WorldWideScience

Sample records for energy intensive industrial

  1. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  2. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  3. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  4. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  5. EU energy-intensive industries and emissions trading: losers becoming winners?

    Energy Technology Data Exchange (ETDEWEB)

    Wettestad, Joergen

    2008-11-15

    The EU Emissions Trading System (ETS) initially treated power producers and energy-intensive industries similarly, despite clear structural differences between these industries regarding pass through of costs and vulnerability to global competition. Hence, the energy-intensive industries could be seen as losing out in the internal distribution. In the January 2008 proposal for a reformed ETS post-2012, a differentiated system was proposed where the energy-intensive industries come out relatively much better. What is the explanation for the change taking place? Although power producers still have a dominant position in the system, the increasing consensus about windfall profits has weakened their standing. Conversely, the energy-intensive industries have become better organised and more active. This balance shift is first and foremost noticeable in several important EU-level stake holder consultation processes. Energy-intensive industries have, however, also successfully utilised the national pathway to exert influence on Brussels policy-making. Finally, growing fear of lax global climate policies and related carbon leakage has strengthened the case of these industries further. The latter dimension indicates that although energy-intensive industries have managed to reduce internal distribution anomalies, external challenges remain. (author). 9 refs

  6. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  7. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  8. Do urbanization and industrialization affect energy intensity in developing countries?

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2013-01-01

    Against a backdrop of concerns about climate change, peak oil, and energy security issues, reducing energy intensity is often advocated as a way to at least partially mitigate these impacts. This study uses recently developed heterogeneous panel regression techniques like mean group estimators and common correlated effects estimators to model the impact that income, urbanization and industrialization has on energy intensity for a panel of 76 developing countries. In the long-run, a 1% increase in income reduces energy intensity by − 0.45% to − 0.35%. Long-run industrialization elasticities are in the range 0.07 to 0.12. The impact of urbanization on energy intensity is mixed. In specifications where the estimated coefficient on urbanization is statistically significant, it is slightly larger than unity. The implications of these results for energy policy are discussed. - Highlights: ► The impact of urbanization and industrialization on energy intensity is modeled. ► Use recently developed heterogeneous panel regression techniques ► The model is tested on a panel of developing countries. ► Income has a negative impact on energy intensity. ► Industrialization has a positive impact on energy intensity

  9. Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand

    International Nuclear Information System (INIS)

    Chontanawat, Jaruwan; Wiboonchutikula, Paitoon; Buddhivanich, Atinat

    2014-01-01

    The study computes and analyses the sources of the change of energy intensity of the manufacturing industries in Thailand during the period (1991–2011) using the decomposition method. The Logarithmic Mean Divisia Index is computed and the results show that the energy intensity in the period (1991–2000) increased greatly from the increased energy intensity of each industry. In the more recent period (2000–2011) the energy intensity declined a little. However the decline was mainly from the structural change effect with negligible contribution from decreased energy intensity of each industry. The findings imply the need to balance industrial restructuring policies with efforts to reduce energy intensity for a sustainable economic development. Besides, there is much room for individual industries to improve their energy efficiency. Policies on restructuring energy prices and other non-price related measures should be devised to induce individual industries, particularly the highly energy intensive ones, to reduce their energy intensity. - Highlights: • Decomposing change of energy intensity of Thai manufacturing industries, 1991–2011. • 1991–2000 energy intensity rose due to increased energy intensity of each industry. • 2000–2011 energy intensity declined due mainly to the structural change effect. • Need to balance industrial restructuring policies to reduce energy intensity

  10. The effect of increasing exports on industrial energy intensity in China

    International Nuclear Information System (INIS)

    Zheng Yingmei; Qi Jianhong; Chen Xiaoliang

    2011-01-01

    Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO 2 emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors. - Research highlights: → We examine the impact of exports on industrial energy intensity in China. → Greater exports increase industrial energy intensity as a whole. → Divergences exist in the impact of exports on energy intensity across sub-sectors. → China should discard policies encouraging exports at the cost of energy efficiency. → Export policy to reduce energy intensity should cater to sub-sector characteristics.

  11. The effect of increasing exports on industrial energy intensity in China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yingmei [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China); Qi Jianhong, E-mail: sducatherine@gmail.co [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China); Chen Xiaoliang [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China)

    2011-05-15

    Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO{sub 2} emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors. - Research highlights: {yields} We examine the impact of exports on industrial energy intensity in China. {yields} Greater exports increase industrial energy intensity as a whole. {yields} Divergences exist in the impact of exports on energy intensity across sub-sectors. {yields} China should discard policies encouraging exports at the cost of energy efficiency. {yields} Export policy to reduce energy intensity should cater to sub-sector characteristics.

  12. Emergy-based comparative analysis of energy intensity in different industrial systems.

    Science.gov (United States)

    Liu, Zhe; Geng, Yong; Wang, Hui; Sun, Lu; Ma, Zhixiao; Tian, Xu; Yu, Xiaoman

    2015-12-01

    With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although

  13. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  14. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  15. Changes in energy intensities of Thai industry between 1981 and 2000: a decomposition analysis

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Ussanarassamee, Arjaree

    2005-01-01

    Industrial demand accounts for about 30% of total final energy demand in Thailand, which experienced rapid increases in energy demand. This paper analyzes the changes in industrial energy intensities over a period of 20 years (1981-2000) and identifies the factors affecting the energy consumption using logarithmic mean Divisia decomposition technique. It is found that Thai industry has passed through four different phases of growth and energy consumption has closely followed the industrial growth pattern. Energy intensity of Thai industry decreased from 17.6 toe/million baht (constant 1988 prices) in 1981 to 15.8 toe/million baht (1988 prices) in 2000. Non-metallic mineral industry is the most intensive industry followed by basic metal, food and beverage, chemical and paper industries. The factor analysis indicates that both the structural effect and intensity effect contributed to a decline of aggregate intensity by 8% during 1981-1986 but in the rest of the periods, the two effects acted in opposite directions and thereby reducing the overall effect on aggregate intensity. Food and beverages, non-metallic mineral and chemical industries had significantly influenced the changes in aggregate intensity at sectoral level

  16. Evaluation of corporate energy management practices of energy intensive industries in Turkey

    International Nuclear Information System (INIS)

    Ates, Seyithan Ahmet; Durakbasa, Numan M.

    2012-01-01

    Turkey is one of a number of countries who still lack a national management standard for energy. Industrial energy consumption accounts for 42% of Turkey's total energy consumption. With the help of a questionnaire and analytical framework, this paper investigates Industrial Energy Management Practice in Turkey and highlights significant bottlenecks and shortcomings of energy intensive industries in terms of energy management application. The survey was carried out as a multiple case study of the Turkish iron, steel, cement, paper, ceramics and textile industries. Outcomes of the questionnaire are evaluated according to the analytical framework which covers company characteristics, regulations, external relations of the companies and internal organizational conditions. After analyzing these elements on the basis of a minimum requirement list, it was found that only 22% of the surveyed companies actually practice corporate energy management in Turkey. The main barriers to proper energy management implementation were identified as lack of synergy between the stakeholders, the extent and scope of energy manager courses, and inadequate awareness of and lack of financial support for energy management activities. As a guideline to overcome present obstacles, a set of policy options are offered: strengthening and restructuring of legal and institutional frameworks, promotion of energy efficiency, education, training and capacity building and facilitating implementation of the international energy management standard ISO 50001. -- Highlights: ► Developing an analytical scheme to assess degree of Energy Management Application. ► Investigation of Energy Management Practices in Turkish Energy Intensive Industries. ► Analysis of challenges which hinder full implementation of energy management in Turkey. ► Presenting a set of essential policy options thought for all stakeholders.

  17. Determinants of innovation in energy intensive industry and implications for energy policy

    International Nuclear Information System (INIS)

    Song, ChiUng; Oh, Wankeun

    2015-01-01

    Abstracts: The Korean government adopted “green growth” in 2008 as an environmentally friendly growth strategy. The energy efficiency of Korea, however, is still relatively low due to the large portion of energy intensive industry (EII) in its manufacturing sector. To improve energy efficiency in Korea, from an EII perspective a new approach has to be taken because restructuring entire industries would take too much time and be too costly. This study aims to emphasize the importance of innovation and analyze the effects of R&D on product and process innovations in EII in Korea. The Probit model is adopted to estimate the effects of eight determinants in the Korea Innovation Survey 2008 data. The results of this study demonstrate that one of the most important determinants, the R&D personnel ratio, has a strong positive effect on both product and process innovation, while another determinant, R&D intensity, only has a strong and positive effect on process innovation in EII. Because of the resulting innovation, energy policies should be enacted to enhance energy efficiency. Thus, the Korean government should keep providing incentives for firms in EII to invest more financial and human resources in their R&D activities. -- Highlights: •We analyze determinants on two innovations in energy intensive industry (EII). •The R&D personnel ratio is effective in product innovation in EII. •Both R&D intensity and R&D personnel are effective in process innovation in EII. •In less EII, R&D variables have positive effects on product and process innovations. •The Korean government should strongly support R&D to improve energy efficiency

  18. ORC waste heat recovery in European energy intensive industries: Energy and GHG savings

    International Nuclear Information System (INIS)

    Campana, F.; Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R.

    2013-01-01

    Highlights: • A methodology to estimate ORC industrial heat recovery potential is defined. • Heat recovery applications for different industrial processes are shown. • Cement, steel, glass and oil and gas applications are considered in EU27. • Savings in electricity costs and greenhouse gases are quantified. - Abstract: Organic Rankine Cycle (ORC) is a technology with important opportunities in heat recovery from energy intensive industrial processes. This paper represents the first comprehensive estimate of ORC units that can be installed in cement, steel, glass and oil and gas industries in the 27 countries of the European Union based on an accurate methodology related to real plants in operation or under construction. An evaluation of energy savings, depending on the number of operating hours per year and of the consequent decrease in CO 2 emission and electricity expenditure, is also provided. The study, carried out in the framework of an European research project on heat recovery in energy intensive industries, found that, in the most convenient considered scenario, up to about 20,000 GW h of thermal energy per year can be recovered and 7.6 M ton of CO 2 can be saved by the application of ORC technology to the investigated and most promising industrial sectors

  19. The petrochemical industry and its energy use. Prospects for the Dutch energy intensive industry

    International Nuclear Information System (INIS)

    Gielen, D.J.; Vos, D.; Van Dril, A.W.N.

    1996-04-01

    The current state and the future of the Dutch petrochemical industry are discussed. First, its current energy use, technology and its markets are analysed. Competitiveness of Dutch and Western European producers compared to foreign producers is shown. Main technological developments and other key issues (e.g. environmental issues) are discussed. Based on this analysis, a future scenario is derived for petrochemical industrial energy use for the period 2000-2015. This case study can be divided into an analysis of the current situation (Chapter 2-6) and alternatives for production and energy consumption of the Dutch petrochemical industry within its Western European context (Chapter 7-11). Chapter 2 analyses the current production structure and the historical developments. Chapter 3 discusses current technologies. Chapter 4 analyses markets for Dutch petrochemical products. Chapter 5 analyses the industry economics in the Netherlands in terms of costs and revenues. Chapter 6 provides information on institutional factors that influence industrial activities. Chapter 7 discusses global competition with special emphasis on competition for the European market. Chapter 8 analyses potential technology shifts. In Chapter 9, data from the preceding chapters on markets, competition, structure and technology are combined to compare competing production options. This is followed by a sensitivity analysis in Chapter 10. Based on a production volume forecast and the development of energy intensity of production, energy consumption of the Dutch petrochemical industry is forecast in Chapter 11. Finally, Chapter 12 provides conclusions and policy recommendations. 24 figs., 48 tabs., 103 refs., 2 appendices

  20. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  1. UP-report. Energy intensive industry. Basis of the Development platform. Industry to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Energiintensiv industri. Underlag fraan Utvecklingsplattformen. Industri till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation under the thematic area of energy intensive industry for the period 2011 - 2016. The report has been compiled by members of the Development platform Industry. This report provides background and conditions for the energy intensive industry, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets needs of the society and business.

  2. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  3. Investment risk evaluation techniques: use in energy-intensive industries and implications for ERDA's Industrial Conservation Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-13

    The trade-off between risk and rate-of-return in investment evaluations is crucial in assessing the commercial potential of future energy-conservation technologies. The focus of the Industrial Conservation Program at ERDA is to reduce the perceived risks of a given technology to the extent that the private sector will adopt the technology within the normal course of its business operations. These perceived risks may emanate from technical, institutional, or commercial uncertainties, or in many cases they may result merely from a company's or industry's lack of previous experience with a particular technology. Regardless of the source of the risk surrounding a project, the uncertainty it poses to the private sector will serve to inhibit decisions to invest. This study evaluates the treatment of risk in capital investments in certain energy-intensive industries which are the primary targets of ERDA's Industrial Conservation Program. These risks evaluation considerations were placed within a context that includes capital budgeting practices and procedures, organizational considerations, and basic rate-of-return evaluation procedures in the targeted energy-intensive industries (petroleum, chemicals, paper, textiles, cement, food processing, aluminum, steel, glass, and agriculture).

  4. Principles, effects and problems of differential power pricing policy for energy intensive industries in China

    International Nuclear Information System (INIS)

    Lin, Boqiang; Liu, Jianghua

    2011-01-01

    The Chinese government canceled the preferential power pricing policies for energy intensive industries and imposed a reverse differential pricing policy in order to promote energy efficiency and the adjustment and upgrading of the industrial structure. This article analyzes the principles of China's differential power pricing policy, the externalities of energy and the modified Ramsey pricing rule, and also points out the policy implications of China's differential power pricing policy. In our samples, we investigate eight power intensive products in the Henan province with respect to their power consumption per unit (power intensity), electricity cost, total cost, the electricity tariff and profit, in order to test the effects of the differential power pricing policy. The results show that the primary effect of the differential power pricing policy is that enterprises decrease their total costs and improve their productive efficiencies in advance, in anticipating a higher electricity tariff. -- Research highlights: → The article suggests a modified Ramsey pricing model where demand elasticity is replaced by elasticity of energy consumption and polluting elasticity to internalize the negative externality of high energy intensive industry. → The article assesses the effects of differential pricing policy through on-site survey of high energy intensive industries in Henan province and analyzes the reasons behind those effects. → The article presents the lessons and policy implications of implementing differential pricing policy aimed at energy conservation and emission reduction.

