiency of electric energy consumption for each household by using a smart grid. Because it can visualize real-time price information on the electricity, households can easily monitor and control the amount of electricity consumption. With this feature, the Home Energy Management System can contribute to consumers’ total energy savings. This is a major reason why the Korean government wishes to implement it nationwide. Since the Home Energy Management System is a product that applies new technology that has not yet been directly encountered by consumers, there may be a difference in the level of public perception of the Home Energy Management System. Therefore, the impact of consumers’ awareness of the Home Energy Management System on their intention to use is important. To do this, the Technology Acceptance Model is utilized in this study. Traditional research on the Technology Acceptance Model includes awareness of usefulness and ease of use as well as intention to use. In contrast, in this research, an extended Technology Acceptance Model with four additional factors—economic benefit, social contribution, environmental responsibility, and innovativeness—that may affect the consumer’s awareness of usefulness and ease of use, is proposed. To collect the data, the survey was conducted with 287 respondents. As a result, the proposed model proved to be suitable in explaining the intention to use with a 70.3% explanation power. It is found that economic benefit (0.231 and innovativeness (0.259 impact on usefulness of the Home Energy Management System. Moreover, usefulness (0.551 has a bigger effect on intention to use than ease of use (0.338 does. Based

  15. 1995 Department of Energy Records Management Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. Issues addressed by the RMG may result in recommendations for DOE-wide initiatives. Proposed DOE-wide initiatives shall be, provided in writing by the RMG Steering Committee to the DOE Records Management Committee and to DOE`s Office of ERM Policy, Records, and Reports Management for appropriate action. The membership of the RMG is composed of personnel engaged in Records Management from DOE Headquarters, Field sites, contractors, and other organizations, as appropriate. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. An energy management approach of hybrid vehicles using traffic preview information for energy saving

    International Nuclear Information System (INIS)

    Zheng, Chunhua; Xu, Guoqing; Xu, Kun; Pan, Zhongming; Liang, Quan

    2015-01-01

    Highlights: • Energy management approach of hybrid vehicles using traffic preview information. • Vehicle velocity profile and fuel consumption are optimized at the same time. • It is proved that a further energy saving is achieved by the proposed approach. • The proposed approach is useful especially for autonomous hybrid vehicles. - Abstract: The traffic preview information is very helpful for hybrid vehicles when distributing the power requirement of the vehicle to power sources and when determining the next driving route of the vehicle. In this research, an energy management approach for hybrid vehicles is proposed, which optimizes the vehicle velocity profile while minimizing the fuel consumption with the help of the traffic preview information, so that a further energy saving for hybrid vehicles can be achieved. The Pontryagin’s Minimum Principle (PMP) is adopted on the proposed approach. A fuel cell hybrid vehicle (FCHV) is selected as an example, and the proposed energy management approach is applied to the FCHV in a computer simulation environment for the offline and online cases respectively. Simulation results show that the fuel economy of the FCHV is improved by the proposed energy management approach compared to a benchmark case where the driving cycle is fixed and only the hybrid power split (allocation) ratio is optimized. The proposed energy management approach is useful especially for the autonomous hybrid vehicles.

  17. Town of Canmore Energy Management Action Plan (EMAP)

    International Nuclear Information System (INIS)

    2005-03-01

    In 1999, the Town of Canmore, Alberta joined the Federation of Canadian Municipalities' Partners for Climate Protection (PCP) Program and committed to reducing greenhouse gas (GHG) emissions from municipal operations by 20 per cent and community-wide emissions by 6 per cent of 2000 levels by 2012. To date, the City has completed a baseline analysis for municipal operations and the community. It has also initiated an Energy Management Action Plan (EMAP) to identify opportunities in sustainable development through energy, GHG and air quality management. The broad community objectives include housing and transportation management, job creation and local economic development. The city has adopted The Natural Step (TNS) framework which defines sustainability and the guiding principles for decision-making. The objectives of EMAP are to define and evaluate options for a practical strategy and action plan to meet the city's GHG reduction targets; raise local awareness of the issues and opportunities of energy planning and GHG reductions and develop a local action plan outlining action items to reduce energy use and GHG emissions from municipal operations throughout the community. This report explained the methodology and framework for EMAP management and presented a community profile for the Town of Canmore. It also included an energy and emissions inventory and forecast with reference to corporate energy and emissions baseline; community energy and emissions baseline; corporate energy and emissions forecast; community energy and emissions forecast and corporate and community GHG targets. refs., tabs., figs

  18. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  19. Organizational determinants of energy-conservation management

    Energy Technology Data Exchange (ETDEWEB)

    Selmer, J. (Hong Kong Baptist Coll., Kowloon (Hong Kong). Dept. of Management)

    1994-10-01

    Energy-conservation activities require new functional and technical activities in all participating organizations and the prospects of effectively managing such activities are contingent upon the specific organizational setting. Based on a previous large-scale investigation in which we identified five organizational archetypes, in-depth longitudinal case studies were undertaken of five organizations in Sweden during 5 years, each organization representing a different archetype. The five organizations have distinct organizational prerequisites and separate basic motivations to engage and succeed in energy-conservation management. Implications for government policy and managerial action are discussed in detail. (author)

  20. Tools and solutions for environmental reporting and energy management

    International Nuclear Information System (INIS)

    Suhonen, T.

    2004-01-01

    Especially two areas of energy applications - environmental reporting and energy management - are emphasized due to the current EU legislation and opening energy markets. Emissions reporting is driven by several EU directives and international agreements, like Emissions Trading Scheme. The directives guide implementation of the emission information management and reporting procedures, but requirements and differences defined by the local authorities are challenging both for the system supplier and for the energy producer. Energy management of industrial energy production (CHP) is an application, which offers real-time tools for forecasting mill's energy need and optimizing the energy balance between a mill's own production, purchases and consumption. This can bring significant reductions in mill energy costs and consumption. For these applications, the exact and well-managed information is needed. Data is retrieved from plant historians and event databases, ERP's and external sources. Calculation applications generate characteristic values (KPI's), which are used for monitoring operation, improving plant availability and boosting performance. Common office tools, like MS Excel, are the most convenient tools for reporting and processing information. Integration tools are needed to combine data from several sources to a single channel, handling messaging between applications and distributing information. (author)

  1. The Development of Cloud Energy Management

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2015-05-01

    Full Text Available The energy management service (EMS has been utilized for saving energy since 1982 by managing the energy usage of site or facilities through the microprocessor, computer, Ethernet, internet, and wireless sensor network. The development and represented function groups of EMS are illustrated in the supplementary file of this paper. Along with this tendency, a cloud EMS, named the intelligent energy management network (iEN, was launched by Chunghwa Telecom in 2011 and tested during a pilot run from 2012 to 2013. The cloud EMS integrated three service modes together, including infrastructure as a service (IaaS, platform as a service (PaaS, and software as a service (SaaS. This cloud EMS could reduce the facility cost and enable a continuously improved service for energy conservation. From the literature review, 32 selected EMS cases of whole site and single facility were chosen for calculating the energy savings and payback rate. According to the literature, the average energy savings by applying EMS are 11.6% and 21.4% for the whole site and single facility, respectively. The iEN was applied on 55 demo sites with the similar scale, the same kind of machines and approaching conditions. The testing sites include a factory, a complex building, and a residual building, 12 lighting systems and 8 air conditioning systems. According to the testing results, the average energy savings by applying iEN are 10% and 23.5% for the whole site and single facility, respectively. Comparing with the reported EMS cases, it was found that the energy savings by adopting the cloud EMS were only 70%–80% compared with those using the traditional EMS. Although the cloud EMS presented less energy savings, it revolutionized the traditional EMS by its innovative business model. Compared with the averaged 1.7 years payback period of the traditional EMS, more than 70% of the cloud EMS cases could pay back immediately for the service fees and without the equipment investment.

  2. Energy management and energy autonomy of French farms: status and perspectives of action for public authorities

    International Nuclear Information System (INIS)

    2005-01-01

    This report aims at giving the present state of knowledge about possible energy savings and renewable energy production in farms, and at proposing a hierarchy of actions and measures for a better energy management and energy autonomy in French farms. As far as knowledge is concerned, the authors discuss an assessment of agriculture energy consumption in France, analyse energy costs in farms, discuss the assessment of the global energy consumption by farms, and propose a first estimate of possible energy savings. Actions leading to energy savings or renewable energy production concern various aspects: the production system, agricultural techniques, crops, use of pure vegetal oil, biogas, solar heater, solar drying, buildings, greenhouses, biomass boilers, vegetal oil cogeneration, photovoltaic energy, wind energy. Key actions are identified which concern nitrogen management, wood energy, biogas, energy management, use of cereals for heating, and so on

  3. 78 FR 75209 - Federal Leadership on Energy Management

    Science.gov (United States)

    2013-12-10

    ... Leadership on Energy Management Memorandum for the Heads of Executive Departments and Agencies In order to... new energy-management practices. Agencies are already well on their way towards meeting the aggressive sustainability goals set forth in Executive Order 13514 of October 5, 2009 (Federal Leadership in Environmental...

  4. Development of a Context-Aware Smart Home Energy Manager (CASHEM)

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Viraj [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-03-01

    The research reported is part of a collaborative with Honeywell, Inc. to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewable energy and storage technology, and change homeowner behavior to manage and consume less energy. The objective of the collaborative is to create a Context-Aware Smart Home Energy Manager (CASHEM) that dynamically schedules major home appliances according to conditions and homeowner convenience of service (CoS) preferences, monitors and analyzes energy consumption of appliances, recommends further energy saving actions, and engages/motivates the homeowner to adopt those recommendations.

  5. Smart Home Energy Management Based on Zigbee

    OpenAIRE

    E.Mallikarjuna

    2015-01-01

    Today organizations use IEEE 802.15&Zigbee to effectively deliver solutions for a variety of areas including consumer electronic device control, energy management and efficiency home and commercial building automation as well as industrial plant management. The smart home energy network has gained widespread attentions due to its flexible integrati- ion into everyday life. This next generation green home system transparently unifies various home appliances smart sensors &wireless communicati...

  6. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  7. Energy management оf industrial enterprise

    Directory of Open Access Journals (Sweden)

    Lyaskovskaya E.A.

    2017-01-01

    Full Text Available In the intensifying condition of economic situation and increasing competitiveness in domestic and foreign markets, the most important way to develop competitive ability of an industrial company is to reduce energy costs in the production process. Insufficient level of the efficiency of energy resources usage affects an industrial company’s performance indicators and its investment attractiveness. A promising way of solving this matter is to develop and implement a strategy of rational energy consumption, which is aimed at the realization of company’s potential to optimize the consumption of electric energy by using internal and external resources in order to minimize energy costs. The strategy of rational energy consumption defines how an industrial company acquires electric energy and uses it to sustain the production. While developing and implementing the strategy, one should use a systemic and complex way and consider the following: peculiarities of electric energy and power as products; the structure of electric energy market and the possibilities of its consumers; peculiarities of price-formation on electric energy market; technical and technological, organizational and administrative, social and economic parameters of a company, characteristic features of its resource potential and production processes; the results of company’s energy efficiency audit and energy problems; company’s reserves that can increase its energy efficiency. An integral strategy of energy consumption includes a strategy for energy preservation and efficiency and a strategy for energy costs management. Both strategies are interrelated and serve for one purpose, which is minimizing the energy costs. This division helps simplify the analysis, search for alternatives and realization of energy management on operative, tactical and strategic levels, considering the regional and industry-specific peculiarities of an industrial company, its financial performance and

  8. Energy Management Dynamic Control Topology In MANET

    Science.gov (United States)

    Madhusudan, G.; Kumar, TNR

    2017-08-01

    Topology management via per-node transmission power adjustment has been shown effective in extending network lifetime. The existing algorithms constructs static topologies which fail to take the residual energy of network nodes, and cannot balance energy consumption efficiently. To address this problem, a Light Weighted Distributed Topology Control algorithm EMDCT(Energy Management Dynamic Control Topology ) is proposed in this paper. Based on the link metric of the network, both the energy consumption rate level and residual energy levels at the two end nodes are considered. EMDCT generates a Dynamic Topology that changes with the variation of node energy without the aid of location information, each node determines its transmission power according to local network information, which reduces the overhead complexity of EMDCT greatly. The experiment results show that EMDCT preserves network connectivity and manitains minimum-cost property of the network also it can extend network lifetime more remarkably.

  9. A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids

    Directory of Open Access Journals (Sweden)

    Most Nahida Akter

    2017-12-01

    Full Text Available This paper presents an analytical framework to develop a hierarchical energy management system (EMS for energy sharing among neighbouring households in residential microgrids. The houses in residential microgrids are categorized into three different types, traditional, proactive and enthusiastic, based on the inclusion of solar photovoltaic (PV systems and battery energy storage systems (BESSs. Each of these three houses has an individual EMS, which is defined as the primary EMS. Two other EMSs (secondary and tertiary are also considered in the proposed hierarchical energy management framework for the purpose of effective energy sharing. The intelligences of each EMS are presented in this paper for the purpose of energy sharing in a residential microgrid along with the priorities. The effectiveness of the proposed hierarchical framework is evaluated on a residential microgrid in Australia. The analytical results clearly reflect that the proposed scheme effectively and efficiently shares the energy among neighbouring houses in a residential microgrid.

  10. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  11. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  12. Analytics for smart energy management tools and applications for sustainable manufacturing

    CERN Document Server

    Oh, Seog-Chan

    2016-01-01

    This book introduces the issues and problems that arise when implementing smart energy management for sustainable manufacturing in the automotive manufacturing industry and the analytical tools and applications to deal with them. It uses a number of illustrative examples to explain energy management in automotive manufacturing, which involves most types of manufacturing technology and various levels of energy consumption. It demonstrates how analytical tools can help improve energy management processes, including forecasting, consumption, and performance analysis, emerging new technology identification as well as investment decisions for establishing smart energy consumption practices. It also details practical energy management systems, making it a valuable resource for professionals involved in real energy management processes, and allowing readers to implement the procedures and applications presented.

  13. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  14. Energy use and related risk management problems in CEE countries

    International Nuclear Information System (INIS)

    Ney, R.; Michna, J.; Ekmanis, J.; Zeltins, N.; Zebergs, V.

    2008-01-01

    Nowadays, the efficiency of energy use in the Central and East-European (CEE) countries is insufficient, being much lower than in the 'Old Europe'. The problem becomes increasingly pressing due to non-stop increasing prices of energy carriers (especially of crude oil). The authors trace the development of research activities in this sphere, classifying the revealed changes in parameters of energy consumption processes in particular time intervals into deterministic, probabilistic, and fuzzy. The paper presents a thorough analysis of decision-making in the energy management at its different levels normative, strategic, and operative. Particular attention is given to the management under uncertainty conditions - i.e. to the risk management. The most wanted research directions in this area proposed by the energy and environment policy (EEP) Center specially created for CEE countries concern management under risk connected with innovations, international activities, loss of reputation, etc.. The authors consider in detail the risk management with insufficient knowledge (non-knowledge) and under chaos. Much consideration is given to the scenario management and the game theory principles as related to the sphere of energy use. (Authors)

  15. Energy Smart Management of Scientific Data

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow; Rotem, Dron; Tsao, Shih-Chiang

    2009-04-12

    Scientific data centers comprised of high-powered computing equipment and large capacity disk storage systems consume considerable amount of energy. Dynamic power management techniques (DPM) are commonly used for saving energy in disk systems. These involve powering down disks that exhibit long idle periods and placing them in standby mode. A file request from a disk in standby mode will incur both energy and performance penalties as it takes energy (and time) to spin up the disk before it can serve a file. For this reason, DPM has to make decisions as to when to transition the disk into standby mode such that the energy saved is greater than the energy needed to spin it up again and the performance penalty is tolerable. The length of the idle period until the DPM decides to power down a disk is called idlenessthreshold. In this paper, we study both analytically and experimentally dynamic power management techniques that save energy subject to performance constraints on file access costs. Based on observed workloads of scientific applications and disk characteristics, we provide a methodology for determining file assignment to disks and computing idleness thresholds that result in significant improvements to the energy saved by existing DPMsolutions while meeting response time constraints. We validate our methods with simulations that use traces taken from scientific applications.

  16. The Museum of New Mexico and energy management

    International Nuclear Information System (INIS)

    Johnson, B.K.

    1993-01-01

    There are unique indoor conditioning and energy management challenges in museums. In Santa Fe, the Museum of New Mexico (MNM) is located in a unique climate and must stay within utility expenditure limits allocated through the State government budget process, while handling valuable collections with specific environmental requirements. Adequate humidity for indoor exhibitions is the top priority for heating, ventilating, and air-conditioning (HVAC) systems. Energy management systems (EMS) implemented by the Energy, Minerals and Natural Resources Department (EMNRD) in two MNM exhibition facilities avoid energy costs, but must be maintained regularly. Energy savings goals must yield priority in favor of maintaining proper indoor conditions. MNM is one of six Divisions within the State of New Mexico's Office of Cultural Affairs (OCA). The mission of OCA is to foster, preserve, and protect current and past expressions of culture and the arts, which are determined to be in the best interests of New Mexico. As a part of their mission, OCA is well-known for excellence in cultural collections, through MNM. MNM is comprised of the Museum of Fine Arts Museum of Southwest History Museum of International Folk Art Laboratory of Anthropology Museum of Indian Arts and Culture. There are eight separate physical facilities that house these operations, including administration. Behind the scenes, there are operational costs that must be managed carefully; the costs of heating, cooling, arid lighting the buildings that MNM uses are a part of this. EMNRD has assisted OCA in meeting its mission through the expertise of the Energy Conservation and Management Division (ECMD). ECMD is designated by the Governor as the State Energy Manager agency

  17. The need for a comprehensive energy management information system for industries

    Directory of Open Access Journals (Sweden)

    Goosen, P

    2016-11-01

    Full Text Available Electricity costs in South Africa are increasing rapidly, and the funding hurdle rates for energy conservation incentives are decreasing. Therefore, with rising international competition and increasing operational costs, marginal industries need to focus on energy management strategies where larger savings can be achieved with lower capital expenditure. This paper sketches the need for a comprehensive energy management information system (EMIS. Common industrial energy management pitfalls are identified and energy conservation incentives are outlined. New focus points that improve client awareness and in turn improve the sustainability of energy management interventions are also highlighted. However, benefitting from energy incentives is becoming more complex. Therefore, many clients do not benefit from these incentives unless specialised Energy Service Companies (ESCos are employed. ESCos, however, require large amounts of data to manage clients’ energy effectively. Herein lies the need for a comprehensive EMIS that aids ESCos and their clients with the energy management process. An EMIS was developed and implemented for several industries in South Africa. Data is automatically collected, processed, analysed, and presented on a daily basis. A case study investigates the exorbitant amounts of data and reports that are managed automatically, which further highlights the need for a comprehensive EMIS.

  18. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  19. Energy management of internet data centers in smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    This book reports the latest findings on intelligent energy management of Internet data centers in smart-grid environments. The book gathers novel research ideas in Internet data center energy management, especially scenarios with cyber-related vulnerabilities, power outages and carbon emission constraints. The book will be of interest to university researchers, R&D engineers and graduate students in communication and networking areas who wish to learn the core principles, methods, algorithms, and applications of energy management of Internet data centers in smart grids.

  20. Key aspects to perform a project on energy management

    International Nuclear Information System (INIS)

    Bachini, R.

    1993-01-01

    A general overview on elements and organisms playing a key role to launch a new industrial project is given, taking as base case an energy management project. Likewise the problematic of training personnel involved in the project is analyzed. Energy management becomes crucial in industries where energy costs represent a big portion of the whole production cost. Main aspects to be analyzed are: - Adequate production procedures to be competitive - Environment protection regarding waste management - Maximization of safety at production installations. (Author)

  1. The role of urban form as an energy management parameter

    International Nuclear Information System (INIS)

    Futcher, Julie Ann; Mills, Gerald

    2013-01-01

    Urban areas are recognised to be significant global energy consumers, and therefore high CO 2 emitters, making energy management at urban scales a relevant research focus. However, one of the main obstacles faced with upgrading existing urban systems to meet target energy reductions is the current rate of refurbishment and new build, where it is estimated that 75% of existing buildings will still be in place by 2050. Moreover limited renewable resources and predicted warming trends place further limitations on policies aimed at carbon management. This paper examines current thinking around energy management associated with building operational and regulated loads and the role of urban form. Its focus is on cooling loads for office buildings in central London and offers a new perspective on energy management at an urban scale by demonstrating (within the 25% redevelopment rate) that when building energy management is considered within an urban context, the overall performance of an urban system can be significantly improved. The work highlights the often overlooked role of urban form on building energy performance (both individually and in combination) and demonstrates that as we move towards a low energy future; the role of urban form becomes increasing significant. - Highlight: ► The work reports on the energy performance patterns of modern office building groups. ► Mutual shading from adjacent buildings significantly lowers cooling loads. ► Demonstrates the role of urban form as an urban energy management parameter.

  2. Facility management and energy efficiency -- analysis and recommendations; Facility Management und Energieeffizienz: Analyse und Handlungsempfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Staub, P.; Weibel, K.; Zaugg, T. [Pom and Consulting Ltd., Zuerich (Switzerland); Lang, R. [Gruenberg and Partner Ltd., Zuerich (Switzerland); Frei, Ch. [Herzog Kull Group, Aarau (Switzerland)

    2001-07-01

    This final report presents the results of a study made on how facility management (FM) is positioned in enterprises and on how energy management can be integrated into the facility management process. Also, recommendations are made on the actions that are considered necessary to improve the understanding of facility management and energy management. The findings of an analysis made of the results of a survey among 200 enterprises, 20 interviews and 5 case studies are presented. The authors state that, in spite of the relatively small sample taken - mostly larger enterprises - trends in facility management and energy management could be shown. The findings of the survey, such as the relative importance of the integration of energy topics in facility management and the need for standardised indicators and benchmarking, are discussed in detail. Also, it is noted that the success of FM is in part due to delegation of responsibility to smaller business units or even to individual employees. The market potential for FM services is examined, with yearly growth rates of up to 20%. The importance of anchoring FM strategies at the top level of management is stressed, as is the need for promotion of the idea of facility management and training concepts for those responsible for its implementation.

  3. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  4. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  5. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  6. ENERGY MANAGEMENT SYSTEMS AND ISO 50001 ACCREDITATION IN SHIPPING

    Directory of Open Access Journals (Sweden)

    BRANISLAV DRAGOVIŠ

    2017-12-01

    Full Text Available The shipping sector is facing new challenges in energy consumption and management. In a recent study conducted by the European Sea Ports Organization (ESPO has shown that energy consumption has risen from 7th place in 2009, to 2nd in 2016, as far as the 10 environmental priorities of European ports. Energy management is seen as the greatest risk for shipping companies, due to the variability existing in the oil and gas markets, in recent decades. Unsuccessful energy management strategies have been shown to have serious consequences for the natural environment, as well as for the companies themselves, which include the enhancement of global warming, and the destruction of a positive corporate image/reputation. Due to this, shipping companies now consider energy as an integral part of their overall strategy and adopt risk management assessments in order to attain the best returns on their investments. The ISO 50001 standard provides a useful tool to companies that are eager to develop and apply an efficient energy strategy consistent with modern Social Corporate Responsibility requirements and aspirations.

  7. Dynamic energy management employing renewable energy sources in IP over DWDM networks

    DEFF Research Database (Denmark)

    Chen, Xin; Phillips, Chris; Wang, Jiayuan

    2013-01-01

    management framework employing renewable energy sources in IP over DWDM core networks. The main concept is to combine infrastructure sleeping and virtual router migration to improve the network energy efficiency. By using the energy source information provided by the smart grid, the nodes that are powered...

  8. Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations

    Directory of Open Access Journals (Sweden)

    Nah-Oak Song

    2015-08-01

    Full Text Available We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible. The sequential operations are mathematically modeled to find the optimal operation conditions and illustrated with physical interpretation of how to achieve optimal energy management in the cooperative multi-microgrid community. This global electric energy optimization of the cooperative community is realized by the ancillary internal trading between the microgrids in the cooperative community which reduces the extra cost from unnecessary external trading by adjusting the electric energy production amounts of combined heat and power (CHP generators and amounts of both internal and external electric energy trading of the cooperative community. A simulation study is also conducted to validate the proposed mathematical energy management models.

  9. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  10. Smart metering gateway works as Smart Home Energy Manager; Smart Metering Gateway als Smart Home Energy Manager

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Klaus-Dieter [SSV Software Systems GmbH, Hannover (Germany)

    2011-07-01

    The installation of smart meters together with real time consumption data visualization doesn't help to save energy CO2 emissions. With regards to refinancing options, the situation in Germany has been quite different since the middle of last year for buildings equipped with a photovoltaic system. If a heat pump system is also present, intelligent energy use in conjunction with smart meters can save considerable amounts of money. A Smart Home Energy Manager (SHEM) automates the energy saving. (orig.)

  11. Managing the energy trilemma: The case of Indonesia

    International Nuclear Information System (INIS)

    Gunningham, Neil

    2013-01-01

    This article argues that a central challenge for energy governance is how to manage a complex ‘energy trilemma’ involving the sometimes competing demands of energy security, climate change mitigation and (particularly in developing countries) energy poverty. It suggests that tensions between the horns of the trilemma, in large part, explain Indonesia’s current, profoundly suboptimal, energy policy. While these tensions are not inherently incapable of resolution, such resolution would require good governance at both state and global levels. The possibilities for and obstacles confronting such governance are explored and provisional solutions canvassed. - Highlights: ► A challenge for energy governance is managing a complex ‘energy trilemma’. ► There are tensions between energy security, energy poverty and climate change. ► Climate change mitigation requires appropriate forms of governance. ► In developing countries these depend upon overcoming financial constraints. ► Also the expectations of electorates for cheap energy must be met

  12. Harmonics and energy management

    International Nuclear Information System (INIS)

    Andresen, M.

    1993-01-01

    To summarize what this paper has presented: Voltage and current non-sinusoidal wave shapes exist in our power system. These harmonics result from the prolific use of non-linear loads. The use of these types of loads is increasing dramatically, partly due to the push to implement energy management techniques involving harmonic generating equipment. Harmonic analysis can identify specific harmonics, their frequency, magnitude, and phase shift referenced to the fundamental. Harmonic distortion forces the use of true RMS multimeters for measurement accuracy. High levels of neutral current and N-G voltages are now possible. Transformers may overheat and fail even though they are below rated capacity. Low power factors due to harmonics cannot be corrected by the installation of capacitors, and knowledge of the fundamental VARs or the displacement power factor is needed to use capacitors alone for power factor correction. The harmonic related problems presented are by no means an exhaustive list. Many other concerns arise when harmonics are involved in the power system. The critical issue behind these problems is that many of the devices being recommended from an energy management point of view are contributing to the harmonic levels, and thus to the potential for harmonic problems. We can no longer live in the sinusoidal mentality if we are to be effective in saving energy and reducing costs

  13. Energy management technologies: special focus on textile industry

    International Nuclear Information System (INIS)

    Dayo, F.B.O.

    2000-08-01

    Energy is a very important component of most manufacturing activities. Its level of importance depends on whether or not the manufacturing processes employed are energy intensive. For less energy intensive manufacturing activities, energy costs contribute only a small portion of total cost of production. Even in this case, it has been shown that considerable scope for cost savings through more efficient utilization of energy exist. Small investments in energy efficiency measures have been known to bring significant savings in production costs, and consequently improved profit margins. The advantages of better and efficient use of energy in an energy - intensive manufacturing outfit have been extensively demonstrated in many nations over the past few decades. For these groups, profitability improvement is usually more apparent, and the scope for achieving a cost savings through improved energy use efficiency, more considerable. Cost savings or profitability improvement is not the only reason for considering energy use efficiency improvement in a manufacturing facility. Energy use efficiency improvement is also the most effective way of reducing environmental pollutant emission such as greenhouse gases. Actual cost savings achievable will depend on factors such as: the production process; the age of the facilities; its design and maintenance; and the extent of pasts efforts in energy use efficiency improvements. Evidence suggests that for facilities where energy management has not been practiced, saving of between 10% to 20% on energy bills are possible, through simple measures, with quick payback period. When a manufacturing facility addresses issues of energy efficiency, through the institution of a viable energy management systems, it also takes a very necessary step towards obtaining international accreditation. Such accreditation include: the Eco-Management and Audit Scheme (EMAS); or the International Standard Organisation's ISO 14001. This is becoming a vital

  14. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  15. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  16. Documenting success of energy management cost reduction initiatives

    International Nuclear Information System (INIS)

    Stewart, A.

    1993-01-01

    The scope of this paper is to offer methods to document energy saving projects. The examples used are based on actual industrial facilities. I will define concepts to be used in the analysis of the industrial work place energy consumption. With the concepts defined we can begin to apply the documentation strategy for some specific examples. Why should we be interested in auditing the results of energy projects? Nearly every industrial facility has embarked on the road to energy efficiency. As one of my plant engineer associates relates open-quotes If all our energy saving programs were working as stated the power company would be paying us.close quotes The underlying principles in this statement are true. Does it mean we as technicians, engineers and managers of energy projects have failed? No, we have however failed to finish the job and document there results. My experience has shown there is good support and enthusiasm for those energy projects we begin. It is also my experience that a well documented successful project provides many levels of satisfaction. Large energy management projects involve a major financial commitment. Documenting the results provides all those who supported the project from finance, management and the technical staff the positive reinforcement to support your future projects. We should begin by defining what an energy audit is and what is the expected result of an audit

  17. Energy Data Management Manual for the Wastewater Treatment Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States); De Fontaine, Andre [Dept. of Energy (DOE), Washington DC (United States)

    2017-12-01

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven by population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.

  18. Facilitating Sound, Cost-Effective Federal Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    FEMP

    2016-07-01

    Fact sheet offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  19. Energy Management Control Systems: Tools for Energy Savings and Environmental Protection

    Science.gov (United States)

    Zsebik, Albin; Zala, Laszlo F.

    2002-01-01

    The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.

  20. Promoting energy efficiency investments with risk management decision tools

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    This paper reviews current capital budgeting practices and their impact on energy efficiency investments. The prevalent use of short payback 'rule-of-thumb' requirements to screen efficiency projects for risk is shown to bias investment choices towards 'sure bet' investments bypassing many profitable efficiency investment options. A risk management investment strategy is presented as an alternative to risk avoidance practices applied with payback thresholds. The financial industry risk management tool Value-at-Risk is described and extended to provide an Energy-Budgets-at-Risk or EBaR risk management analysis to convey more accurate energy efficiency investment risk information. The paper concludes with recommendations to expand the use of Value-at-Risk-type energy efficiency analysis.

  1. Freescale Semiconductor Successfully Implements an Energy Management System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  2. Energy management for the future. A sourcebook of ideas and activities for energy conservation learning programs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This book serves as a teaching aid for Canadian school programs in energy conservation and energy management. Suitable curriculum areas and objectives are outlined, and suggestions are presented for organizing thematic study units. References are made throughout to appropriate use of additional media such as filmstrips. Five study units, each with its own classroom activities, are detailed: energy resources, energy and the home, energy and food, energy and leisure, and energy in transportation. Suggestions are given for ongoing energy management educational programs to be tried out once the study units have been completed. 23 figs.

  3. Review of urban energy transition in the Netherlands and the role of smart energy management

    International Nuclear Information System (INIS)

    Leeuwen, R.P. van; Wit, J.B. de; Smit, G.J.M.

    2017-01-01

    Highlights: • Review of backgrounds and trends of the energy supply system in the Netherlands. • Review of Dutch governance policies to support the energy transition. • Review of increasing energy efficiency and options for supply and storage of renewable energy. • Individual and collective approaches to integrate renewable energy in the built environment. • The role of smart energy management to integrate renewable energy into existing infrastructures. - Abstract: This paper gives a review of the most important backgrounds and trends of the present energy supply system in the Netherlands. Options are discussed for the integration of renewable energy and the present policies are reviewed that stimulate the energy transition. Last, the role of smart energy management as part of the integration of renewable energy into existing infrastructures is discussed.

  4. VALUES-ORIENTED PROJECT MANAGEMENT OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2017-03-01

    Full Text Available The value-oriented approach to project management of renewable energy based on classification stage of the life cycle of products of the projects, adapted to the goals and objectives of information modeling, which allowed to formulate stricter requirements information models used at different stages of the power plant is proposed. A classification of the alternative energy projects, which highlighting areas for activities is proposed. The list of stakeholders that have an impact on alternative energy projects and presented their classification is defined. The value of alternative energy projects considered from the standpoint of a utilitarian approach, using the concept of utility and on the basis of this concept proposed classification values of alternative energy projects. Criteria values as indicators for assessing the value of alternative energy projects and their weights determined by pairwise comparison. To take into account the changes of the value criteria over time proposed to use the key control points value, assessed value criteria in various key points of control, defined indicator of the total value of alternative energy projects. The classification of risks and tools for value-oriented risk management in alternative energy projects is proposed. Further study authors plan to link the development of mechanisms for harmonization value alternative energy projects for their stakeholders.

  5. China's numerical management system for reducing national energy intensity

    International Nuclear Information System (INIS)

    Li, Huimin; Zhao, Xiaofan; Yu, Yuqing; Wu, Tong; Qi, Ye

    2016-01-01

    In China, the national target for energy intensity reduction, when integrated with target disaggregation and information feedback systems, constitutes a numerical management system, which is a hallmark of modern governance. This paper points out the technical weaknesses of China's current numerical management system. In the process of target disaggregation, the national target cannot be fully disaggregated to local governments, sectors and enterprises without omissions. At the same time, governments at lower levels face pressure for reducing energy intensity that exceeds their respective jurisdictions. In the process of information feedback, information failure is inevitable due to statistical inaccuracy. Furthermore, the monitoring system is unable to correct all errors, and data verification plays a limited role in the examination system. To address these problems, we recommend that the government: use total energy consumption as the primary indicator of energy management; reform the accounting and reporting of energy statistics toward greater consistency, timeliness and transparency; clearly define the responsibility of the higher levels of government. - Highlights: •We assess drawbacks of China's numerical management system for energy intensity. •The national energy intensity target cannot be fully disaggregated without omissions. •Data distortion is due to failures in statistics, monitoring and examination system. •Lower-level governments’ ability to meet energy target is weaker than their pressure. •We provide three policy recommendations for China's policy-makers.

  6. Energy efficiency from business management perspective; Prosessi-integraatin energiatehokkuuden liikejohtaminen - PI-ENERGIALIITO

    Energy Technology Data Exchange (ETDEWEB)

    Ahtila, P.; Tuomaala, M. (Helsinki Univ. of Technology, Center for Energy Technology, Espoo (Finland)); Malmi, T.; Virtanen, T. (Helsinki School of Economics, Helsinki (Finland))

    2008-07-01

    The purpose of the research is to enhance the ways to manage energy efficiency as part of business management. The work includes a study of the differences between technical energy efficiency metrics and a company's business management metrics. The work also includes a study of the differences between energy efficiency management at a unit process scale and energy efficiency management at a total site scale. In addition, the ways to evaluate energy efficiency investments are studied. The research tries to propose ways to support existing practices in order to promote energy efficiency investment activity. The research is supported by case studies where a change in process energy efficiency is carried out. The case studies are evaluated from two perspectives: from engineering perspective and from business management perspective. (orig.)

  7. Energy planning and management plan

    International Nuclear Information System (INIS)

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration's final draft and environmental impact statement, and Energy Planning and Management Program

  8. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  9. Sustainable energy development as an integral part of hydroelectric business management

    International Nuclear Information System (INIS)

    Lee, W.; Yu, M.; Young, C.

    1996-01-01

    Elements of Ontario Hydro's strategy for sustainable energy development were discussed, highlighting key developments in the business management practices in Ontario Hydro's Hydroelectric Business Unit. Sustainable development considerations are now integral part of any business case analysis; management of the environment also has been integrated into the Utilities' business management process. Several environmental management practices intended to enhance sustainability have been introduced, including a full-fledged environmental management system based on ISO 14001 standards. Energy efficiency opportunities are aggressively pursued, including turbine upgrades, and energy efficient lighting. Experience to date indicates that business performance and progress towards sustainable energy development need not be mutually exclusive

  10. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  11. Environmental issues and waste management in energy and minerals production

    International Nuclear Information System (INIS)

    Yegulalp, T.M.; Kim, K.

    1992-01-01

    This book includes the following topics: water management in the minerals industry; management of radioactive wastes in the energy industry; the US high-level radioactive waste program; acid mine drainage; health risks from uranium mill tailings; alternate energy sources, such as hydrogen; superconductive magnetic energy storage; nuclear waste

  12. Business model innovation for Local Energy Management: a perspective from Swiss utilities

    Directory of Open Access Journals (Sweden)

    Emanuele Facchinetti

    2016-08-01

    Full Text Available The successful deployment of the energy transition relies on a deep reorganization of the energy market. Business model innovation is recognized as a key driver of this process. This work contributes to this topic by providing to potential Local Energy Management stakeholders and policy makers a conceptual framework guiding the Local Energy Management business model innovation. The main determinants characterizing Local Energy Management concepts and impacting its business model innovation are identified through literature reviews on distributed generation typologies and customer/investor preferences related to new business opportunities emerging with the energy transition. Afterwards, the relation between the identified determinants and the Local Energy Management business model solution space is analyzed based on semi-structured interviews with managers of Swiss utilities companies. The collected managers’ preferences serve as explorative indicators supporting the business model innovation process and provide insights to policy makers on challenges and opportunities related to Local Energy Management.

  13. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  14. Optimal energy management for a series-parallel hybrid electric bus

    International Nuclear Information System (INIS)

    Xiong Weiwei; Zhang Yong; Yin Chengliang

    2009-01-01

    This paper aims to present a new type of series-parallel hybrid electric bus and its energy management strategy. This hybrid bus is a post-transmission coupled system employing a novel transmission as the series-parallel configuration switcher. In this paper, the vehicle architecture, transmission scheme and numerical models are presented. The energy management system governs the mode switching between the series mode and the parallel mode as well as the instantaneous power distribution. In this work, two separated controllers using fuzzy logic called Mode Decision and Parallel-driving Energy Management are employed to fulfill these two tasks. The energy management strategy and the applications of fuzzy logic are described. The strategy is validated by a forward-facing simulation program based on the software Matlab/Simulink. The results show that the energy management strategy is effective to control the engine operating in a high-efficiency region as well as to sustain the battery charge state while satisfy the drive ability. The energy consumption is theoretically reduced by 30.3% to that of the conventional bus under transit bus driving cycle. In addition, works need future study are also presented.

  15. Application of monitoring and targeting to energy management

    Energy Technology Data Exchange (ETDEWEB)

    Gotel, D G; Hale, D K

    1989-01-01

    This general guide has been prepared to show how monitoring and targeting can control energy use and improve the efficiency with which energy is used in different sectors of the national economy. It is based on the results of work carried out, under the Energy Efficiency Office Monitoring and Targeting Programme, on the development of practical energy management systems for use in manufacturing industry, commerce and the public sector. The principles of monitoring and targeting are described together with the steps which have to be taken to set up monitoring and targeting as an integral part of an existing management organization. Procedures are given for monitoring energy use, defining standards and targets, reporting results and reviewing progress. These procedures which have been developed and tested in working environments are illustrated with examples of their practical application. Finally, an account is given of the improvements of performance in the use of energy and the other benefits which can be gained through energy monitoring and targeting.

  16. Management Methods of Energy Efficiency and reduction of Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Actina, G.; Grackova, L.; Zebergs, V.; Zeltins, N.

    2007-01-01

    The management methods of energy efficiency and reduction of GHG emissions and their introduction depend on the financing possibilities and the management structures. Analysis is made of the following methods for the management of the process of raising energy efficiency: an energy audit and certification; the third-party financing; networks for energy efficiency and services of raising energy efficiency. In Latvia more than a half of all the energy resources are consumed for heating and the supply of hot water. The thermal parameters of buildings are poor therefore wide introduction of buildings certification, based on energy audit is of particular importance. The third-party financing would allow resolving the justified problems of audit and certification in order to hasten the heating process of buildings, particularly, owing to the appearance of respective foreign third-party financing companies, although the privatisation of dwelling houses and reorganisation of their management is not yet completed. The networks for energy efficiency have not found supporters in Latvia, however, great importance is attached to the thermal parameters of industrial premises, which are as poor as in the other buildings of the country, and here is a considerable potential of energy economy. Concerning the services of raising energy efficiency, the management method of this process is supposed to reach maximum energy economy after thermo and technical renovation of buildings at their various stages. It is connected with general organisational and financial adjustment of the management of buildings, as well as with the development of the energy service company.(author)

  17. Priority directions of the improvement of energy management at the enterprise

    Science.gov (United States)

    Dyakova, Galina; Izmaylova, Svetlana; Mottaeva, Angela; Karanina, Elena

    2017-10-01

    The relevance of article is caused by the fact that at the industrial enterprises pay little attention to the matters of energy saving or to the management of energy efficiency. The authors of the article defined that the potential of the increase in energy efficiency as well as the improvement of quality of strategic management at the enterprise, is connected with investment into the human capital. For the improvement of system of energy management, the key indicators of energy efficiency at the individual level are defined, the algorithm of the development of key indicators by means of which the energy efficiency of the human capital will be measured is developed, actions for support to the developed transitional strategy of power management are offered, positive results of formation of the human capital directed to increase in energy efficiency are designated.

  18. University energy management improvement on basis of standards and digital technologies

    Directory of Open Access Journals (Sweden)

    Novikova Olga

    2018-01-01

    Full Text Available Nowadays to implement the energy management system it is important to fulfill not only the legal requirements but also to follow the set of recommendations prepared by international and national management standards. The purpose of this article is to prepare the concept and methodology for the optimization and improvement of the energy management system (EMS for Universities with implementation of legal requirements and recommendations from international and national management standards with the help of digital technologies. During the research the systematic analysis, complex approach, logical sampling and analogy were used. It is shown that this process should be done with the help of the process-based approach, in accordance with ISO 9001, and energy management ISO 50001. The authors developed the structure of the basic standard of energy management: "Guidelines for the energy management system". It is proved that the involvement of the technical senior students in the project of EMS improvement allows to expand their competencies for new technics and technologies. Cloud service Bitrix24 was chosen for IT-support of the project. During the study, a list of characteristics was used as a basis for creating a query to the technology department of the university. DBMS Microsoft Access was chosen for its creation. In addition, the possible results of initiating a single database containing all the information needed for accounting and control of energy supply were listed. Moreover, the possibility of automated energy management system implementation and its results were considered. The required actions described in this research can be implemented in any University, that will extend energy management to any University worldwide.

  19. Energy Management of An Extended Hybrid Renewable Energy System For Isolated Sites Using A Fuzzy Logic Controller

    Science.gov (United States)

    Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal

    2018-05-01

    This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.

  20. OWL Ontologies and SWRL Rules Applied to Energy Management

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Brewka, Lukasz Jerzy; Soler, José

    2011-01-01

    Energy consumption has increased considerably in the last years. How to reduce and make energy consumption more efficient in home environments has become of great interest for researchers. This could be achieved by introducing a Home Energy Management System (HEMS) into user residences. This system...... might allow the user to control the devices in the home network through an interface and apply energy management strategies to reduce and optimize their consumption. Furthermore, the number of devices and appliances found in users residences is increasing and these devices are usually manufactured...

  1. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  2. Energy Management Strategy for Grid-tied Microgrids considering the Energy Storage Efficiency

    DEFF Research Database (Denmark)

    Wu, Ji; Xing, Xiaowen; Liu, Xingtao

    2018-01-01

    developed based on the scheduled power. Experiments are conducted to verify the relationship between battery energy storage efficiency and charging/discharging current of the lithium-ion battery. Moreover, the proposed energy management strategy is validated by the hardware-in-the-loop (HIL) experiments...

  3. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  4. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings.

    Science.gov (United States)

    Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-09-07

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified

  5. 1994 Department of Energy Records Management Conference

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. This report contains the contributions from this forum.

  6. Cognitive Simulation Driven Domestic Heating Energy Management

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2016-01-01

    Energy management for domestic heating is a non trivial research challenge, especially given the dynamics associated to indoor and outdoor air temperatures, required comfortable temperature set points over time, parameters of the heating source and system, and energy loss rate and capacity of a

  7. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    Science.gov (United States)

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  8. Trends in Energy Management Technology: BCS Integration Technologies - Open Communications Networking

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Tom

    2002-09-18

    Our overall purpose in writing this series of articles is to provide Federal energy managers some basic informational tools to assist their decision making process relative to energy management systems design, specification, procurement, and energy savings potential. Since Federal buildings rely on energy management systems more than their commercial counterparts, it is important for energy practitioners to have a high level of knowledge and understanding of these complex systems. This is the second article in a series and will focus on building control system (BCS) networking fundamentals and an assessment of current approaches to open communications protocols. This is important because networking is a complex subject and the networks form the basic infrastructure for energy management functions and for integrating a wide variety of OEM equipment into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems. Future topics will concentrate on more practical aspects including applications software, product offerings, networking strategies, and case studies of actual installations. Please refer to the first article for a more complete overview of the purpose and background for this series.

  9. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Energy Management for Community Energy Network with CHP Based on Cooperative Game

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2018-04-01

    Full Text Available Integrated energy system (IES has received increasing attention in micro grid due to the high energy efficiency and low emission of carbon dioxide. Based on the technology of combined heat and power (CHP, this paper develops a novel operation mechanism with community micro turbine and shared energy storage system (ESS for energy management of prosumers. In the proposed framework, micro-grid operator (MGO equipped with micro turbine and ESS provides energy selling business and ESS leasing business for prosumers. Prosumers can make energy trading with public grid and MGO, and ESS will be shared among prosumers when they pay for the rent to MGO. Based on such framework, we adopt a cooperative game for prosumers to determine optimal energy trading strategies from MGO and public grid for the next day. Concretely, a cooperative game model is formulated to search the optimal strategies aiming at minimizing the daily cost of coalition, and then a bilateral Shapley value (BSV is proposed to solve the allocation problem of coalition’s cost among prosumers. To verify the effectiveness of proposed energy management framework, a practical example is conducted with a community energy network containing MGO and 10 residential buildings. Simulation results show that the proposed scheme is able to provide financial benefits to all prosumers, while providing peak load leveling for the grid.

  11. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles

    Science.gov (United States)

    Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan

    2015-05-01

    This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.

  12. Managing Water-Food-Energy Futures in the Canadian Prairies

    Science.gov (United States)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  13. Community energy management in Sitka, Alaska: What strategies can help increase energy independence?

    Science.gov (United States)

    David Nicholls; Trista. Patterson

    2013-01-01

    This report summarizes practical energy management strategies that could help communities in southeast Alaska move closer to energy independence while utilizing local resources more effectively. Our analysis focuses primarily on Sitka, Alaska, yet could be relevant to other communities having similar energy structures that rely primarily on hydroelectric power...

  14. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  15. Ultra high benefits system for electric energy saving and management of lighting energy in buildings

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Presenting a novel multi channel smart system to manage lighting energy in buildings. • Saving considerable electric energy which is converted to lighting in buildings. • Providing desired constant and adjustable luminance for each location in buildings. • Capability of working with all AC electric power sources. • To automatically control and manage lighting energy in buildings. - Abstract: This paper presents a smart system, including a multi channel dimmer and a central process unit (CPU) together with an exact multi channel feedback mechanism, which automatically regulates and manages lighting in buildings. Based on a multi channel luminance feedback, a high benefits technique is utilized to convert the electric energy to lighting energy. Saving a lot of the electric energy which should be converted to lighting energy in buildings, managing the lighting energy in buildings, providing desired constant and adjustable luminance for each room (location), and the capability of working with all AC electric power sources regardless of frequency and voltage amplitude are some advantages of using the proposed system and technique, thus it will be widely used in buildings. An experimental prototype of the proposed smart system has been constructed to validate the theoretical results and to carry out the experimental tests. Experimental results earned by utilizing the proposed smart system in a sample building are presented to prove the benefits of using the system. The experimental results explicitly show a considerable electric energy saving (about 27%) in the sample building while the proposed system has provided desired constant and adjustable luminance for each location of the building

  16. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  17. Masters Study in Advanced Energy and Fuels Management

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States)

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  18. Multi-agent based distributed control architecture for microgrid energy management and optimization

    International Nuclear Information System (INIS)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-01-01

    Highlights: • A new multi-agent based distributed control architecture for energy management. • Multi-agent coordination based on non-cooperative game theory. • A microgrid model comprised of renewable energy generation systems. • Performance comparison of distributed with conventional centralized control. - Abstract: Most energy management systems are based on a centralized controller that is difficult to satisfy criteria such as fault tolerance and adaptability. Therefore, a new multi-agent based distributed energy management system architecture is proposed in this paper. The distributed generation system is composed of several distributed energy resources and a group of loads. A multi-agent system based decentralized control architecture was developed in order to provide control for the complex energy management of the distributed generation system. Then, non-cooperative game theory was used for the multi-agent coordination in the system. The distributed generation system was assessed by simulation under renewable resource fluctuations, seasonal load demand and grid disturbances. The simulation results show that the implementation of the new energy management system proved to provide more robust and high performance controls than conventional centralized energy management systems.

  19. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    Science.gov (United States)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  20. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  1. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  2. Energy consumption quota management of Wanda commercial buildings in China

    Science.gov (United States)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  3. Energy management study: A proposed case of government building

    International Nuclear Information System (INIS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-01-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building

  4. Energy management study: A proposed case of government building

    Science.gov (United States)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  5. Energy management study: A proposed case of government building

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd [School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Baharum, Mohd Faizal [School of Building, Housing and Planning, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  6. Energy Management Action Network (EMAK). A scoping study investigating the establishment and support of an international and domestic action network of energy management in industry. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    Jollands, Nigel; Tanaka, Kanako; Gasc, Emilien

    2009-12-15

    The IEA has identified energy efficiency as essential to achieving a sustainable energy future. In order to improve energy efficiency in industry one of the priority areas for further action is the promotion of more and higher quality energy management (EM) activity. However, there are significant gaps in the current implementation of EM. One method of bridging these gaps would be the creation of an EM Action NetworK (EMAK) to bring practical support to energy managers, connect energy managers to energy policy makers, and interconnect these networks globally. The paper describes possible aims, activities, scope, structure, timelines and approaches related to EMAK and looks at specific tasks that would be important in the set-up and implementation.

  7. Energy and climate protection management, the key to higher energy efficiency in communities; Energie- und Klimaschutzmanagement. Der Schluessel zu mehr Energieeffizienz in Kommunen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The brochure explains the dena energy and climate protection management concepts and presents tools for long-term reduction of energy consumption in communities. It presents valuable information for better organization of internal processes in community administrations and for the management of energy efficiency measures. The dena energy and climate protection management concept is developed in cooperation with model communities of different sizes since 2010. All interested communities can use this brochure as a guide for initiating effective climate protection measures.

  8. Papers of a Canadian Institute conference : Managing energy price risk

    International Nuclear Information System (INIS)

    2003-01-01

    During this conference, participants were offered an opportunity to broaden their knowledge on fundamentals and technical risk management. In particular, the presentations addressed topics such as: the assessment and evaluation of risk tolerance and risk management options within an organization; the tightening of risk management procedures and policies; the measurement and monitoring of risk portfolio and value at risk; the efficient trading of structured energy products; and the use of call and put options, collars and straddles, swaps and other energy related derivatives. The participants also benefited from the use of case studies, panels and tutorials conducted by energy buyers, sellers and risk management experts. The conference represented a forum where participants discussed strategies and tactics for pricing, hedging and trading energy risk in deregulated markets. Of the thirteen presentations included in this document, four were included in this database. refs., tabs., figs

  9. INFORMATION TECHNOLOGIES IN MANAGEMENT OF ENERGY SAVING PROJECTS

    Directory of Open Access Journals (Sweden)

    Дмитро Валерійович МАРГАСОВ

    2015-06-01

    Full Text Available The information technology structure is considered of energy saving projects. The project management diagram of energy saving projects is developed, using GIS, ICS, BIM and other control and visual systems.

  10. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  11. Energy Storage Management in Grid Connected Solar Photovoltaic System

    OpenAIRE

    Vidhya M.E

    2015-01-01

    The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid conne...

  12. Community energy auditing: experience with the comprehensive community energy management program

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.L.; Berger, D.A.; Rubin, C.B.; Hutchinson, P.A. Sr.; Griggs, H.M.

    1980-09-01

    The report provides local officials and staff with information on lessons from the audit, projection, and general planning experiences of the Comprehensive Community Energy Management Program (CCEMP) communities and provides ANL and US DOE with information useful to the further development of local energy management planning methods. In keeping with the objectives, the report is organized into the following sections: Section II presents the evaluation issues and key findings based on the communities' experiences from Spring of 1979 to approximately March of 1980; Section III gives an organized review of experience of communities in applying the detailed audit methodology for estimating current community energy consumption and projecting future consumption and supply; Section IV provides a preliminary assessment of how audit information is being used in other CCEMP tasks; Section V presents an organized review of preliminary lessons from development of the community planning processes; and Section VI provides preliminary conclusions on the audit and planning methodology. (MCW)

  13. Energy Management Techniques in Industry (with special reference to the textile industry)

    International Nuclear Information System (INIS)

    Salawu, R. I.

    2000-08-01

    Energy management in a factory should be undertaken by using the basic principles which apply to the relative merits of options for capital expenditure as part of the expansion programme of the factory. Since decisions on the latter areas are normally taken at the boardroom level, the final decision of an energy management programme should also be taken at that level. This is so, because if the commitment to the energy management programme does not exist among the board, the energy manager (consultant) will meet impediments in the performance of his job. After the board has decided positively on the programme, the most usual way to operate such programme is to appoint an energy manager (a consultant) with sufficient authority to form an energy management committee or team in the plant. Locally the energy manager ( or consultant) should operate his own budget from which he can undertake good energy 'house-keeping' and in addition should enable him enlist the services of a consultant from outside if necessary. An aspect of the work of the committee is to obtain on the various equipment and information on the cost of electricity, water, gas etc. used in the plant. This data is an important part of an energy utilisation audit; this may take months to collect and accurately assess

  14. Children with protein energy malnutrition: management and out ...

    African Journals Online (AJOL)

    Children with protein energy malnutrition: management and out-come in a ... Sahel Medical Journal ... Demographic data, predisposing factors, clinical types of PEM, outcome of management and time of discharge or death were also extracted ...

  15. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  16. Operational management of offshore energy assets

    Science.gov (United States)

    Kolios, A. J.; Martinez Luengo, M.

    2016-02-01

    Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.

  17. Energy management and effective energy use in Ukraine: basic problems and ways to solve them

    International Nuclear Information System (INIS)

    Gnedoy, M.V.

    2003-01-01

    In this paper, barriers in the way of energy efficiency are considered and classified. The classification is made in six blocks: financial, sociological, manufacturing, management-organisational, legal and market. A strategy to overcome these barriers and the achievement of more effective energetics in Ukraine are proposed. On the basis of the strategy, five indissoluble tasks are considered: energy supply reliability, pricing and tariff policy, the legislative and normative base, energy use efficiency, environmental protection and decrease in influence on climate change. Solving these problems will allow the construction of an effective system of energy management in Ukraine. (author)

  18. Overview of an energy management process

    International Nuclear Information System (INIS)

    Chantraine, P.

    2004-01-01

    Invista is a global and vertically integrated fiber, resin and intermediates business which belonged to Dupont but is now a subsidiary of Koch Industries. A background of Invista and its former relationship with Dupont was presented. This presentation was based on goals and work done as Dupont Canada Inc., up to the end of 2003. Details of Invista's approach to climate change in Canada were provided along with the company's relationship with Natural Resources Canada. The historical position of Dupont Canada was reviewed in detail, including their commitment to voluntary approach; participation in the national process; their goal of 85 per cent reduction in greenhouse gas (GHG) by 2000; 93 per cent reduction in nitrous oxide emissions; energy efficiency goals; and continuing growth of the company. An outline and mission of the energy management team established in 1974 was presented, with details of the 1974 oil shortage, stabilization in the 1980s through to rises in electricity prices in the 1990s and concerns over climate change in recent years. Details of the team's operational procedures were presented. Results were presented in graph form and include: total energy use from 1972 to 2003 as well as cumulative energy conservation projects and resulting energy savings. Examples of activities and projects were provided, including details of energy performance contracting. It was concluded that in order to conserve energy, top management support was necessary, as well as passion and dedication in both leaders and teams. A broad scope for creativity in finding solutions within evolving constraints was also important, as was the nurturing of capability, capacity and recognition for results achieved. tabs., figs

  19. Energy metering, management and accounting; Comptage, gestion, et comptabilite de l`energie

    Energy Technology Data Exchange (ETDEWEB)

    Foucherand, P. [Agence de l`environnement et de la maitrise de l`energie, Rhone-Alpes (France)

    1996-12-31

    The activities of the French Energy Conservation Agency (ADEME) in the field of energy management and conservation through energy metering in industrial plants, and more especially in mechanical and metal industries, are presented. Audit and diagnostic procedures and information/awareness measures are presented and discussed with the example of a regional program, and two operations conducted in a mechanical industrial plant and a foundry where metering systems were installed

  20. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Science.gov (United States)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  1. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  2. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  3. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  4. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  5. Energy Management in Prosumer Communities: A Coordinated Approach

    Directory of Open Access Journals (Sweden)

    Rodrigo Verschae

    2016-07-01

    Full Text Available The introduction of uncontrollable renewable energy is having a positive impact on our health, the climate, and the economy, but it is also pushing the limits of the power system. The main reason for this is that, in any power system, the generation and consumption must match each other at all times. Thus, if we want to further introduce uncontrollable generation, we need a large ability to manage the demand. However, the ability to control the power consumption of existing demand management approaches is limited, and most of these approaches cannot contribute to the introduction of reneweables, because they do not consider distributed uncontrolled consumption and generation in the control. Furthermore, these methods do not allow users to exchange or jointly manage their power generation and consumption. In this context, we propose an augmented energy management model for prosumers (i.e., producer and consumer. This model considers controlled and uncontrolled generation and consumption, as well as the prosumer’s ability (i to plan the intended power consumption; and (ii to manage real-time deviations from the intended consumption. We apply this model to the energy management of prosumer communities, by allowing the prosumers to coordinate their power consumption plan, to manage the deviations from the intended consumption, and to help each other by compensating deviations. The proposed approach seeks to enhance the power system, and to enable a prosumer society that takes account social and environmental issues, as well as each prosumer’s quality of life.