  5. Measuring the efficiency of energy-intensive industries across European countries

    International Nuclear Information System (INIS)

    Makridou, Georgia; Andriosopoulos, Kostas; Doumpos, Michael; Zopounidis, Constantin

    2016-01-01

    This study evaluates the energy efficiency trends of five energy-intensive industries in 23 European Union (EU) countries over the period 2000–2009. In particular, the performance of the construction, electricity, manufacturing, mining and quarrying, and transport sectors is examined. The analysis is based on Data Envelopment Analysis (DEA) combined with the Malmquist Productivity Index (MPI), which allows for distinctions between efficiency and technology changes over time. At the second stage of the analysis, cross-classified multilevel modelling is applied to analyse the main drivers behind efficiency performance using a number of sector and country characteristics. Based on DEA results, an overall improvement in efficiency is observed in all sectors over the period. The decomposition of the MPI indicates that technology change is primarily responsible for the improvements achieved in most sectors. The results obtained by the cross-classified model show, among other things, that the high electricity prices, energy taxes, and market share of the largest generator in the electricity market have a negative effect on industrial energy efficiency. - Highlights: • Analysis of energy efficiency and trends of industrial sectors in EU. • Combination of non-parametric frontier models and multilevel explanatory analysis. • Examination of the drivers of energy efficiency. • Industrial energy efficiency performance is mainly driven by technological improvement.

  6. An efficient power market - consequences for energy-intensive industries and regions

    International Nuclear Information System (INIS)

    Bye, Torstein; Hoel, Michael; Stroem, Steinar

    2000-01-01

    From economic theory we know that, unless special arguments can be made, we obtain economic efficiency if all buyers of a homogeneous good pay the same price for the good. If this principle is violated inefficiency will occur. The principle holds for all goods, i.e. both for consumer goods (e.g. clothing or food), inputs in a production process (e.g. raw materials), and for combined goods. Electricity is an example of a combined good that can be used both as a final good and as an input in production processes. In Norway, the energy intensive industry (metals and chemicals) and the paper and pulp industry pay a lower price for their use of electricity than other users pay. The reason is that this industry has signed long-term contracts where the prices have been influenced by political processes. This pricing leads to an inefficient use of electricity in Norway. In this book we study the consequences of changing the electricity prices for this sectors so that we obtain a situation where all domestic users of electricity pay the same price. The book contains numerical calculations of potential structural changes and changes in overall economic welfare (producer and consumer surplus). We also calculate changes in emissions both from these sectors and from the rest of the economy. The last chapter deals with structural change and regional differences, with emphasis on the regions in which the energy intensive firms are located. We discuss how strong the negative impact on these regions will be as a consequence of shutting down non-profitable energy intensive firms when the price of electricity changes. A main conclusion in the book is that Norway will benefit from increasing the electricity price paid by the energy intensive sectors, both in economic terms and with respect to overall pollution. Reduced electricity use in the energy intensive sectors will in the short run lead to increased export of electricity. In the longer run, new investments in power producing

  7. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  8. Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case

    International Nuclear Information System (INIS)

    Seck, Gondia Sokhna; Guerassimoff, Gilles; Maïzi, Nadia

    2016-01-01

    A large number of studies have been conducted on the contribution of technological progress and structural change to the evolution of aggregate energy intensity in the industrial sector. However, no analyses have been done to examine theses changes in the non-energy intensive industry in France. We analyzed their importance in French industry with respect to their energy intensity, energy costs, value added, labour and the diffusion of production sites by using data at the 3-digit level with 236 sectors. Using a new decomposition method that gives no residual, this paper attempted to examine, over 10 years from 1996 to 2005, the changes that occurred in an area that has been neglected in energy analysis. We found that structural change had an overwhelming effect on the decline of aggregate energy intensity. Furthermore, we found that the higher the level of sector disaggregation, the more significant the changes that can be attributed to structural change, due to the homogeneity of this industrial group. The results of our study show that it is important to take into account the effects of structural change in “bottom-up” modelling exercises so as to improve the accuracy of energy demand forecasting for policy-makers and scientists. - Highlights: • Defining NEI industries with a quantitative approach from relevant indicators in France. • Developing new decomposition method given in additive form with no residual in NEI. • Structural change is the overwhelming factor in improving energy performance within NEI. • Revealed consistent trend with level of sector disaggregation if homogeneous industries.

  9. Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food and drink industry

    International Nuclear Information System (INIS)

    Seck, Gondia Sokhna; Guerassimoff, Gilles; Maïzi, Nadia

    2013-01-01

    Highlights: • First bottom-up energy model for NEI at 4-digit level of NACE for energy analysis. • Energy end-use modelling due to the unsuitability of end-product/process approach. • Analysis of heat recovery with HP on industrial processes up to 2020 in French F and D. • Energy consumption and emissions drop respectively by 10% compared to 2001 and 9% to 1990. • Results only achieved at heat temperature below 100 °C, concentrated in 1/3 of F and D sectors. - Abstract: Rising energy prices and environmental impacts inevitably encourage industrials to get involved in promoting energy efficiency and emissions reductions. To achieve this goal, we have developed the first detailed bottom-up energy model for Non-Energy Intensive industry (NEI) to study its global energy efficiency and the potential for CO 2 emissions reduction at a 4-digit level of NACE classification. The latter, which is generally neglected in energy analyses, is expected to play an important role in reducing industry energy intensity in the long term due to its economic and energy significance and relatively high growth rate. In this paper, the modelling of NEI is done by energy end-use owing to the unsuitability of the end-product/process approach used in the Energy Intensive industry modelling. As an example, we analysed the impact of heat recovery with heat pumps (HP) on industrial processes up to 2020 on energy savings and CO 2 emissions reductions in the French food and drink industry (F and D), the biggest NEI sector. The results showed HP could be an excellent and very promising energy recovery technology. For further detailed analysis, the depiction of HP investment cost payments is given per temperature range for each F and D subsector. This model constitutes a useful decision-making tool for assessing potential energy savings from investing in efficient technologies at the highest level of disaggregation, as well as a better subsectoral screening

  10. Energy Reporting Practices among Top Energy Intensive Industries in Malaysia

    Science.gov (United States)

    Tasrip, N. E.; Mat Husin, N.; Alrazi, B.

    2016-03-01

    This study content analyses the energy content in the corporate report of top 30 Malaysian energy-intensive companies. Motivated by the gap among prior corporate social responsibility and environmental reporting studies in respect of energy, this study provides evidence of Malaysian companies’ initiative to reduce energy consumption. While the evidence suggests that not all 30 companies have reported energy-related information, the findings provide an overview on the response of energy intensive companies in relation to Malaysian government initiatives on energy.

  11. The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India

    Directory of Open Access Journals (Sweden)

    Stefan Nabernegg

    2017-03-01

    Full Text Available Industrial processes currently contribute 40% to global CO2 emissions and therefore substantial increases in industrial energy efficiency are required for reaching the 2 °C target. We assess the macroeconomic effects of deploying low carbon technologies in six energy intensive industrial sectors (Petroleum, Iron and Steel, Non-metallic Minerals, Paper and Pulp, Chemicals, and Electricity in Europe, China and India in 2030. By combining the GAINS technology model with a macroeconomic computable general equilibrium model, we find that output in energy intensive industries declines in Europe by 6% in total, while output increases in China by 11% and in India by 13%. The opposite output effects emerge because low carbon technologies lead to cost savings in China and India but not in Europe. Consequently, the competitiveness of energy intensive industries is improved in China and India relative to Europe, leading to higher exports to Europe. In all regions, the decarbonization of electricity plays the dominant role for mitigation. We find a rebound effect in China and India, in the size of 42% and 34% CO2 reduction, respectively, but not in Europe. Our results indicate that the range of considered low-carbon technology options is not competitive in the European industrial sectors. To foster breakthrough low carbon technologies and maintain industrial competitiveness, targeted technology policy is therefore needed to supplement carbon pricing.

  12. Squeezed between China and climate. Is there room for energy-intensive industries in Norway?; Klemt mellom Kina og klima. Plass til kraftintensiv industri i Norge?

    Energy Technology Data Exchange (ETDEWEB)

    Hippe, Jon; Jordfald, Baard; Loefsnaes, Ole; Roetnes, Rolf; Tennbakk, Berit

    2012-11-01

    In the years up to 2020, energy intensive industries has to decide what to do with its production in Norway. This is because there is a need for reinvestment and because of the most commercial power contracts expire. This report looks at the social importance of industry in Norway and discusses the recent changes in the global production of energy-intensive metal products. The analysis is based on what are the two most important and uncertain driving forces for the industry: the development of future power costs in Norway and global market changes, with particular emphasis on China's development. It is drawn up four different scenarios. In each of these the report analyzes the power market, the energy-intensive manufacturing sector for the Norwegian economy, international trends in demand and market structure, and international climate policy decisions - or the lack of the international climate policy decisions.(Author)

  13. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  14. Energy End-Use : Industry

    NARCIS (Netherlands)

    Banerjee, R.; Gong, Y; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; Es, D. van; Worrell, E.

    2012-01-01

    The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use. There

  15. Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis

    International Nuclear Information System (INIS)

    Liu, Nan; Ma, Zujun; Kang, Jidong

    2015-01-01

    The industrial sector accounts for 70% of the total energy-related CO_2 emissions in China. To gain a better understanding of the changes in carbon intensity in China's industrial sector, this study first utilized logarithmic mean Divisia index (LMDI) decomposition analysis to disentangle the carbon intensity into three influencing factors, including the emission coefficient effect, the energy intensity effect, and the structure effect. Then, the analysis was furthered to explore the contributions of individual industrial sub-sectors to each factor by using an extension of the decomposition method proposed in Choi and Ang (2012). The results indicate that from 1996 to 2012, the energy intensity effect was the dominant factor in reducing carbon intensity, of which chemicals, iron and steel, metal and machinery, and cement and ceramics were the most representative sub-sectors. The structure effect did not show a strong impact on carbon intensity. The emission coefficient effect gradually increased the carbon intensity, mainly due to the expansion of electricity consumption, particularly in the metal and machinery and chemicals sub-sectors. The findings suggest that differentiated policies and measures should be considered for various industrial sub-sectors to maximize the energy efficiency potential. Moreover, readjusting the industrial structure and promoting clean and renewable energy is also urgently required to further reduce carbon intensity in China's industrial sector. - Highlights: • The study analyzed the changes in carbon intensity in China's industrial sector. • An extension of the Divisia index decomposition methodology was utilized. • Energy efficiency improvement was the dominant factor reducing carbon intensity. • The sub-sector contributions to the energy efficiency improvement varied markedly. • Emission coefficient growth can be mainly due to the expansion of electricity.

  16. Bottom-Up modeling, a tool for decision support for long-term policy on energy and environment - The TIMES model applied to the energy intensive industries

    International Nuclear Information System (INIS)

    Djemaa, A.

    2009-01-01

    Among the energy users in France and Europe, some industrial sectors are very important and should have a key role when assessing the final energy demand patterns in the future. The aim of our work is to apply a prospective model for the long range analysis of energy/technology choices in the industrial sector, focussing on the energy-intensive sectors. The modelling tool applied in this study is the TIMES model (family of best known MARKAL model). It is an economic linear programming model generator for local, national or multi regional energy systems, which provides a technology-rich basis for estimating energy dynamics over a long term, multi period time. We illustrate our work with nine energy-intensive industrial sectors: paper, steel, glass, cement, lime, tiles, brick, ceramics and plaster. It includes a detailed description of the processes involved in the production of industrial products, providing typical energy uses in each process step. In our analysis, we identified for each industry, several commercially available state-of-the-art technologies, characterized and chosen by the Model on the basis of cost effectiveness. Furthermore, we calculated potential energy savings, carbon dioxide emissions' reduction and we estimated the energy impact of a technological rupture. This work indicates that there still exists a significant potential for energy savings and carbon dioxide emissions' reduction in all industries. (author)

  17. Firm-level determinants of energy and carbon intensity in China

    International Nuclear Information System (INIS)

    Cao, Jing; Karplus, Valerie J.

    2014-01-01

    In recent years, China's leaders have sought to coordinate official energy intensity reduction targets with new targets for carbon dioxide (CO 2 ) intensity reduction. The Eleventh Five-Year Plan (2006–2010) included for the first time a binding target for energy intensity, while a binding target for CO 2 intensity was included later in the Twelfth Five-Year Plan (2011–2015). Using panel data for a sample of industrial firms in China covering 2005 to 2009, we investigate the drivers of energy intensity reduction (measured in terms of direct primary energy use and electricity use) and associated CO 2 intensity reduction. Rising electricity prices were associated with decreases in electricity intensity and increases in primary energy intensity, consistent with a substitution effect. Overall, we find that energy intensity reduction by industrial firms during the Eleventh Five-Year Plan translated into more than proportional CO 2 intensity reduction because reducing coal use—in direct industrial use as well as in the power sector—was a dominant abatement strategy. If similar dynamics characterize the Twelfth Five-Year Plan (2011–2015), the national 17 percent CO 2 intensity reduction target may not be difficult to meet—and the 16 percent energy intensity reduction target may result in significantly greater CO 2 intensity reduction. - Highlights: • We describe China's Eleventh Five-Year Plan energy policies. • We examine the drivers of energy, electricity and carbon intensity reduction. • Higher electricity prices correlated with reductions in industrial electricity intensity. • Energy intensity reduction efforts were effective at reducing carbon intensity

  18. Promoting energy conservation in China's metallurgy industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    China is undergoing rapid industrialization and urbanization, with consequent dramatic increase in energy demand. Given energy scarcity, environmental pollution, energy security and energy cost constraints, energy conservation will be the major strategy in China's transition to a low-carbon economy. Since the metallurgy industry is a main sector of energy consumption, the efficiency of energy conservation in this industry will affect the future prospects of energy savings. This paper analyzes the energy conservation potential of China's metallurgy industry. First, seemingly unrelated regression method is applied to investigate the relationship between energy relative price, R&D input, enterprise ownership structure, enterprise scale and energy intensity of the metallurgy industry. Then, based on the SUR results, we use the scenario analysis method to predict energy consumption and savings potential in the industry in different scenarios. This paper provides references for China's government and metallurgy industry in formulating relevant energy conservation policies. - Highlights: • Seemingly unrelated regression method is applied to analyze the energy intensity of metallurgy industry. • We use the scenario analysis method to predict energy consuming and energy saving of Chinese metallurgy industry. • Provide references for China's government and metallurgy industry in formulating relevant energy conservation policies.

  19. Effects of energy policy on industry

    Energy Technology Data Exchange (ETDEWEB)

    Carling, A; Dargay, J; Oettinger, C; Sohlman, A

    1978-06-01

    This report contains results from a number of studies of energy consumption in Swedish manufacturing industries and of the sensitivity of different industrial sectors to energy taxation and other kinds of energy policy measures. These studies have been concentrated to three energy-intensive sectors, namely the pulp and paper industry; mining and metal production (especially iron mines and the steel industry); and the brick, cement, and lime industry.

  20. Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Nilsson, Lars J.; Åhman, Max; Schneider, Clemens

    2016-01-01

    The need for deep decarbonisation in the energy intensive basic materials industry is increasingly recognised. In light of the vast future potential for renewable electricity the implications of electrifying the production of basic materials in the European Union is explored in a what-if thought-experiment. Production of steel, cement, glass, lime, petrochemicals, chlorine and ammonia required 125 TW-hours of electricity and 851 TW-hours of fossil fuels for energetic purposes and 671 TW-hours of fossil fuels as feedstock in 2010. The resulting carbon dioxide emissions were equivalent to 9% of total greenhouse gas emissions in EU28. A complete shift of the energy demand as well as the resource base of feedstocks to electricity would result in an electricity demand of 1713 TW-hours about 1200 TW-hours of which would be for producing hydrogen and hydrocarbons for feedstock and energy purposes. With increased material efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis suggest that electrification of basic materials production is technically possible but could have major implications on how the industry and the electric systems interact. It also entails substantial changes in relative prices for electricity and hydrocarbon fuels. - Highlights: • Energy intensive basic materials industry has a high share in EU greenhouse gas emissions. • Decarbonising these industries is very important, but still relatively unexplored. • Electrification is possible regarding renewable energy resources and technologies. • Combination with energy and materials efficiency, biofuels and CCS is crucial. • Electrification needs very high amounts of electricity and strong policies.

  1. Does climate policy lead to relocation with adverse effects for GHG emissions or not? A first assessment of the spillovers of climate policy for energy intensive industry

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.; Worrell, E.

    2004-12-01

    Energy-intensive industries play a special role in climate policy. World-wide, industry is responsible for about 50% of greenhouse gas emissions. The emission intensity makes these industries an important target for climate policy. At the same time these industries are particularly vulnerable if climate policy would lead to higher energy costs, and if they would be unable to offset these increased costs. The side effects of climate policy on GHG emissions in foreign countries are typically referred to as 'spillovers'. Negative spillovers reduce the effectiveness of a climate policy, while positive spillovers increase its effectiveness. This paper provides a review of the literature on the spillover effects of climate policy for carbon intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased share of non-Annex 1 countries. However, this trend is primarily driven by demand growth, and there is no empirical evidence for a role of environmental policy in these development patterns. In contrast, climate models do show a strong carbon leakage of emissions from these industries. Even though that climate policy may have a more profound impact than previous environmental policies, the results of the modelling are ambiguous. The energy and carbon intensity of energy-intensive industries is rapidly declining in most developing countries, and reducing the 'gap' between industrialized and developing countries. Still, considerable potential for emission reduction exists, both in developing and industrialized countries. Technology development is likely to deliver further reductions in energy use and CO2 emissions. Despite the potential for positive spillovers in the energy-intensive industries, none of the models used in the analysis of spillovers of climate policies has an endogenous representation of technological change for the energy-intensive industries. This underlines the need for a better understanding of

  2. Macroeconomic effects of efficiency policies for energy-intensive industries: the case of the UK Climate Change Agreements, 2000-2010

    International Nuclear Information System (INIS)

    Barker, T.; Foxon, T.

    2007-01-01

    This paper reports a study modeling the UK Climate Change Agreements (CCAs) and related energy-efficiency policies for energy-intensive industrial sectors. Bottom-up estimates of the effects of these policies are introduced into the energy-demand equations of a top-down dynamic econometric model of the UK economy with fifty industrial sectors, MDM-E3. This allowed estimation of the effects of the reduced energy use for the outputs from the sectors, i.e. the reductions in unit costs of the energy-intensive industries, on the demand for their outputs (both in the UK and in the export markets). The model is solved as a counterfactual 2000-2005 and as a projection 2005-2010 in a series of scenarios to allow estimation of the effects of the policies on inflation and growth, as well as on overall energy demand and CO 2 emissions. The system-wide final energy reductions is estimated to be 4.2 mtoe, or 2.6%, of total final demand for energy by 2010, including a rebound effect of 19%, with negligible effects on inflation and a slight increase in economic growth through improved international competitiveness. (author)

  3. Forest industries energy reserch: summary

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G C

    1976-01-01

    The forest industries, which contribute 10% of New Zealand's factory production and consume 25% of all industrial energy (including self-generated sources such as waste liquors and wood wastes), were closely investigated to determine the extent to which imported energy sources can be substituted by local sources and savings made in the specific energy consumption of the industry's products. Issues considered as fundamental to the study were conservation of the nation's fossil fuels; nuclear power should be considered only after full study of its implications; restraints on the growth of energy demands; a greater emphasis on renewable energy resources; and new energy-intensive industries must account for the environmental and social costs of providing the energy. The study was commenced in February 1975 and involved a series of visits to all the major plants and a few representative smaller plants. Energy balances for all the major plants were prepared and are published in the text of the report. The forest-based industries have developed from a large number of small scattered sawmills, drawing from indigenous resources into a few large industrial units which are capital-intensive and produce a wide variety of products serving the home and export markets. They fall into four categories, roughly as follows: large integrated units; intermediate-size integrated mills; sawmills and chip plants; and manufacturing.

  4. European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures

    International Nuclear Information System (INIS)

    Asselt, H. van; Biermann, F.

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-a-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive industries within the larger effort of reducing Europe's greenhouse gas emissions and of meeting its obligations under the 1997 Kyoto Protocol. This article evaluates a range of proposed measures based on a set of political and legal criteria, including environmental effectiveness; the need to consider differentiated commitments, responsibilities and capabilities; conformity with world trade law and European Union law; and Europe's overall political interests. We discuss measures that could be adopted by the European Union and its member states, such as direct support for energy-intensive industries, restrictions of energy-intensive imports into the European Union through border cost adjustments, quotas or technical regulations, and cost reimbursement for affected developing countries. We also analyse measures available to multilateral institutions such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol and the World Trade Organisation. We conclude with a classification of the discussed measures with red (unfeasible), yellow (potentially feasible) or green (feasible) labels. (author)

  5. European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures

    International Nuclear Information System (INIS)

    Asselt, Harro van; Biermann, Frank

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-a-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive industries within the larger effort of reducing Europe's greenhouse gas emissions and of meeting its obligations under the 1997 Kyoto Protocol. This article evaluates a range of proposed measures based on a set of political and legal criteria, including environmental effectiveness; the need to consider differentiated commitments, responsibilities and capabilities; conformity with world trade law and European Union law; and Europe's overall political interests. We discuss measures that could be adopted by the European Union and its member states, such as direct support for energy-intensive industries, restrictions of energy-intensive imports into the European Union through border cost adjustments, quotas or technical regulations, and cost reimbursement for affected developing countries. We also analyse measures available to multilateral institutions such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol and the World Trade Organisation. We conclude with a classification of the discussed measures with red (unfeasible), yellow (potentially feasible) or green (feasible) labels

  6. Impacts of EU carbon emission trade directive on energy-intensive industries. Indicative micro-economic analyses

    International Nuclear Information System (INIS)

    Lund, Peter

    2007-01-01

    The cost impacts from the European emission trading system (ETS) on energy-intensive manufacturing industries have been investigated. The effects consist of direct costs associated to the CO 2 reduction requirements stated in the EU Directive, and of indirect costs of comparable magnitude that originate from a higher electricity price triggered by the ETS in the power sector. The total cost impacts remain below 2% of the production value for most industries within the ETS in the Kyoto period. In the post-Kyoto phase assuming a 30% CO 2 reduction, the total cost impact may raise up to 8% of production value in the heaviest industry sectors. In steel and cement industries the cost impacts are 3-4 fold compared to the least affected pulp and paper and oil refining. Electricity-intensive industries outside the ETS will also be affected, for example in aluminum and chlorine production the indirect cost impacts from ETS could come up to 10% of production value already in the Kyoto period. As industry sectors are affected differently by the ETS some correcting mechanisms may be worthwhile to consider in securing the operation of the most electricity-intensive sectors, e.g. balancing taxation schemes that may include as income source a levy on the wind-fall profits of the power sector due to ETS. A future improvement in ETS for industries within the scheme could be scaling of the emission reduction requirement so that the relative total emission reduction costs are at about the same level. (author)

  7. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  8. Finnish industry's energy requirement

    International Nuclear Information System (INIS)

    Punnonen, J.

    2000-01-01

    Industry uses around half of the electricity consumed in Finland. In 1999, this amounted to 42.3 TWh and 420 PJ of fuel. Despite the continual improvements that have been made in energy efficiency, energy needs look set to continue growing at nearly 2% a year. Finnish industrial output rose by some 5.5% in 1999. In energy-intensive sectors such as pulp and paper, output rose by 3.4%, in the metal industry by 4%, and in the chemical industry by 3.1%. Growth across Finnish industry is largely focused on the electrical and electronics industries, however, where growth last year was 24.3% The Finnish forest products industry used a total of 26.1 TWh of electricity last year, up 1% on 1998. This small increase was the result of the industry's lower-than-average operating rate in the early part of the year The metal industry used 7.2 TWh of electricity, an increase of 5.8% on 1998. Usage in the chemical industry rose by 2% to 5.2 TWh. Usage by the rest of industry totalled 3.8 TWh, up 2.3% on 1998. All in all, industry's use of electricity rose by 2% in 1999 to 42,3 TWh. Increased demand on industry's main markets in Europe will serve to boost industrial output and export growth this year. This increased demand will be particularly felt in energy-intensive industries in the shape of an increased demand for electricity. Overall, electricity demand is expected to grow by 3% this year, 1% more than industry's longterm projected electricity usage growth figure of 2%. The structure of industry's fuel use in Finland has changed significantly over the last 25 years. Oil, for example, now accounts for only some 10% of fuel use compared to the 40% typical around the time of the first oil crisis. Oil has been replaced by biofuels, peat, and natural gas. The pulp and paper industry is the largest industrial user of renewable energy sources in Finland, and uses wood-related fuels to cover nearly 70% of its fuel needs

  9. Analysis of energy intensity in Japan

    International Nuclear Information System (INIS)

    Okajima, Shigeharu; Okajima, Hiroko

    2013-01-01

    This study discusses the causes of the increase in Japan's energy intensity, defined as energy consumption divided by GDP, since the early 1990s. The significant reduction in Japan's energy intensity ceased in the early 1980s and has even slightly increased since the early 1990s, indicating that Japan seemingly stopped taking aggressive action to improve energy use. However, further analysis at prefecture level and sector level provides additional insight on energy intensity trends. To analyze the causes of the increase in Japan's energy intensity, energy intensity is decomposed into energy efficiency (improvements in energy efficiency) and energy activity (structural changes from the secondary sector to the tertiary sector of the economy). Our result indicates that the non-uniform energy intensity trends between prefectures are attributed to a high variability in energy efficiency. At sector level, we estimate the income elasticity of energy consumption in each sector and find that a structural change in energy consumption behaviors occurred in all sectors at different time points. The industrial sector and commercial sector became less energy efficient after 1981 and 1988, respectively, which is presumably responsible for the deterioration of Japan's energy intensity since the early 1990s. - Highlights: • We examine why the reduction in Japan's energy intensity increased in the early 1990s. • There is a high variability in energy intensity trends between regions. • The structural changes in energy consumption behaviors occurred in sector level. • These changes may be responsible for the deterioration of Japan's energy intensity

  10. Supporting industries energy and environmental profile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  11. What induced China's energy intensity to fluctuate: 1997-2006?

    International Nuclear Information System (INIS)

    Liao, Hua; Fan, Ying; Wei, Yi-Ming

    2007-01-01

    China is the second largest energy consumer in the world. During 1997-2002, China's energy intensity declined by 33%. However, it rose by 10.7% over 2003-2005, and declined by 1.2% in 2006. What induced China's energy intensity to fluctuate so drastically? Industry accounts for approximately 70% of the total energy consumption in China. In this paper, we decompose China's industrial energy intensity changes between 1997 and 2002 into sectoral structural effects and efficiency effects (measured by sectoral energy intensities at two-digit level and including the shifts of product mix in the sub-sector or firm level), using Toernqvist and Sato-Vartia Index methods. The results show that in this period, efficiency effects possibly contributed to a majority of the decline, while the contribution from structural effects was less. During 2003-2005, the excessive expansion of high-energy consuming sub-sectors and the high investment ratio were foremost sources of the increasing energy intensity. Attributed to the government efforts, the energy intensity has started to decline slightly since July 2006. In future, to save more energy, in addition to technical progress, China should attach more importance to optimizing its sectoral structure, and lowering its investment ratio

  12. Why did China's energy intensity increase during 1998-2006. Decomposition and policy analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Chunbo; Hong, Dongyue

    2010-01-01

    Despite the fact that China's energy intensity has continuously decreased during the 1980s and mostly 1990s, the decreasing trend has reversed since 1998 and the past few years have witnessed rapid increase in China's energy intensity. We firstly conduct an index decomposition analysis to identify the key forces behind the increase. It is found that: (1) the high energy demand in industrial sectors is mainly attributed to expansion of production scale, especially in energy-intensive industries; (2) energy saving mainly comes from efficiency improvement, with energy-intensive sectors making the largest contribution; and (3) a heavier industrial structure also contributes to the increase. This study also makes the first attempt to bridge the quantitative decomposition analysis with qualitative policy analyses and fill the gap between decomposition results and policy relevance in previous work. We argue that: (1) energy efficiency improvement in energy-intensive sectors is mainly due to the industrial policies that have been implemented in the past few years; (2) low energy prices have directly contributed to high industrial energy consumption and indirectly to the heavy industrial structure. We provide policy suggestions in the end. (author)

  13. Cleanroom energy benchmarking in high-tech and biotech industries

    International Nuclear Information System (INIS)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems

  14. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  15. Estimates of the potential for energy conservation in the Chinese steel industry

    International Nuclear Information System (INIS)

    Lin Boqiang; Wu Ya; Zhang Li

    2011-01-01

    The study evaluates the energy saving potential of the Chinese steel industry by studying its potential future energy efficiency gap. In order to predict the future energy efficiency gap, a multivariate regression model combined with risk analysis is developed to estimate future energy intensity of China's steel industry. It is found that R and D intensity, energy saving investment, labor productivity and industry concentration are all important variables that affect energy intensity. We assess the possible measures as to how China's steel industry can narrow the energy efficiency gap with Japan by means of scenario analysis. Using Japan's current energy efficiency level as baseline, the energy saving potential of China's steel industry is more than 200 million ton coal equivalent in 2008, and it would fall to zero in 2020. However, if greater efforts were made to conserve energy, it would be possible to narrow down the energy efficiency gap between China and Japan by around 2015. Finally, using the results of the scenario analysis, future policy priorities for energy conservation in China's steel industry are assessed in this paper. - Highlights: → The energy saving potential of the Chinese steel industry is evaluated. → A multivariate regression model combined with risk analysis is developed. → R and D, energy saving investment, labor, and structure affect energy intensity.→ The energy saving potential of China's steel industry would fall to zero in 2020.→ Future policy for energy conservation in China's steel industry are assessed.