  6. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  7. Value at Risk models for Energy Risk Management

    OpenAIRE

    Novák, Martin

    2010-01-01

    The main focus of this thesis lies on description of Risk Management in context of Energy Trading. The paper will predominantly discuss Value at Risk and its modifications as a main overall indicator of Energy Risk.

  8. Basic Energy Conservation and Management--Part 2: HVAC

    Science.gov (United States)

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…

  9. Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?

    OpenAIRE

    Eid, Cherrelle; Bollinger, L. Andrew; Koirala, Binod; Scholten, Daniel; Facchinetti, Emanuele; Lilliestam, Johan; Hakvoort, Rudi

    2016-01-01

    The growing penetration of distributed energy resources is opening up opportunities for local energy management (LEM) – the coordination of decentralized energy supply, storage, transport, conversion and consumption within a given geographical area. Because European electricity market liberalization concentrates competition at the wholesale level, local energy management at the distribution level is likely to impose new roles and responsibilities on existing and/or new actors. This paper prov...

  10. ENERGY MANAGEMENT INNOVATION IN THE US SKI INDUSTRY

    Science.gov (United States)

    Ski areas represent a unique opportunity to develop innovative energy management practices in an industrial setting. Through a unique synergy of onsite generation, preferably by renewable sources and innovative technologies, and the energy storage potential of exis...

  11. Design of energy management indicator.

    Directory of Open Access Journals (Sweden)

    Ernesto Tomás Dalmau García

    2010-10-01

    Full Text Available This work has as a main goal to demostrate the viability of the energy management indicator, that will be a part of the Balanced Scorecard in the organization and the own process of calculation allows to obtain a Balanced Scorecard of energy management. It describes the executive order of the actions that have to be done to reach to the mentioned indicator, based on the selection of the selected period of time; the types of power carriers, the weight of each carrier in the structure of the consumption and the activities where they are used. With these elements several tools are used to reach to the expected results, as the bar charts, comparative tables and indices of power intensity. The indices of energy intensity are recommended as comparative elements for the contribution to the operativity and information level, meaning that not always is necessary to tie them , if not, in some cases, may be other selected indicators that may result as qualitatives type, The Cuban enterprise system uses the model Control of Consumption and Catchment Demand of fuels and lubricants (CDA 002 of the Ministry of Economy and Planning (MEP that is used in the work and it is recommended for the organizations who apply it. The study and application of this method were made in the Company of Raw materials Recovery in an experimental form.

  12. Energy management system for power distribution. Interfaces and data communication requirements

    International Nuclear Information System (INIS)

    Koponen, P.; Lemstroem, B.; Ikonen, J.

    1995-01-01

    The opening of the electricity market for competition in Finland creates new requirements for the information systems and data communication in distribution utilities. Energy management systems for distribution utilities are needed with interfaces that make it possible to separate the network business from the energy trade business. However, these interfaces should also support optimization of the whole energy supply system of the country. In this report the interfaces and data communication requirements of the energy management system of the electricity trade business are analyzed. To support this subfunctions of the energy management have been analyzed. It was realized that the amount of necessary data transfer and optimization of the national power system both depend strongly on the general rules of the energy markets. (author)

  13. COMPETITIVE ADVANTAGES THROUGH THE IMPLEMENTATION OF INTERNATIONAL ENERGY MANAGEMENT STANDARDS

    Directory of Open Access Journals (Sweden)

    PALIEKHOVA L. L.

    2016-03-01

    Full Text Available Purpose. The purpose of the presented research is to explore the potential of international energy management standards to increase competitiveness of industrial enterprises under conditions of Ukrainian transitional economy. The study had the following objectives: to trace the evolution of fundamental energy efficiency standards; to discuss experience in their use in various countries; to identify factors that are key to achieving competitive advantage under the implementation ISO 50001. Methodology. This article presents a historical overview of the standardisation of principles and approaches for the purpose of the energy-efficient management. The research was carried out by studying the international documents, voluntary standards and national practices in the field of energy efficiency. Conclusions. The study examines the experiences of different countries in the field of energy management systems. The authors conducted a comparative analysis of the ISO 50001 with the other basic standards for the organisation of management. The system approach enables to identify the main factors and their impact on capacity to achieve competitive advantages, which are possible to obtain after certification to ISO 50001. Originality. The study reviewed and analysed the energy management penetration within its dynamics at time and country level. After analysing the statistical data and the results of the interviews, the authors identified 20 key factors affecting the competitiveness of enterprises that are certified to ISO 50001. All of these factors were divided into four groups, two groups represent external environment – opportunities and threats, and two groups – internal capacity – strengths and weaknesses of enterprises. Practical value. The proposed system of factors may be useful for the planning of actions towards strengthening the capacity of energy management systems in the context of the formation competitive advantages on the industrial

  14. Managing urban energy system: A case of Suzhou in China

    International Nuclear Information System (INIS)

    Liang Sai; Zhang Tianzhu

    2011-01-01

    Managing urban energy system is vital for energy conservation and CO 2 reduction. Integrating energy input-output model with carbon emission pinch analysis, we propose a framework for managing urban energy system. This framework could analyze current energy demands and CO 2 emissions, predict their future possibilities and optimize energy mix of key sectors under CO 2 emission constraints. Key sectors are identified by the energy input-output table from both direct and accumulative perspectives. Moreover, taking Suzhou, a typical manufacturing center and export-oriented city in China, as a case example, energy metabolism of Suzhou in 2020 is predicted using energy input-output model. And three sectors named Coking, Smelting and pressing of metals and Production and supply of electric power are identified to have big effects on CO 2 emissions. Subsequently, energy mix of three identified key sectors is optimized under CO 2 emission constraints by the carbon emission pinch analysis. According to the results, clean energy sources will occupy a great position in Suzhou's future energy demands. And the reuse of wastes as energy sources should be limited to achieve CO 2 mitigation targets. Finally, policy implications of results and future work are discussed. - Research highlights: → We construct a framework for sustainable energy system management. → We apply the framework in a typical manufacturing center named Suzhou in China. → Key sectors for CO 2 emissions are identified, and energy mix is optimized. → Policy implications of results and future work are discussed.

  15. Optimal energy management of HEVs with hybrid storage system

    International Nuclear Information System (INIS)

    Vinot, E.; Trigui, R.

    2013-01-01

    Highlights: • A battery and ultra-capacitor system for parallel hybrid vehicle is considered. • Optimal management using Pontryagin’s minimum principle is developed. • Battery stress limitation is taken into account by means of RMS current. • Rule based management approaching the optimal control is proposed. • Comparison between rule based and optimal management are proposed using Pareto front. - Abstract: Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal energy management of HEVs only considered one additional power source. In this paper, the control of a hybrid vehicle with a hybrid storage system (HSS), where two additional power sources are used, is presented. Applying the Pontryagin’s minimum principle, an optimal energy management strategy is found and compared to a rule-based parameterized control strategy. Simulation results are shown and discussed. Applied on a small compact car, optimal and ruled-based methods show that gains of fuel consumption and/or a battery RMS current higher than 15% may be obtained. The paper also proves that a well tuned rule-based algorithm presents rather good performances when compared to the optimal strategy and remains relevant for different driving cycles. This rule-based algorithm may easily be implemented in a vehicle prototype or in an HIL test bench

  16. Medium-term energy hub management subject to electricity price and wind uncertainty

    International Nuclear Information System (INIS)

    Najafi, Arsalan; Falaghi, Hamid; Contreras, Javier; Ramezani, Maryam

    2016-01-01

    Highlights: • A new model for medium-term energy hub management is proposed. • Risk aversion is considered in medium-term energy hub management. • Stochastic programing is used to solve the medium-term energy hub management problem. • Electricity price and wind uncertainty are considered. - Abstract: Energy hubs play an important role in implementing multi-carrier energy systems. More studies are required in both their modeling and operating aspects. In this regard, this paper attempts to develop medium-term management of an energy hub in restructured power systems. A model is presented to manage an energy hub which has electrical energy and natural gas as inputs and electrical and heat energy as outputs. Electricity is procured in various ways, either purchasing it from a pool-based market and bilateral contracts, or producing it from a Combined Heat and Power (CHP) unit, a diesel generator unit and Wind Turbine Generators (WTGs). Pool prices and wind turbine production are subject to uncertainty, which makes energy management a complex puzzle. Heat demand is also procured by a furnace and a CHP unit. Energy hub managers should make decisions whether to purchase electricity from the electricity market and gas from the gas network or to produce electricity using a set of generators to meet the electrical and heat demands in the presence of uncertainties. The energy management objective is to minimize the total cost subject to several technical constraints using stochastic programming. Conditional Value at Risk (CVaR), a well-known risk measure, is used to reduce the unfavorable risk of costs. In doing so, the proposed model is illustrated using a sample test case with actual prices, load and wind speed data. The results show that the minimum cost is obtained by the best decisions involving the electricity market and purchasing natural gas for gas facilities. Considering risk also increases the total expected cost and decreases the CVaR.

  17. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management.

    Science.gov (United States)

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-02-25

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  18. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    Science.gov (United States)

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-01-01

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346

  19. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    Directory of Open Access Journals (Sweden)

    Bhagya Nathali Silva

    2018-02-01

    Full Text Available The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  20. Tunisia: to finance energy management. Proceedings of the international conference, Hammamet (Tunisia), 2007

    International Nuclear Information System (INIS)

    Bourguinat, Elisabeth; Missaoui, Rafik; Gromard, Christian de; Dognin, Hubert; Breton-Moyet, Laurence; Barbier, Jean-Pierre; Ayadi, Benaissa; Osman, Nejib; Amaimia, Neji; Bahri, Mounir; Marrouki, Sami; Henry, Alain; Dudziak, Rossana; ); Rassaa, Abdel Aziz; Kanoun, Faouzia; Pariente-David, Silvia; Baguenier, Henri; Gaudin, Thomas; Draeck, Mark; Lamande, Faycal; Quefelec, Stephane; Bosse, Philippe; Perthuis, Christian de; Amous, Samir; Lopez, Jose; Saidi, Ferid; Gueschir, Maxime; Allaire, Julien; Mezghani, Mohamed; Rejeb, Sarra; Soukah, Elyes; Laajimi, Brahim; Begon, Christophe; El Khoury, Pierre; Missaoui, Rafik; Sanz de Burgoa, Patricia; Ouchikh, Nadia; Joffre, Andre; Touhami, Myriem; ); Lihidheb, Kawther; Laponche, Bernard; Boujnah, Nejib

    2008-01-01

    After opening speeches, this publication proposes the contributions to a conference. These contributions addressed the following themes: investments in energy management and their financing (peculiarity, tools used by the AFD, tools of bilateral aid of the French economic mission in Tunisia, financing tools of the World Bank, needs and financing tools for investments in energy management in the eleventh plan in Tunisia), tools and examples of energy management financing (experience of the NovEnergia investment fund, financial and economic instruments in France, the British experience in energy saving certificates, funding the solar-gas plant project of Hassi R'Mel in Algeria, perspectives for the Blue Plan, example of the FFEM in financial partnership and energy management, financing carbon and energy management). The conference also comprised four sector-based workshops which addressed issues related to energy consumption, management and saving in the following sectors: industry, transports, housing, and office building. Contributions presented within these workshops notably give examples in Tunisia, France, Vietnam, or Lebanon

  1. Proceedings of the energy matters 3. annual summit on municipal energy management

    International Nuclear Information System (INIS)

    2007-01-01

    The energy challenges facing municipalities across Ontario were examined at this conference which raised public sector awareness regarding the changing energy sector. The conference provided an opportunity for finding resourceful and innovative ways to improve municipal energy use. Approaches to energy management and sustainable development were presented. Key conference themes included corporate social responsibility; energy and the environment; markets and financial drivers; and, greening Town Hall. The conference also included concurrent work group sessions on sustainable energy strategies. A post conference report prepared on the conference's findings reflected on the information shared by the participants. The conference featured 49 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  2. Benchmarking and energy management schemes in SMEs

    Energy Technology Data Exchange (ETDEWEB)

    Huenges Wajer, Boudewijn [SenterNovem (Netherlands); Helgerud, Hans Even [New Energy Performance AS (Norway); Lackner, Petra [Austrian Energy Agency (Austria)

    2007-07-01

    Many companies are reluctant to focus on energy management or to invest in energy efficiency measures. Nevertheless, there are many good examples proving that the right approach to implementing energy efficiency can very well be combined with the business-priorities of most companies. SMEs in particular can benefit from a facilitated European approach because they normally have a lack of resources and time to invest in energy efficiency. In the EU supported pilot project BESS, 60 SMEs from 11 European countries of the food and drink industries successfully tested a package of interactive instruments which offers such a facilitated approach. A number of pilot companies show a profit increase of 3 up to 10 %. The package includes a user-friendly and web based E-learning scheme for implementing energy management as well as a benchmarking module for company specific comparison of energy performance indicators. Moreover, it has several practical and tested tools to support the cycle of continuous improvement of energy efficiency in the company such as checklists, sector specific measure lists, templates for auditing and energy conservation plans. An important feature and also a key trigger for companies is the possibility for SMEs to benchmark anonymously their energy situation against others of the same sector. SMEs can participate in a unique web based benchmarking system to interactively benchmark in a way which fully guarantees confidentiality and safety of company data. Furthermore, the available data can contribute to a bottom-up approach to support the objectives of (national) monitoring and targeting and thereby also contributing to the EU Energy Efficiency and Energy Services Directive. A follow up project to expand the number of participating SMEs of various sectors is currently being developed.

  3. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  4. Design and Implementation of a Microgrid Energy Management System

    Directory of Open Access Journals (Sweden)

    Eun-Kyu Lee

    2016-11-01

    Full Text Available A microgrid is characterized by the integration of distributed energy resources and controllable loads in a power distribution network. Such integration introduces new, unique challenges to microgrid management that have never been exposed to traditional power systems. To accommodate these challenges, it is necessary to redesign a conventional Energy Management System (EMS so that it can cope with intrinsic characteristics of microgrids. While many projects have shown excellent research outcomes, they have either tackled portions of the characteristics or validated their EMSs only via simulations. This paper proposes a Microgrid Platform (MP, an advanced EMS for efficient microgrid operations. We design the MP by taking into consideration (i all the functional requirements of a microgrid EMS (i.e., optimization, forecast, human–machine interface, and data analysis and (ii engineering challenges (i.e., interoperability, extensibility, and flexibility. Moreover, a prototype system is developed and deployed in two smart grid testbeds: UCLA Smart Grid Energy Research Center and Korea Institute of Energy Research. We then conduct experiments to verify the feasibility of the MP design in real-world settings. Our testbeds and experiments demonstrate that the MP is able to communicate with various energy devices and to perform an energy management task efficiently.

  5. Energy Management System Optimization for Battery-Ultracapacitor Powered Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Selim Koroglu

    2017-03-01

    Full Text Available Energy usage and environment pollution in the transportation are major problems of today’s world. Although electric vehicles are promising solutions to these problems, their energy management methods are complicated and need to be improved for the extensive usage. In this work, the heuristic optimization methods; Differential Evolution Algorithm, Genetic Algorithm and Particle Swarm Optimization, are used to provide an optimal energy management system for a battery/ultracapacitor powered electric vehicle without prior knowledge of the drive cycle. The proposed scheme has been simulated in Matlab and applied on the ECE driving cycle. The differences between optimization methods are compared with reproducible and measurable error criteria. Results and the comparisons show the effectiveness and the practicality of the applied methods for the energy management problem of the multi-source electric vehicles.

  6. An Optimal Power and Energy Management by Hybrid Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Alessandro Serpi

    2017-11-01

    Full Text Available A novel optimal power and energy management (OPEM for centralized hybrid energy storage systems (HESS in microgrids is presented in this paper. The proposed OPEM aims at providing multiple grid services by suitably exploiting the different power/energy features of electrochemical batteries (B and supercapacitors (S. The first part of the paper focuses on the design and analysis of the proposed OPEM, by highlighting the advantages of employing hand-designed solutions based on Pontryagin’s minimum principle rather than resorting to pre-defined optimization tools. Particularly, the B power profile is synthesized optimally over a given time horizon in order to provide both peak shaving and reduced grid energy buffering, while S is employed in order to compensate for short-term forecasting errors and to prevent B from handling sudden and high-frequency power fluctuations. Both the B and S power profiles are computed in real-time in order to benefit from more accurate forecasting, as well as to support each other. Then, the effectiveness of the proposed OPEM is tested through numerical simulations, which have been carried out based on real data from the German island of Borkum. Particularly, an extensive and detailed performance analysis is performed by comparing OPEM with a frequency-based management strategy (FBM in order to highlight the superior performance achievable by the proposed OPEM in terms of both power and energy management and HESS exploitation.

  7. Final Scientific/Technical Report: Context-Aware Smart Home Energy Manager (CASHEM)

    Energy Technology Data Exchange (ETDEWEB)

    Foslien, Wendy K. [Honeywell International Inc., Golden Valley, MN (United States); Curtner, Keith L. [Honeywell International Inc., Golden Valley, MN (United States)

    2013-01-15

    Because of growing energy demands and shortages, residential home owners are turning to energy conservation measures and smart home energy management devices to help them reduce energy costs and live more sustainably. In this context, the Honeywell team researched, developed, and tested the Context Aware Smart Home Energy Manager (CASHEM) as a trusted advisor for home energy management. The project focused on connecting multiple devices in a home through a uniform user interface. The design of the user interface was an important feature of the project because it provided a single place for the homeowner to control all devices and was also where they received coaching. CASHEM then used data collected from homes to identify the contexts that affect operation of home appliances. CASHEM's goal was to reduce energy consumption while keeping the user's key needs satisfied. Thus, CASHEM was intended to find the opportunities to minimize energy consumption in a way that fit the user's lifestyle.

  8. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  9. Mapping the energy footprint of produced water management in New Mexico

    Science.gov (United States)

    Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.

    2018-02-01

    Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and

  10. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Directory of Open Access Journals (Sweden)

    Vangelis Marinakis

    2018-02-01

    Full Text Available The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems, energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  11. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    Science.gov (United States)

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  12. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Science.gov (United States)

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  13. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  14. Designing a Portable and Low Cost Home Energy Management Toolkit

    NARCIS (Netherlands)

    Keyson, D.V.; Al Mahmud, A.; De Hoogh, M.; Luxen, R.

    2013-01-01

    In this paper we describe the design of a home energy and comfort management system. The system has three components such as a smart plug with a wireless module, a residential gateway and a mobile app. The combined system is called a home energy management and comfort toolkit. The design is inspired

  15. A Solution Based on Bluetooth Low Energy for Smart Home Energy Management

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2015-10-01

    Full Text Available The research and the implementation of home automation are getting more popular because the Internet of Things holds promise for making homes smarter through wireless technologies. The installation of systems based on wireless networks can play a key role also in the extension of the smart grid towards smart homes, that can be deemed as one of the most important components of smart grids. This paper proposes a fuzzy-based solution for smart energy management in a home automation wireless network. The approach, by using Bluetooth Low Energy (BLE, introduces a Fuzzy Logic Controller (FLC in order to improve a Home Energy Management (HEM scheme, addressing the power load of standby appliances and their loads in different hours of the day. Since the consumer is involved in the choice of switching on/off of home appliances, the approach introduced in this work proposes a fuzzy-based solution in order to manage the consumer feedbacks. Simulation results show that the proposed solution is efficient in terms of reducing peak load demand, electricity consumption charges with an increase comfort level of consumers. The performance of the proposed BLE-based wireless network scenario are validated in terms of packet delivery ratio, delay, and jitter and are compared to IEEE 802.15.4 technology.

  16. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  17. Home energy management systems : evolutions, trends and frameworks

    NARCIS (Netherlands)

    Asare-Bediako, B.; Kling, W.L.; Ribeiro, P.F.

    2012-01-01

    The incentive and motivation to manage energy at the household level is influenced by commercial and technical reasons. Commercially, it offers the otherwise passive residential customer to be active in the energy market. The technical aspect enables them to provide support to the network operator

  18. Supply side energy management for sustainable energy ( development in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M.A.; Harijan, K.; Memon, M.

    2005-01-01

    Pakistan is an energy deficient country. Indigenous reserves of oil and gas are limited and the country heavily depends on imported energy. The indigenous coal is of poor quality. Environmental pollution and greenhouse gas emissions from energy use are becoming significant environmental issues in the country. Sustainability is regarded as a major consideration for both urban and rural development in Pakistan. People in the country have been exploiting the natural resources with no consideration to the effects-both short term (environmental) and long term (resource crunch). The urban areas of the country depend to a large extent on commercial energy sources. The rural areas use non-commercial sources like firewood, agricultural wastes and animal dung. Even this is decreasing over the years, with the villagers wanting to adopt the ready to use sophisticated technology. The debate now is to identify a suitable via media. The option that fills this gap aptly is the renewable energy source. This paper analyses the supply side management of energy resources in relation to sustainable energy development. The present study shows that for achieving long-term environmental sustainable development, renewable energy is the major option that could meet the growing energy needs in Pakistan. (author)

  19. Integrated online energy and battery life management for hybrid long haulage truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.

    2014-01-01

    Battery lifetime management plays an important role for successful commercializing hybrid electric vehicles. This paper aims at integrating the battery lifetime management into the energy management system of a heavy-duty hybrid electric truck. The developed strategy called Integrated Energy

  20. Swiss Energy Perspectives 2035 - Management summary

    International Nuclear Information System (INIS)

    2007-01-01

    This management summary issued by the Swiss Federal Office of Energy (SFOE) summarises the Swiss Energy Perspectives 2035 - a five-part synthesis report published in 2007. The report presents no prognoses but provides an 'if-then' overview of a set of four scenarios that examined ways in which Swiss energy demands could be met by the year 2035. National and international boundary conditions taken into account are reviewed and the four scenarios are introduced and briefly described. These include the reference scenario 'Business as Usual', 'Increased Co-operation' between politics and business, 'New Priorities' with goals set to reduce energy consumption and CO 2 emissions and 'On the Way to a 2000-Watt Society'. Risks posed and chances provided are discussed, as are the options for taking action

  1. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    dissertation presents a bottom-up highly resolved model of a generic residential energy eco-system in the United States. The model is able to capture the entire energy footprint of an individual household, to include all appliances, space conditioning systems, in-home charging of plug-in electric vehicles, and any other energy needs, viewing residential and transportation energy needs as an integrated continuum. The residential energy eco-system model is based on a novel bottom-up approach that quantifies consumer energy use behavior. The incorporation of stochastic consumer behaviors allows capturing the electricity consumption of each residential specific end-use, providing an accurate estimation of the actual amount of available controllable resources, and for a better understanding of the potential of residential demand response programs. A dynamic energy management framework is then proposed to manage electricity consumption inside each residential energy eco-system. Objective of the dynamic energy management framework is to optimize the scheduling of all the controllable appliances and in-home charging of plug-in electric vehicles to minimize cost. Such an automated energy management framework is used to simulate residential demand response programs, and evaluate their impact on the electric power infrastructure. For instance, time-varying electricity pricing might lead to synchronization of the individual residential demands, creating pronounced rebound peaks in the aggregate demand that are higher and steeper than the original demand peaks that the time-varying electricity pricing structure intended to eliminate. The modeling tools developed in this study can serve as a virtual laboratory for investigating fundamental economic and policy-related questions regarding the interplay of individual consumers with energy use. The models developed allow for evaluating the impact of different energy policies, technology adoption, and electricity price structures on the total

  2. Cognitive radio-based transmission energy management in Wi-Fi nodes

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-10-01

    Full Text Available -services. To solve such problems, in part, this study addresses the transmission energy management in Wi-Fi networks. Figure 1: Internet needs of rural communities PROPOSAL A cognitive radio-based transmission energy management (CR-TEM) solution for Wi... is incorporated into the Wi-Fi device to monitor the operation environments. Based on the environmental data, the transmission energy is adaptively adjusted until optimal conditions are achieved. Figure 2 illustrates the fundamentals of the cognitive radio...

  3. Energy management in the budget proposal for the year 1988

    International Nuclear Information System (INIS)

    Salminen, P.

    1987-01-01

    In the item 32.55 of the state budget proposal for the year 1988 the total amount of FIM 182 million has been reserved for energy management. This is over FIM 10 million less than the corresponding appropriation in 1987. In addition to this direct financing the state promotes and develops the Finnish energy management indirectly e.g. through energy research funded by the Technical Research Centre of Finland. In the article the use of the appropriation is described

  4. Contribution to energy management in vehicles; Beitrag zum Energiemanagement in Kfz-Bordnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabis, R M

    2006-07-01

    Modern vehicles have faced a continuous rise in power demand over the last decade. It is neither possible to cover all energy needs reliably, nor to guarantee a successful cranking. Therefore new solutions are needed, such as energy management or the introduction of 42V-technology (mild hybrid). This dissertation discusses the design requirements of energy management systems (e.g. power-train dimensioning) and considers some interventions (e.g. reduction of power demand, motor idle speed lifting), as well as the associated consequences (battery state, consumer satisfaction). The dissertation contains an example of the energy management system, which is based on the battery- and alternator specific data. Different aspects are emphasised regarding the 42V-technology: impact of the energy management on the battery state, optimisation of the battery state of charge, support of the combustion engine by the electrical system when cranking and/or bringing up to speed, and recovery of the braking energy. The dissertation shows the methods for the validation of energy management systems, which are based on Matlab/Simulink simulations. Several battery-, alternator- and consumer models are shown. Finally a tool chain is presented, which allows the automation of simulation processes. (orig.)

  5. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  6. Energy and environmental quality: case histories of impact management

    International Nuclear Information System (INIS)

    1981-06-01

    A discussion of energy source devlopments and environmental protection dealing with impacts, and legal aspects of pollution controls and resource management, and case history studies of major energy projects is presented

  7. Identification of optimal strategies for energy management systems planning under multiple uncertainties

    International Nuclear Information System (INIS)

    Cai, Y.P.; Huang, G.H.; Yang, Z.F.; Tan, Q.

    2009-01-01

    Management of energy resources is crucial for many regions throughout the world. Many economic, environmental and political factors are having significant effects on energy management practices, leading to a variety of uncertainties in relevant decision making. The objective of this research is to identify optimal strategies in the planning of energy management systems under multiple uncertainties through the development of a fuzzy-random interval programming (FRIP) model. The method is based on an integration of the existing interval linear programming (ILP), superiority-inferiority-based fuzzy-stochastic programming (SI-FSP) and mixed integer linear programming (MILP). Such a FRIP model allows multiple uncertainties presented as interval values, possibilistic and probabilistic distributions, as well as their combinations within a general optimization framework. It can also be used for facilitating capacity-expansion planning of energy-production facilities within a multi-period and multi-option context. Complexities in energy management systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The developed method has then been applied to a case of long-term energy management planning for a region with three cities. Useful solutions for the planning of energy management systems were generated. Interval solutions associated with different risk levels of constraint violation were obtained. They could be used for generating decision alternatives and thus help decision makers identify desired policies under various economic and system-reliability constraints. The solutions can also provide desired energy resource/service allocation and capacity-expansion plans with a minimized system cost, a maximized system reliability and a maximized energy security. Tradeoffs between system costs and constraint-violation risks could be successfully tackled, i.e., higher costs will increase system stability, while a desire for lower

  8. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  9. Expert energy management of a micro-grid considering wind energy uncertainty

    International Nuclear Information System (INIS)

    Motevasel, Mehdi; Seifi, Ali Reza

    2014-01-01

    Highlights: • In this paper an expert energy management system (EEMS) is presented. • A power forecasting module for wind generation capacity is presented. • The objective functions that must be minimized are operating cost and net emission. • A smart energy storage system (EES) for electrochemical batteries is presented. • A new modified Bacterial Foraging Optimization (MBFO) algorithm is presented. - Abstract: Recently, the use of wind generation has rapidly increased in micro-grids. Due to the fluctuation of wind power, it is difficult to schedule wind turbines (WTs) with other distributed energy resources (DERs). In this paper, we propose an expert energy management system (EEMS) for optimal operation of WTs and other DERs in an interconnected micro-grid. The main purpose of the proposed EEMS is to find the optimal set points of DERs and storage devices, in such a way that the total operation cost and the net emission are simultaneously minimized. The EEMS consists of wind power forecasting module, smart energy storage system (ESS) module and optimization module. For optimal scheduling of WTs, the power forecasting module determines the possible available capacity of wind generation in the micro-grid. To do this, first, an artificial neural network (ANN) is used to forecast wind speed. Then, the obtaining results are used considering forecasting uncertainty by the probabilistic concept of confidence interval. To reduce the fluctuations of wind power generation and improve the micro-grid performances, a smart energy storage system (ESS) module is used. For optimal management of the ESS, the comprehensive mathematical model with practical constraints is extracted. Finally, an efficient modified Bacterial Foraging Optimization (MBFO) module is proposed to solve the multi-objective problem. An interactive fuzzy satisfying method is also used to simulate the trade-off between the conflicting objectives (cost and emission). To evaluate the proposed

  10. A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids

    Directory of Open Access Journals (Sweden)

    Christos-Spyridon Karavas

    2017-11-01

    Full Text Available Energy management systems are essential and indispensable for the secure and optimal operation of autonomous polygeneration microgrids which include distributed energy technologies and multiple electrical loads. In this paper, a multi-agent decentralized energy management system was designed. In particular, the devices of the microgrid under study were controlled as interactive agents. The energy management problem was formulated here through the application of game theory, in order to model the set of strategies between two players/agents, as a non-cooperative power control game or a cooperative one, according to the level of the energy produced by the renewable energy sources and the energy stored in the battery bank, for the purpose of accomplishing optimal energy management and control of the microgrid operation. The Nash equilibrium was used to compromise the possible diverging goals of the agents by maximizing their preferences. The proposed energy management system was then compared with a multi-agent decentralized energy management system where all the agents were assumed to be cooperative and employed agent coordination through Fuzzy Cognitive Maps. The results obtained from this comparison, demonstrate that the application of game theory based control, in autonomous polygeneration microgrids, can ensure operational and financial benefits over known energy management approaches incorporating distributed intelligence.