  16. The decline of sectorial components of the world's energy intensity

    International Nuclear Information System (INIS)

    Goldemberg, José; Siqueira Prado, Luiz Tadeo

    2013-01-01

    The world's primary energy consumption in the last 40 years has been increasing at 2.2%/year while GDP growth has been 3.4%/years over the same period. The decline of the energy intensity (I=E/GDP) has been, therefore, of 1.2%/year. In order to reduce the world's consumption growth proposal have been made to reduce the world's energy intensity by 40% by 2030 which corresponds to a reduction of 2.5%/year, roughly the double of the historical decline. Our analysis shoes that such goal could only be achieved by an unprecedented reduction of the energy intensity of “services” (which represent less than half the world energy consumption) since energy intensity of industry has remained practically constant in the last 40 years. - Highlights: ► GDP and world's energy consumption are split in 2 main sectors: industry and “services”, etc. ► The evolution of the energy intensity for these sectors since 1971 is calculated. ► The energy intensity of the industry sector is practically constant since 1971. ► All the decline of the energy intensity since 1971 comes from the “services” sector

  17. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, Andrea M. [Millennium Institute, 2111 Wilson Blvd, Suite 700, Arlington, VA 22201 (United States); University of Bergen, Postboks 7800, 5020 Bergen (Norway); Yudken, Joel S. [High Road Strategies, LLC, 104 N. Columbus Street, Arlington, VA 22203 (United States); Ruth, Matthias [University of Maryland, 3139 Van Munching Hall, College Park, MD 20742 (United States)

    2009-08-15

    This study examines the impacts of energy price changes resulting from different carbon-pricing policies on the competitiveness of selected US energy-intensive industries. It further examines possible industry responses, and identifies and provides a preliminary evaluation of potential opportunities to mitigate these impacts. The industry sectors investigated - steel, aluminum, chemicals and paper - are among the largest industrial users of fossil fuels in the US economy. The results of this examination show that climate policies that put a price on carbon could have substantial impacts on the competitiveness of US energy-intensive manufacturing sectors over the next two decades, if climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies. The extent of these impacts will vary across industries, depending on their energy intensities, the mix of energy sources they rely on and how energy is used in production activities (heat and power, feedstock). Of relevance is also the speed and rigor with which industries adopt new technologies and retire (or replace) old ones. Other factors affecting these impacts include an industry's vulnerability to foreign imports and its ability to pass through cost increases to its customers in the face of international market competition. (author)

  18. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Bassi, Andrea M.; Yudken, Joel S.; Ruth, Matthias

    2009-01-01

    This study examines the impacts of energy price changes resulting from different carbon-pricing policies on the competitiveness of selected US energy-intensive industries. It further examines possible industry responses, and identifies and provides a preliminary evaluation of potential opportunities to mitigate these impacts. The industry sectors investigated - steel, aluminum, chemicals and paper - are among the largest industrial users of fossil fuels in the US economy. The results of this examination show that climate policies that put a price on carbon could have substantial impacts on the competitiveness of US energy-intensive manufacturing sectors over the next two decades, if climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies. The extent of these impacts will vary across industries, depending on their energy intensities, the mix of energy sources they rely on and how energy is used in production activities (heat and power, feedstock). Of relevance is also the speed and rigor with which industries adopt new technologies and retire (or replace) old ones. Other factors affecting these impacts include an industry's vulnerability to foreign imports and its ability to pass through cost increases to its customers in the face of international market competition.

  19. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  20. Sectoral shift in industrial natural gas demand: A comparison with other energy types

    International Nuclear Information System (INIS)

    Boyd, G.; Fisher, R.; Hanson, D.; Ross, M.

    1989-01-01

    It has been recognized in a variety of studies that energy demand by industry has been effected not only by the changing energy intensity of the various sectors of industry, but also by the composition of industrial sector. A previous study group of the Energy Modeling Forum (EMF-8) found that sectoral shift, i.e., the relative decline in the energy intensive sectors of industry, has contributed at least one third of the decline in aggregate manufacturing energy intensity since the early 1970s. The specific types of energy use may also be important, however. For example, the effect of shifts in production by electricity intensive sectors has been shown to be somewhat different than that for fossil fuel

  1. Decomposition of intensity of energy-related CO_2 emission in Chinese provinces using the LMDI method

    International Nuclear Information System (INIS)

    Zhang, Wei; Li, Ke; Zhou, Dequn; Zhang, Wenrui; Gao, Hui

    2016-01-01

    Uncovering the driving factors of CO_2 emission intensity declining is important for China. This paper improves the logarithmic mean Divisia index technique, which includes energy density and energy consumption intensity, to explore the driving factors of carbon emission intensity (CI) in 29 Chinese provinces from 1995–2012. The main results are: (1) energy consumption intensity plays a more important role than carbon emission density (CD) for a rapid decrease in CI during the research period, so a much room is left for a significant CD reduction through carbon emission reduction technology, energy structural reduction, and energy consumption proportional reduction. (2) The decrease in energy consumption technology and energy structure in secondary industries contributes the most reduction in energy consumption intensity. (3)The energy consumption proportions of secondary and tertiary industries are the two most important drivers to decrease CD. (4) During the research period, the energy consumption proportions of secondary industries result in the most decrease in CD, whereas the energy consumption proportions of tertiary industries cause the most increase in CD. - Highlights: •Carbon emission intensity decreased rapidly from 1995 to 2012. •Energy intensity is the more significant driver for decrease of carbon intensity. •The most contribution of EI's decrease came from secondary industries. •The most contribution of CD's decrease came from secondary and tertiary industries. •Several policies of reducing carbon emission intensity in China have been raised.

  2. Industry fights energy tax; UK Negotiates agreement

    International Nuclear Information System (INIS)

    Roberts, M.

    1996-01-01

    Europe''s energy-intensive industries have banded together to attack the European Commission''s latest proposal for a carbon-energy tax. Instead of passing a new directive--which the commission has been trying to do for five years--it now wants to expand existing duties on mineral oils to cover coal, natural gas, and electricity. The commission also aims to increase the mineral oil duties. Energy-intensive industries--including producers of chemicals, cars, cement, lime, iron, steel, and other metals--say the plans would destroy their competitiveness. They say they are improving energy efficiency voluntarily and urge the commission to focus on liberalizing Europe''s gas and electricity markets, which would reduce prices

  3. Addressing industrial competitiveness concerns in the 2030 EU Climate and Energy Package

    International Nuclear Information System (INIS)

    Sartor, Oliver; Colombier, Michel; Spencer, Thomas

    2014-01-01

    In the current sombre economic context, the issue of industrial competitiveness has become highly salient. Europe's industrial challenges need to be understood to be addressed. Europe like other major economies has gone through the resource intensive phase of building its capital stock. At Europe's level of development, high incomes tend to be spent on high value added services and manufactures. These factors mean that Europe's industry has been undergoing a long-term transition since the early 70's. In addition, European industry has been hit by a deep cyclical downturn as a result of the crisis. This long-term structural trend and current conjectural situation have nothing to do with energy policy. However, it would be wrong to suggest that energy prices do not play a role for certain industries. For a few highly energy and trade intensive industries, energy prices are a significant factor of comparative advantage. These industries will need protection in the 2030 climate and energy package, especially if a meaningful CO 2 price is to emerge. The current mechanisms to address competitiveness involve a number of drawbacks, notably the distortions and windfall profits that they entail due to variations of production levels from the historical reference used for free allocation. They also do not effectively address electricity intensive industries. Finding a solution to these issues is important for negotiating a meaningful future framework. Options that could be considered include moving to output based allocation for energy intensive, trade exposed industries, or considering temporary opt-outs for these industries. Given the potential risks around temporary opt-outs, output based allocation could be a way forward, combined with a much tighter focus on the energy intensive, trade exposed industries and a harmonized system for dealing with electricity intensive industries. (authors)

  4. Energy for Japan's new industrial frontier

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, G

    1983-06-01

    Systematic responses by the Japanese government and industry to the successive oil crises of the 1970s are yielding remarkable results; instead of the most vulnerable and technologically-dependent energy system in the world, Japanese industry is emerging as one of the world's most energy-efficient and a major source of the most advanced energy technologies. By the end of the century, if best available prognoses on fusion power technology prove close to accurate, Japan's energy industry will have assumed a technological leadership akin to that of its steel industry today. Significant energy conservation has been achieved by concerted efforts to promote less energy-intensive industries and by advances in technology and equipment for reducing energy consumption in key industries. In 1980, the Japanese government set targets for the development of new energy sources for the coming decade, which, if realized, will contribute substantially to a three-fold increase in non-petroleum energy supply by 1990, and a further doubling of alternative energy supplies by the end of the century. By the year 2000, Japanese reliance on petroleum is expected to decline from 88% in 1977 to 74.9%.

  5. Analysis of the overall energy intensity of alumina refinery process using unit process energy intensity and product ratio method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering,The University of Melbourne, Vic. 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-07-15

    Alumina refinery is an energy intensive industry. Traditional energy saving methods employed have been single-equipment-orientated. Based on two concepts of 'energy carrier' and 'system', this paper presents a method that analyzes the effects of unit process energy intensity (e) and product ratio (p) on overall energy intensity of alumina. The important conclusion drawn from this method is that it is necessary to decrease both the unit process energy intensity and the product ratios in order to decrease the overall energy intensity of alumina, which may be taken as a future policy for energy saving. As a case study, the overall energy intensity of the Chinese Zhenzhou alumina refinery plant with Bayer-sinter combined method between 1995 and 2000 was analyzed. The result shows that the overall energy intensity of alumina in this plant decreased by 7.36 GJ/t-Al{sub 2}O{sub 3} over this period, 49% of total energy saving is due to direct energy saving, and 51% is due to indirect energy saving. The emphasis in this paper is on decreasing product ratios of high-energy consumption unit processes, such as evaporation, slurry sintering, aluminium trihydrate calcining and desilication. Energy savings can be made (1) by increasing the proportion of Bayer and indirect digestion, (2) by increasing the grade of ore by ore dressing or importing some rich gibbsite and (3) by promoting the advancement in technology. (author)

  6. Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry

    International Nuclear Information System (INIS)

    Porzio, Giacomo Filippo; Fornai, Barbara; Amato, Alessandro; Matarese, Nicola; Vannucci, Marco; Chiappelli, Lisa; Colla, Valentina

    2013-01-01

    Highlights: • We describe an application of decision-support system to iron and steel industries. • The realised tool is useful in monitoring energy and CO 2 performances of the plant. • Key processes are modelled through flowsheeting approach and included in the tool. • A mathematical optimisation model for the process gas management has been realised. • Implementation of the tool can help reducing plant costs and environmental impact. - Abstract: The management of process industries is becoming in the recent years more and more challenging, given the stringent environmental policies as well as raising energy costs and the always-present drive for profit. A way to help plant decision makers in their daily choices is to refer to decision-support tools, which can give advice on the best practices on how to operate a plant in order to reduce the energy consumption and the CO 2 emissions keeping at the same time the costs under control. Such an approach can be useful in a variety of industries, particularly the most energy-intensive ones such as iron and steel industries. In this paper, an approach to the realisation of a software system, which allows to generate internal reports on the plant performances, as well as to simulate the plant behaviour in different scenarios, is described. The main production processes (coke plant, blast furnace, steel shop, hot rolling mill) are described and simulated focusing on the prediction of products flow rates and composition, energy consumption and GHGs (Greenhouse Gases) emissions in different operating conditions. The importance of a correct management of the CO 2 within the plant is underlined, particularly with regard to the new EU Emission Trading System, which will be based on European benchmarks. The software tool is illustrated and a case study is included, which focuses on the simultaneous minimisation of the CO 2 emissions and maximisation of the profit through an optimised management of the by-product gases

  7. Energy intensity decline implications for stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Lightfoot, H.D.; Green, C.

    2002-01-01

    By calculating the amount of carbon-free energy required to stabilize the level of carbon dioxide in the atmosphere at some level, such as 550 parts per million by volume (ppmv) in 2100, the authors estimate the appropriate rate of world average annual energy intensity decline. The roles played by energy efficiency and long term sectoral changes like shifts in economic activity from high energy intensity sectors or industries to low energy intensity sectors or industries are distinguished. Advances in technology and better and improved procedures, as well as a broader adoption of more efficient technologies currently available are included in the improvements made in energy efficiency. The objective was, for the period 1990 to 2100 (110 years), to estimate the potential energy efficiency increase for world electricity generation. It is noted that electricity generation represents 38 per cent of world energy consumption in 1995, while transportation accounts for 19 per cent and residential, industrial and commercial uses account for 43 per cent. In 2100, it is expected that the overall average decline in energy intensity will be 40.1 per cent of that of 1990, according to the results obtained. Looked at from another perspective, it represents an average annual rate of energy intensity decline of 0.83 per cent for 110 years. Between 0.16 and 0.30 per cent could be added to the impact of sectoral changes on the average annual rate of decline in energy intensity, while 0.83 per cent would be attributable to improvements in energy efficiency, as shown by sensitivity analysis. 33 refs., 9 tabs., 1 fig

  8. Energy price uncertainty, energy intensity and firm investment

    International Nuclear Information System (INIS)

    Yoon, Kyung Hwan; Ratti, Ronald A.