  11. Liberalising energy markets: Cost management using measurement data

    International Nuclear Information System (INIS)

    Girsberger, H.

    2000-01-01

    This article looks at the various factors involved in assuring good cost management and customer relations in the liberalised energy market such as price levels, additional services and added value for the customer. The additional information required by the utilities to be able to implement such customer-oriented strategies is considered and ways of collecting and processing the data on energy consumption, customer profiles and trends are described. The further analysis of the data and the compilation of reports for management, marketing, engineering and quality assurance departments are discussed, as are the information technology and equipment interfaces required to do this

  12. Implementation of a demand elasticity model in the building energy management system

    NARCIS (Netherlands)

    Ożadowicz, A.; Grela, J.; Babar, M.

    2016-01-01

    Nowadays, crucial part of modern Building Automation and Control Systems (BACS) is electric energy management. An active demand side management is very important feature of a Building Energy Management Systems (BEMS) integrated within the BACS. Since demand value changes in time and depends on

  13. Online Energy Management System for Distributed Generators in a Grid-Connected Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2015-01-01

    A microgrid is an energy subsystem composed of generation units, energy storage, and loads that requires power management in order to supply the load properly according to defined objectives. This paper proposes an online energy management system for a storage based grid-connected microgrid...

  14. Energy Data Management (EDM) in a liberalised energy market

    International Nuclear Information System (INIS)

    Ulbricht, R.

    2004-01-01

    This article discusses the role of Energy Data Management (EDM) in a liberalised Swiss energy market in the light of increasing international dynamics in this area. The requirements placed on such EDM systems are reviewed and the changes necessary in the structures and processes of electricity supply organisations are discussed. A possible design for future software systems is presented. Such systems have to be flexible enough to cover various structural possibilities as Swiss legislation on the subject has not yet been passed. The handling of data on energy-flow balances when third-party power is transferred in shared mains systems is discussed and scheduling aspects of power generation and transmission are looked at. The billing of power to customers with a free choice of supplier is looked at, as is the situation involving utilities that supply not only electricity but gas, district heating and water too

  15. Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-06

    Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions. We develop a proof-of-concept behavioral HEMS controller and show by simulation on an example home energy system that it capable of making context-dependent tradeoffs between goals under challenging conditions.

  16. Integrated energy, air quality and greenhouse gas management plan

    International Nuclear Information System (INIS)

    2004-03-01

    This report outlines the measures that the Resort Municipality of Whistler has taken to become a sustainable community. In 2000, the Municipality adopted the Natural Step, a tool developed by international scientists to integrate ecological principles into the practices of communities, organizations and individuals. In 2001, the Municipality adopted a comprehensive sustainability plan. This report describes the efforts to manage energy, air quality, and greenhouse gases (GHG). More than 90 per cent of the common air contaminants that contribute to air quality problems in Whistler come from the combustion of fossil fuels. The community can reduce emissions of carbon monoxide, oxides of nitrogen, oxides of sulphur, volatile organic compounds, and particulate matter by managing energy and GHG emissions. This report is divided into several sections dealing with corporate and community energy use. It presents a community profile for Whistler, its energy and emissions inventory from 2000, and an integrated energy plan. An energy and emissions forecast for 2000 to 2020 was also included along with an implementation strategy for a sustainable energy future for Whistler. refs., tabs., figs

  17. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Tylock, Steven M.; Seager, Thomas P.; Snell, Jeff; Bennett, Erin R.; Sweet, Don

    2012-01-01

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  18. The waste originating from nuclear energy peaceful applications and its management

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1997-05-01

    This work presents the waste originating from nuclear energy and its management. It approaches the following main topics: nature and classification of the wastes; security requirements to the waste management; state of the art related to the wastes derivates of the uses of the nuclear energy; wastes in the fuel cycle; wastes of the industrial, medical and research and development applications; costs of the waste management

  19. Energy manager design for microgrids

    International Nuclear Information System (INIS)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency

  20. Annual report to Congress on Federal Government Energy Management and Conservation Programs

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report on Federal Energy Management for Fiscal year (FY) 1992 provides information on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet the statutory requirements of Title V, Part 3, of the National Energy Conservation Policy Act (NECPA), as amended, 42 U.S.C. 8251-8261, and Title VIII of NECPA, 42 U.S.C. 8287-8287b. This report also describes the energy conservation and management activities of the Federal Government under the authorization of section 381 of the Energy Policy and Conservation Act (EPCA), as amended, 42 U.S.C. 6361. Implementation activities undertaken during FY 1992 by the Federal agencies under Executive Order 12759 on Federal Energy Management are also described in this report.

  1. Application of an energy management system in combination with FMCS to high energy consuming IT industries of Taiwan

    International Nuclear Information System (INIS)

    Lee, Shin-Ku; Teng, Min-Cheng; Fan, Kuo-Shun; Yang, Kuan-Hsiung; Horng, Richard S.

    2011-01-01

    Research highlights: → A new FMCS architecture with an energy management system was developed. → The new coupling system was demonstrated feasible during in situ experiments. → A survey found that HVAC is the most energy intensive system in IT industries. → A 9.6% chiller efficiency increase and total 23.2% annual energy saving were reached. - Abstract: A commissioning unit with an energy management system (EMS) was developed to be used together with facility monitoring and control systems (FMCS). This paper describes the testing of the new coupling system, in which a detailed management program is embedded for real time control decision making. First, a survey was conducted to evaluate the current power consumption of the facility systems, and found that HVAC is the most energy intensive system. Then a case study was performed, while the plant was in operation, to demonstrate the feasibility of the new coupling system, and a 9.6% chiller efficiency increase and total 23.2% annual energy saving for the chillers were reached, by optimizing the part load ratio condition of chillers and pumps. The results from in situ experiments show that applying this energy management system to the IT industry is feasible. A better custom-made FMCS with EMS, and full scale testing to greatly increase the overall energy efficiency, is recommended.

  2. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  3. Research on the full life cycle management system of smart electric energy meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  4. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    OpenAIRE

    Bhagya Nathali Silva; Murad Khan; Kijun Han

    2018-01-01

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage...

  5. Systems approach to regional energy/environment management

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W K

    1980-08-01

    Energy and environmental systems have become a well-established component of national and regional planning and management. The University of Wisconsin, in collaboration with the International Institute for Applied Systems Analysis and other institutions, has over the past several years conducted a number of case studies in which a family of energy/environment models was developed and applied to the assessment of alternative policies. This linked set of models, which treats energy demand, energy supply, and environmental impacts, has provided long-term planning information to a spectrum of public and private institution in the regions studied. The philosophy has been to maintain the flexibility to handle rapid change with innovation. 17 references, 7 figures, 1 table.

  6. Recognizing 21. century citizenship: 1997 federal energy and water management award winners

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Energy is a luxury that no one can afford to waste, and many Federal government agencies are becoming increasingly aware of the importance of using energy wisely. Thoughtful use of energy resources is important, not only to meet agency goals, but because energy efficiency helps improve air quality. Sound facility management offers huge savings that affect the agency`s bottom line, the environment, and workplace quality. Hard work, innovation, and vision are characteristic of those who pursue energy efficiency. That is why the Department of Energy, Federal Energy Management Program (FEMP) is proud to salute the winners of the 1997 Federal Energy and Water Management Award. The 1997 winners represent the kind of 21st century thinking that will help achieve widespread Federal energy efficiency. In one year, the winners, through a combination of public and private partnerships, saved more than $100 million and 9.8 trillion Btu by actively identifying and implementing energy efficiency, water conservation, and renewable energy projects. The contributions of these individuals, small groups, and organizations are presented in this report.

  7. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  8. Formation of the priority directions of innovative strategic energy management

    Science.gov (United States)

    Mottaeva, Asiiat; Minnullina, Anna

    2017-10-01

    Article is devoted to the matter of the ensuring long-term potential of dynamic growth of the Russian economy, its sustainable development in which the special role is assigned to the energy industry. Inclusion of the stage of management of the human capital, which becomes one of priority levers in the field of management of the industrial enterprises, into the in structure of strategy of planning subsequently represents one of innovative steps at the heart of power management. In work the algorithm of the development of the key performance indicators of the human capital on the basis of stage-by-stage problem definition of energy saving, search of the centers of responsibility in energy consumption and quality control of the involved productions is offered in the article. The application of the offered innovative algorithm might promote the formation of high culture of energy saving and the decrease in the level of resistance to organizational changes.

  9. Energy and environmental management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.K. (Energy Auditing Agency Ltd., Milton Keynes (United Kingdom))

    1993-01-01

    The threat of global warming, environmental instability and the possible use of green or carbon taxes on fossil fuels has increased the need for energy efficiency. Energy Conservation is now recognised as one of the easiest and most cost-effective ways of limiting or reducing CO[sub 2] emissions. Large UK companies are now assessing how much CO[sub 2] they dissipate to the environment and reviewing strategies to reduce this either in response to consumer demand or as a corporate policy decision. Computer-based information systems already exist to monitor and report on fluctuations in energy consumption. These are called Monitoring and Targeting (M and T) systems. This paper explains what M and T systems are and how they are being extended to cover reporting on corporate fuel-based CO[sub 2] emissions to help provide an integrated energy and environmental-management information system. (author).

  10. A New Energy Management Technique for PV/Wind/Grid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Onur Ozdal Mengi

    2015-01-01

    Full Text Available An intelligent energy management system (IEMS for maintaining the energy sustainability in renewable energy systems (RES is introduced here. It consists of wind and photovoltaic (PV solar panels are established and used to test the proposed IEMS. Since the wind and solar sources are not reliable in terms of sustainability and power quality, a management system is required for supplying the load power demand. The power generated by RES is collected on a common DC bus as a renewable green power pool to be used for supplying power to loads. The renewable DC power bus is operated in a way that there is always a base power available for permanent loads. Then the additional power requirement is supplied from either wind or PV or both depending upon the availability of these power sources. The decision about operating these systems is given by an IEMS with fuzzy logic decision maker proposed in this study. Using the generated and required power information from the wind/PV and load sides, the fuzzy reasoning based IEMS determines the amount of power to be supplied from each or both sources. Besides, the IEMS tracks the maximum power operating point of the wind energy system.

  11. Managing post-therapy fatigue for cancer survivors using energy conservation training.

    Science.gov (United States)

    Yuen, Hon Keung; Mitcham, Maralynne; Morgan, Larissa

    2006-01-01

    This pilot study evaluated the effectiveness of energy conservation training to help post-therapy cancer survivors manage their fatigue. Twelve post-therapy cancer survivors were randomly assigned to an energy conservation training or usual care control (6 in each group). Participants in the intervention group received 1 to 2 hours of individual, face-to-face energy conservation training from an occupational therapist followed by once-a-week telephone monitoring sessions in the subsequent three weeks. Participants in the control group received standard care from their oncologist. Analysis of pre- and post-training data from the Piper Fatigue Scale (PFS) revealed significant reduction only in the sensory subscale of the PFS (Z = 2.21; p = 0.027) for the intervention group; but no significant reduction in the four subscale or total scores of the PFS for the control group. Findings demonstrate partial support for the effectiveness of energy conservation training in helping post-therapy cancer survivors manage their fatigue. Energy conservation training seems to be a viable strategy for managing cancer-related fatigue, though its efficacy is modest. Incorporating specific energy restoration strategies such as relaxation and meditation for future research may help advance the growing body of knowledge in symptom management for post-therapy cancer survivors.

  12. A Candidate Army Energy and Water Management Strategy

    National Research Council Canada - National Science Library

    Fournier, Donald F; Westervelt, Eileen T

    2004-01-01

    .... This work augments on-going energy and water management initiatives within the Army by developing a new candidate Army level strategy that responds to anticipated legislation; reflects current DOD and DA requirements, vision, and values in light of the current world situation; incorporates sound science and management principles; and organizes and focuses efforts into an integrated program.

  13. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, James [The Cadmus Group, Portland, OR (United States)

    2017-05-18

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizing continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).

  14. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Lars [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Smythe, Louisa [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Sarquilla, Lindsey [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Ferguson, Kelly [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States)

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  15. Energy management system based on standard 50001 in the company Feed Cienfuegos

    International Nuclear Information System (INIS)

    Monteagudo Yanes, José P.; Crespo Sánchez, Gustavo; Montesino Pérez, Milagros; Cruz Virosa, Ibis; Cabrera Sánchez, Jorge Luis

    2017-01-01

    The energy management in manufacturing of balanced feed requires the Company Feed Cienfuegos to have systems and processes that enable efficiency and quality in production, improve energy performance and increase their competitiveness. Technology of Total Efficient Energy Management (TTEEM) and Cuban Standard ISO 50001 that are promoted and researched by the Center for Studies of Energy and Environment (CEEMA), of the University of Cienfuegos and the necessity and possibility of this Company to improve energy management allowed undertaking this project. Getting and use of energy performance indicator against production and the energy base line for daily control of energy consumption allowed decreasing from 12.8 kWh/t on average, to values below 10 kWh/t for the same production levels (500t/day). This result represents the reduction of energy consumption in the order of 364,000 kWh/year and consequently 15% of the energy item costs. This result is equivalent in cost of generation to 120 tons of oil/year, which at current oil prices mean a savings of $ 6,000 USD/year. (author)

  16. The network-based energy management system for convenience stores

    Energy Technology Data Exchange (ETDEWEB)

    Wang, An-Ping; Hsu, Pau-Lo [Department of Electrical and Control Engineering, National Chiao-Tung University, 1001 Ta-Hsiue Road, Hsinchu City 310 (China)

    2008-07-01

    Convenience stores generally consume energy higher than other retailing merchants. As the problem of energy shortage becomes more serious during summer, almost all convenience stores sign a contract with power plants, which provides for fines if demand limiting occurs in Taiwan and many other countries. Therefore, a reliable and effective method to reduce their utility consumption is required for modern business and industry. This research integrates the remote sensors, the control network, and the embedded system technologies to construct a distributed energy management control system for dedicated convenience stores. Energy consumption can thus be reasonably managed with demand limits by measuring and analyzing the power consumption sources in four major subsystems of convenience stores, namely, (1) air-conditioning, (2) lighting, (3) heating, and (4) refrigeration. By applying the proposed demand prediction and control method, the demand limiting condition can be properly predicted, and the possible peak load can thus be eliminated via the network control mechanism. Moreover, by integrating the LonWork fieldbus and the WinCE operating system (OS), the proposed system has been successfully applied to a convenience store. The experimental results indicate that the proposed distributed energy management system suitably predicts the peak loading condition and successfully prevents its occurrence by switching the air-conditioning system without affecting the indoor temperature regulation. (author)

  17. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    Science.gov (United States)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  18. Prioritization of proposed waste management construction projects for the Waste Management program within the Department of Energy

    International Nuclear Information System (INIS)

    Johnson, J.V.

    1995-01-01

    A prioritization process is used to evaluate and rank proposed construction projects within the Department of Energy's Waste Management program. The process is used to determine which projects should proceed with conceptual design activities. The proposed construction projects are evaluated against a set of criteria which reflect Waste Management priorities. A management review team ranks and scores the projects thereby generating a prioritized list of projects. Despite decreasing budgets and changing political climates, the process has been a successful decision-aiding tool for selecting construction projects to carry out the Waste Management mission within the Department of Energy

  19. Energy management information systems - planning manual and tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    An Energy Management Information System (EMIS) provides relevant information that makes energy, performance visible to various levels of an organization, enabling individuals and departments to plan, make decisions and take effective action to manage energy. This manual has two objectives: 1. To enable companies to conduct EMIS audits and prepare EMIS implementation plans; 2. To provide companies with the tools to prepare a financial business case for EMIS implementation. This manual consists of four parts: 1. EMIS Audit is theoretical and provides the methodology to be used by outside or in-house engineers and consultants to do a thorough EMIS Audit. 2. Implementation Plan is to help industry do the work themselves. 3. Appendices is to help the user develop an EMIS Audit, gather data and score their company, prepare a conceptual and detailed design, as well as a business and financial plan for implementation.

  20. Rapid prototyping of energy management charging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ciulavu, Oana [Hella Electronics Romania, Timisoara (Romania); Starkmuth, Timo; Jesolowitz, Reinhard [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2010-07-01

    This paper presents an approach to develop charging strategies to support a vehicle energy management aiming for the reduction of CO{sub 2} emissions and decreased fuel consumption by using the Hardware-in-the-loop (HIL) environment. (orig.)

  1. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities

    Directory of Open Access Journals (Sweden)

    Beatrice Marchi

    2017-10-01

    Full Text Available Energy efficiency represents a key resource for economic and social development, providing substantial benefits to different stakeholders, ranging from the entities which develop energy efficient measures to everyone in society. In addition to cost savings, multiple benefits can be achieved by supporting a better alignment between energy issues and strategic business priorities: e.g., improved competitiveness, profitability, quality, etc. Thus, energy efficiency can be a strategic advantage, not just a marginal issue, for companies. However, most firms, especially small and medium enterprises (SMEs, face many problems and, in some cases, hostility when trying to effectively implement energy efficiency actions. The most dominant barriers are the access to capital and the lack of awareness (especially in terms of life cycle cost effects. The supply chain viewpoint represents one of the main opportunities for overcoming those barriers and improving energy performance even for weaker companies. Since the current literature on energy efficiency and practical approaches to ensure energy efficiency mainly focus on energy performance on a single-firm basis, this paper aims to provide a systematic review of papers on the integration of energy efficiency in supply chain design and management published in academic journal, thereby defining potential research streams to close the gaps in the literature. A number of literature reviews have been published focusing on specific aspects of sustainable or on green supply chain management; however, to the best of our knowledge, no review has focused on the energy efficiency issue. Firstly, the present paper shows how considering energy consumption in supply chain management can contribute to more energy-efficient processes from a systemic point of view. Then, the review methodology used is defined and the sampled papers are analyzed and categorized based on the different approaches they propose. From these

  2. Risk management of non-renewable energy systems

    CERN Document Server

    Verma, Ajit Kumar; Muruva, Hari Prasad

    2015-01-01

    This book describes the basic concepts of risk and reliability with detailed descriptions of the different levels of probabilistic safety assessment of nuclear power plants (both internal and external). The book also maximizes readers insights into time dependent risk analysis through several case studies, whilst risk management with respect to non renewable energy sources is also explained. With several advanced reactors utilizing the concept of passive systems, the reliability estimation of these systems are explained in detail with the book providing a reliability estimation of components through mechanistic model approach. This book is useful for advanced undergraduate and post graduate students in nuclear engineering, aerospace engineering, industrial engineering, reliability and safety engineering, systems engineering and applied probability and statistics. This book is also suitable for one-semester graduate courses on risk management of non renewable energy systems in all conventional engineering bran...

  3. Managing vital records in the Ghana Atomic Energy Commission

    International Nuclear Information System (INIS)

    Osei, Mary Mavis

    2004-05-01

    Several vital records can be found within the Ghana Atomic Energy Commission. Some of these records include confidential files on staff and general purpose files on staff, specialised subject files on IAEA, FAO, UN agencies etc, records on agreements from memorandum of understanding between the commission and other organisations, legislative instruments establishing the commission and its institutes and research publications. The study critically examined how these vital records at the Ghana Atomic Energy Commission were managed with the view of identifying problems and to propose actions for improvement. The specific objectives of the study was to examine methods of storage, security measures put in place to manage vital records, committment of management and staff to these measures, quality of records staff and vital records policy. Recommendations have been provided to help in the efficient and effective management of records in the commission. (A.B.)

  4. The GENiC architecture for integrated data centre energy management

    NARCIS (Netherlands)

    Pesch, D.; McGibney, A.; Sobonski, P.; Rea, S.; Scherer, Th.; Chen, L.; Engbersen, T.; Mehta, D.; O'Sullivan, B.; Pages, E.; Townley, J.; Kasinathan, Dh.; Torrens, J.I.; Zavrel, V.; Hensen, J.L.M.

    2015-01-01

    We present an architecture for integrated data centre energy management developed in the EC funded GENiC project. The architecture was devised to create a platform that can integrate functions for workload management, cooling, power management and control of heat recovery for future, highly

  5. Smart EV Energy Management System to Support Grid Services

    Science.gov (United States)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do

  6. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  7. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  8. Management of solar energy in microgrids using IoT-based dependable control

    OpenAIRE

    Phung, Manh Duong; De La Villefromoy, Michel; Ha, Quang

    2017-01-01

    Solar energy generation requires efficient monitoring and management in moving towards technologies for net-zero energy buildings. This paper presents a dependable control system based on the Internet of Things (IoT) to control and manage the energy flow of renewable energy collected by solar panels within a microgrid. Data for optimal control include not only measurements from local sensors but also meteorological information retrieved in real-time from online sources. For system fault toler...

  9. MANAGEMENT OF RENEWABLE ENERGY AND REGIONAL DEVELOPMENT: EUROPEAN EXPERIENCES AND STEPS FORWARD

    OpenAIRE

    Andreea Ileana Zamfir

    2011-01-01

    The issues of the renewable energy and regional development have become major priorities for public policymakers across the globe. Therefore, this study explores some European experiences and steps forward in the field of the management of renewable energy and regional development. Firstly, an overview of renewable energy issues in European regions is revealed, and secondly, some measures and actions for managing regional development of renewable energy in Romania taking into account the fina...

  10. A Novel Prosumer-Based Energy Sharing and Management (PESM Approach for Cooperative Demand Side Management (DSM in Smart Grid

    Directory of Open Access Journals (Sweden)

    Sohail Razzaq

    2016-10-01

    Full Text Available Increasing population and modern lifestyle have raised energy demands globally. Demand Side Management (DSM is one important tool used to manage energy demands. It employs an advanced power infrastructure along with bi-directional information flow among utilities and users in order to achieve a balanced load curve and minimize demand-supply mismatch. Traditionally, this involves shifting the electricity demand from peak hours to other times of the day in an optimized manner. Multiple users equipped with renewable resources work in coordination with each other in order to achieve mutually beneficial energy management. This, in turn, has generated the concept of cooperative DSM. Such users, called prosumers, consume and produce energy using renewable resources (solar, wind etc.. Prosumers with surplus energy sell to the grid as well as to other consumers. In this paper, a novel Prosumer-based Energy Sharing and Management (PESM scheme for cooperative DSM has been proposed. A simulation model has been developed for testing the proposed method. Different variations of the proposed methodology have been experimented with different criteria. The results show that the proposed energy sharing scheme achieves DSM purposes in a useful manner.

  11. Balancing energy and environment: The effect and perspective of management instruments in China

    International Nuclear Information System (INIS)

    Fang, Yiping; Zeng, Yong

    2007-01-01

    The rapid growth of Chinese economy has tremendously stimulated the expansion of energy consumption. The structure of energy consumption in China is featured with the coal domination. Air pollution is becoming increasingly severe. As a result, we are confronted with the extremely arduous task to balance energy consumption and environmental protection. In order to coordinate the relationship between energy consumption and environmental protection in a strategic way, this paper analyzes comprehensively the instruments, effects and perspectives of energy-related environmental management. Meanwhile, this paper illustrates the barriers and challenges facing the energy and energy-related environmental management in China, and suggests a priority strategy of management instrument, mainly composed of energy-saving, optimization of energy structure, promulgation of environmental standards, advance in environmental technologies, internalization of environmental costs, establishment of a public benefit fund and adoption of a Renewable Portfolio System. (author)

  12. NASA Earth Observations Informing Energy Management Decision Making

    Science.gov (United States)

    Eckman, Richard; Stackhouse, Paul

    2017-01-01

    The Energy Sector is experiencing increasing impacts from severe weather and shifting climatic trends, as well as facing a changing political climate, adding uncertainty for stakeholders as they make short- and long-term planning investments. Climate changes such as prolonged extreme heat and drought (leading to wildfire spread, for example), sea level rise, and extreme storms are changing the ways that utilities operate. Energy infrastructure located in coastal or flood-prone areas faces inundation risks, such as damage to energy facilities. The use of renewable energy resources is increasing, requiring more information about their intermittency and spatial patterns. In light of these challenges, public and private stakeholders have collaborated to identify potential data sources, tools, and programmatic ideas. For example, utilities across the country are using cutting-edge technology and data to plan for and adapt to these changes. In the Federal Government, NASA has invested in preliminary work to identify needs and opportunities for satellite data in energy sector application, and the Department of Energy has similarly brought together stakeholders to understand the landscape of climate vulnerability and resilience for utilities and others. However, have these efforts improved community-scale resilience and adaptation efforts? Further, some communities are more vulnerable to climate change and infrastructure impacts than others. This session has two goals. First, panelists seek to share existing and ongoing efforts related to energy management. Second, the session seeks to engage with attendees via group knowledge exchange to connect national energy management efforts to local practice for increased community resilience.

  13. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  14. Managing peak loads in energy grids: Comparative economic analysis

    International Nuclear Information System (INIS)

    Zhuk, A.; Zeigarnik, Yu.; Buzoverov, E.; Sheindlin, A.

    2016-01-01

    One of the key issues in modern energy technology is managing the imbalance between the generated power and the load, particularly during times of peak demand. The increasing use of renewable energy sources makes this problem even more acute. Various existing technologies, including stationary battery energy storage systems (BESS), can be employed to provide additional power during peak demand times. In the future, integration of on-board batteries of the growing fleet of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) into the grid can provide power during peak demand hours (vehicle-to-grid, or V2G technology). This work provides cost estimates of managing peak energy demands using traditional technologies, such as maneuverable power plants, conventional hydroelectric, pumped storage plants and peaker generators, as well as BESS and V2G technologies. The derived estimates provide both per kWh and kW year of energy supplied to the grid. The analysis demonstrates that the use of battery storage is economically justified for short peak demand periods of <1 h. For longer durations, the most suitable technology remains the use of maneuverable steam gas power plants, gas turbine,reciprocating gas engine peaker generators, conventional hydroelectric, pumped storage plants. - Highlights: • Cost of managing peak energy demand employing different technologies are estimated. • Traditional technologies, stationary battery storage and V2G are compared. • Battery storage is economically justified for peak demand periods of <1 h. • V2G appears to have better efficiency than stationary battery storage in low voltage power grids.

  15. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  16. Balancing energy strategies in electricity portfolio management

    International Nuclear Information System (INIS)

    Moeller, Christoph; Rachev, Svetlozar T.; Fabozzi, Frank J.

    2011-01-01

    Traditional management of electricity portfolios is focused on the day-ahead market and futures of longer maturity. Within limits, market participants can however also resort to the balancing energy market to close their positions. In this paper, we determine strategic positions in the balancing energy market and identify corresponding economic incentives in an analysis of the German balancing energy demand. We find that those strategies allow an economically optimal starting point for real-time balancing and create a marketplace for flexible capacity that is more open than alternative marketplaces. The strategies we proffer in this paper we believe will contribute to an effective functioning of the electricity market. (author)

  17. Intelligent battery energy management and control for vehicle-to-grid via cloud computing network

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Javadi, Bahman; Goscinski, Andrzej; Stojcevski, Alex; Bab-Hadiashar, Alireza

    2013-01-01

    Highlights: • The intelligent battery energy management substantially reduces the interactions of PEV with parking lots. • The intelligent battery energy management improves the energy efficiency. • The intelligent battery energy management predicts the road load demand for vehicles. - Abstract: Plug-in Electric Vehicles (PEVs) provide new opportunities to reduce fuel consumption and exhaust emission. PEVs need to draw and store energy from an electrical grid to supply propulsive energy for the vehicle. As a result, it is important to know when PEVs batteries are available for charging and discharging. Furthermore, battery energy management and control is imperative for PEVs as the vehicle operation and even the safety of passengers depend on the battery system. Thus, scheduling the grid power electricity with parking lots would be needed for efficient charging and discharging of PEV batteries. This paper aims to propose a new intelligent battery energy management and control scheduling service charging that utilize Cloud computing networks. The proposed intelligent vehicle-to-grid scheduling service offers the computational scalability required to make decisions necessary to allow PEVs battery energy management systems to operate efficiently when the number of PEVs and charging devices are large. Experimental analyses of the proposed scheduling service as compared to a traditional scheduling service are conducted through simulations. The results show that the proposed intelligent battery energy management scheduling service substantially reduces the required number of interactions of PEV with parking lots and grid as well as predicting the load demand calculated in advance with regards to their limitations. Also it shows that the intelligent scheduling service charging using Cloud computing network is more efficient than the traditional scheduling service network for battery energy management and control

  18. Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?

    NARCIS (Netherlands)

    Eid, C.; Bollinger, L.A.; Koirala, B.P.; Scholten, D.J.; Facchinetti, E.; Lilliestam, J.; Hakvoort, R.A.

    2016-01-01

    The growing penetration of distributed energy resources is opening up opportunities for local energy management (LEM) – the coordination of decentralized energy supply, storage, transport, conversion and consumption within a given geographical area. Because European electricity market liberalization

  19. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings.