    2011-01-01

    This paper examines the effect of energy price uncertainty on firm-level investment. An error correction model of capital stock adjustment is estimated with data on U.S. manufacturing firms. Higher energy price uncertainty is found to make firms more cautious by reducing the responsiveness of investment to sales growth. The result is robust to consideration of energy intensity by industry. The effect is greater for high growth firms. It must be emphasized that the direct effect of uncertainty is not estimated. Conditional variance of energy price is obtained from a GARCH model. Findings suggest that stability in energy prices would be conducive to greater stability in firm-level investment. (author)

  9. Changes in energy intensity in the manufacturing sector 1985--1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  10. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  11. Analysis of Energy Industry Upgrading in Northeast China

    Science.gov (United States)

    Liu, Xiao-jing; Ji, Yu-liang; Guan, Bai-feng; Jing, Xin

    2018-02-01

    Promoting regional economic growth and realizing the transformation of the mode of economic growth are in industrial upgrading essence The product is a carrier that represents a series of links of production, management and marketing behind the enterprise, and is a comprehensive reflection of the knowledge and ability of a country or region. Based on the industrial spatial structure, this paper visualizes the industrial space in Northeast China from 2005 to 2015, analyzes the comparative advantages of the energy industry in Northeast China, and examines the status quo of the upgrade of the energy industry according to the industrial upgrading status. Based on the industrial spatial structure, Industry intensity in the industrial space, put forward the future direction of the energy industry upgrade and upgrade path.

  12. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  13. Energy usage in the rubber industry

    Energy Technology Data Exchange (ETDEWEB)

    Soederstroem, M.

    1980-01-01

    The rubber industry has several energy-intensive steps, such as mastication of natural rubber, mixing and extrusion, and vulcanization. Opportunities for energy savings would be available with a continuous mixing process, heat recovery from cooling waters, and abandonment of thermal conduction in vulcanization. 6 figures. (DCK)

  14. Energy and economic growth in industrializing countries

    Energy Technology Data Exchange (ETDEWEB)

    Samouilidis, J E; Mitropoulos, C S

    1984-07-01

    This paper investigates some aspects of the interrelated paths of economic growth and energy demand, in the case of an industrializing economy, through the use of numerous econometric models. Translog functions have helped establish that income and price elasticities of energy, two critical parameters in the energy-economy interaction, exhibit falling trends with time. The value share of the industrial sector is strongly associated with both energy demand and energy intensity. Any increase in the former will lead to amplified increases in the latter, rendering the continuation of past trends in industrial expansion questionable under conditions of high energy costs. Substitution among capital, labor and energy does take place, though to a limited extent, as indicated by the aggregate measure of energy/non-energy substitution elasticity. All findings appear to suggest that energy policymaking, in an industrializing country like Greece, will be of low effectiveness until certain structural changes in the economy are realized.

  15. Effects of energy conservation in major energy-intensive industrial sectors on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China

    International Nuclear Information System (INIS)

    Geng Jing; Lu Yonglong; Wang Tieyu; Giesy, John P.; Chen Chunli

    2010-01-01

    China has set an ambitious target of increasing energy efficiency by 20% and reducing pollution discharges by 10% over the period 2006-2010. Promoting advanced technologies and closing outdated facilities are widely recognized as important measures to achieve these targets. These actions can also indirectly decrease release of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The objectives of this paper are to identify and quantify reductions of PCDD/F emissions to air due to measures such as phasing out of obsolete facilities in the four most energy-intensive industrial sectors. Reductions in PCDD/F emissions from power generation were estimated to be 7, 33 and 38 g I-TEQ in 2006, 2007 and 2008, respectively. For the cement industry, reductions were estimated to be 680 g I-TEQ between 2007 and 2008, and 740 g I-TEQ between 2009 and 2010. For the iron and steel industry, the reduction was estimated to be 113.3 g I-TEQ over the period 2007-2010, which includes 76.6 g I-TEQ in 2007. For the coke industry, the reduction was estimated to be 68 g I-TEQ in 2007 and 62 g I-TEQ in 2008.

  16. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  17. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs

    International Nuclear Information System (INIS)

    Thollander, Patrik; Danestig, Maria; Rohdin, Patrik

    2007-01-01

    The most extensive action targeting the adoption of energy efficiency measures in small- and medium-sized manufacturing industries in Sweden over the past 15 years was project Highland. This paper presents an evaluation of the first part of this local industrial energy programme, which shows an adoption rate of more than 40% when both measures that have already been implemented and measures that are planned to be implemented are included. A comparison between this programme and another major ongoing programme for the Swedish energy-intensive industry indicates that the approach used in project Highland aimed at small- and medium-sized industries is an effective way to increase energy efficiency in the Swedish industry. The major barriers to energy efficiency among the firms were related to the low priority of the energy efficiency issue

  18. Energy consumption and energetic intensities in the Mato Grosso meso-region 01

    International Nuclear Information System (INIS)

    Canavarros, Otacilio Borges; Silva, Ennio Peres da

    1999-01-01

    The energy intensity of a regional economy is dependent on its structure and degree of industrialization. Considering comparable general conditions it is also a measure for the efficient use of energy. Energy consumption contribute decisively to the modification of economical structures and to the decrease in energy intensity. In this context, the aim of the work was to evaluate the energy consumption and the energy intensity in a region of Mato Grosso State, Brazil

  19. How to promote energy conservation in China’s chemical industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Long, Houyin

    2014-01-01

    Fossil fuel consumption in China’s chemical industry accounted for 19.7% of the total industrial fossil fuel consumption, and the industry has become the second highest energy intensive sector in the country. Therefore, it is extremely urgent and important to study the problems related to fossil fuel consumption in the industry. This paper adopts the factor decomposition and the EG co-integration methods to investigate the influencing factors of fossil energy consumption and measure the saving potential of fossil fuel. The paper concludes that the influencing factors can be divided into positive driving factors (labor productivity effect and sector scale effect) and negative driving factors (energy intensity effect and energy structure effect). Among them, labor productivity and energy intensity are the main factors affecting fossil fuel demand. The largest saving potentials of fossil fuels are predicted to be 23.3 Mtce in 2015 and 70.6 Mtce in 2020 under the middle scenario and 46.8 Mtce in 2015 and 100.5 Mtce in 2020 under the ideal scenario, respectively. Finally, this paper provides some policy implications on fossil fuel conservation. - Highlights: • Labor productivity and energy intensity are crucial driving factors. • The relationship among variables is co-integrated. • The result of the EG co-integration is the same as that of LMDI. • ECM displays the short-term fluctuation of fossil fuel consumption. • Under the scenario analysis, there is a huge energy saving potential

  20. Energy conservation status in Taiwanese food industry

    International Nuclear Information System (INIS)

    Ma, Chih-Ming; Chen, Ming-Hue; Hong, Gui-Bing

    2012-01-01

    The food industry in Taiwan is labor intensive, the cost of raw materials is high, and there is much product diversification. Although this industry is primarily small and medium scale, it is a large user of electricity in Taiwan's manufacturing sector. The concentration of greenhouse gases (GHGs) from manufacturing activities and vehicle emissions has increased remarkably. Energy audits are a basic and direct means by which energy efficiency can be improved, energy consumption reduced, and carbon dioxide emissions inhibited. This work summarizes the energy saving potential of 76 firms and the energy savings implemented by 23 firms as determined by energy audit tracking and from the on-line energy declaration system in Taiwan's food industry. The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings and opportunities for improving the efficiency of the food industry. - Highlights: ► This work summarizes the energy saving potential and the energy savings implemented in food industry. ► The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings. ► The opportunities for improving the efficiency of the food industry can be a reference.

  1. Energy conservation potential in China’s petroleum refining industry: Evidence and policy implications

    International Nuclear Information System (INIS)

    Lin, Boqiang; Xie, Xuan

    2015-01-01

    Highlights: • A long-term equilibrium relationship of energy demand in China’s petroleum refining industry is established. • The sectoral energy conservation potential is evaluated by using scenarios analysis. • Energy prices, enterprise scale, R and D investment and ownership structure affect electricity intensity. • Future policy for energy conservation in China’s petroleum refining industry is suggested. - Abstract: China is currently the second largest petroleum refining country in the world due to rapid growth in recent years. Because the petroleum refining industry is energy-intensive, the rapid growth in petroleum refining and development caused massive energy consumption. China’s urbanization process will guarantee sustained growth of the industry for a long time. Therefore, it is necessary to study the energy conservation potential of the petroleum industry. This paper estimates the energy conservation potential of the industry by applying a cointegration model to investigate the long-run equilibrium relationship between energy consumption and some factors such as energy price, enterprise scale, R and D investment and ownership structure. The results show that R and D investment has the greatest reduction impact on energy intensity, and the growth of market participants (i.e. the decline of the share of state-owned companies) can improve energy efficiency of this industry. Under the advanced energy-saving scenario, the accumulated energy conservation potential will reach 230.18 million tons of coal equivalent (tce). Finally, we provide some targeted policy recommendations for industrial energy conservation

  2. Patterns of energy use in the Brazilian economy: Can the profile of Brazilian exports determine the future energy efficiency of its industry?

    International Nuclear Information System (INIS)

    Machado, G.V.; Schaeffer, R.

    1997-01-01

    This study examines the integration of the Brazilian economy in the global economy as a determining factor for the energy efficiency of its industry. Depending upon the profile of a country's exports (i.e., depending upon the share of energy-intensive exports out of total exports), different quantities of energy are required to produce the country's exported goods, which may counterbalance efforts made elsewhere to improve the overall energy efficiency of the country's industry. Different scenarios for the energy embodied in the industrial exports of Brazil are considered for the period 1995--2015. These scenarios are a combination of different shares of energy-intensive goods in the total exports of the country with different assumptions for gains obtained in industrial energy efficiency over time. For all scenarios the same fundamental hypothesis of liberalization of commerce and economic growth are assumed. Results for the year 2015 show that the total energy embodied in industrial exports varies from 1,413 PJ to 2,491 PJ, and the total industrial use of energy varies from 3,858 PJ to 6,153 PJ, depending upon the assumptions made. This is equivalent to an average industrial energy intensity variation ranging from 13.8 MJ to 22.0 MJ per US$-1985. The authors conclude that any policy aimed at improving Brazil's overall industrial energy efficiency should concentrate not only on the reduction of the energy intensity of particular industrial sectors, but also (and, perhaps, more importantly) on rethinking the very strategy for the integration of the country's economy in the global market in the future, with respect to the share of energy-intensive goods out of total exports. The focus is not incidental, for the ongoing structural changes in Brazilian exports alone may come to offset any efficiency improvements achieved by the national industry as a whole

  3. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  4. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  5. Dynamics of final sectoral energy demand and aggregate energy intensity

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2011-01-01

    This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge. - Research Highlights: → The residential sector accounts for most of final energy consumption at low income levels. → Its share drops at the benefit of the industrial, services and road transportation sectors in turn. → Sectoral shares' pattern is affected by changes in geographic, sociologic and economic factors. → Final energy intensity may show various shapes and does not exhibit necessarily a bell-shape.

  6. Labor-Intensive Industry Company Transition and Export Marketing

    OpenAIRE

    Jin, Meng

    2014-01-01

    This thesis focused on how to develop export during the development process from labor-intensive industry to technology-intensive industry. The situation of wage, labor-intensive industry and technology-intensive industry development are backgrounds. The objective of this thesis was to analyze the problems of the case company and to provide the case company with strategies. The approach used in this thesis is case study. The data acquisition includes interviews, online chatting and telep...

  7. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  8. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  9. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    NARCIS (Netherlands)

    Laurijssen, J.; Gram, F.J. de; Worrell, E.; Faaij, A.P.C.

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in

  10. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  11. Industrial Penetration and Internet Intensity

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2016-01-01

    textabstractThis paper investigates the effect of industrial penetration and internet intensity for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements. The sample observations are based on 153,081 manufacturing plants, and covers 26 two-digit industry

  12. Analysis of the Potential Impacts on China’s Industrial Structure in Energy Consumption

    Directory of Open Access Journals (Sweden)

    Yushen Tian

    2017-12-01

    Full Text Available Industrial structure is one of the main factors that determine energy consumption. Based on China’s energy consumption in 2015 and the goals in 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China (The 13th Five-Year Plan, this paper established an input–output fuzzy multi-objective optimization model to estimate the potential impacts of China’s industrial structure on energy consumption in 2015. Results showed that adjustments to industrial structure could save energy by 19% (1129.17 million ton standard coal equivalent (Mtce. Second, China’s equipment manufacturing industry has a large potential to save energy. Third, the development of several high energy intensive and high carbon intensive sectors needs to be strictly controlled, including Sector 25 (electricity, heat production, and supply industry, Sector 11 (manufacture of paper and stationery, printing, and Sector 14 (non-metallic mineral products industry. Fourth, the territory industry in China has a great potential for energy saving, while its internal structure still needs to be upgraded. Finally, we provide policy suggestions that may be adopted to reduce energy consumption by adjusting China’s industrial structure.

  13. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  14. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  15. Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2014-01-01

    While the previous literature shows that a decline in energy intensity represents an improvement in energy use efficiency, it does not provide a target level of energy intensity, nor what room for improvement in terms of energy intensity could entail. This study establishes an indicator of such room for improvement in terms of energy intensity by measuring the difference between the target level of energy intensity and the actual energy intensity and thereby monitors energy use efficiency. The traditional indicator of energy intensity, defined as energy use over GDP, mainly estimates energy use efficiency, but is a partial effect between the energy input and GDP output. However, our proposed indicator of the room for improvement in terms of energy intensity is the total-factor effects based on the multiple-inputs model. By taking the 27 EU members to investigate their energy use efficiency using the indicator of the room for improvement in terms of energy intensity, this study concludes that an improvement in energy intensity does not fully depend on a decline in energy intensity, and we instead need to confirm whether the room for improvement in terms of energy intensity decreases. This finding is particularly relevant for energy policy-makers. - Highlights: • This paper establishes an indicator for the room for improvement in terms of energy intensity. • This study takes the 27 EU members to investigate their energy use efficiency. • A different result appears by using our proposed indicator

  16. Energy consumption and CO2 emissions of the European glass industry

    International Nuclear Information System (INIS)

    Schmitz, Andreas; Kaminski, Jacek; Maria Scalet, Bianca; Soria, Antonio

    2011-01-01

    An in-depth analysis of the energy consumption and CO 2 emissions of the European glass industry is presented. The analysis is based on data of the EU ETS for the period 2005-2007 (Phase I). The scope of this study comprises the European glass industry as a whole and its seven subsectors. The analysis is based on an assignment of the glass installations (ca. 450) within the EU ETS to the corresponding subsectors and an adequate matching of the respective production volumes. A result is the assessment of the overall final energy consumption (fuel, electricity) as well as the overall CO 2 emissions (process, combustion and indirect emissions) of the glass industry and its subsectors in the EU25/27. Moreover, figures on fuel mix as well as fuel intensity and CO 2 emissions intensity (i.e. carbon intensity) are presented for each of the subsectors on aggregated levels and for selected EU Member States separately. The average intensity of fuel consumption and direct CO 2 emissions of the EU25 glass industry decreased from 2005 to 2007 by about 4% and amounted in 2007 to 7.8 GJ and 0.57 t CO 2 per tonne of saleable product, respectively. The economic energy intensity was evaluated with 0.46 toe/1000 Euro (EU27).

  17. Energy conservation in pulp and paper industry: some thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Sadawarte, N. S.; Prasad, A. K.; Khanolkar, V. D.; Shenoy, S. C.

    1980-03-15

    The pulp and paper industry is highly energy intensive. In view of the spiralling fuel prices and rising power costs, there is an urgent need to conserve energy through better management of various operations in the industry, from the optimal utilization of the forest residues to the shipment of the final product. The total energy concept, e.g., energy generation, distribution and utilization in Indian paper industry is discussed. The need for an energy audit is emphasized and the formats of energy reporting forms are included. Short and long term measures to be enforced to achieve energy savings in the pulp and paper mills are outlined. Some important energy conservation approaches are also discussed. Factors affecting energy efficiency in a pulp and paper mill are reviewed. Some areas where sustained R and D efforts should be focused to make the paper industry nearly self-sufficient in energy generation and utilization are also given. It is essential to have a National Energy Policy clearly defining achievable targets of energy conservation for industry. The Indian paper industry could advantageously form its own committee to review the operation of the various mills in the country and come out with concrete solutions for higher energy efficiency and more effective conservation of energy.

  18. Environmental Tax Reforms and Mitigation for Energy-intensive Industries: Some Lessons from European Experience

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2009-01-01

    The purpose of this paper is to analyse in more detail the international experiences in applying carbon-energy taxation in two important energy-intensive sectors; iron and steel, as well as non-metallic mineral products (where cement is the most significant subsector).......The purpose of this paper is to analyse in more detail the international experiences in applying carbon-energy taxation in two important energy-intensive sectors; iron and steel, as well as non-metallic mineral products (where cement is the most significant subsector)....

  19. Possible transfer of traditional energy intensive industries towards developing countries. Offers of energy resource in the CIER [Comision de Integracion Electrica Regional] area in relation to this transfer

    International Nuclear Information System (INIS)

    Facchini Ferro, A.; D'Amado Campo, R.

    1989-01-01

    Due to the steep rise in oil prices in the early 1970s, South American countries became aware of the advisability of developing their abundant and renewable hydroelectric resources. The second energy crisis of 1979 pushed up oil prices still further and the consequences in the South American electricity sector included contractions in markets, overcapacity, and difficult financial circumstances. Increases in exports were seen as a way to reduce the burden of those countries' heavy debts and to improve economic conditions. To harmonize the interests of development of highly energy intensive industries in developed countries and the economic development of developing countries, the possibility of marketing energy as an industrial input should be considered. Evidence of the advantages that South American countries can offer to such industrial transfers is presented. These countries offer a source of plentiful hydropower from installations in operation, under construction, or projected as major developments. These installations are already largely interconnected through high- and extra-high-voltage power transmission networks. Technical information is given on the installed generating capacities, including thermal reserve plants; utilization levels; transmission line interconnections; and remaining renewable and non-renewable energy resources. Considerations regarding the political and financial implications of industrial transfers are discussed. 6 refs., 9 figs

  20. Analysis of the energy consumption of the industry, agriculture and construction industry 1982-1996. Background document for the report `Monitoring energy consumption and energy policy in the Netherlands; Analyse energieverbruik industrie, landbouw en bouw 1982-1996. Achtergronddocument bij het rapport Monitoring Energieverbruik en Beleid Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Van Dril, A.W.N. [ECN-Beleidsstudies, Petten (Netherlands)

    1999-01-01

    In this study energy consumption is related to economic and physical production of the manufacturing industry, agriculture and construction in the Netherlands from 1982-1996. Analysis of separate effects is performed and an attempt is made to explain the divergence found between energy consumption and production. These separate effects include developments in economic output, sectoral composition, product output and composition, energy technology, energy prices and policy regarding efficiency improvement. In manufacturing industry, energy intensity and efficiency improvements occur in all sectors with 1-1,5% annually on average. This effect mainly concerns fuel consumption, whereas electricity intensity slowly rises in most sectors. No clear price sensitivity was observed. Energy intensive sectors have gained a larger share in total production. Upgrading of products with respect to their physical content (dematerialization) was not clearly found on an aggregated level. Data problems occur in the chemical sector. Energy efficiency policy has modest effects. In greenhouse horticulture, energy price sensitivity was found and major efficiency improvements consequently occurred only in the early eighties. In refineries, also upgrading of products contributed to an intensity improvement of 4% on average. 9 refs.

  1. Decomposing the variation of aggregate electricity intensity in Spanish industry

    International Nuclear Information System (INIS)

    Gonzalez, P.F.; Suarez, R.P.

    2003-01-01

    Several papers have dealt with methodological and application issues related to techniques for decomposing changes in environmental indicators. This paper aims to decompose changes in electricity intensity in Spanish industry and to explain the factors that contribute to these changes. Focusing on an energy intensity approach based on Divisia indices, we began by reviewing the two general parametric Divisia methods and six specific cases. In order to avoid obtaining significantly different results by using differing methods, all of them have been applied to Spanish data. Also two different disaggregation levels have been taken into consideration. Combined with electricity price analysis, the results of this paper indicate the poor contribution of structural change to substantial reductions in aggregate electricity intensity, and underline the role of innovation, development, diffusion and access to more efficient technologies as main contributors to the reduction of the energy/production ratio. (author)

  2. Benchmarking energy use and greenhouse gas emissions in Singapore's hotel industry

    International Nuclear Information System (INIS)

    Wu Xuchao; Priyadarsini, Rajagopalan; Eang, Lee Siew

    2010-01-01

    Hotel buildings are reported in many countries as one of the most energy intensive building sectors. Besides the pressure posed on energy supply, they also have adverse impact on the environment through greenhouse gas emissions, wastewater discharge and so on. This study was intended to shed some light on the energy and environment related issues in hotel industry. Energy consumption data and relevant information collected from hotels were subjected to rigorous statistical analysis. A regression-based benchmarking model was established, which takes into account, the difference in functional and operational features when hotels are compared with regard to their energy performance. In addition, CO 2 emissions from the surveyed hotels were estimated based on a standard procedure for corporate GHG emission accounting. It was found that a hotel's carbon intensity ranking is rather sensitive to the normalizing denominator chosen. Therefore, carbon intensity estimated for the hotels must not be interpreted arbitrarily, and industry specific normalizing denominator should be sought in future studies.

  3. Taking advantage of natural gas for the energy and fuel supply for the Brazilian energy intensive industries: aluminium, siderurgy and chemical products; O aproveitamento do gas natural para o suprimento de energia e combustivel para as industrias energointensivas brasileiras: aluminio, siderurgia e produtos quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Jose Fernando Leme [Universidade Sao Paulo (USP), SP (Brazil). Programa Interunidades de Pos Graduacao em Energia]. E-mail: romero@iee.usp.br

    2006-07-01

    This work intend to analyse natural gas success in the energy generation for siderurgy industry, aluminium and basic organic chemical products. There is a necessity to inform economy-policy and the energy policy relationship, showing the Brazilian State actuation in the economic development mechanism and electric energy supply. Cast iron and iron, metals and no-irons are considered as electric intensives and energy intensives industry activities. These are sectors that produce merchandises for exportation and spend many quantities of electrical energy for each produced physical unity of law aggregate economic value. (author)

  4. Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Oludunsin Arodudu

    2016-12-01

    Full Text Available In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture. Estimates of the net energy gain (NEG and the energy return on energy invested (EROEI obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5–488.3 GJ·ha−1 of NEG and an EROEI of 5.4–5.9 for maize ethanol production systems, and as much as 155.0–283.9 GJ·ha−1 of NEG and an EROEI of 14.7–22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8–52.5 GJ·ha−1 and an EROEI of 1.2–1.7 for maize ethanol production systems, as well as a NEG of 59.3–188.7 GJ·ha−1 and an EROEI of 2.2–10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.

  5. China's energy demand and its characteristics in the industrialization and urbanization process

    International Nuclear Information System (INIS)

    Jiang Zhujun; Lin Boqiang

    2012-01-01

    China is currently in the process of industrialization and urbanization, which is the key stage of transition from a low-income country to a middle-income country and requires large amount of energy. The process will not end until 2020, so China's primary energy demand will keep high growth in the mid-term. Although each country is unique considering its particular history and background, all countries are sharing some common rules in energy demand for economic development. Based on the comparison with developed countries, here, we report some rules in the process of industrialization and urbanization as follows: (1) urbanization always goes along with industrialization; (2) the higher economic growth is, the higher energy demand is; (3) economic globalization makes it possible to shorten the time of industrialization, but the shorter the transition phase is, the faster energy demand grows; (4) the change of energy intensity presents as an “inverted U” curve, but whose shape can be changed for different energy policy. The above rules are very important for the Chinese government in framing its energy policy. - Highlights: ► China's energy demand will maintain high growth in mid-term. ► Urbanization always goes along with industrialization. ► Higher economic growth needs more energy. ► The energy intensity presents as an “inverted U” curve.

  6. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    International Nuclear Information System (INIS)

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-01-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time

  7. Energy conservation and technological change as factors in climate change - a pulp and paper industry example

    Energy Technology Data Exchange (ETDEWEB)

    Koleff, A.M. [Stone Container Corp., Tucker, GA (United States)

    1997-12-31

    The Pulp and Paper Industry in the United States is one of this country`s most energy intensive industries with energy generally being the second or third largest direct operating expense in mill budgets. As such, the industry has long had an effective energy conservation program and has recorded impressive reductions in energy use. It is also one of the two most capital intensive industries in the United States and has a long capital investment cycle, which can be estimated by various techniques at between 20 and 30 years. This paper discusses the estimated impact of the industry`s energy conservation achievements on long term emission reductions of greenhouse gases and will show how technological changes within the industry have impacted past emission reductions and the prospects for continued progress through emerging technologies. The importance to the global competitiveness of the industry of implementing technological change designed to reduce the emission of greenhouse gases within the industry`s normal investment cycle will also be reviewed.

  8. Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.; Schleich, J.

    The iron and steel sector is the largest industrial CO2 emitter and energy consumer in the world. Energy efficiency is key to reduce energy consumption and GHG emissions. To understand future developments of energy use in the steel sector, it is worthwhile to analyze energy efficiency developments

  9. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  10. Energy consumption and CO2 emissions of industrial process technologies. Saving potentials, barriers and instruments

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang

    2013-01-01

    Which contribution can the increase of energy efficiency achieve in the industry energy for the energy transition in Germany? To answer this question a model-based analysis of existing energy efficiency potentials of the energy-intensive industries is performed, which account for about 70% of the total energy demand of the industry. Based on this industry for each sector are instruments proposed for the implementation of the calculated potential and to overcome the existing barriers. [de

  11. IDENTIFY: opportunities for improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cornland, Deborah Wilson; Lazarus, Michael; Heaps, Charles; Hippel, David von; Hill, David [Stockholm Environment Inst., Stockholm (Sweden); Williams, Robert [United Nations Industrial Development Organization (UNIDO), Vienna (Austria)

    1998-09-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. The study resulted in the development of the IDENTIFY software tool which can be useful for evaluating projects under consideration for investment through Activities Implemented Jointly (AIJ). IDENTIFY consists of an Analysis tool which enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology, and process options and a Technology Inventory which provides information describing energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors. (author)

  12. The Impact of Urbanization on Energy Intensity in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mounir Belloumi

    2016-04-01

    Full Text Available This paper investigates the long-term and causal relationship between energy intensity, real GDP per capita, urbanization and industrialization in Saudi Arabia over the period 1971–2012 using the breakpoint unit root tests developed by Perron (1989 and the autoregressive distributed lag (ARDL model bounds testing to cointegration proposed by Pesaran et al. (2001 and employing a modified version of the Granger causality test proposed by Toda and Yamamoto (1995. Additionally, to test the robustness of the results, the fully modified ordinary least squares (OLS regression, the dynamic OLS regression, and the Hansen test are used. Our results show that the variables are cointegrated when energy intensity is the dependent variable. It is also found that urbanization positively affects energy intensity in both the short term and the long term. Causality tests indicate that urbanization causes economic output that causes energy intensity in the long term. Our results do not support the urban compaction hypothesis where urban cities benefit from basic public services and economies of scale for public infrastructure. Therefore, measures that slow down the rapid urbanization process should be taken to reduce energy intensity in Saudi Arabia. In addition, reducing energy inefficiency in energy consumption should be a strategy to attain sustainable development in the near future in Saudi Arabia.