    Science.gov (United States)

    Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M

    2017-12-05

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  20. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

    Directory of Open Access Journals (Sweden)

    Chinmaya Mahapatra

    2017-12-01

    Full Text Available Around the globe, innovation with integrating information and communication technologies (ICT with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  1. A distributed optimization approach to energy management for a heavy-duty truck

    NARCIS (Netherlands)

    Romijn, Constantijn; Donkers, Tijs; Weiland, Siep; Kessels, John

    2014-01-01

    Energy management systems (EMS) aim at minimizing the vehicle fuel consumption and tailpipe emissions under the wide range of driving conditions. Classical energy management systems for hybrid vehicles control the powersplit between the internal combustion engine (ICE) and the electric motor (EM)

  2. Energy Management in Four and Five Star Hotels in Algarve (Portugal

    Directory of Open Access Journals (Sweden)

    Joana Mendes

    2014-07-01

    Full Text Available Tourism is the sector of the global economy that has grown faster, in such way that the United Nations World Tourism Organization (UNWTO predicts a global average annual growth between 1995 and 2020, around 4.1%. This growth should contribute to a sustainable development and, be accompanied by environmental awareness of all stakeholders, and strategies of change pointing towards the preservation of environment, so as not to endanger the natural resources of future generations. Energy Management in tourism is the central theme of this research. The setting was 4 and 5 star hotels in Algarve, the most important tourist destination of Portugal. The main objectives of the study were to assess the current state of energy management in those hotels, understand the policies and strategies followed to optimize energy management, and analyze best practices. Results show a higher level of implementation of practices directly related to the optimization of energy than those related to reducing environmental impacts. In general, respondents consider that energy management is part of the concerns of those responsible for the hotels, the level of implementation of good practices in this area is high (78% and that both employees and tourists attach great importance to this issue.

  3. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chun-Yi [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-16

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access

  4. Operational energy management in the industrial production. Brief study; Betriebliches Energiemanagement in der industriellen Produktion. Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Hirzel, Simon; Sontag, Benjamin; Rohde, Clemens

    2011-09-15

    Increasing energy prices and raw material prices, an increased public interest in energy issues and new customer requirements result in a responsible utilization of energy as a resource. The energy management provides the opportunity to evaluate and assess energy flows. Measures for a better utilization of resources can be derived and implemented by means of an energy management system. Under this aspect, the authors of the contribution under consideration report on current issues and developments in the field of corporate energy management in industry as well as the future developments of energy management.

  5. The Methodology of Management for Long Term Energy Efficiency Development

    International Nuclear Information System (INIS)

    Zebergs, V.; Kehris, O.; Savickis, J.; Zeltins, N.

    2010-01-01

    The paper has shown that the Member States of the European Union (EU) do what they can in order to accelerate the raising of energy efficiency (EE). In each EU Member State investigations are conducted in the planning and management methods with a view to achieve faster and greater EE gains. In Latvia, which imports almost 70% of the total energy resources consumed, saving of each 'toe' is of great importance. Adaptation of the general policy assessment methodology is being studied for planning and management of the EE process. 12 EE management methods have been analysed and recommendations worked out for the introduction of several most topical methods.(author).

  6. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  7. Game-Theoretic Energy Management for Residential Users with Dischargeable Plug-in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available The plug-in electric vehicle (PEV has attracted more and more attention because of the energy crisis and environmental pollution, which is also the main shiftable load of the residential users’ demand side management (DSM system in the future smart grid (SG. In this paper, we employ game theory to provide an autonomous energy management system among residential users considering selling energy back to the utility company by discharging the PEV’s battery. By assuming all users are equipped with smart meters to execute automatic energy consumption scheduling (ECS and the energy company can adopt adequate pricing tariffs relating to time and level of energy usage, we formulate an energy management game, where the players are the residential users and the strategies are their daily schedules of household appliance use. We will show that the Nash equilibrium of the formulated energy management game can guarantee the global optimization in terms of minimizing the energy costs, where the depreciation cost of PEV’s battery because of discharging and selling energy back is also considered. Simulation results verify that the proposed game-theoretic approach can reduce the total energy cost and individual daily electricity payment. Moreover, since plug-in electric bicycles (PEBs are currently widely used in China, simulation results of residential users owing household appliances and bidirectional energy trading of PEBs are also provided and discussed.

  8. Caught in the middle: The role of the Facilities Manager in organisational energy use

    International Nuclear Information System (INIS)

    Goulden, Murray; Spence, Alexa

    2015-01-01

    This study analyses the role of the Facilities Manager [FM] as a key actor in organisational energy management. This builds on the idea that ‘middle’ agents in networks can be an important lever for socio-technical change. The study demonstrates the considerable impact the FM can have on workplace energy consumption, whilst identifying a number of factors that constrain their agency and capacity to act. These include demands to meet workforce expectations of comfort; a lack of support from senior management; and a shortage of resources. Underlying these challenges, the study identifies three different energy rationales – that is to say conceptual frameworks – which are deployed by different groups of organisational actors. The challenges of reconciling these at-times-contradictory rationales results in a picture of energy management which to the outsider can appear highly irrational. The paper concludes with a consideration of how policy makers can apply these insights to support energy reduction in workplaces. -- Highlights: •Facilities Managers are increasingly critical node in organisational use of energy. •Potential for FMs to make significant reductions to organisational energy use. •Their ability to do so is constrained by the organisational environment. •Three ‘energy rationales’ which the shape organisational context are identified. •Opportunities exist for policy makers to improve organisational energy management

  9. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  10. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  11. Privacy aware energy management for a smart home including a battery

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmueller, Christoph; Charzinski, Joachim [Hochschule der Medien, Stuttgart (Germany); Grecos, Christos [University of the West of Scotland (UWS) (United Kingdom)

    2012-07-01

    Besides many benefits the intelligent power grid smart grid implies new security and privacy risks. The energy usage profiles recorded by smart meters could be used harmfully against energy customers, as they may reveal information on personal or business activity involving electric devices. Transmission of energy usage data over the internet and data mining techniques increase scalability and potential damage of possible attacks. Besides known measures of IT security, local energy storage capable of changing load profiles with its charging and discharging activity could be a fundamental privacy improvement for electricity customers. This paper shows a management algorithm for stationary electric storage with respect to information contained in energy usage profiles of housing units. A software simulation benchmarks parameters of a battery management algorithm by reference to privacy aspects and energy cost. (orig.)

  12. A cognitive decision agent architecture for optimal energy management of microgrids

    International Nuclear Information System (INIS)

    Velik, Rosemarie; Nicolay, Pascal

    2014-01-01

    Highlights: • We propose an optimization approach for energy management in microgrids. • The optimizer emulates processes involved in human decision making. • Optimization objectives are energy self-consumption and financial gain maximization. • We gain improved optimization results in significantly reduced computation time. - Abstract: Via the integration of renewable energy and storage technologies, buildings have started to change from passive (electricity) consumers to active prosumer microgrids. Along with this development come a shift from centralized to distributed production and consumption models as well as discussions about the introduction of variable demand–supply-driven grid electricity prices. Together with upcoming ICT and automation technologies, these developments open space to a wide range of novel energy management and energy trading possibilities to optimally use available energy resources. However, what is considered as an optimal energy management and trading strategy heavily depends on the individual objectives and needs of a microgrid operator. Accordingly, elaborating the most suitable strategy for each particular system configuration and operator need can become quite a complex and time-consuming task, which can massively benefit from computational support. In this article, we introduce a bio-inspired cognitive decision agent architecture for optimized, goal-specific energy management in (interconnected) microgrids, which are additionally connected to the main electricity grid. For evaluating the performance of the architecture, a number of test cases are specified targeting objectives like local photovoltaic energy consumption maximization and financial gain maximization. Obtained outcomes are compared against a modified simulating annealing optimization approach in terms of objective achievement and computational effort. Results demonstrate that the cognitive decision agent architecture yields improved optimization results in

  13. A partnership approach to local energy management between European and Asian cities

    International Nuclear Information System (INIS)

    Webber, Peter; Pardo, Manuel; Conway, Stewart; Lack, Don; Ferreira, Vasco; Castanheira, Luis

    2005-01-01

    In Europe, several local areas have a number of years of experience with implementing local energy and greenhouse gas management policies, addressing national and international climate change targets. For example, in the city of Leicester in the UK, local strategies and measures have been implemented over several years to improve the energy efficiency of the Council's own operations and to manage city-wide energy consumption and greenhouse gas emissions. Recently, Leicester has participated in a European Commission funded project, which explores the potential for European local authorities and agencies to use their experience to work with a local area in a developing country where energy demand has been increasing rapidly, addressing climate change and sustainable development issues. The project has aimed to provide support at the local level with developing a framework to minimise energy-related contributions to climate change and air pollution, while giving quality of life benefits. It has used a partnership approach between Leicester, Vila Nova de Gaia municipality in Portugal, and a city in the Gujarat, India. The local level's role in each country in local energy management has been investigated. This has included a baseline assessment of local energy use, renewable energy and climate change issues in each partner city. The most locally relevant energy technologies have been selected and their implementation discussed in the local workshops involving a range of organisations and individuals, with actions being identified to improve the local management of energy, such as raising awareness and ensuring easy access to information

  14. Energy management: a program of energy conservation for the community college facility. [Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Various Authors

    1978-01-01

    This handbook developes helps for assessing and improving the energy efficiency of the community-college facility. The TEEM approach (Total Educational Energy Management) is a labor-intensive approach which requires the commitment and participation of all segments of the college community. The TEEM program presented here defines a series of tasks selected, ordered, and implemented in such a way as to achieve two basic objectives: (1) reducing campus energy requirements, and (2) meeting those reduced energy requirements more efficiently without adversely affecting the quality of educational programs. This guide to large-scale energy conservation on college campuses includes step-by-step procedures for establishing a program task force, defining specific tasks, and assigning responsibilities. Action plans are developed, energy consumption monitored, goals set, and conservation measures implemented. A series of appendices provides more detailed information, charts, and worksheets related to all aspects of energy use. The TEEM program provides the basic structure for achieving a significant reduction in campus energy costs.

  15. Prioritization of manufacturing sectors in Serbia for energy management improvement – AHP method

    International Nuclear Information System (INIS)

    Jovanović, Bojana; Filipović, Jovan; Bakić, Vukman

    2015-01-01

    Highlights: • We used AHP method to prioritize manufacturing sectors in Serbia. • Priorities for energy management improvement according to five criteria. • Rank 1 – “Manufacture of food products”. • Rank 2 – “Manufacture of motor vehicles, trailers and semi-trailers”. • Rank 3 – “Manufacture of other non-metallic mineral products”. - Abstract: Manufacturing, which is destined to play the most significant role in the reindustrialization of Serbia is also one of the largest energy consumers and environmental polluters. In accordance with this, a large number of energy and environment management initiatives have been implemented over the years. In developed countries, these initiatives are at an advanced level, but not in Serbia. A group of manufacturers in Serbia has recognized the significance of the environmental initiatives implementation, but the interest in energy management improvement has remained low. Although these initiatives can be used to achieve cost reduction in industry, not all the manufacturing sectors equally value the importance of energy management improvement. Among all the manufacturing sectors, it is necessary to prioritize those with the potentials for energy management improvement, which can be done using different methods. In this paper, the AHP (Analytic Hierarchy Process) method was used to prioritize manufacturing sectors in Serbia in the area of energy management improvement. Using a created AHP questionnaires criteria weights were selected. These questionnaires were completed by the experts from the Serbian Chamber of Commerce and Industry, providing us with the opportunity to evaluate the Serbian manufacturing sectors based on the real life data. The results of the AHP method, which was used as the prioritization instrument, and their analysis are presented in the paper. As a part of a wider study, aimed at the improvement of the energy management in Serbia, the three manufacturing sectors with the highest

  16. Energy efficiency - The struggle for load management is raging. The French Riviera redoubles savings

    International Nuclear Information System (INIS)

    Moragues, Manuel; Barla, Jean-Christophe

    2014-01-01

    A first article discusses the debate initiated by a decree on load management associated with the French Brottes law on energy. Load management is the possibility for consumers to reduce their consumption at peak hours. Electricity producers and suppliers are of course against, whereas new actors (load managers or aggregators) are for. The issue is then to determine who will pay this managed (and not consumed) energy. The article also evokes a controversy about the Brottes law which creates a bonus to subsidy load management, and comments the development of this load management market and its legal framework. A second article describes actions undertaken by industries of the French Riviera to manage their energy consumption

  17. Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Xia

    2015-10-01

    Full Text Available The installation of stationary super-capacitor energy storage system (ESS in metro systems can recycle the vehicle braking energy and improve the pantograph voltage profile. This paper aims to optimize the energy management, location, and size of stationary super-capacitor ESSes simultaneously and obtain the best economic efficiency and voltage profile of metro systems. Firstly, the simulation platform of an urban rail power supply system, which includes trains and super-capacitor energy storage systems, is established. Then, two evaluation functions from the perspectives of economic efficiency and voltage drop compensation are put forward. Ultimately, a novel optimization method that combines genetic algorithms and a simulation platform of urban rail power supply system is proposed, which can obtain the best energy management strategy, location, and size for ESSes simultaneously. With actual parameters of a Chinese metro line applied in the simulation comparison, certain optimal scheme of ESSes’ energy management strategy, location, and size obtained by a novel optimization method can achieve much better performance of metro systems from the perspectives of two evaluation functions. The simulation result shows that with the increase of weight coefficient, the optimal energy management strategy, locations and size of ESSes appear certain regularities, and the best compromise between economic efficiency and voltage drop compensation can be obtained by a novel optimization method, which can provide a valuable reference to subway company.

  18. Look-Ahead Energy Management of a Grid-Connected Residential PV System with Energy Storage under Time-Based Rate Programs

    Directory of Open Access Journals (Sweden)

    Kyeon Hur

    2012-04-01

    Full Text Available This paper presents look-ahead energy management system for a grid-connected residential photovoltaic (PV system with battery under critical peak pricing for electricity, enabling effective and proactive participation of consumers in the Smart Grid’s demand response. In the proposed system, the PV is the primary energy source with the battery for storing (or retrieving excessive (or stored energy to pursue the lowest possible electricity bill but it is grid-tied to secure electric power delivery. Premise energy management scheme with an accurate yet practical load forecasting capability based on a Kalman filter is designed to increase the predictability in controlling the power flows among these power system components and the controllable electric appliances in the premise. The case studies with various operating scenarios demonstrate the validity of the proposed system and significant cost savings through operating the energy management scheme.

  19. Formal validation of supervisory energy management systems for microgrids

    DEFF Research Database (Denmark)

    Sugumar, Gayathri; Selvamuthukumaran, R.; Dragicevic, T.

    2017-01-01

    techniques are available in the literature to monitor and control the energy flows among distributed RES in MGs, formal verification of those techniques was not proposed yet. The emphasis of this paper is to design and validate energy management system for a MG which consists of a solar photovoltaic (PV...

  20. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    Science.gov (United States)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  1. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Energy Management strategies for Smart Home Regarding Uncertainties: State of the art, Trends, and Challenges

    DEFF Research Database (Denmark)

    Yousefi, Mojtaba; Hajizadeh, Amin; N. Soltani, Mohsen

    2018-01-01

    The advent of Smart grid and high-energy demand for electricity has provided new opportunities for energy management systems (EMSs) in a smart home (SH). Energy management strategies play a key role in performance and economy of smart homes integrating renewable energy resources, Heat Pumps (HP......), and Plug-in Electrical Vehicle (PEV) energy storages. This paper presents a critical review and analysis of different energy management strategies for SH to handle the uncertainties involved in renewable energy resources, home load demands, PEV charging requirements, and household comfort. In addition...

  3. Energy Management strategies for Smart Home Regarding Uncertainties: State of the art, Trends, and Challenges

    DEFF Research Database (Denmark)

    Yousefi, Mojtaba; Hajizadeh, Amin; N. Soltani, Mohsen

    2018-01-01

    The advent of Smart grid and high-energy demand for electricity has provided new opportunities for energy management systems (EMSs) in a smart home (SH). Energy management strategies play a key role in performance and economy of smart homes integrating renewable energy resources, Heat Pumps (HP......), and Plug-in Electrical Vehicle (PEV) energy storages. This paper presents a critical review and analysis of different energy management strategies for SH to handle the uncertainties involved in renewable energy resources, home load demands, PEV charging requirements, and household comfort. In addition......, the present paper provides a comprehensive study of work on EMS, with a focus on stochastic modeling approaches and their effect on SH operations and outcomes. This review of different stochastic energy management strategies will be entirely helpful for SH development....

  4. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  5. Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Pablo Gabriel Rullo

    2018-05-01

    Full Text Available Renewable energy sources have significant advantages both from the environmental and the economic point of view. Additionally, renewable energy sources can contribute significantly to the development of isolated areas that currently have no connection to the electricity supply network. In order to make efficient use of these energy sources, it is necessary to develop appropriate energy management strategies. This work presents an energy management strategy for an isolated hybrid renewable energy system with hydrogen production from bioethanol reforming. The system is based on wind-solar energy, batteries and a bioethanol reformer, which produces hydrogen to feed a fuel cell system. Bioethanol can contribute to the development of isolated areas with surplus agricultural production, which can be used to produce bioethanol. The energy management strategy takes the form of a state machine and tries to maximize autonomy time while minimizing recharging time. The proposed rule-based strategy has been validated both by simulation and experimentally in a scale laboratory station. Both tests have shown the viability of the proposed strategy complying with the specifications imposed and a good agreement between experimental and simulation results.

  6. Ant Colony Optimization Algorithm to Dynamic Energy Management in Cloud Data Center

    Directory of Open Access Journals (Sweden)

    Shanchen Pang

    2017-01-01

    Full Text Available With the wide deployment of cloud computing data centers, the problems of power consumption have become increasingly prominent. The dynamic energy management problem in pursuit of energy-efficiency in cloud data centers is investigated. Specifically, a dynamic energy management system model for cloud data centers is built, and this system is composed of DVS Management Module, Load Balancing Module, and Task Scheduling Module. According to Task Scheduling Module, the scheduling process is analyzed by Stochastic Petri Net, and a task-oriented resource allocation method (LET-ACO is proposed, which optimizes the running time of the system and the energy consumption by scheduling tasks. Simulation studies confirm the effectiveness of the proposed system model. And the simulation results also show that, compared to ACO, Min-Min, and RR scheduling strategy, the proposed LET-ACO method can save up to 28%, 31%, and 40% energy consumption while meeting performance constraints.

  7. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    International Nuclear Information System (INIS)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants

  8. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  9. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    Directory of Open Access Journals (Sweden)

    Giacomo Canciello

    2017-01-01

    Full Text Available A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like are normally used for the rectification of the generator voltage to be used to supply a high-voltage DC bus. The regulation is obtained by acting on a DC/DC converter that imposes the field voltage of the exciter. In this paper, the field voltage is fed to the generator windings by using a second-order sliding mode controller, resulting into a stable, robust (against disturbances action and a fast convergence to the desired reference. By using this strategy, an energy management strategy is proposed that dynamically changes the voltage set point, in order to intelligently transfer power between two voltage busses. Detailed simulation results are provided in order to show the effectiveness of the proposed energy management strategy in different scenarios.

  10. Decision support tools for advanced energy management

    International Nuclear Information System (INIS)

    Marik, Karel; Schindler, Zdenek; Stluka, Petr

    2008-01-01

    Rising fuel costs boost energy prices, which is a driving force for improving efficiency of operation of any energy generation facility. This paper focuses on enhancing the operation of distributed integrated energy systems (IES), system that bring together all forms of cooling, heating and power (CCHP) technologies. Described methodology can be applied in power generation and district heating companies, as well as in small-scale systems that supply multiple types of utilities to consumers in industrial, commercial, residential and governmental spheres. Dispatching of such system in an optimal way needs to assess large number of production and purchasing schemes in conditions of continually changing market and variable utility demands influenced by many external factors, very often by weather conditions. The paper describes a combination of forecasting and optimization methods that supports effective decisions in IES system management. The forecaster generates the future most probable utility demand several hours or days ahead, derived from the past energy consumer behaviour. The optimizer generates economically most efficient operating schedule for the IES system that matches these forecasted energy demands and respects expected purchased energy prices. (author)

  11. Manage your energy, not your time.

    Science.gov (United States)

    Schwartz, Tony

    2007-10-01

    As the demands of the workplace keep rising, many people respond by putting in ever longer hours, which inevitably leads to burnout that costs both the organization and the employee. Meanwhile, people take for granted what fuels their capacity to work--their energy. Increasing that capacity is the best way to get more done faster and better. Time is a finite resource, but energy is different. It has four wellsprings--the body, emotions, mind, and spirit--and in each, it can be systematically expanded and renewed. In this article, Schwartz, founder of the Energy Project, describes how to establish rituals that will build energy in the four key dimensions. For instance, harnessing the body's ultradian rhythms by taking intermittent breaks restores physical energy. Rejecting the role of a victim and instead viewing events through three hopeful lenses defuses energy-draining negative emotions. Avoiding the constant distractions that technology has introduced increases mental energy. And participating in activities that give you a sense of meaning and purpose boosts the energy of the spirit. The new workday rituals succeed only if leaders support their adoption, but when that happens, the results can be powerful. A group of Wachovia Bank employees who went through an energy management program outperformed a control group on important financial metrics like loans generated, and they reported substantially improved customer relationships, productivity, and personal satisfaction. These findings corroborated anecdotal evidence gathered about the effectiveness of this approach at other companies, including Ernst & Young, Sony, and Deutsche Bank. When organizations invest in all dimensions of their employees' lives, individuals respond by bringing all their energy wholeheartedly to work -and both companies and their people grow in value.

  12. Kinetic energy management in road traffic injury prevention: a call for action

    Directory of Open Access Journals (Sweden)

    Davoud Khorasani-Zavareh

    2015-01-01

    Full Text Available Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy. The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety.

  13. Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS

    Directory of Open Access Journals (Sweden)

    Iker Laskurain

    2017-11-01

    Full Text Available The adoption of Energy Management Systems (EnMSs based on international standards has gained momentum since the ISO 50001 standard was launched in 2011. Before that, the potential to improve the energy management with Environmental Management Systems (EMSs based on ISO 14001 and EMAS was identified in the literature. However, no in-depth analysis reported in the literature has explored this claim. The need for research is now even more evident with the development of new versions of the standards for environmental management―ISO 14001:2015 and EMAS III. Since many companies that already have a certified EMSs might be uncertain whether to adopt an ISO 50001 based EnMSs, the present work aims to shed light on the contribution of ISO 14001:2015 and EMAS III to energy management. Furthermore, the work summarizes the results of an empirical exploratory study carried out in eight Spanish organizations, four with an EMS implemented and certified based on ISO 14001:2015 and four more with an EMS registered to EMAS III. The findings show that both ISO14001 and EMAS certified organizations carry out energy management practices, even though they have no formal EnMSs implemented. Implications for managers and policy makers are discussed, together with avenues for further research.

  14. A Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ainstworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-05

    Presentation for NAPS 2015 associated with conference publication CP-64392. Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions.

  15. An energy security management model using quality function deployment and system dynamics

    International Nuclear Information System (INIS)

    Shin, Juneseuk; Shin, Wan-Seon; Lee, Changyong

    2013-01-01

    An energy security management model using quality function deployment (QFD) and system dynamics (SD) is suggested for application in public policymaking in developing economies. Through QFD, experts are guided toward identifying key energy security components, including indicators and policies, and in making these components consistent, focused, and customized for a particular country. Using these components as inputs, we construct an intermediate complex system dynamics model with a minimal number of crucial interactions. Key policies are simulated and evaluated in terms of the improvement of key indicators. Even with little data, our approach provides a coherent, useful, and customized energy security management model to help policymakers more effectively manage national energy security. To demonstrate its advantages, the model is applied to the Korean gas sector as an example. - Highlights: ► We suggest an energy security management model for developing economies. ► We identify a consistent set of key components, indicators and policies by using QFD. ► A coherent and practical system dynamics model based on QFD's output is constructed. ► The model is applied to the Korean gas sector as an example

  16. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  17. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  18. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  19. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Science.gov (United States)

    2010-10-01

    ..., Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6... FEDERAL ENVIRONMENTAL, ENERGY, AND TRANSPORTATION MANAGEMENT (OCT 2010) Since this contract involves... MANAGEMENT AND OPERATING CONTRACTS Solicitation Provisions and Contract Clauses for Management and Operating...

  20. Energy management in production: A novel method to develop key performance indicators for improving energy efficiency

    International Nuclear Information System (INIS)

    May, Gökan; Barletta, Ilaria; Stahl, Bojan; Taisch, Marco

    2015-01-01

    Highlights: • We propose a 7-step methodology to develop firm-tailored energy-related KPIs (e-KPIs). • We provide a practical guide for companies to identify their most important e-KPIs. • e-KPIs support identification of energy efficiency improvement areas in production. • The method employs an action plan for achieving energy saving targets. • The paper strengthens theoretical base for energy-based decision making in manufacturing. - Abstract: Measuring energy efficiency performance of equipments, processes and factories is the first step to effective energy management in production. Thus, enabled energy-related information allows the assessment of the progress of manufacturing companies toward their energy efficiency goals. In that respect, the study addresses this challenge where current industrial approaches lack the means and appropriate performance indicators to compare energy-use profiles of machines and processes, and for the comparison of their energy efficiency performance to that of competitors’. Focusing on this challenge, the main objective of the paper is to present a method which supports manufacturing companies in the development of energy-based performance indicators. For this purpose, we provide a 7-step method to develop production-tailored and energy-related key performance indicators (e-KPIs). These indicators allow the interpretation of cause-effect relationships and therefore support companies in their operative decision-making process. Consequently, the proposed method supports the identification of weaknesses and areas for energy efficiency improvements related to the management of production and operations. The study therefore aims to strengthen the theoretical base necessary to support energy-based decision making in manufacturing industries

  1. Robust Energy Hub Management Using Information Gap Decision Theory

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper proposes a robust optimization framework for energy hub management. It is well known that the operation of energy systems can be negatively affected by uncertain parameters, such as stochastic load demand or generation. In this regard, it is of high significance to propose efficient...... tools in order to deal with uncertainties and to provide reliable operating conditions. On a broader scale, an energy hub includes diverse energy sources for supplying both electrical load and heating/cooling demands with stochastic behaviors. Therefore, this paper utilizes the Information Decision Gap...

  2. Management of a power system based on renewable energy

    Directory of Open Access Journals (Sweden)

    Ronay Karoly

    2012-06-01

    Full Text Available This article main purpose is to highlight the main advantage of the hardware and software implementation for an energy management system based on renewable energy sources. By using implemented and dedicated hardware and software the evolution of energy production and consumption can be monitored. The advantages of such system are highlighted by the results obtained from experimental simulations. An experimental model for the power system based on renewable energy sources was implemented, where the actual status of the system in different situations when the equipments change their own statuses can be shown.

  3. Hourly energy management for grid-connected wind-hydrogen systems

    International Nuclear Information System (INIS)

    Bernal-Agustin, Jose L.; Dufo-Lopez, Rodolfo

    2008-01-01

    This paper is a complete technical-economic analysis of the hourly energy management of the energy generated in wind-hydrogen systems. Wind power generation depends on the unpredictable nature of the wind. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will be necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve, consisting of the generation of hydrogen and storing it in a hydrogen tank during off-peak (low demand) hours, while during the rest of the hours (peak hours, high demand) the stored hydrogen can be used to generate electricity. After revising the results obtained in this paper, for the current values of efficiency of the electricity-hydrogen-electricity conversion (approximately 30%) and due to the high cost of the hydrogen components, for a wind-hydrogen system to be economically viable the price of the sale of the energy generated by the fuel cell would be very high (approximately 171 cEUR/kWh). (author)

  4. Characterisation, control, and energy management of electrified turbocharged diesel engines

    International Nuclear Information System (INIS)

    Zhao, Dezong; Winward, Edward; Yang, Zhijia; Stobart, Richard; Steffen, Thomas

    2017-01-01

    Highlights: • A real-time energy management framework for electrified engines is proposed. • A multi-variable robust controller is designed. • Characterisation on the air system of electrified diesel engines is given. • Reliable for engine downsizing because of the promising transient performance. - Abstract: The electrification of engine components offers significant opportunities for fuel efficiency improvements. The electrified turbocharger is one of the most attractive options since it recovers part of the engine exhaust gas mechanical energy to assist boosting. Therefore, the engine can be downsized through improved transient responsiveness. In the electrified turbocharger, an electric machine is mounted on the turbine shaft and changes the air system dynamics, so characterisation of the new layout is essential. A systematic control solution is required to manage energy flows in the hybrid system. In this paper, a framework for characterisation, control, and energy management for an electrified turbocharged diesel engine is proposed. The impacts of the electric machine on fuel economy and air system variables are analysed. Based on the characterisation, a two-level control structure is proposed. A real-time energy management strategy is employed as the supervisory level controller to generate the optimal values of critical variables, while a model-based multi-variable controller is designed as the low level controller to track the values. The two controllers work together in a cascade to address both fuel economy optimisation and battery state-of-charge maintenance. The proposed control strategy is validated on a high fidelity physical engine model. The tracking performance shows the proposed framework is a promising solution in regulating the behavior of electrified engines.