  13. Energy conservation in mechanical industry; Maitrise de l`energie dans les industries mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The workshop is composed of 12 communications on the theme of energy consumption, conservation and management in industry, and more especially in metal industry: evaluation of the energy savings potential in the French industry; official energy diagnosis procedure in buildings; the French national gas utility policy for energy conservation and economical performance in industry; energy conservation with speed variators for electric motors; energy audits and energy metering for conservation objectives. Examples of energy efficient systems or energy audits in various industrial sectors (compressed air, industrial buildings, heat treatments, curing...) are also presented. The electric power quality EDF`s contract is also discussed

  14. The status of energy conservation in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Su, Te-Li; Chan, David Yih-Liang; Hung, Ching-Yuan; Hong, Gui-Bing

    2013-01-01

    The cement industry represents one of the most energy intensive sectors in Taiwan. Energy audits are the direct tools which are employed to help reduce energy consumption. The objectives of energy audits are to establish energy audit systems, provide on-site energy audit service and reduce production cost. This study summarized the energy savings implemented in Taiwan's cement industry; the data were obtained from the on-line Energy Declaration System in 2010. The total implemented energy savings amounted to 68,512 kilo liter of crude oil equivalent (KLOE). The energy audit group audited seven Taiwanese cement plants in 2011 and revealed an energy saving potential of 2571.6 MWh of electricity and 1002.8 KLOE of thermal energy. The total potential energy saving was 1708.5 KL of crude oil equivalent (KLOE), equivalent to a 4560 t reduction in CO 2 emissions, representing the annual CO 2 absorption capacity of a 122 ha forest plantation. - Highlights: • This study summarizes the energy savings implemented in Taiwan's cement industry from the on-line Energy Declaration System. • The energy audit group audited seven Taiwanese cement plants in 2011 and revealed energy saving potential was 1708.5 KLOE. • This work aims to examine what Taiwan has done and also describes the current status in cement industry. • In addition, some potential energy conservation opportunities or measures are revealed in this paper

  15. Quantifying the statistical importance of utilizing regression over classic energy intensity calculations for tracking efficiency improvements in industry

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [ORNL; Wenning, Thomas J. [ORNL; Guo, Wei [ORNL

    2017-08-01

    In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero, which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.

  16. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  17. Estimating energy-augmenting technological change in developingcountry industries

    Energy Technology Data Exchange (ETDEWEB)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-07-07

    Assumptions regarding the magnitude and direction ofenergy-related technological change have long beenrecognized as criticaldeterminants of the outputs and policy conclusions derived fromintegrated assessment models. Particularly in the case of developingcountries, however, empirical analysis of technological change has laggedbehind simulation modeling. This paper presents estimates of sectoralproductivity trends and energy-augmenting technological change forseveral energy-intensive industries in India and South Korea, and, forcomparison, the United States. The key findings are substantialheterogeneity among both industries and countries, and a number of casesof declining energy efficiency. The results are subject to certaintechnical qualifications both in regards to the methodology and to thedirect comparison to integrated assessment parameterizations.Nevertheless, they highlight the importance of closer attention to theempirical basis for common modeling assumptions.

  18. Impact des politiques climatiques sur les industries énergie-intensives

    OpenAIRE

    Branger , Frédéric

    2015-01-01

    This thesis contributes to the literature on carbon leakage and competitiveness losses in energy-intensive industries generated by uneven climate policies. After a meta-analysis of modelling studies assessing carbon leakage with or without Border Carbon Adjustments; we use time series econometrics and find no evidence of competitiveness-driven operational leakage due to the European Union Emissions Trading System (EU ETS) for steel and cement. Next, we decompose emissions the European cement ...

  19. Nuclear process steam for industry: potential for the development of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, W A

    1981-11-01

    This report summarizes the results of an industrial survey jointly funded by the Bruce County Council, the Ontario Energy Corporation, Atomic Energy of Canada Limited and conducted with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. The objective of the study was to identify and assess the future needs and interest of energy-intensive industries in the concept of an Industrial Energy Park adjacent tof the Bruce Nuclear Power Development. The proposed Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station.

  20. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  1. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2015-01-01

    Despite the prevalence of voluntary and involuntary energy conservation policies, developing countries in Africa continue to struggle to achieve energy efficiency targets. Consequently, energy intensity levels have risen threatening the security of the energy system. This raises the important question: is there an economic state that induces agents to be energy conscious? In this study, we study the case of Algeria's energy intensity from 1971 to 2010. First, the paper argues that there is a certain economic state that economic agents find investing in energy conservation a viable option. Any state different from that would mean not investing in energy conservation. Second, the paper argues that the economy can do better even with an infinitesimal reduction in fuel subsidy, and that the gains in revenue from the policy can compensate for the negative socio-economic and equity impacts associated with such a policy. Third, the paper argues that, so long as, industrial expansion in the country move parallel with investment in technological innovation, long-term sustainable growth and energy conservation targets are jointly feasible. Fourth, the paper shows that income elasticity evolves with the business cycle, and the absorptive capability of the host country affects how FDI (foreign direct inflows) impact energy intensity. - Highlights: • Low income states inhibit fuel substitution and investment in energy conservation. • Income elasticity evolves as we pass through boom and recessionary periods. • The goals of sustainable growth and energy conservation are not mutually exclusive. • Absorptive capability affects the impact of FDI on energy intensity

  2. Industrial energy efficiency: the need for investment decision support from a manager perspective

    International Nuclear Information System (INIS)

    Sandberg, Peter; Soederstroem, Mats

    2003-01-01

    Global competition, commitment to the Kyoto Protocol and a deregulated, integrated European electricity market will in all probability increase the demand for energy efficiency on the part of companies in Sweden. Investment decisions are an important part of meeting the new demands, because they decide the future efficiency of industrial energy systems. The objective of this study is to investigate, from a managerial perspective, the need to improve decision support in some industries, which can help to facilitate and improve investment decisions concerning energy efficiency. This work has been conducted through in-depth interviews with representatives for a number of energy-intensive companies and non-energy-intensive companies from different sectors. One need that was identified was the improvement of working methods in order to support the decision-making process. Here, external players seem to be playing an increasingly important role. Access to correct information, better follow-up activities, and transparent, understandable calculations are also considered to be important. The study will form the foundation for subsequent work on decision support and energy efficiency in industry

  3. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  4. The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010

    International Nuclear Information System (INIS)

    Fernández González, P.; Landajo, M.; Presno, M.J.

    2013-01-01

    This paper analyzes the evolution of real energy efficiency in the European Union and the attribution across countries of its percent change. Relying on a multiplicative energy intensity approach that is implemented through the Sato-Vartia Logarithmic Mean Divisia Index method, we decompose the change in aggregate energy intensity in 20 European countries for the period from 1995 to 2010. A comparative analysis of real energy intensity indices is also carried out. In addition, a new tool to monitor changes in real energy intensity in greater detail is applied. The attribution analysis of IDA (Index Decomposition Analysis) as proposed by Choi and Ang (Choi KH, Ang BW. Attribution of changes in Divisia real energy intensity index – an extension to index decomposition analysis. Energy Economics 2012;34:171–6) is used in order to assess the contribution of each individual sector to the percent change in real energy intensity. Results indicate that the European countries, particularly the former communist ones, made a remarkable effort to improve energy efficiency. Our analysis also suggests some strategies –including promotion and adaptation to more efficient techniques, innovation, improved use of technologies, R and D, and substitution for higher quality energies-, which are of particular interest to the industry sector -including construction- in ex-communist EU members, and to the industry and transport plus hotels and restaurants sectors in Western countries. - Highlights: • We apply a single and multi-period attribution analysis approach [1]. • Technical change, improved use of tech and quality energies, keys to AEI drop. • Real energy intensity shows valuable progress in former communist European members. • The biggest attribution of percent change in real energy intensity was to Industry. • Western EU: Services and Agriculture poor contributors to real energy intensity drop

  5. Incentives for solar energy in industry

    Science.gov (United States)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  6. Estimating energy-augmenting technological change in developing country industries

    International Nuclear Information System (INIS)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Assumptions regarding the magnitude and direction of energy-related technological change have long been recognized as critical determinants of the outputs and policy conclusions derived from integrated assessment models. Particularly in the case of developing countries, however, empirical analysis of technological change has lagged behind simulation modeling. This paper presents estimates of sectoral productivity trends and energy-augmenting technological change for several energy-intensive industries in India and South Korea, and, for comparison, the United States. The key findings are substantial heterogeneity among both industries and countries, and a number of cases of declining energy efficiency. The results are subject to certain technical qualifications both in regards to the methodology and to the direct comparison to integrated assessment parameterizations. Nevertheless, they highlight the importance of closer attention to the empirical basis for common modeling assumptions

  7. Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Zeng, Lin; Xu, Ming; Liang, Sai; Zeng, Siyu; Zhang, Tianzhu

    2014-01-01

    The decline of China's energy intensity slowed since 2000. During 2002–2005 it actually increased, reversing the long-term trend. Therefore, it is important to identify drivers of the fluctuation of energy intensity. We use input–output structural decomposition analysis to investigate the contributions of changes in energy mix, sectoral energy efficiency, production structure, final demand structure, and final demand category composition to China's energy intensity fluctuation during 1997–2007. We include household energy consumption in the study by closing the input–output model with respect to households. Results show that sectoral energy efficiency improvements contribute the most to the energy intensity decline during 1997–2007. The increase in China's energy intensity during 2002–2007 is instead explained by changes in final demand composition and production structure. Changes in final demand composition are mainly due to increasing share of exports, while changes in production structure mainly arise from the shift of Chinese economy to more energy-intensive industries. Changes in energy mix and final demand structure contribute little to China's energy intensity fluctuation. From the consumption perspective, growing exports of energy-intensive products and increasing infrastructure demands explain the majority of energy intensity increase during 2002–2007. - Highlights: • We analyzed energy intensity change from production and consumption perspectives. • We extended the research scope of energy intensity to cover household consumption. • Sectoral energy efficiency improvement contributed most to energy intensity decline. • Impact of production structure change on energy intensity varied at different times. • Growing export demand newly became main driver of China's energy intensity increase

  8. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  9. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  10. A Statistical Analysis of Industrial Penetration and Internet Intensity in Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Lin Chang

    2018-03-01

    Full Text Available This paper is the first to investigate the effect of industrial penetration (geographic concentration of industries and internet intensity (the proportion of enterprises that uses the internet for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements. The sample observations are based on a unique set of data, namely 153,081 manufacturing plants, and covers 26 two-digit industry categories and 358 geographical townships in Taiwan. The Heckman sample selection model is used to accommodate sample selectivity for unobservable data for firms that use the internet. The empirical results from Heckman’s two-stage estimation show that: (1 a higher degree of industrial penetration will not affect the probability that firms will use the internet, but it will affect the total expenditure on internet intensity; (2 for two-digit SIC (Standard Industrial Classification industries, industrial penetration generally decreases the total expenditure on internet intensity; and, (3 industrial penetration and internet intensity are substitutes.

  11. The Energy Footprint of China’s Textile Industry: Perspectives from Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Laili Wang

    2017-09-01

    Full Text Available Energy is the essential input for operations along the industrial manufacturing chain of textiles. China’s textile industry is facing great pressure on energy consumption reduction. This paper presents an analysis of the energy footprint (EFP of China’s textile industry from 1991 to 2015. The relationship between EFP and economic growth in the textile industry was investigated with a decoupling index approach. The logarithmic mean Divisia index approach was applied for decomposition analysis on how changes in key factors influenced the EFP of China’s textile industry. Results showed that the EFP of China’s textile industry increased from 41.1 Mt in 1991 to 99.6 Mt in 2015. EFP increased fastest in the period of 1996–2007, with an average annual increasing rate of 7.7 percent, especially from 2001 to 2007 (8.5 percent. Manufacture of textile sector consumed most (from 58 percent to 76 percent of the energy among the three sub-sectors, as it has lots of energy-intensive procedures. EFP and economic growth were in a relative decoupling state for most years of the researched period. Their relationship showed a clear tendency toward decoupling. Industrial scale was the most important factor that led to the increase of EFP, while decreasing energy intensity contributed significantly to reducing the EFP. The promoting effect of the factors was larger than the inhibiting effect on EFP in most years from 1991 to 2015.

  12. Energy management technologies: special focus on textile industry

    International Nuclear Information System (INIS)

    Dayo, F.B.O.

    2000-08-01

    Energy is a very important component of most manufacturing activities. Its level of importance depends on whether or not the manufacturing processes employed are energy intensive. For less energy intensive manufacturing activities, energy costs contribute only a small portion of total cost of production. Even in this case, it has been shown that considerable scope for cost savings through more efficient utilization of energy exist. Small investments in energy efficiency measures have been known to bring significant savings in production costs, and consequently improved profit margins. The advantages of better and efficient use of energy in an energy - intensive manufacturing outfit have been extensively demonstrated in many nations over the past few decades. For these groups, profitability improvement is usually more apparent, and the scope for achieving a cost savings through improved energy use efficiency, more considerable. Cost savings or profitability improvement is not the only reason for considering energy use efficiency improvement in a manufacturing facility. Energy use efficiency improvement is also the most effective way of reducing environmental pollutant emission such as greenhouse gases. Actual cost savings achievable will depend on factors such as: the production process; the age of the facilities; its design and maintenance; and the extent of pasts efforts in energy use efficiency improvements. Evidence suggests that for facilities where energy management has not been practiced, saving of between 10% to 20% on energy bills are possible, through simple measures, with quick payback period. When a manufacturing facility addresses issues of energy efficiency, through the institution of a viable energy management systems, it also takes a very necessary step towards obtaining international accreditation. Such accreditation include: the Eco-Management and Audit Scheme (EMAS); or the International Standard Organisation's ISO 14001. This is becoming a vital

  13. China's economic reform and industry sector energy requirement: A forecast to 2015

    International Nuclear Information System (INIS)

    Gu, A.Y.