  5. The Energy Savings and Environmental Benefits for Small and Medium Enterprises by Cloud Energy Management System

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Tseng

    2016-06-01

    Full Text Available Small and medium enterprises (SMES play an important role in Taiwan’s economy. The reduction of energy costs and carbon dioxide (CO2 emissions are critical to preserving the environment. This paper uses the experimental results from 65 sites, gathered over two years since 2012, to determine how the integration of Internet communication, cloud computing technologies and a cloud energy management service (cloud EMS can reduce energy consumption by cost-effective means. The EMS has three levels: infrastructure as a service (IaaS, platform as a service (PaaS and software as a service (SaaS. Working jointly with ChungHwa Telecom, Taiwan’s leading telecom service provider, data from detection devices, control devices, air-conditioning and lighting systems are all uploaded to a cloud EMS platform, to give a so called intelligent energy management network application service platform (IEN-ASP. Various energy saving management functions are developed using this platform: (1 air conditioning optimization; (2 lighting system optimization; (3 scheduling control; (4 power billing control and (5 occupancy detection and timing control. Using the international performance measurement and verification protocol (IPMVP, the energy used at the test sites, before and after the use of the IEN-ASP, are compared to calculate the energy saved. The experimental results show that there is an average energy saving of 5724 kWh per year, which represents a saving ratio of 5.84%. This translates to a total reduction in CO2 emissions of 9,926,829 kg per year. Using the data collected, a regression model is used to demonstrate the correlation between the power that is consumed, the energy that is saved and the area of the sites. Another interesting result is that, if the experimental sites are maintained by experienced electricians or other personnel and EMS protocols are followed, the energy saving can be as great as 6.59%.

  6. Smart Energy Management for Households

    Directory of Open Access Journals (Sweden)

    Sonja van Dam

    2013-06-01

    Full Text Available The aim of the research presented in this thesis was to infer design-related insights and guidelines to improve the use and effectiveness of home energy management systems (HEMS. This was done through an empirical evaluation of the longitudinal effectiveness of these devices and an exploration of factors that influence their use and effectiveness. Three case studies executed with three different HEMS in households, a life cycle assessment (LCA on those three HEMS, as well as a reflection on the challenges of both researching and implementing HEMS in existing housing gave a comprehensive picture of the opportunities and barriers for HEMS. The research revealed five typical use patterns that emerged amongst households. It also revealed average energy savings of 7.8%, which however decreased in the follow-up that was conducted, and factors that may influence the use and effectiveness of HEMS. Nonetheless, the LCA calculations divulged that the HEMS can achieve net energy savings when taking their embedded energy into account. Problem statement The goal of reducing the energy consumption of existing housing formed the basis for this research. There are many facets to this energy consumption, including the characteristics of the house, its appliances, and the behaviours of its inhabitants. Because of this complexity, addressing only one of these facets is not effective in substantially reducing the overall energy consumption of households. This called for an interdisciplinary approach, merging the domains of design for sustainability, sustainable housing transformation and environmental psychology. In this thesis, HEMS were chosen as the intervention to address the various elements that contribute to household energy consumption, thereby functioning as a pivot. By giving feedback and/or helping manage consumption they can assist households in changing their behaviour and help save energy. However, in analysing literature on HEMS, four critique points

  7. Energy efficiency drivers in Europe. Regulations and other instruments open new horizons for energy management in buildings

    International Nuclear Information System (INIS)

    Obara, H.

    2010-01-01

    Curbing climate change and global warming will be one of the major challenges of the 21. Century.The very survival of our society could be at stake. Greenhouse gases including CO 2 have been identified as the culprits and the vast majority of industrialized countries have agreed to cut emissions drastically over coming decades. Buildings account for nearly 40% of the energy used in most countries and are responsible for a similar level of global CO 2 emissions. Energy efficiency in buildings is therefore one of the keys to reducing green-house emissions. The main driving force to achieve the ambitious goals that have been set for the reduction of greenhouse gases will come from energy efficiency regulations, building codes, standards, labels, certifications, obligations and incentives, all of which have been multiplying steadily over recent decades. International institutions are rolling out energy efficiency directives and standards that set minimum requirements for buildings.They are gradually being taken into account in national regulations and building codes. Today, most energy efficiency regulations concern building design. They hardly touch on Energy Management aspects that can generate major operational gains with relatively low investments and quick payback. Beyond regulations that focus on minimum requirements, environmental performance labels use building rating criteria that can take energy efficiency much further.They offer a practical way of assigning value to energy efficiency and in this way represent powerful market drivers. Moreover, the important benefits of Energy Management can be easily integrated in the rating criteria of these far-reaching schemes. Indeed, through effective building measurement, monitoring and control systems, Energy Management is one of the keys to rapidly reducing carbon emissions and achieving climate change targets. (author)

  8. Demand Response Technology Readiness Levels for Energy Management in Blocks of Buildings

    Directory of Open Access Journals (Sweden)

    Tracey Crosbie

    2018-01-01

    Full Text Available Fossil fuels deliver most of the flexibility in contemporary electricity systems. The pressing need to reduce CO2 emissions requires new methods to provide this flexibility. Demand response (DR offers consumers a significant role in the delivery of flexibility by reducing or shifting their electricity usage during periods of stress or constraint. Blocks of buildings offer more flexibility in the timing and use of energy than single buildings, however, and a lack of relevant scalable ICT tools hampers DR in blocks of buildings. To ameliorate this problem, a current innovation project called “Demand Response in Blocks of Buildings” (DR-BoB: www.dr-bob.eu has integrated existing technologies into a scalable cloud-based solution for DR in blocks of buildings. The degree to which the DR-BoB energy management solution can increase the ability of any given site to participate in DR is dependent upon its current energy systems, i.e., the energy metering, the telemetry and control technologies in building management systems, and the existence/capacity of local power generation and storage plants. To encourage the owners and managers of blocks of buildings to participate in DR, a method of assessing and validating the technological readiness to participate in DR energy management solutions at any given site is required. This paper describes the DR-BoB energy management solution and outlines what we have called the demand response technology readiness levels (DRTRLs for the implementation of such a solution in blocks of buildings.

  9. Defining an Inteligent Information System for Monitoring and Verification of Energy Management in Cities

    International Nuclear Information System (INIS)

    Tomsic, Z.; Gasic, I.; Lugaric, L.; Cacic, G.

    2011-01-01

    Improving the efficiency of energy consumption (EC) is a central theme of any energy policy. Improved energy efficiency (EE) meets three energy policy goals: security of supply, competitiveness and protection of the environment. Systematic energy management is a body of knowledge and skills based on an organizational structure that links people with assigned responsibilities, efficiency monitoring procedures and continuous measurement and improvement of energy efficiency. This body of knowledge must be supported by appropriate ICT for gathering, processing and disseminating data on EC, EE targets and information. Energy Management Information System - EMIS is a web application for monitoring and analysis of energy and water consumption in public buildings and represents inevitable tool for systematic energy management. EMIS software tool connects processes of gathering data on buildings and their energy consumption, monitoring consumption indicators, setting energy efficiency targets and reporting energy and water consumption savings. Project Intelligent Information System for Monitoring and Verification of Energy Management in Cities (ISEMIC) will distribute EMIS software tool in region (BiH, Slovenia and Serbia). This project also has a goal of improving a software system for utilizing EC measurements, both from smart meters and traditional measurement devices and subsequent data processing and analysis to facilitate, upgrade and eventually replace the currently used energy management system for public buildings in Croatia. ISEMIC will enable use of smart meters within an energy management for the first time in BiH, Slovenia and Serbia, along with an analytical part which enables intelligent estimation of energy consumption based on multiple criteria. EMIS/ISEMIC will enable: Continuous updating and maintenance of a database of information on buildings; Continuous entry and monitoring of consumption data for all energents and water in buildings; Calculation of

  10. Public policy analysis of energy efficiency and load management in changing electricity businesses

    International Nuclear Information System (INIS)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-01-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted

  11. Public policy analysis of energy efficiency and load management in changing electricity business

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Energy Analysis Dept.; Hamrin, J. [Centre for Resource Solutions (United States); Eyre, N. [Energy Savings Trust (United Kingdom); Crossley, D.; Maloney, M.; Watt, G. [Energy Futures Australia Pty Ltd (Australia)

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted. (author)

  12. Public policy analysis of energy efficiency and load management in changing electricity businesses

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted.

  13. Energy management in wooden industry; Gestao energetica em industrias madeireiras

    Energy Technology Data Exchange (ETDEWEB)

    Cagnon, Jose Angelo; Valarelli, Ivaldo de Domenico; Rodrigues, Ricardo Martini [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: jacagnon@feb.unesp.br, ivaldo@feb.unesp.br, martini@feb.unesp.br

    2006-07-01

    The objective of this work is the use of a methodology developed for the evaluation of the energy performance in wooden plants, aiming the application of a energy management program, for products and processes improvement, observing a reliable technical and economic implementation. (author)

  14. Systems approach in energy management

    International Nuclear Information System (INIS)

    Dutta-Choudhury, K.

    1993-01-01

    Several years ago when the author was working in the chemicals division of a paper company in Instrumentation and Controls, one experience had a lasting impact on his work approach which is systems approach. The maintenance manager told the author that a very important piece of boiler instrument of the power plant had broken down and delivery of the replacement needed to be expedited. The instrument was ordered over the phone in another city. The purchase order was personally delivered at the supplier's office and arrangements were made so the instrument was put on the next flight. A week later the maintenance manager indicated that the particular instrument still had not arrived in the plant and he could not run the power plant. Thus the company incurred substantial losses. Further inquiries showed that the instrument did indeed arrive at the plant stores on time. But, in the absence of any instructions thereon, the instrument was not delivered to the power plant. The sense of urgency was lost in the existing delivery process. In other words, the process or system failed. The whole process from requisitioning to delivery of ordered items was analyzed and corrective procedures were incorporated to prevent future repetitions. This brings up the subject of systems approach in engineering management in general and energy management in particular. This involves defining an objective and designing a system for an effective way of getting there

  15. New directions in federal energy management

    International Nuclear Information System (INIS)

    Ginsberg, M.

    1993-01-01

    The fuel embargo of 1973, followed by the oil disruption of 1979 heightened national security concerns over the availability and price of foreign oil to sustain all sectors of the U.S. economy. As a result of our growing dependence on foreign oil and diminishing resources at home, the Federal government has worked since 1974 to identify and implement a variety of measures to reduce energy consumption in Federal buildings and operations. Federal energy expenditures peaked at almost $14 billion in 1982 but has now been reduced to approximately $10 billion a year. However, much more needs to be done. Since the 1973 oil embargo, a series of legislative initiatives and Presidential authorities established the Federal Energy Management Program (FEMP) and then expanded it to address a broad range of energy-related issues affecting the Federal sector. Administered by the U.S. Department of Energy, FEMP coordinates the design and implementation of energy-saving programs for Federal buildings and operations. This includes working with other Federal agencies through interagency committees to interpret and implement Federal policy, to provide technical assistance to other Federal agencies, and to collect and report Federal energy consumption data to Congress. In addition, with the passage of the Clean Air Act Amendments of 1990, concerns over global climate change and a range of man-made and natural pollutants, environmental issues now play a critical role in our nation's energy policy. As a major consumer of energy, the Federal sector can serve as an important model for other sectors of the economy as a result of some of the innovative and cost-effective measures planned or currently underway. My talk today will focus on the Federal government's plans to ensure the energy efficient design and operation of Federal facilities, with an emphasis on life-cycle cost analyses

  16. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  17. Managing total corporate electricity/energy market risks

    International Nuclear Information System (INIS)

    Henney, A.; Keers, G.

    1998-01-01

    The banking industry has developed a tool kit of very useful value at risk techniques for hedging risk, but these techniques must be adapted to the special complexities of the electricity market. This paper starts with a short history of the use of value-at-risk (VAR) techniques in banking risk management and then examines the specific and, in many instances, complex risk management challenges faced by electric companies from the behavior of prices in electricity markets and from the character of generation and electric retailing risks. The third section describes the main methods for making VAR calculations along with an analysis of their suitability for analyzing the risks of electricity portfolios and the case for using profit at risk and downside risk as measures of risk. The final section draws the threads together and explains how to look at managing total corporate electricity market risk, which is a big step toward managing total corporate energy market risk

  18. An Energy Management Service for the Smart Office

    Directory of Open Access Journals (Sweden)

    Cristina Rottondi

    2015-10-01

    Full Text Available The evolution of the electricity grid towards the smart grid paradigm is fostering the integration of distributed renewable energy sources in smart buildings: a combination of local power generation, battery storage and controllable loads can greatly increase the energetic self-sufficiency of a smart building, enabling it to maximize the self-consumption of photovoltaic electricity and to participate in the energy market, thus taking advantage of time-variable tariffs to achieve economic savings. This paper proposes an energy management infrastructure specifically tailored for a smart office building, which relies on measured data and on forecasting algorithms to predict the future patterns of both local energy generation and power loads. The performance is compared to the optimal energy usage scheduling, which would be obtained assuming the exact knowledge of the future energy production and consumption trends, showing gaps below 10% with respect to the optimum.

  19. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    OpenAIRE

    Yuefei Wang; Hao Hu; Li Zhang; Nan Zhang; Xuhui Sun

    2016-01-01

    As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as ...

  20. Heterogeneous collaborative sensor network for electrical management of an automated house with PV energy.

    Science.gov (United States)

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.

  1. Heterogeneous Collaborative Sensor Network for Electrical Management of an Automated House with PV Energy

    Directory of Open Access Journals (Sweden)

    Javier Jiménez-Leube

    2011-12-01

    Full Text Available In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.

  2. Heterogeneous Collaborative Sensor Network for Electrical Management of an Automated House with PV Energy

    Science.gov (United States)

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680

  3. Economic Possibilities and Management of Solar Energy Use in Tourism

    Directory of Open Access Journals (Sweden)

    Marinela KRSTINIC NIZIC

    2013-06-01

    Full Text Available Due to its geographical position and its climate conditions, Croatia as a tourism destination has numerous and completely untapped potentials in solar energy application. Every tourism coastal and island settlement could resolve their key issues in hotels, private accommodation, and other tourism bearers by applying the district heating/cooling systems. Specific condition along the Adriatic Coast should be indicated, with increase in energy security representing an important tourism factor. Authors' research, undertaken among the management of the Kvarner tourism destination, shows only 36% of hotels apply mostly one form of renewable energy source - solar energy, converting it into thermal energy for domestic hot water and heating systems, and seldom use photovoltaic systems for conversion into electric energy. Analysis of survey results of hotel management shows 64% of hotels use no forms of renewable energy sources, nor plan to apply them. The analysis results clearly indicate Croatian numerous benefits and opportunities for significant increase in use of renewable sources, particularly in camping tourism. Its efficacy depends on overcoming both the perceived and well-known barriers, and particularly on weak but in the future indispensable connection of all relevant policies – energy, industrial, agricultural, tourism, environmental protection, construction and areal planning – in order to ensure conditions for sustainable development, with renewable energy sources forming its essential part.

  4. Slow down or race to halt: towards managing complexity of real-time energy management decisions

    OpenAIRE

    Petters, Stefan M.; Awan, Muhammad Ali

    2010-01-01

    Existing work in the context of energy management for real-time systems often ignores the substantial cost of making DVFS and sleep state decisions in terms of time and energy and/or assume very simple models. Within this paper we attempt to explore the parameter space for such decisions and possible constraints faced.

  5. Energy saving analysis and management modeling based on index decomposition analysis integrated energy saving potential method: Application to complex chemical processes

    International Nuclear Information System (INIS)

    Geng, Zhiqiang; Gao, Huachao; Wang, Yanqing; Han, Yongming; Zhu, Qunxiong

    2017-01-01

    Highlights: • The integrated framework that combines IDA with energy-saving potential method is proposed. • Energy saving analysis and management framework of complex chemical processes is obtained. • This proposed method is efficient in energy optimization and carbon emissions of complex chemical processes. - Abstract: Energy saving and management of complex chemical processes play a crucial role in the sustainable development procedure. In order to analyze the effect of the technology, management level, and production structure having on energy efficiency and energy saving potential, this paper proposed a novel integrated framework that combines index decomposition analysis (IDA) with energy saving potential method. The IDA method can obtain the level of energy activity, energy hierarchy and energy intensity effectively based on data-drive to reflect the impact of energy usage. The energy saving potential method can verify the correctness of the improvement direction proposed by the IDA method. Meanwhile, energy efficiency improvement, energy consumption reduction and energy savings can be visually discovered by the proposed framework. The demonstration analysis of ethylene production has verified the practicality of the proposed method. Moreover, we can obtain the corresponding improvement for the ethylene production based on the demonstration analysis. The energy efficiency index and the energy saving potential of these worst months can be increased by 6.7% and 7.4%, respectively. And the carbon emissions can be reduced by 7.4–8.2%.

  6. Operational simulation, design and management of decentralized energy systems; Betriebliche Modellierung, Auslegung und Management von dezentralen Energiesystemen

    Energy Technology Data Exchange (ETDEWEB)

    Matics, J.

    2007-06-28

    Chapter 2 describes the worldwide increase of primary energy consumption, which is expected in coming decades and results in possible solutions of a decentralised energy supply that is mainly based upon renewable energy carriers and the use of cogeneration systems. Chapter 3 shows the characteristics of decentralised system components that have been investigated in the frame of this research work as well as the resulting model library to depict the operational performance of the individual components and their mutual influence. A detailed dynamic simulation of a complete fuel cell system based on a steam reformer including the concept of local and superordinate control circuits is presented in chapter 4. Chapter 5 includes the integrated concepts for the intelligent and adaptable management of complex decentralised energy systems as well as a description of their implementation. Apart from the applied metaheuristic optimization methods the adaptable fuzzy-system, used in this case, is presented. The components of the model library of decentralised system components (chapter 3), the dynamic simulation of a complete fuel cell system based on a reformer (chapter 4), as well as the intelligent and adaptable plant management (chapter 5) are used in chapter 6 to investigate the various decentralised energy systems. The investigation focuses in particular on a) the electricity supply of a one-family home based on photovoltaics including different storage technologies and an increasing degree of energetic independence; b) the operational performance of a wind park with 72 individual plants as well as the combination of flywheel mass storage and wind energy plant; c) the control concepts, which have been developed for a fuel cell test stand based on a steam reformer, and their effects on the operation of the individual components as well as their interaction; d) the use of the developed management modules for the flexible and adaptable operation of a cogeneration system for

  7. Intelligent energy management. Less electricity, same cooling; Energie intelligent managen. Weniger Strom, gleiche Kaelte

    Energy Technology Data Exchange (ETDEWEB)

    Sprado, Joern; Lawo, Michael [Bremen Univ. (DE). Technologie-Zentrum Informatik und Informationstechnik (TZI)

    2009-09-15

    In cooperation with the company netDV Unternehmensberatung GmbH, the Technology Center for Computational Science (TZI) at the University of Bremen has developed a computer-aided ''assistance system for intelligent energy management'' that considerably reduces the energy consumption of feed refrigeration systems in our supermarkets. Reductions of between 10 and 20 per cent lead to savings in the order of five-digit euro amounts. (orig.)

  8. Efficient start–up energy management via nonlinear control for eco–traction systems

    International Nuclear Information System (INIS)

    Becherif, M.; Ramadan, H.S.; Ayad, M.Y.; Hissel, D.; Desideri, U.; Antonelli, M.

    2017-01-01

    Highlights: • Renewable HPS for the train start-up within feeding durations. • Dynamic modelling of the modern HPS applied to traction systems. • Port-Controlled Hamiltonian (PCH) design for supercapacitors’ charge/discharge operation. • Experimental validation and applicability of HPSs for energy management in eco-tractions. - Abstract: Electrochemical capacitors, called supercapacitors (SCs) or ultracapacitors, are devices conveniently used for embedded electrical energy management owing to their huge capacitance, low internal resistance and flexible control through power electronic conversion. This paper proposes a main power supply of hybrid Wind Generator (WG)–SC within the train station for feeding the traction onboard SC through specified limited feeding transit durations. Onboard SCs provide the train with the requested start–up self–energy. The hybrid WG–SCs system is an environmental–friendly source that enables the independency on national grid and guarantees an efficient bidirectional power transfer for energy management with enhanced dynamic performance. Therefore, the dynamic modelling and the experimental analysis of the modern hybrid WG–SCs used for managing the charge/discharge operation of SCs at Unity Power Factor (UPF) mode are presented. For this purpose, the Port–Controlled Hamiltonian (PCH) methodology is deduced and explicitly presented. Simulation results, via MATLAB™, reveal that the proposed PCH control methodology can be successfully implemented to ensure acceptable system dynamic behavior. Numerical results are validated with experimental measurements to investigate the significance of the PCH approach for the energy management operation in eco-tractions.

  9. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  10. Renewable energy policy and landscape management in Andalusia, Spain: The facts

    International Nuclear Information System (INIS)

    Prados, Maria-Jose

    2010-01-01

    Renewable energy has developed spectacularly in Spain since the European Union started a process of energy policy reform. A review of Spanish State legislation on renewable energies confirms that the success in installing renewable energy is attributable to public aid. Andalusia is one of the autonomous communities, which has simultaneously developed the legal framework and very successfully implemented the introduction of renewable power. When implementing the central government's policy, the Andalusian regional government prioritised increases in both surface cover by wind and solar plants (thermal and photovoltaic energy) and in the number of companies involved. However, this development of renewable energies took place without any proper integration into regional spatial and landscape planning. This paper explores renewable power implementation in Andalusia through regulatory measures put in place over the last decade to develop renewable energy systems and the way they can be managed alongside planning issues. The location of large-scale renewable plants has had consequences for territory in the socio-political context of renewable energy promotion. The main findings focus on renewable energy plant sprawl throughout rural areas in Andalusia with no clear effect on landscape management and no firm backing from the local population.

  11. Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-01-01

    Full Text Available The role of Demand Side Management (DSM with Distributed Energy Storage (DES has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.

  12. 75 FR 27182 - Energy Conservation Program: Web-Based Compliance and Certification Management System

    Science.gov (United States)

    2010-05-14

    ... Conservation Program: Web-Based Compliance and Certification Management System AGENCY: Office of Energy... following means: 1. Compliance and Certification Management System (CCMS)--via the Web portal: http... certification reports to the Department of Energy (DOE) through an electronic Web-based tool, the Compliance and...

  13. Environmental management assessment of the National Institute for Petroleum and Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This report documents the results of the environmental management assessment of the National Institute for Petroleum and Energy Research (NIPER), located in Bartlesville, Oklahoma. The assessment was conducted August 15-26, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health. The assessment included reviews of documents and reports, as well as inspections and observations of selected facilities and operations. Further, the team conducted interviews with management and staff from the Bartlesville Project Office (BPO), the Office of Fossil Energy (FE), the Pittsburgh Energy Technology Center (PETC), state and local regulatory agencies, and BDM Oklahoma (BDM-OK), which is the management and operating (M&O) contractor for NIPER. Because of the transition from a cooperative agreement to an M&O contract in January 1994, the scope of the assessment was to evaluate (1) the effectiveness of BDM-OK management systems being developed and BPO systems in place and under development to address environmental requirements; (2) the status of compliance with DOE Orders, guidance, and directives; and (3) conformance with accepted industry management practices. An environmental management assessment was deemed appropriate at this time in order to identify any systems modifications that would provide enhanced effectiveness of the management systems currently under development.

  14. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    Directory of Open Access Journals (Sweden)

    Yuefei Wang

    2016-10-01

    Full Text Available As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as a global optimal control problem which aims to minimize fuel consumption. Pontryagin’s minimum principle is applied to solve the optimal control problem to realize a real-time control strategy for electrical energy management in vehicles. The control strategy can change the output of the intelligent alternator and the battery with the changes of electrical load and driving conditions in real-time. Experimental results demonstrate that, compared to the traditional open-loop control strategy, the proposed control strategy for vehicle energy management can effectively reduce fuel consumption and the fuel consumption per 100 km is decreased by approximately 1.7%.

  15. Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management

    International Nuclear Information System (INIS)

    Garimella, Suresh V.; Persoons, Tim; Weibel, Justin; Yeh, Lian-Tuu

    2013-01-01

    Highlights: ► Thermal management approaches reviewed against energy usage of IT industry. ► Challenges of energy efficiency in large-scale electronic systems highlighted. ► Underlying drivers for progress at the business and technology levels identified. ► Thermal, electrical and energy management challenges discussed as drivers. ► Views of IT system operators, manufacturers and integrators represented. - Abstract: We identify technological drivers for tomorrow’s data centers and telecommunications systems, including thermal, electrical and energy management challenges, based on discussions at the 2nd Workshop on Thermal Management in Telecommunication Systems and Data Centers in Santa Clara, California, on April 25–26, 2012. The relevance of thermal management in electronic systems is reviewed against the background of the energy usage of the information technology (IT) industry, encompassing perspectives of different sectors of the industry. The underlying drivers for progress at the business and technology levels are identified. The technological challenges are reviewed in two main categories – immediate needs and future needs. Enabling cooling techniques that are currently under development are also discussed

  16. Development of Energy Management System Based on Internet of Things Technique

    OpenAIRE

    Wen-Jye Shyr; Chia-Ming Lin and Hung-Yun Feng

    2017-01-01

    The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

  17. Management alternatives of energy wood thinning stands

    International Nuclear Information System (INIS)

    Heikkilae, Jani; Siren, Matti; Aeijaelae, Olli

    2007-01-01

    Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3EUR m -3 , the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m 3 ha -1 . If the harvestable pulpwood yield is over 20 m 3 ha -1 , integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable. (author)

  18. An energy management system for a directly-driven electric scooter

    International Nuclear Information System (INIS)

    Yang, Yee-Pien; Liu, Jieng-Jang; Hu, Tsung-Hsien

    2011-01-01

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears.

  19. An energy management system for a directly-driven electric scooter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yee-Pien, E-mail: ypyang@ntu.edu.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China); Liu, Jieng-Jang, E-mail: jjliu@ntu.edu.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China); Hu, Tsung-Hsien, E-mail: elvishu@artc.org.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China)

    2011-01-15

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears.

  20. An energy management system for a directly-driven electric scooter

    Energy Technology Data Exchange (ETDEWEB)

    Yee-Pien Yang; Jieng-Jang Liu; Tsung-Hsien Hu [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei (China)

    2011-01-15

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears. (author)

  1. Towards Efficient Energy Management: Defining HEMS and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Soler, José

    2011-01-01

    in home environments, researches have been designing Home Energy Management Systems (HEMS). Efficiently managing and distributing electricity in the grid will also help to reduce the increase of energy consumption in the future. The power grid is evolving into the Smart Grid, which is being developed...... to distribute and produce electricity more efficiently. This paper presents the high level goals and requirements of HEMS and the Smart Grid. Additionally, it provides an overview on how Information and Communication Technologies (ICT) is involved in the Smart Grid and how they help to achieve the emerging...... functionalities that the Smart Grid can provide....

  2. Energy and water quality management systems for water utility's operations: a review.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  5. Energy management and multi-layer control of networked microgrids

    Science.gov (United States)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  6. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  7. U.S. Department of Energy defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Jordan, E.A.

    1988-01-01

    The Program Implementation Plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  8. Energy management as a factor of success. International comparative analysis of energy management systems standards; Energiemanagement als Erfolgsfaktor. International vergleichende Analyse von Energiemanagementnormen

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenborn, Walter; Knopf, Jutta; Richter, Ina [adelphi research, Berlin (Germany)

    2010-11-15

    This report outlines the current state of standardised energy management systems (EnMSs) worldwide whose aim is to promote energy efficiency in the industrial sector. The core intention of the study is to identify the potential of EnMSs for German energy efficiency policy. The study examines the experiences of countries that can be defined as front runners in this context, such as the Netherlands, Denmark, Sweden, Ireland and the USA. Further input was taken from recently completed, and still ongoing, development processes of national standards. Data were generated from an intensive literature review as well as interviews with experts. Central to the analysis are questions of characteristics as well as the effectiveness of national energy management standards. In addition, political frameworks (i.e. voluntary agreements), financial tools (i.e. subsidies) and other measures of assistance (i.e. capacity building) supporting the implementation of an EnMS were analysed. The study concludes with a comparison of findings from the country-by-country analysis and provides recommendations for the effective implementation of EnMS in Germany. As part of the entire project adelphi produced a manual on the use of EN 16001 which has been published by BMU/UBA. (orig.)

  9. Energy Management Strategy for a Fuel Cell/ Ultracapasitor/ Battery Hybrid System for Portable Applications

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    A proton exchange membrane (PEM) fuel cells (FCs) with ultracapacitor (UC) and battery (BT) hybrid system has fast transient response compare to stand alone FCs. This hybrid system is promising candidates for environmentally friendly alternative energy sources. An energy management system design and control strategy was introduced in this study. The energy management strategy FC/ UC/ BT hybrid system model has been developed and the control strategy was programmed in the LabVIEWTM environment and implemented using National Instrument (NI) devices. The energy management strategy is able to manage the energy flow between the main power source (FCs) and auxiliary sources (UC and BT). To control the hybrid system and achieved proper performance, a controller circuit was developed with the three energy sources aligned in parallel to deliver the requested power. The developed model demonstrates the proportion power from the FC, UC and BT under various load demand. Experimental results demonstrate that FC/ UC/ BT hybrid system operated automatically with the varying load condition. The experimental results are presented; showing that the proposed strategy utilized the characteristic of both energy storage devices thus satisfies the load requirement. (author)

  10. Innovation management in renewable energy sector

    Science.gov (United States)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  11. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity......’s objectives, the effectiveness and applicability of the proposed model is studied and validated compared to the existing residential EMSs. The simulation results demonstrate that the proposed EMS has the capability not only to conserve energy in sustainable homes and microgrid system and to reduce energy...

  12. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    Science.gov (United States)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  13. Risk Management Challenges in Large-scale Energy PSS

    DEFF Research Database (Denmark)

    Tegeltija, Miroslava; Oehmen, Josef; Kozin, Igor

    2017-01-01

    Probabilistic risk management approaches have a long tradition in engineering. A large variety of tools and techniques based on the probabilistic view of risk is available and applied in PSS practice. However, uncertainties that arise due to lack of knowledge and information are still missing...... adequate representations. We focus on a large-scale energy company in Denmark as one case of current product/servicesystems risk management best practices. We analyze their risk management process and investigate the tools they use in order to support decision making processes within the company. First, we...... identify the following challenges in the current risk management practices that are in line with literature: (1) current methods are not appropriate for the situations dominated by weak knowledge and information; (2) quality of traditional models in such situations is open to debate; (3) quality of input...

  14. Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi

    Science.gov (United States)

    Tridianto, E.; Permatasari, P. D.; Ali, I. R.

    2018-03-01

    Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.

  15. An Aggregation Model for Energy Resources Management and Market Negotiations

    Directory of Open Access Journals (Sweden)

    Omid Abrishambaf

    2018-03-01

    Full Text Available Currently the use of distributed energy resources, especially renewable generation, and demand response programs are widely discussed in scientific contexts, since they are a reality in nowadays electricity markets and distribution networks. In order to benefit from these concepts, an efficient energy management system is needed to prevent energy wasting and increase profits. In this paper, an optimization based aggregation model is presented for distributed energy resources and demand response program management. This aggregation model allows different types of customers to participate in electricity market through several tariffs based demand response programs. The optimization algorithm is a mixed-integer linear problem, which focuses on minimizing operational costs of the aggregator. Moreover, the aggregation process has been done via K-Means clustering algorithm, which obtains the aggregated costs and energy of resources for remuneration. By this way, the aggregator is aware of energy available and minimum selling price in order to participate in the market with profit. A realistic low voltage distribution network has been proposed as a case study in order to test and validate the proposed methodology. This distribution network consists of 25 distributed generation units, including photovoltaic, wind and biomass generation, and 20 consumers, including residential, commercial, and industrial buildings.

  16. Integrated energy & emission management for hybrid electric truck with SCR aftertreatment

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Willems, F.P.T.; Schoot, W.J.; Bosch, P.P.J. van den

    2010-01-01

    Energy management in hybrid vehicles typically relates to the vehicle powertrain, whereas emission management is associated with the combustion engine and aftertreatment system. To achieve maximum performance in fuel economy and regulated pollutants, the concept of (model-based) Integrated

  17. Resources and Energy Management: the case of the Agropoli Urban Plan

    Directory of Open Access Journals (Sweden)

    Francesco Domenico Moccia

    2013-07-01

    Full Text Available The theme of the resources management, of the energy-environment retrofitting framed in strategies to mitigate and adapt to climate change, aimed at energy saving, energy generating from alternative sources, metabolism and natural resources is one of the central topics the City Urban Planning of the City of Agropoli, currently approved by Resolution of the City Council no. 110 of 18.04.2013.The plan is part of the wider system of actions taken by the Municipality to achieve the objectives on the environment posed by the European Union with the Directive " EP seals climate change package 20-20-20". In particular the planning tool provides a series of actions aimed at containing the uses energy through measures to rationalize, do not waste and reduce the use of non-renewable resources, by promoting "best practices" from the management of public assets, the use of innovative technologies in all sectors and activities; the diffusion of renewable energy production, with care to avoid impacts and interference with the historical landscape, including the promotion of programs and interventions of public management. The different strategic projects will take care of specific actions also for the experimental use of innovative technologies.The article proposes, within the framework of strategies and actions at the European level for small municipalities, the example of the City of Agropoli drawing conclusions and reflections on the theme of energy saving relative to the housing stock.

  18. Effective management of combined renewable energy resources in Tajikistan.

    Science.gov (United States)

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  19. Optimal energy management in pulp and paper mills

    International Nuclear Information System (INIS)

    Sarimveis, H.K.; Angelou, A.S.; Retsina, T.R.; Rutherford, S.R.; Bafas, G.V.

    2003-01-01

    In this paper, we examine the utilization of mathematical programming tools for optimum energy management of the power plant in pulp and paper mills. The objective is the fulfillment of the total plant requirements in energy and steam with the minimum possible cost. The proposed methodology is based on the development of a detailed model of the power plant using mass and energy balances and a mathematical formulation of the electrical purchase contract, which can be translated into a rigorous mixed integer linear programming optimization problem. The results show that the method can be a very useful tool for the reduction of production cost due to minimization of the fuel and electricity costs

  20. Computerised energy audit: a tool for better management information system

    International Nuclear Information System (INIS)

    Sonavane, V.L.; Kulkarni, S.L.

    1995-01-01

    The demand for electricity is ever increasing. The cost of electrical generation is rising. The cost of new generating station is prohibitive to the electricity boards. Financial excellence is only possible by implementing energy audit. Because of energy audit programs the consumers' attitude is bound to change. The theft and pilferage will be detected and the quantum is bound to reduce. Financial energy management system (FEMS) will look into all operations with reference to the energy sell, energy input, finance, equipment failure, interruptions and also the individual performances of each engineer in charge of that area. 2 tabs

  1. Modular Energy Management System Applicable to Residential Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2016-01-01

    In this paper, an energy management system is defined as a flexible architecture. This proposal can be applied to home and residential areas when they include generation units. The system has been integrated and tested in a grid-connected microgrid prototype, where optimal power generation profiles...

  2. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  3. U.S. Department of Energy, defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Chee, T.

    1988-01-01

    This paper reports that the program implementation plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  4. An Event-Triggered Online Energy Management Algorithm of Smart Home: Lyapunov Optimization Approach

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-05-01

    Full Text Available As an important component of the smart grid on the user side, a home energy management system is the core of optimal operation for a smart home. In this paper, the energy scheduling problem for a household equipped with photovoltaic devices was investigated. An online energy management algorithm based on event triggering was proposed. The Lyapunov optimization method was adopted to schedule controllable load in the household. Without forecasting related variables, real-time decisions were made based only on the current information. Energy could be rapidly regulated under the fluctuation of distributed generation, electricity demand and market price. The event-triggering mechanism was adopted to trigger the execution of the online algorithm, so as to cut down the execution frequency and unnecessary calculation. A comprehensive result obtained from simulation shows that the proposed algorithm could effectively decrease the electricity bills of users. Moreover, the required computational resource is small, which contributes to the low-cost energy management of a smart home.

  5. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    International Nuclear Information System (INIS)

    Feng Yanping; Wu Yong; Liu Changbin

    2009-01-01

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  6. Energy-efficiency supervision systems for energy management in large public buildings. Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Yan-ping, Feng [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China); Yong, Wu [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Chang-bin, Liu [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized. (author)

  7. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yanping [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China)], E-mail: fengyanping10@sohu.com; Wu Yong [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Liu Changbin [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  8. Energy-aware memory management for embedded multimedia systems a computer-aided design approach

    CERN Document Server

    Balasa, Florin

    2011-01-01

    Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach presents recent computer-aided design (CAD) ideas that address memory management tasks, particularly the optimization of energy consumption in the memory subsystem. It explains how to efficiently implement CAD solutions, including theoretical methods and novel algorithms. The book covers various energy-aware design techniques, including data-dependence analysis techniques, memory size estimation methods, extensions of mapping approaches, and memory banking approaches. It shows how these techniques

  9. Certified meter data managers provide potent tool : Utilities, customers benefit from accurate energy data

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.

    2004-02-01

    The use of customer energy information and its importance in building business-to-business and business-to-consumer demographic profiles, and the role of certified meter data management agents, i.e. companies that have created infrastructures to manage large volumes of energy data that can be used to drive marketing to energy customers, is discussed. Short and long-term load management planning, distribution planning, outage management and demand response programs, efforts to streamline billing and create revenue-generating value-added services, are just some of the areas that can benefit from comprehensively collected and accurate consumer data. The article emphasizes the process of certification, the benefits certified meter data management companies can provide to utilities as well as to consumers, their role in disaster recovery management, and characteristics of the way such companies bring the benefits of their operations to their client utilities and consumers. 1 tab.

  10. Japan - IAEA joint Nuclear Energy Management School 2016

    International Nuclear Information System (INIS)

    Yamaguchi, Mika; Hidaka, Akihide; Ikuta, Yuko; Yamashita, Kiyonobu; Sawai, Tomotsugu; Murakami, Kenta; Uesaka, Mitsuru; Tomita, Akira; Toba, Akio; Hirose, Hiroya; Watanabe, Masanori; Kitabata, Takuya; Ueda, Kinichi; Kita, Tomohiko; Namaizawa, Ken; Onose, Takatoshi

    2017-03-01

    Since 2010, International Atomic Energy Agency (IAEA) has held the 'Nuclear Energy Management School' so-called 'IAEA-NEM' to develop future leaders who plan and manage nuclear energy utilization in their county. Since 2012, Japan Atomic Energy Agency (JAEA) together with the Japan Nuclear Human Resource Development Network (JN-HRD Net), the University of Tokyo (UT), the Japan Atomic Industrial Forum (JAIF) and JAIF International Cooperation Center (JICC) have cohosted the NEM school in Japan in cooperation with IAEA. Since then, the school has been held every year, with the school in 2016 marking the fifth. In the 2016 NEM school, Japanese nuclear energy technology and experience, such as lessons learned from the Fukushima Daiichi Nuclear Power Station accident, were provided by not only lectures by IAEA experts, but also lectures by Japanese experts and leaders in order to offer a unique opportunity for the participants from other countries to learn about particular cases in Japan. Opportunities to visit a variety of nuclear facilities were offered for the participants in the form of technical tours in Fukui and Kobe. Through the school, we contributed to the internationalization of Japanese young nuclear professionals, development of nuclear human resource of other countries including nuclear newcomers, and enhanced cooperative relationship between IAEA and Japan. Additionally, collaborative relationship with JN-HRD Net was strengthened solidly through the integrated cooperation among ministries, universities, manufacturers and research organizations across the county by holding the school in Japan. In this report, findings obtained during the preparatory work and the school period were reported in order to make a valuable contribution towards effectively and efficiently conducting future international nuclear human resource development activities in Japan. (author)

  11. Autonomous Household Energy Management Based on a Double Cooperative Game Approach in the Smart Grid

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2015-07-01

    Full Text Available Taking advantage of two-way communication infrastructure and bidirectional energy trading between utility companies and customers in the future smart grid (SG, autonomous energy management programs become crucial to the demand-side management (DSM. Most of the existing autonomous energy management schemes are for the scenario with a single utility company or the scenario with one-way energy trading. In this paper, an autonomous household energy management system with multiple utility companies and multiple residential customers is studied by considering the bidirectional energy trading. To minimize the overall costs of both the utility companies and the residential customers, the energy management system is formulated as a double cooperative game. That is, the interaction among the residential users is formulated as a cooperative game, where the players are the customers and the strategies are the daily schedules of their household appliances; and the interaction among the utility companies is also formulated as a cooperative game, where the players are the suppliers and the strategies are the proportions of the daily total energy they provide for the customers. Without loss of generality, the bidirectional energy trading in the double cooperative game is formulated by allowing plug-in electric vehicles (PEVs to discharge and sell energy back. Two distributed algorithms will be provided to realize the global optimal performance in terms of minimizing the energy costs, which can be guaranteed at the Nash equilibriums of the formulated cooperative games. Finally, simulation results illustrated that the proposed double cooperative game can benefit both the utility companies and residential users significantly.

  12. Energy management. A dual obligation; Energiemanagement. Doppelte Pflicht fuer Anlagenbetreiber

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, Gerald; Reisz, Thomas [EnergieAgentur.NRW, Wuppertal (Germany)

    2013-04-15

    The current situation is familiar to us all: as a result, not least of all, of significant price increases in recent years, energy has now become an incalculable cost factor for companies and even for entire national economies. And: the use of energy has, equally, for decades now constituted a serious burden on the global climate. There are therefore good ecological and economic reasons for making energy consumption as efficient as possible. Via structured action, energy management assures the achievement of consumer behaviour that will be sustainable for the future.

  13. Asset management for infrastructure systems energy and water

    CERN Document Server

    Balzer, Gerd

    2015-01-01

    The book offers a broad overview of asset management processes for different utilities, with a special emphasis on energy and water. It provides readers with important practical considerations concerning the development of new competitive structures and procedures for guaranteeing a sufficient supply of energy and water in a regulated environment, using clearly defined technical and economic cornerstones. On the one hand asset owners expect suitable interests from their investment and business growth; on the other hand regulators focus more on a reliable and cost-effective customer supply. Thi

  14. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  15. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Steven A.; Hunt, W. D.

    2001-10-31

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  16. MANAGING RENEWABLE ENERGY IN THE EU10 REGION

    Directory of Open Access Journals (Sweden)

    BUCUREAN Mirela

    2011-07-01

    Full Text Available The problems of renewable energy and regional development have gained a global dimension, as well as the concerns about the economic growth. Therefore, this study investigates the issue of managing renewable energy in the EU10 region, within the context of recovery and anticipated growth of the region. The findings of this study disclose that an important source of economic growth in the EU10 region's countries may be to start some new investments in renewable energy. In order to develop the field of renewable energy may be used EU funds, and may be envisaged different public-private partnership models, that may contribute to lower societal costs and increased deployment rates. The study was conducted by combining a wide variety of sources, such as statistics, reports and articles. The results reported in this study could be used for further research in the area of implementing green energy projects in the EU10 region. Another direction for further research could be to identify the most attractive countries for different renewable energy investment projects in the EU10 region.

  17. Design and Realization of a Condition Management System for the Gateway Electrical Energy Metering Device

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2013-12-01

    Full Text Available With the construction of firm and intelligent power grid in China, it is difficult for the traditional management method of electrical energy metering device to meet the prospecting requirements. Using the computer and internet techniques to realize the information and intelligentization of the electrical energy metering management has become a necessary guarantee of improving power supply ability, marketing control, and customer service. This paper introduced a kind of large and intelligent condition management system of the gateway electrical energy metering device. The key technologies and realize process were analyzed. Moreover, a detailed description of the application modules such as the GIS smart display of metering point, the condition management of metering devices and the visual monitoring of metering point was presented. The trial operation in the selected transformer substations and the power stations of Chongqing Power Electrical Corp. indicated that, the condition management system is very open, safety and efficient. According to the data exchange with the production and scheduling platform, the system improved the efficient operation of the electrical energy metering devices. Meanwhile, combined with the real-time visual monitoring, the condition management system improved the prevention ability of electricity filching, realized the unified automatic large-scale management of electrical energy metering devices.

  18. From volatility to value: analysing and managing financial and performance risk in energy savings projects

    International Nuclear Information System (INIS)

    Mills, Evan; Kromer, Steve; Weiss, Gary; Mathew, Paul A.

    2006-01-01

    Many energy-related investments are made without a clear financial understanding of their values, risks, and volatilities. In the face of this uncertainty, the investor-such as a building owner or an energy service company-will often choose to implement only the most certain and thus limited energy-efficiency measures. Conversely, commodities traders and other sophisticated investors accustomed to evaluating investments on a value, risk, and volatility basis often overlook energy-efficiency investments because risk and volatility information are not provided. Fortunately, energy-efficiency investments easily lend themselves to such analysis using tools similar to those applied to supply side risk management. Accurate and robust analysis demands a high level of understanding of the physical aspects of energy-efficiency, which enables the translation of physical performance data into the language of investment. With a risk management analysis framework in place, the two groups-energy-efficiency experts and investment decision-makers-can exchange the information they need to expand investment in demand-side energy projects. In this article, we first present the case for financial risk analysis in energy efficiency in the buildings sector. We then describe techniques and examples of how to identify, quantify, and manage risk. Finally, we describe emerging market-based opportunities in risk management for energy efficiency

  19. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  20. Optimal energy management strategy for battery powered electric vehicles

    International Nuclear Information System (INIS)

    Xi, Jiaqi; Li, Mian; Xu, Min

    2014-01-01

    Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios

  1. An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles

    OpenAIRE

    Long Cheng; Wei Wang; Shaoyuan Wei; Hongtao Lin; Zhidong Jia

    2018-01-01

    A single-objective optimization energy management strategy (EMS) for an onboard hybrid energy storage system (HESS) for light rail (LR) vehicles is proposed. The HESS uses batteries and supercapacitors (SCs). The main objective of the proposed optimization is to reduce the battery and SC losses while maintaining the SC state of charge (SOC) within specific limits based on the distance between consecutive LR stations. To do this, a series of optimized SOC limits is used to prevent the SC from ...

  2. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  3. Waste and energy management at airports. Paper no. IGEC-1-024

    International Nuclear Information System (INIS)

    Korul, V.; Ozen, M.

    2005-01-01

    Air transport is a high growth industry. The growth in demand for air transport has had very significant economic and environmental consequences for airlines and airports. With increased traffic, the volume of waste is increasing while the waste at airports is generated by airlines, airport operators and other airport related companies. Waste management is usually under the airport operators' responsibility. Energy management, associated with the provision of heating, ventilation, air conditioning and lighting, is also very important. With energy conservation, as with waste management, there are good financial reasons for why airports should address these issues since environmental improvements may bring about considerable cost savings. This study aims to discuss the environmental issues at airports by giving a global perspective for the sustainability of aviation industry. (author)

  4. Smart Energy. From the reactive customer administration to a proactive customer management; Smart Energy. Von der reaktiven Kundenverwaltung zum proaktiven Kundenmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Aichele, Christian

    2012-07-01

    In view of the current political debate about the phasing out of nuclear power and about the expansion of renewable energy production no one doubts the need for the implementation of smart energy. In particular, the business processes for Smart Energy, the management of information and the necessary information technology are the focus of the book under consideration. The first chapter of this book gives an overview of the energy industry, the electricity market and on the way to smart energy. The major European and German regulations are presented. Other topics covered in this book are: vision of smart energy, basic information process from the reading of the energy consumption to billing, business processes in the liberalized energy sector, the impact of smart meter technology on energy markets and consumers of energy, efficient use of the customer-relation-management in the energy company, use of dynamic tariffs for customer interaction on the Smart Grid.

  5. Energy management of DSL systems: Experimental findings

    KAUST Repository

    Guenach, Mamoun

    2013-12-01

    We present a measurement study of the energy consumption of an operator-side digital subscriber line (DSL) board under various conditions of data rate and power spectral density, with and without vectoring. The results highlight practical opportunities and challenges for optimizing rate-power-stability tradeoffs in DSL access systems, complementing simulation-based studies focused on energy reduction through spectral optimization. We validate models for line board consumption that can be tied with line driver consumption based on the aggregate transmit power of each line, and demonstrate that near-optimal rate-power-stability tradeoffs can be obtained through external line management of data rate, Signal-to-Noise-Ratio margin and power spectral density parameters. © 2013 IEEE.

  6. A COMPARATIVE ANALYSIS OF ENERGY MANAGEMENT STRATEGIES FOR ELECTRIC VEHICLES

    OpenAIRE

    ÇAKAR, Fahri; YILMAZ, Musa; ASKER, Mehmet Emin

    2016-01-01

    In next two decade duration the electric car will participate a significant role in auto marketing. The electrical car use electric that is supported by current electrical network. Indeed the current electrical network cannot support the hole system in specific time in the case of loading electric car to it that will increase the demand in that specific time duration. To support the electric car energy requirement you have to manage both energy generation and energy consumption. The solution ...

  7. Cooperative Energy Management for a Cluster of Households Prosumers

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2016-01-01

    . Therefore, consumers become prosumers in which they internally generate and consume energy looking for an autonomous operation. This paper proposes an energy management system for coordinating the operation of distributed household prosumers. It was found that better performance is achieved when cooperative...... operation with other prosumers in a neighborhood environment is achieved. Simulation and experimental results validate the proposed strategy by comparing the performance of islanded prosumers with the operation in cooperative mode....

  8. Rule-based energy management strategies for hybrid vehicles

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.; Serrarens, A.F.A.; Steinbuch, M.

    2007-01-01

    Int. J. of Electric and Hybrid Vehicles (IJEHV), The highest control layer of a (hybrid) vehicular drive train is termed the Energy Management Strategy (EMS). In this paper an overview of different control methods is given and a new rule-based EMS is introduced based on the combination of Rule-Based

  9. Generating a quality management system for application in the field of management of nuclear energy area

    International Nuclear Information System (INIS)

    Fernández, L.; Arias, M.

    2013-01-01

    The actual work has as a main objective to present the development of a quality management system to be applicable to the Nuclear Energy Management confines at the National Atomic Energy Commission (CNEA) in Argentina Republic. The GAEN Quality Management Section (SGC) has as main central tasks to streamline, collaborate and facilitate the development of activities and their applications on quality management systems in all the sections and projects belonging to GAEN. This achievement will tend to accredit, certificate and qualify them. Groups of work cooperating with each other integrate the GAEN. They are at present dealing with several tasks. Some outstanding ones are research activities, technology development, design, engineering, assembling, starting, services, and human resources development on Nuclear Reactors and Nuclear Supplies, particularly on powerful nuclear reactors. In 2012, at the annual CNEA Presidential meeting, it was presented one of the several projects from the SGC. It consists in the development of a quality management system available to every area belonging to the GAEN. To carry this project out, it was first begun with the elaboration of Guide Documents which were available for everybody. The documents establish the criteria and general requirements for obtaining guaranteed quality results about the performed activities. At the same time, several areas, sections and Management groups of work have been working united and well-disposed towards the application on their own Management System using the Guide Documents and considering, in addition, some own regards. In conclusion, this first step shows that the developed work facilitates the implementation of Management Systems around the GAEN. (author)

  10. Safe management of nuclear energy. A key towards sustainable development

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2011-01-01

    Management of nuclear risks - crucial factor for acceptance of novel nuclear projects. We propose an interdisciplinary approach to societal optimization of nuclear energy management. As the keystones we choose: self-organization concept, 2) the principle of the requisite variety. A primary source of growth of internal variety - information and knowledge. Comprehensive knowledge management and informational support firstly is needed in: Technical issues: a) nuclear energy indicators of safety and reliability, b) extensive research and development of advanced technologies, c) multilateral cooperation in common projects; Societal issues: a) general nuclear awareness, b) risk management, engagement in decision-making, personnel education and training, staff renascence, c) public education, stakeholder involvement. There is shown: public education and social learning - efficient self-organization mechanisms, thereby forming a learning and knowledge-creating community. Such an acquired and created knowledge could facilitate solution of key socio-technical issues of nuclear safety as a) public acceptance, in particular, of siting of novel nuclear power plant and radioactive waste disposal objects, b) promotion of adequate perception of risk, equity and trust factors, and c) elevation of safety level of nuclear facilities and adequate management of nuclear risks. The importance of multi-level confidence building at global, regional and national levels is emphasized. (author)

  11. Sustainable chemical processing and energy-carbon dioxide management: review of challenges and opportunities

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Vooradi, Ramsagar; Bertran, Maria-Ona

    2018-01-01

    This paper presents a brief review of the available energy sources for consumption, their effects in terms of CO2-emission and its management, and sustainable chemical processing where energy-consumption, CO2-emission, as well as economics and environmental impacts are considered. Not all available...... energy sources are being utilized efficiently, while, the energy source causing the largest emission of CO2 is being used in the largest amount. The CO2 management is therefore looking at "curing" the problem rather than "preventing" it. Examples highlighting the synthesis, design and analysis...... of sustainable chemical processing in the utilization of biomass-based energy-chemicals production, carbon-capture and utilization with zero or negative CO2-emission to produce value added chemicals as well as retrofit design of energy intensive chemical processes with significant reduction of energy consumption...

  12. Expert assessment of the current state of the energy management system in the company

    Science.gov (United States)

    Minnullina, Anna; Abdrazakov, Rais

    2017-10-01

    The authors’ expert assessment of the current state of the energy management system in the company is proposed in the article. The experts are invited to assess the status of the energy management system in the following categories: energy policy, organizational structure, training, motivation, control, communication, investment, and energy consumption culture. For the purposes of interpretation of the results of the expert evaluation obtained, a gradation based on a possible range of values is proposed. The expert evaluation allows representing the status of the energy management system in general and at each of its individual levels, which makes it possible to identify the problem areas more accurately. To confirm the applied nature of the proposed methodology, the authors assessed the opinions of 8 experts, employed by the road construction company of the Tyumen Region and related in one way or another to the process of energy consumption in the company due to the nature of their activities.

  13. Real-Time Framework for Energy Management System of a Smart Microgrid Using Multiagent Systems

    Directory of Open Access Journals (Sweden)

    Roberto S. Netto

    2018-03-01

    Full Text Available This paper presents a framework to analyze the problem of real-time management of Smart Grids. For this purpose, the energy management is integrated with the power system through a telecommunication system. The use of Multiagent Systems (MAS leads the proposed algorithm to find the best-integrated solution, taking into consideration the operating scenario and the system characteristics. With this framework it was possible to evaluate the design of the energy management and the impact of the algorithm developed in the MAS. In the same way, the data sent from the power system to be used for energy management have a direct impact on his behavior. The proposed framework is tested with the help of a microgrid, so the results may be replicated.

  14. Managing customer loyalty in liberalized residential energy markets: the impact of energy branding

    International Nuclear Information System (INIS)

    Hartmann, P.; Ibanez, V.A.

    2007-01-01

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed. [Author

  15. Managing customer loyalty in liberalized residential energy markets: The impact of energy branding

    International Nuclear Information System (INIS)

    Hartmann, Patrick; Apaolaza Ibanez, Vanessa

    2007-01-01

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed

  16. Managing customer loyalty in liberalized residential energy markets: the impact of energy branding

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, P.; Ibanez, V.A. [University of the Basque Country, Bilbao (Spain). Facultad de Ciencias Economicas y Empresariales

    2007-04-15

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed. [Author].

  17. Sustainable energy management in municipal buildings and equipment; Gestion durable de l'energie dans les batiments et les equipements municipaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The municipalities and local authorities in the CEEC countries have been given back ownership of the majority of public buildings formerly owned by the state: schools, sports and cultural buildings and administrative buildings. Even the management of public lighting and the collection and treatment of sewage are in most cases the responsibility of municipalities. Municipalities pay the energy bills of all these buildings and they find it difficult because of the difference between their income and the energy prices that they are forced to pay, the latter being already set, or soon to be set, by the price on the European market. The experience of towns in the EU has shown that it was mainly under the impact of a similar situation (the oil crisis during the years 1970) that local energy management policies were put in place. These included energy audits, monitoring of consumption, setting up local energy management teams, action plans, investment programmes, etc. The know-how acquired during that phase of energy management of the municipal stock has very often served as a basis for the development of sustainable local energy policies encompassing all fields of urban activity. This void in our knowledge and basic experience is often a complete obstacle to the practical implementation of sustainable local energy policies, integrated within a local Agenda 21, despite declarations of goodwill and sometimes praiseworthy political intentions. All these questions are approached principally with the objective of stimulating a movement in the CEEC, but building on the experience of municipalities of the EU. One should not forget however that in a large number of them, no process approaching the scale of the challenge to be faced has yet been set in train. Both CEEC and EU experiences are presented. (author)

  18. Energy efficiency and demand side management. Complement or contradiction? The impact of energy efficiency measures on the potential for demand side management; Energieeffizienz und Lastflexibilisierung. Partner oder Gegenspieler? Der Einfluss von Energieeffizienzmassnahmen auf das Lastflexibilisierungspotenzial

    Energy Technology Data Exchange (ETDEWEB)

    Peraus, Sebastian [TU Muenchen (Germany). Maschinenwesen; Gruber, Anna; Roon, Serafin von [Forschungsgesellschaft fuer Energiewirtschaft mbH, Muenchen (Germany)

    2013-02-01

    The success of the so called ''Energiewende'' in Germany is based on two major elements: the improvements in energy efficiency and the increase of renewable energy sources (RES). But the supply of RES cannot always be regulated according to the electricity demand. As a result both flexible electricity generation and demand side management will become increasingly important. Consequently, it has to be discussed, whether the improvement of energy efficiency and demand side management could interfere. This publication will illustrate the possible impact of energy efficiency measures on the potential for demand side management.

  19. Edificio project: A neuro-fuzzy approach to building energy management systems

    NARCIS (Netherlands)

    Galata, A.; Bakker, L.G.; Morel, N.; Michel, J.B.; Karki, S.; Joergl, H.P.; Franceschini, A.; Martinez, A.

    1998-01-01

    It is well known that building installations for indoor climate control, consume a substantial part of the total energy consumption and that at present these installations use much more energy than required due to inadequate settings and poor control and management strategies. European building

  20. Dynamic Energy Management System for a Smart Microgrid.

    Science.gov (United States)

    Venayagamoorthy, Ganesh Kumar; Sharma, Ratnesh K; Gautam, Prajwal K; Ahmadi, Afshin

    2016-08-01

    This paper presents the development of an intelligent dynamic energy management system (I-DEMS) for a smart microgrid. An evolutionary adaptive dynamic programming and reinforcement learning framework is introduced for evolving the I-DEMS online. The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations. The primary sources of energy are sustainable, green, and environmentally friendly renewable energy systems (RESs), e.g., wind and solar; however, these forms of energy are uncertain and nondispatchable. Backup battery energy storage and thermal generation were used to overcome these challenges. Using the I-DEMS to schedule dispatches allowed the RESs and energy storage devices to be utilized to their maximum in order to supply the critical load at all times. Based on the microgrid's system states, the I-DEMS generates energy dispatch control signals, while a forward-looking network evaluates the dispatched control signals over time. Typical results are presented for varying generation and load profiles, and the performance of I-DEMS is compared with that of a decision tree approach-based DEMS (D-DEMS). The robust performance of the I-DEMS was illustrated by examining microgrid operations under different battery energy storage conditions.

  1. A Novel Prosumer-Based Energy Sharing and Management (PESM) Approach for Cooperative Demand Side Management (DSM) in Smart Grid

    OpenAIRE

    Sohail Razzaq; Rehman Zafar; Naveed Ahmed Khan; Asif Raza Butt; Anzar Mahmood

    2016-01-01

    Increasing population and modern lifestyle have raised energy demands globally. Demand Side Management (DSM) is one important tool used to manage energy demands. It employs an advanced power infrastructure along with bi-directional information flow among utilities and users in order to achieve a balanced load curve and minimize demand-supply mismatch. Traditionally, this involves shifting the electricity demand from peak hours to other times of the day in an optimized manner. Multiple users e...

  2. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Khamphanchai, Warodom; Saha, Avijit; Rathinavel, Kruthika; Kuzlu, Murat; Pipattanasomporn, Manisa; Rahman, Saifur; Akyol, Bora A.; Haack, Jereme N.

    2014-12-01

    The objective of this paper is to present a conceptual architecture of a Building Energy Management Open Source Software (BEMOSS) platform. The proposed BEMOSS platform is expected to improve sensing and control of equipment in small- and medium-sized buildings, reduce energy consumption and help implement demand response (DR). It aims to offer: scalability, robustness, plug and play, open protocol, interoperability, cost-effectiveness, as well as local and remote monitoring. In this paper, four essential layers of BEMOSS software architecture -- namely User Interface, Application and Data Management, Operating System and Framework, and Connectivity layers -- are presented. A laboratory test bed to demonstrate the functionality of BEMOSS located at the Advanced Research Institute of Virginia Tech is also briefly described.

  3. Management of energy-save and environment on the boiler system

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Asano, Naoki; Kawasaki, Ichio

    2010-02-01

    Tokai Utility Center (TUC) is the facility that products and feeds steam for Tokai Reprocessing Plant (TRP), Plutonium Fuel Production Facility (PFPF), etc. The boiler system needs the management based on the law of 'Industrial safety and Health Act' and 'Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors'. In this situation, activity of preservation of environment and energy-save are carried out by means of the improvement of steam generation process and the change of additive to water. Quality assurance procedure has been applied in order to improve the boiler operation continuously. This report describes about various activities of the management, the environment, the energy-saving, and a future action. (author)

  4. Managing public perceptions about atomic energy in India

    International Nuclear Information System (INIS)

    Shankar, Ravi; Malhotra, S.K.

    2009-01-01

    Dr. Homi Jehangir Bhabha, in his presidential address at the first International Conference on the Peaceful Uses of Atomic Energy in Geneva in August 1955 had said 'Acquisition by man of the knowledge of how to release and use atomic energy must be recognized as the third epoch of human history'. Indeed during the last six decades, Atomic Energy has touched practically all aspects of human life and has registered its presence in almost every part of the globe. In India too, the Department of Atomic Energy set up in 1954, has been successfully pursuing a programme with a mandate to generate electricity, produce radioisotopes and develop radiation technologies with application in the areas of healthcare, food security, industry, water management, environment, R and D etc. Besides, DAE is also engaged in developing advanced technologies such as lasers, accelerator, robotics, fast computing and biosciences

  5. Best practices in energy management: Experience with IAC assessments in the metals fabrication industry

    International Nuclear Information System (INIS)

    Clark, W.J.; Birkmire, L.K.

    1999-01-01

    The Industrial Technology and Energy Management (ITEM) division of the University City Science Center played a managerial role in founding and establishing the Energy Analysis and Diagnostic Center (EADC) program, now known as the Industrial Assessment Center (IAC) program. ITEM is responsible for the field management of 15 IACs in the western US. This DOE funded program utilizes teams of engineering faculty and students to conduct assessments of small to medium-size plants to identify cost savings by conserving energy, minimizing waste, and improving productivity. These assessments are provided at no direct cost to participating manufacturers, who are under no obligation to act on any recommendations. Centers managed by ITEM have conducted assessments in more than 700 plants in the metals fabrication industry (SIC 34). Recommendations made have the potential to reduce energy costs by about 10% on average. The average metals fabrication plant served achieved a 5.7% reduction in annual energy costs. These cost savings are accompanied by a reduction in energy usage of about 1.2 x 10 12 Btu/yr. Another benefit of the program is that it provides hands-on industrial experience and energy efficiency training for engineering students who will take these skills into industry. Since the program began more than 20 years ago, IACs have served less than 2% of the plants in this industry. To provide an effective means for plant managers to access and utilize the knowledge gained over the years ITEM has summarized recommendations that identify specific actions that plant management can take to save money

  6. Research of home energy management system based on technology of PLC and ZigBee

    Science.gov (United States)

    Wei, Qi; Shen, Jiaojiao

    2015-12-01

    In view of the problem of saving effectively energy and energy management in home, this paper designs a home energy intelligent control system based on power line carrier communication and wireless ZigBee sensor networks. The system is based on ARM controller, power line carrier communication and wireless ZigBee sensor network as the terminal communication mode, and realizes the centralized and intelligent control of home appliances. Through the combination of these two technologies, the advantages of the two technologies complement each other, and provide a feasible plan for the construction of energy-efficient, intelligent home energy management system.

  7. A Parametric Energy Model for Energy Management of Long Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Tebello Mathaba

    2015-12-01

    Full Text Available As electricity prices continue to rise, the increasing need for energy management requires better understanding of models for energy-consuming applications, such as conveyor belts. Conveyor belts are used in a wide range of industries, including power generation, mining and mineral processing. Conveyor technological advances are leading to increasingly long conveyor belts being commissioned. Thus, the energy consumption of each individual belt conveyor unit is becoming increasingly significant. This paper proposes a generic energy model for belt conveyors with long troughed belts. The model has a two-parameter power equation, and it uses a partial differential equation to capture the variable amount of material mass per unit length throughout the belt length. Verification results show that the power consumption calculations of the newly proposed simpler model are consistent with those of a known non-linear model with an error of less than 4%. The online parameter identification set-up of the model is proposed. Simulations indicate that the parameters can be identified successfully from data with up to 15% measurement noise. Results show that the proposed model gives better predictions of the power consumed and material delivered by a long conveyor belt than the steady-state models in the current literature.

  8. Energy Storage System Control for Energy Management in Advanced Aeronautic Applications

    Directory of Open Access Journals (Sweden)

    A. Cavallo

    2017-01-01

    Full Text Available In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator to generator mode (i.e., when the battery pumps energy on the high-voltage bus is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.

  9. Influential Effects of Intrinsic-Extrinsic Incentive Factors on Management Performance in New Energy Enterprises.

    Science.gov (United States)

    Wang, Ping; Lu, Zhengnan; Sun, Jihong

    2018-02-08

    Background : New energy has become a key trend for global energy industry development. Talent plays a very critical role in the enhancement of new energy enterprise competitiveness. As a key component of talent, managers have been attracting more and more attention. The increase in job performance relies on, to a certain extent, incentive mechanism. Based on the Two-factor Theory, differences in influences and effects of different incentives on management performance have been checked in this paper from an empirical perspective. Methods : This paper selects the middle and low level managers in new energy enterprises as research samples and classifies the managers' performance into task performance, contextual performance and innovation performance. It uses manager performance questionnaires and intrinsic-extrinsic incentive factor questionnaires to investigate and study the effects and then uses Amos software to analyze the inner link between the intrinsic-extrinsic incentives and job performance. Results : Extrinsic incentives affect task performance and innovation performance positively. Intrinsic incentives impose active significant effects on task performance, contextual performance, and innovation performance. The intrinsic incentive plays a more important role than the extrinsic incentive. Conclusions : Both the intrinsic-extrinsic incentives affect manager performance positively and the intrinsic incentive plays a more important role than the extrinsic incentive. Several suggestions to management should be given based on these results.

  10. Forest management strategies for producing wood for energy from conventional forestry systems

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Puttock, G.D. (Silv-Econ Ltd., Newmarket, ON (CA)); Richardson, J. (Forestry Canada, Science and Sustainable Development, Ottowa, ON (CA))

    1992-01-01

    The report reviews the current developments in forest management planning and practices to integrate the production of biomass for energy along with more conventional forest management goals. Efforts are under way to adapt management practices and silvicultural treatments to biomass production. These begin at the planning stage with the development of management tools and more accurate forest inventory data. They include silvicultural treatments such as shelterwood thinning in mixed wood stands and the interplanting of various tree species with the dual purpose of producing energy wood and conventional forest products. Three systems are available for recovering residues at time of final harvesting. The postharvest recovery of residues area is commonly used in Europe but is generally uneconomic in North America where the harvesting of small stems and integrated harvesting are favoured. (author).

  11. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  12. A Novel Web Service Based Home Energy Management System

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Soler, José

    2011-01-01

    and optimize the energy consumption in home environments. The main element of HEMS is the home gateway. In this paper, a home gateway suitable for HEMS is presented. The home gateway proposed uses rules to implement the home energy management system. The rules can be downloaded though web services from a rule...... server. Furthermore, web services are used to provide modularity to the home gateway by enabling the deployment of the different logical components into different devices, if necessary....

  13. Determining an energy-optimal thermal management strategy for electric driven vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Andre; Probst, Tobias; Puente Leon, Fernando [Karlsruher Institut fuer Technology (KIT), Karlsruhe (Germany). Inst. of Industrial Information Technology (IIIT)

    2012-11-01

    In electric, hybrid electric and fuel cell vehicles, thermal management may have a significant impact on vehicle range. Therefore, optimal thermal management strategies are required. In this paper a method for determining an energy-optimal control strategy for thermal power generation in electric driven vehicles is presented considering all controlled devices (pumps, valves, fans, and the like) as well as influences like ambient temperature, vehicle speed, motor and battery and cooling cycle temperatures. The method is designed to be generic to increase the thermal management development process speed and to achieve the maximal energy reduction for any electric driven vehicle (e.g., by waste heat utilization). Based on simulations of a prototype electric vehicle with an advanced cooling cycle structure, the potential of the method is shown. (orig.)

  14. Telecommunications energy and greenhouse gas emissions management for future network growth

    International Nuclear Information System (INIS)

    Chan, Chien Aun; Gygax, André F.; Leckie, Christopher; Wong, Elaine; Nirmalathas, Ampalavanapillai; Hinton, Kerry

    2016-01-01

    Highlights: • Model to evaluate key interdependencies of a fast growing telecommunications network. • Network growth analysis using real data and Monte Carlo simulation. • Importance of both operational and embodied energy efficiency improvements. • Embodied energy expected to dominate in the future under current energy efficiency trends. • Carbon footprint and energy management through optimum network replacement cycle. - Abstract: A key aspect of greener network deployment is how to achieve sustainable growth of a telecommunications network, both in terms of operational and embodied energy. Hence, in this paper we investigate how the overall energy consumption and greenhouse gas emissions of a fast growing telecommunications network can be minimized. Due to the complexities in modeling the embodied energy of networks, this aspect of energy consumption has received limited attention by network operators. Here, we present the first model to evaluate the interdependencies of the four main contributing factors in managing the sustainable growth of a telecommunications network: (i) the network’s operational energy consumption; (ii) the embodied energy of network equipment; (iii) network traffic growth; and (iv) the expected energy efficiency improvements in both the operational and embodied phases. Using Monte Carlo techniques with real network data, our results demonstrate that under the current trends in overall energy efficiency improvements the network embodied energy will account for over 40% of the total network energy in 2025 compared to 20% in 2015. Further, we find that the optimum equipment replacement cycle, which will result in the lowest total network life cycle energy, is directly dependent on the technological progress in energy efficiency improvements of both operational and embodied phases. Our model and analysis highlight the need for a comprehensive approach to better understand the interactions between network growth, technological

  15. Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power

    Institute of Scientific and Technical Information of China (English)

    Feng Zhao; Chenghui Zhang; Bo Sun

    2016-01-01

    This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits.

  16. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  17. Risk management tools from the traditional energy industry to wind energy projects

    International Nuclear Information System (INIS)

    Randall, G.; Marks, R.

    2010-01-01

    Risk-based analysis techniques are used to quantify and prioritize a wide variety of problems within the traditional fossil fuel and nuclear power industries. This poster presentation evaluated some of the risk analysis tools and methods used by the energy industry to quantify and manage wind energy development risks. A comprehensive risk-based approach for identifying the probability and consequences of potential concerns was presented for a sample wind energy project. The process determined objectives in relation to the project's net present value. Contributing domains included the energy production, prices, and operating costs of the project. Decision criteria used to evaluate the desirability of the wind project were then developed. Monte Carlo simulations were the used to aggregate individual risks into an overall total. The contribution of each element to the decision objective was calculated separately. The element outputs were than combined into a measure of aggregate risk exposure. Aggregate results were used to calculate the decision criteria. The decision objective was to determine if the energy cost was less than the avoided cost of other project options. The study showed that the approach can allow decision-makers to mitigate risks. However, the results are dependent on the quality of the input data. tabs., figs.

  18. Day-Ahead Scheduling of a Photovoltaic Plant by the Energy Management of a Storage System

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Sossan, Fabrizio; Isleifsson, Fridrik Rafn

    2013-01-01

    The paper discusses and describes a system for energy management of a 10 kW PV plant coupled with a 15 kW - 190 kWh storage system. The overall idea is, by knowing the meteorological forecast for the next 24h, to dispatch the PV system and to be able to grant the scheduled hourly energy profile...... by a proper management of the storage. Due to forecast inaccuracies, the energy manager controls the storage in order to ensure that the plan for hourly energy production is respected, minimizing the storage itself usage. The experimental study is carried out in SYSLAB, a distributed power system test...

  19. Role of nuclear energy and the importance of radioactive waste management

    International Nuclear Information System (INIS)

    Seamans, R.C. Jr.

    1976-01-01

    The energy policy of the USA is briefly summarized as an introduction to a consideration of the options involved in the management of wastes from the LWR fuel cycle. The factors considered in the management of the wastes from the point of occurence to the final disposal are discussed

  20. Energy crisis management: ways to cope with disruption in oil supply

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, T

    1981-03-10

    The causes and impacts of past oil-supply disruptions are examined in terms of the effectiveness of management strategies used to deal with the crisis. Progress is noted in the recent decline of US imports, augmented oil stockpiles, a turnaway from the spot market, oil self-sufficiency for Britain, conservation programs in France, price decontrol in Canada, and alternative energy projects in Japan. The International Energy Agency (IEA) plans to develop an emergency scheme that first seeks to minimize the chance of a crisis arising and then to minimize adverse impacts should one occur. The first part of the strategy incorporates demand management, increased energy production, cooperation between producing and consuming countries, and political stability. The emergency measures for dealing with an actual crisis will emphasize life and safety. 15 references. (DCK)

  1. Stand-Alone Photovoltaic System Operation with Energy Management and Fault Tolerant

    International Nuclear Information System (INIS)

    Jmashidpour, Ehsan; Poure, Philippe; Gholipour, E.; Saadate, Shahrokh

    2017-01-01

    This paper presents a stand-alone photovoltaic (PV) system with a fault tolerant operation capability. An energy management method is provided to keep the balance between produced and consumed energy instantaneously. As the storage element, an Ultra-Capacitor (UC) pack is used for facing high frequency variation of the load/source, and batteries are in charge of slow load /source variations. A Maximum Power Point Tracking (MPPT) algorithm is applied to control the boost converter of the PV source to achieve the maximum power. In order to improve the micro-grid service continuity and reliability, a fast fault diagnosis method based on the converter current shape for PV source is applied. Finally, the validity of the proposed energy management and the fault diagnosis method is confirmed by the simulation and experimental results. (author)

  2. Toward developing a Distributed Autonomous Energy Management System (DAEMS)

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2015-09-01

    Full Text Available The design of innovative technological instruments and frameworks for smart energy management is a challenge for countries across the world, and the creation of a 'Smart Grid' still has unresolved research and development (R&D) problems. The design...

  3. Asynchronous event driven distributed energy management using profile steering

    NARCIS (Netherlands)

    Hoogsteen, G.; Molderink, A.; Hurink, J. L.; Smit, G. J. M.

    2017-01-01

    Distributed Energy Management methodologies with a scheduling approach based on predictions require means to avoid problems related to prediction errors. Various approaches deal with such prediction errors by applying a different online control mechanism, such as a double-sided auction. However,

  4. Energy management and vehicle synthesis

    Science.gov (United States)

    Czysz, P.; Murthy, S. N. B.

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  5. Dietary energy density: Applying behavioural science to weight management.

    Science.gov (United States)

    Rolls, B J

    2017-09-01

    Studies conducted by behavioural scientists show that energy density (kcal/g) provides effective guidance for healthy food choices to control intake and promote satiety. Energy density depends upon a number of dietary components, especially water (0 kcal/g) and fat (9 kcal/g). Increasing the proportion of water or water-rich ingredients, such as vegetables or fruit, lowers a food's energy density. A number of studies show that when the energy density of the diet is reduced, both adults and children spontaneously decrease their ad libitum energy intake. Other studies show that consuming a large volume of a low-energy-dense food such as soup, salad, or fruit as a first course preload can enhance satiety and reduce overall energy intake at a meal. Current evidence suggests that energy density influences intake through a complex interplay of cognitive, sensory, gastrointestinal, hormonal and neural influences. Other studies that focus on practical applications show how the strategic incorporation of foods lower in energy density into the diet allows people to eat satisfying portions while improving dietary patterns. This review discusses studies that have led to greater understanding of the importance of energy density for food intake regulation and weight management.

  6. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  7. The insurance and risk management industries: new players in the delivery of energy-efficient and renewable energy products and services

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    The insurance and risk management industries are typically considered to have little interest in energy issues, other than those associated with large energy supply systems. The historical involvement of these industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, evidences a tradition of mediating and facilitating the use of technology to improve safety and otherwise reduce the likelihood of losses. Through an examination of the connection between risk management and energy technology, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer loss-prevention benefits (such as improved fire safety). This article presents the business case for insurer involvement in the sustainable energy sector and documents early case studies of insurer efforts along these lines. We have mapped these opportunities onto the appropriate market segments (life, health, property, liability, business interruption, etc.). We review steps taken by 53 forward-looking insurers and reinsurers, 5 brokers, 7 insurance organizations, and 13 non-insurance organizations. We group the approaches into the categories of: information, education, and demonstration; financial incentives; specialized policies and insurance products; direct investment; customer services and inspections; codes, standards, and policies; research and development; in-house energy management; and an emerging concept informally known as 'carbon insurance'. While most companies have made only a modest effort to position themselves in the 'green' marketplace, a few have comprehensive environmental programs that include energy efficiency and renewable energy activities

  8. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zipperer, A. [Colorado State Univ., Fort Collins, CO (United States); Aloise-Young, P. A. [Colorado State Univ., Fort Collins, CO (United States); Suryanarayanan, S. [Colorado State Univ., Fort Collins, CO (United States); Zimmerle, D. [Colorado State Univ., Fort Collins, CO (United States); Roche, R. [Univ. of Technology, Belfort-Montebeliard (France); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bauleo, P. [Fort Collins Utilities, CO (United States)

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  9. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth; Roche, Robin; Earle, Lieko; Christensen, Dane; Bauleo, Pablo; Zimmerle, Daniel

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  10. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  11. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  12. Hierarchical Energy Management of Microgrids including Storage and Demand Response

    Directory of Open Access Journals (Sweden)

    Songli Fan

    2018-05-01

    Full Text Available Battery energy storage (BES and demand response (DR are considered to be promising technologies to cope with the uncertainty of renewable energy sources (RES and the load in the microgrid (MG. Considering the distinct prediction accuracies of the RES and load at different timescales, it is essential to incorporate the multi-timescale characteristics of BES and DR in MG energy management. Under this background, a hierarchical energy management framework is put forward for an MG including multi-timescale BES and DR to optimize operation with the uncertainty of RES as well as load. This framework comprises three stages of scheduling: day-ahead scheduling (DAS, hour-ahead scheduling (HAS, and real-time scheduling (RTS. In DAS, a scenario-based stochastic optimization model is established to minimize the expected operating cost of MG, while ensuring its safe operation. The HAS is utilized to bridge DAS and RTS. In RTS, a control strategy is proposed to eliminate the imbalanced power owing to the fluctuations of RES and load. Then, a decomposition-based algorithm is adopted to settle the models in DAS and HAS. Simulation results on a seven-bus MG validate the effectiveness of the proposed methodology.

  13. Energy Optimization and Management of Demand Response Interactions in a Smart Campus

    Directory of Open Access Journals (Sweden)

    Antimo Barbato

    2016-05-01

    Full Text Available The proposed framework enables innovative power management in smart campuses, integrating local renewable energy sources, battery banks and controllable loads and supporting Demand Response interactions with the electricity grid operators. The paper describes each system component: the Energy Management System responsible for power usage scheduling, the telecommunication infrastructure in charge of data exchanging and the integrated data repository devoted to information storage. We also discuss the relevant use cases and validate the framework in a few deployed demonstrators.

  14. Power generation, energy management and environmental source book

    International Nuclear Information System (INIS)

    Jackson, M.

    1992-01-01

    The 14th World Energy Engineering Congress (WEEC) and the companion World Environmental Engineering Congress, October 23-25, 1991, Georgia World Congress Center, Atlanta, reflect the myriad of forces impacting on our industry. Energy conservation is once again in vogue. To reflect how the industry is changing, the Association of Energy Engineers (AEE) conducted its 1991 member survey. Fifty-six percent of the 762 responses revealed that energy awareness has increased over the last year. Purchasing activities for energy products will be brisk in the next twelve months: 78% plan to upgrade controls for efficiency improvement, 72% plan to install lighting efficiency products, and 63% plan to add or install energy management systems. Issues causing these energy conversation activities as well as solution are presented in this report. This year's WEEC prepares attendees for the energy and environmental challenges ahead. This current, document is a comprehensive up-to-the-minute reference. Based on the WEEC, it includes the latest methodologies used to improve efficiency and lower operating costs, plus new factors such as indoor air quality. CFC reduction and emission control technologies which must be addressed to stay competitive in the 1990s. For fourteen years, the World Energy Engineering Congress has provided the essential forum for industry. The sharing of information is important to the continued growth of the energy engineering profession. The 100 papers in this reference are abstracted and entered individually into EDB

  15. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Christa; Malone, Elizabeth L.

    2014-05-20

    This report assesses the use of institutional change principles and the institutional impact of award-winning projects through interviews with 22 Department of Energy Federal Energy Management Program (DOE FEMP) award winners. Award winners identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. We found that award winners do use strategies based on eight principles of institutional change, most frequently in terms of making changes to infrastructure, engaging leadership, and capitalizing on multiple motivations for making an energy efficiency improvement. The principles drawn on the least often were commitment and social empowerment. Award winners also faced five major types of obstacles that were institutional in nature: lack of resources, constraints of rules, psychological barriers, lack of information, and communication problems. We also used the seven categories of Energy Management Excellence (EME) as a lens to interpret the interview data and assess whether these categories relate to established institutional change principles. We found that the eight principles reflect strategies that have been found to be useful in improving energy efficiency in organizations, whereas the EME categories capture more of a blend of social contextual factors and strategies. The EME categories fill in some of the social context gaps that facilitate institutional change and energy management excellence, for example, personal persistence, a culture that supports creativity and innovation, regular engagement with tenants, contractors, and staff at all levels. Taking together the use of principles, EME criteria, and obstacles faced by interviewees, we make recommendations for how FEMP can better foster institutional change in federal agencies.

  16. Energy management in a microgrid with distributed energy resources

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Gari, Nicolae; Hmurcik, Lawrence V.

    2014-01-01

    Highlights: • A performance metric is proposed with the consideration of price, environment effect, and service quality. • Models of a microgrid and a microgrid network are designed with distribute energy resources and storage. • Different cases in MG operation are discussed. - Abstract: A smart grid power system with renewable energy resources and distributed energy storage shows significant improvement in the power system’s emission reduction, reliability, efficiency, and security. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. Multi microgrids form a network with energy management and operational planning through two-way power flow and communication. To comprehensively evaluate the performance of a microgrid, a performance metric is proposed with consideration of the electricity price, emission, and service quality, each of them is given a weighting factor. Thus, the performance metric is flexible according to the consumers’ preference. With the weighting factors set in this paper, this performance metric is further applied on microgrids operated as stand-alone, grid-tied, and networked. Each microgrid consists of a solar panel, a hydrogen fuel cell stack, an electrolyzer, a hydrogen storage tank, and a load. For a stand-alone system, the load prediction lowers down the daily electricity consumption about 5.7%, the quantity of H 2 stored fluctuates in a wide range, and overall performance indexes increase with the solar panel size. In a grid-tied MG, the load prediction has a significant effect on the daily consumed electricity which drops 25% in 4 days, some day-time loads are shifted to the night time, and the capacity of hydrogen tank is lower than that in a stand-alone MG. In a network with multiple MGs, the control of the power distribution strongly affects the MG’s performance. However, the overall performance index instead of any specific index increases with the MG’s power generated from renewable energy

  17. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    Science.gov (United States)

    Hussey, Karen; Petit, Carine

    2010-05-01

    Water and energy are both indispensable inputs to modern economies but currently both resources are under threat owing to the impacts of an ever-increasing population and associated demand, unsustainable practices in agriculture and manufacturing, and the implications of a changing climate. However, it is where water and energy rely on each other that pose the most complex challenges for policy-makers. Water is needed for mining coal, drilling oil, refining gasoline, and generating and distributing electricity; and, conversely, vast amounts of energy are needed to pump, transport, treat and distribute water, particularly in the production of potable water through the use of desalination plants and waste water treatment plants. Despite the links, and the urgency in both sectors for security of supply, in existing policy frameworks energy and water policies are developed largely in isolation from one another. Worse still, some policies designed to encourage alternative energy supplies give little thought to the resultant consequences on water resources, and, similarly, policies designed to secure water supplies pay little attention to the resultant consequences on energy use. The development of new technologies presents both opportunities and challenges for managing the energy-water nexus but a better understanding of the links between energy and water is essential in any attempt to formulate policies for more resilient and adaptable societies. The energy-water nexus must be adequately integrated into policy and decision-making or governments run the risk of contradicting their efforts, and therefore failing in their objectives, in both sectors. A series of COST Exploratory Workshops, drawing on on-going research in the energy-water nexus from a number of international teams, identified the implications of the energy-water nexus on the development of (i) energy policies (ii) water resource management policies and (iii) climate adaptation and mitigation policies. A

  18. Sustainable energy development material management team report. Fossil business unit

    International Nuclear Information System (INIS)

    Bird, P.; Keller, P.; Manning, P.; Nolan, M.; Ricci, A.; Turnbull, F.; Varadinek, H.

    1995-01-01

    Report of the Material Management Sustainable Energy Development (SED) Team was presented, outlining strategic directions and initiative for embedding SED principles in the materials management function. Six principles underlying SED were prescribed, accompanied by a framework for analysis. Excerpts from position papers used in the formulation of SED recommendations and initiatives were provided. The general theme of the recommendations was: (1) materials management activities should be review to ensure consistency with SED, (2) strategic alliances should be developed where appropriate and (3) staff in the Fossil Business Unit should promote SED among industry suppliers

  19. A perspective on the states` role in the Department of Energy`s Office of Environmental Management budget process

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.P.; Hinman, P. [Carter, Brock & Hinman, Boise, ID (United States)

    1995-12-31

    Responding in 1994 to proposed budget reductions and predicted funding shortfalls, the Office of Environmental Management at the Department of Energy began working closely with its regulators and stakeholders to prioritize activities. In a series of national and site specific meetings held with representatives of states, the Environmental Protection Agency, Indian tribes and the public, the Department of Energy brought regulators and other stakeholders into its budget development process in a {open_quotes}bottoms up{close_quotes} approach to the prioritization of activities at each of its sites. This paper presents an overview of this process which began last year and will highlight its unique cooperative nature. This paper will assess ways of institutionalizing this process. It also identifies issues to be addressed in resolving matters related to future budgets. Areas of concern to the Department of Energy`s host states and their regulators will be identified as they relate to waste management, cleanup and facility transition activities.

  20. Risk management in the energy sector; Energiesector verplicht tot risicomanagement

    Energy Technology Data Exchange (ETDEWEB)

    Razzorenova, I.

    2006-06-15

    Within the framework of The International Financial Reporting Standards (IFRS) since January 1, 2005, energy companies are obliged to give account of their system of risk management. This tool can be used to monitor the new developments in this sector and to control the consequences. Deloitte studied how the risk management tool is used in 16 energy companies. [Dutch] In het kader van de International Financial Reporting Standards zijn energiebedrijven sinds 1 januari 2005 verplicht externe verantwoording af te leggen over het systeem van risicobeheersing, staat risicomanagement hoog op de agenda. Risicomanagement kan worden ingezet als een middel om deze ontwikkelingen en de consequenties ervan te inventariseren en beheersbaar te maken. Deloitte onderzocht bij 16 energiebedrijven hoe dit middel wordt ingezet.