    1997-01-01

    With its GDP growing at an average rate of 9.8% for the last seventeen years, China has the world's fastest growing economy. This rapid pace of growth and industrialization has caused economic strain because fuel production cannot keep pace with demand, If China allows this situation to continue, significant oil imports will be necessary. In 1993, the industrial sector contributed 56% to China's GDP and consumed 61% of the total final energy. The industrial sector will remain the largest energy consumer in China well into the next century. According to China's Ninth Five-Year Plan (1996--2000), China will strengthen its ability to develop new products and will use technological advancement to promote industrial development. The Plan calls for special attention in four major areas: microelectronics technology, digital technology, software technology, and network technology. Given China's emphasis on developing light industries and on improving industrial sector energy efficiency, it is important to study the future energy demand of the industrial sector. Two scenarios for future energy requirements are studied through the year 2015: a Business As Usual (BASU) scenario and an Energy Efficient (EE) scenario. The study evaluates China's current economic reform policies and energy efficiency policies. The results of this evaluation are used to assign appropriate growth rates to industrial GDP and the industrial energy intensity for both scenarios. Results from the two scenarios are compared and analyzed

  14. Graphene for energy solutions and its industrialization

    Science.gov (United States)

    Wei, Di; Kivioja, Jani

    2013-10-01

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new `industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  15. Industry and energy

    International Nuclear Information System (INIS)

    Birules y Bertran, A.M.; Folgado Blanco, J.

    2002-01-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  16. CO2-afgifter: Beskeden regning til den energi-intensive industri

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2008-01-01

    De store energi-intensive virksomheder i Europa har fordel af vidtrækkende undtagelser for de CO2- og energiafgifter som medlemslandene har indført. Bekymring for konkurrence-evnen har som regel været baggrunden for at give en særlig rabat til de største udledere. Størrelsen af rabatten og dermed...... den egentlige klima-regning til virksomhederne er imidlertid vanskelig at gennemskue. Med slutrapporten fra det store EU-projekt COMETR er det nu blevet muligt både at sætte tal på de reelle afgifter og at vurdere betydningen for konkurrence-evnen for erhvervene....

  17. Priority listing of industrial processes by total energy consumption and potential for savings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Streb, A.J.

    1977-01-01

    A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

  18. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  19. Labour productivity, energy intensity and economic performance in small enterprises: A study of brick enterprises cluster in India

    International Nuclear Information System (INIS)

    Bala Subrahmanya, M.H.

    2006-01-01

    This paper probes the role of labour efficiency in promoting energy efficiency and economic performance with reference to small scale brick enterprises' cluster in Malur, Karnataka State, India. In the bricks industry, the technology in use being similar, labour efficiency has a negative influence on energy cost. Therefore, those enterprises that exhibited higher labour productivities had lower average energy intensity and higher returns to scale as compared to those that had lower labour productivities. Considering this, improvement of labour efficiency can be an alternative approach for energy efficiency improvement in energy intensive small scale industries in developing countries like India, which face the obstacle of financial constraints in up-grading technology as a means of energy efficiency improvement

  20. Total Factor Productivity and Energy Intensity in Indian Manufacturing: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Sahu

    2011-01-01

    Full Text Available The objective of the paper is to estimate the transcendental logarithmic production function and further study the determinants of total factor productivity (TFP of Indian manufacturing industries. The estimation of TFP is based on four inputs model, where apart from labour and capital, material and energy are the other two inputs. The findings of the paper suggest that labour and material inputs play major role as compared to the capital and energy input. Age of the firm, ownership, energy intensity, embodied and disembodied technology imports, research and development and exports were considered as the possible determinants of the TFP in the second stage regression. The finding of the estimates suggest that age of the firm, export intensity and disembodied technology import are positively related to the TFP, where ownership, energy intensity, embodied technology import and R&D intensity are negatively related to the TFP of the firms for Indian manufacturing.

  1. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S.

    2008-01-01

    This paper presents an artificial neural network (ANN) approach for annual electricity consumption in high energy consumption industrial sectors. Chemicals, basic metals and non-metal minerals industries are defined as high energy consuming industries. It is claimed that, due to high fluctuations of energy consumption in high energy consumption industries, conventional regression models do not forecast energy consumption correctly and precisely. Although ANNs have been typically used to forecast short term consumptions, this paper shows that it is a more precise approach to forecast annual consumption in such industries. Furthermore, the ANN approach based on a supervised multi-layer perceptron (MLP) is used to show it can estimate the annual consumption with less error. Actual data from high energy consuming (intensive) industries in Iran from 1979 to 2003 is used to illustrate the applicability of the ANN approach. This study shows the advantage of the ANN approach through analysis of variance (ANOVA). Furthermore, the ANN forecast is compared with actual data and the conventional regression model through ANOVA to show its superiority. This is the first study to present an algorithm based on the ANN and ANOVA for forecasting long term electricity consumption in high energy consuming industries

  2. A Comprehensive System of Energy Intensity Indicators for the US: Methods, Data and Key Trends

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-29

    This report provides an update to a previously published (Rev 1) report that describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

  3. Survey on the consumptions of energy sources in the industry in Italy in 1999

    International Nuclear Information System (INIS)

    Iorio, G.; Perrella, G.; Ballin, M.; Mercanti, A.; Poggi, A.

    2001-01-01

    This report has the aim to introduce the results of the sampling survey performed to determinate the consumption of energy sources (electricity, natural gas, fuel oil, diesel oil, etc.) in the italian industry. The energy consumptions report to 1999 and they are disaggregated for typology of use: energy consumptions for productive uses, for production of energy and for traction. The energy intensive sectors and the great industries have represented the nucleus of survey. Particular attention has been devoted to the production of energy and the consumption of heat [it

  4. Economic and technical facts and developments in the field of energy in German industry

    Energy Technology Data Exchange (ETDEWEB)

    Rolshoven, H.

    1979-07-01

    A review of the energy situation with regard to energy management and technological developments in Germany is presented. It is observed that the industrial consumption of energy is considerably lower than that of households and authorities of all kinds, leading to the conclusion that the greatest scope for saving on energy raw materials, particularly oil, lies in the area of households and small consumption areas. Some data and measures for conservation in the five most energy-intensive industries are briefly discussed. Examples of the national use of energy are given. (MCW)

  5. Energy intensity: a new look

    International Nuclear Information System (INIS)

    Khatib, H.

    1995-01-01

    Energy intensity is compared among different countries by dividing their energy use by their gross domestic product (GDP) in dollar terms. GDP (US$), being a varying monetary value, will have different meaning in different countries because of the varying means of converting it into dollars. Therefore distorted results of energy intensity are obtained. The newly devised concept of presenting GDP in terms of purchasing power parity in dollars (US PPP) goes a long way to solving this distortion. It also allows the energy intensity of developing countries to be presented in a more favourable way. (author)

  6. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  7. Energy's role in industrial competitiveness

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on the role of energy in industrial competitiveness, papers were presented on the energy consumer's perspective on energy issues in the mineral and food industries, global perspectives on the role of energy in industrial competitiveness, a supplier's perspective on energy issues in the oil/gas and electric industries, perspectives on environmental issues including climate change, and international partnerships for industrial competitiveness, notably in the former Soviet Union and eastern Europe. Separate abstracts have been prepared for 15 papers from this conference

  8. Trends in the energy use in the Mexican industrial sector; Tendencias del uso de la energia en el sector industrial mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, C. [UNAM, Mexico, D. F. (Mexico); Jauregui, I. [CONAE, Mexico, D. F. (Mexico)

    1995-12-31

    This paper presents an analysis of the trends of the energy use for the industry in Mexico. For the various industrial branches (mining, construction, chemical, sugar, cement, paper and cellulose and glass) the changes in energy intensity (measured as the use of the energy divided by the aggregated value) and in the participation of the same in the industrial Internal Gross Product are presented. This is developed by means of the analysis of Laspeyress exchange indexes. It is found that in most of the industrial branches a reduction of the energy density has been originated. The reasons for the falling of this indicator are structural and of technological change nature, depending on the industrial branch. Nevertheless the classical analysis of the Laspeyress indexes is not sufficient to explain the changes occurred in the energy intensity in the Mexican industry for the last years. [Espanol] Este articulo presenta un analisis de las tendencias del uso de la energia para la industria en Mexico. Para las diversas ramas industriales (mineria, construccion, quimica, azucar, cemento, papel y celulosa y vidrio) se presentan los cambios en la intensidad energetica (medida como uso de la energia entre valor agregado) y en la participacion de las mismas en el Producto Interno Bruto (PIB) industrial. Esto se desarrolla por medio del analisis de indices de cambio de Laspeyress. Se encuentra que en la mayoria de las ramas industriales hubo una disminucion en la intensidad energetica. Las razones de la caida de este indicador son estructurales y de cambio tecnologico dependiendo de la rama industrial. Sin embargo el analisis clasico de los indices de Laspeyress es insuficiente para explicar los cambios ocurridos en la intensidad energetica de la industria mexicana para los ultimos anos.

  9. Trends in the energy use in the Mexican industrial sector; Tendencias del uso de la energia en el sector industrial mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, C [UNAM, Mexico, D. F. (Mexico); Jauregui, I [CONAE, Mexico, D. F. (Mexico)

    1996-12-31

    This paper presents an analysis of the trends of the energy use for the industry in Mexico. For the various industrial branches (mining, construction, chemical, sugar, cement, paper and cellulose and glass) the changes in energy intensity (measured as the use of the energy divided by the aggregated value) and in the participation of the same in the industrial Internal Gross Product are presented. This is developed by means of the analysis of Laspeyress exchange indexes. It is found that in most of the industrial branches a reduction of the energy density has been originated. The reasons for the falling of this indicator are structural and of technological change nature, depending on the industrial branch. Nevertheless the classical analysis of the Laspeyress indexes is not sufficient to explain the changes occurred in the energy intensity in the Mexican industry for the last years. [Espanol] Este articulo presenta un analisis de las tendencias del uso de la energia para la industria en Mexico. Para las diversas ramas industriales (mineria, construccion, quimica, azucar, cemento, papel y celulosa y vidrio) se presentan los cambios en la intensidad energetica (medida como uso de la energia entre valor agregado) y en la participacion de las mismas en el Producto Interno Bruto (PIB) industrial. Esto se desarrolla por medio del analisis de indices de cambio de Laspeyress. Se encuentra que en la mayoria de las ramas industriales hubo una disminucion en la intensidad energetica. Las razones de la caida de este indicador son estructurales y de cambio tecnologico dependiendo de la rama industrial. Sin embargo el analisis clasico de los indices de Laspeyress es insuficiente para explicar los cambios ocurridos en la intensidad energetica de la industria mexicana para los ultimos anos.

  10. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  11. Energy Intensity of the Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Mieczysław Dziubiński

    2017-12-01

    Full Text Available Continuous energy intensity is a dependency between continuous energy intensity and energy intensity of movement. In the paper it is proposed analyze energy intensity of the movement, as the size specifying the power demand to the wheel drive and presented the balance of power of an electric car moving in the urban cycle. The object of the test was the hybrid vehicle with an internal combustion engine and electric motor. The measurements were carried out for 4 speeds and 2 driving profiles.

  12. Potential energy savings and CO2 emissions reduction of China's cement industry

    International Nuclear Information System (INIS)

    Ke, Jing; Zheng, Nina; Fridley, David; Price, Lynn; Zhou, Nan

    2012-01-01

    This study analyzes current energy and carbon dioxide (CO 2 ) emission trends in China's cement industry as the basis for modeling different levels of cement production and rates of efficiency improvement and carbon reduction in 2011–2030. Three cement output projections are developed based on analyses of historical production and physical and macroeconomic drivers. For each of these three production projections, energy savings and CO 2 emission reduction potentials are estimated in a best practice scenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal the potential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related direct emission reductions of 3.2 to 4.4 gigatonnes in 2011–2030 under the best practice scenarios. The continuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules and reduce CO 2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiency is the most important policy measure for reducing the cement industry's energy and emissions intensity, given the current state of the industry and the unlikelihood of significant carbon capture and storage before 2030. In addition, policies to reduce total cement production offer the most direct way of reducing total energy consumption and CO 2 emissions. - Highlights: ► This study models output and efficiency improvements in Chinese cement industry from 2011–2030. ► Energy savings and CO 2 emission reductions estimated for 3 scenarios relative to frozen scenario. ► Results reveal cumulative final energy savings potential of 27.1–37.5 EJ and 3.2–4.4 Gt CO 2 reductions. ► Increasing efficiency is the most important policy for reducing cement energy and emissions intensity.

  13. A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2014-08-31

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

  14. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  15. Scenarios of future energy intensities

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In this chapter, the authors present scenarios of potential change in energy intensities in the OECD countries and in the Soviet Union. These scenarios are meant to illustrate how intensities might evolve over the next 20 years given different conditions with respect to energy prices, energy-efficiency policies, and other key factors. Changes in intensity will also be affected by the rates of growth and stock turnover in each sector. They have not tried to forecast how activity levels and structure will evolve. However, the OECD scenarios assume a world in which GDP averages growth in the 2-3%/year range, with some differences among countries. For the Soviet Union, the degree and pace of intensity decline will be highly dependent on the success of the transition to a market economy; each scenario explicitly envisions a different degree of success. They have not constructed comparable scenarios for the developing countries. The scenarios presented in this chapter do not predict what will happen in the future. They believe, however, that they illustrate a plausible set of outcomes if energy prices, policies, programs, and other factors evolve as described in each case. With higher energy prices and vigorous policies and programs, intensities in the OECD countries in 2010 could be nearly 50% less on average than the level where trends seem to be point. In the former Soviet Union, a combination of rapid, successful economic reform and extra effort to improve energy efficiency might result in average intensity being nearly 40% less than in a slow reform case. And in the LDCs, a mixture of sound policies, programs, and energy pricing reform could also lead to intensities being far lower than they would be otherwise. 8 refs., 10 figs., 1 tab

  16. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  17. Energy shocks and detecting influential industries

    International Nuclear Information System (INIS)

    Kang, Dongsuk; Lee, Duk Hee

    2017-01-01

    An industry's relationship of supply and demand with the energy sector can be a critical factor in the stability of its economic performance. Furthermore, the patterns of industry dependence on energy industries can be a major characteristic of entire industrial structure. This research evaluates industries' impact scores for their overall influence on other industries and vulnerability to supply and demand shocks from the energy sector. The study utilizes a sample of Korea's industrial input–output tables from 2010 to 2012. Using a chain of complementary methodologies, this study finds that among four clusters, energy, services, and raw materials are key members that can spread energy shocks to other industries. Therefore, governments need to prepare effective energy efficiency policies for these target industries. - Highlights: • We analyze an industry's impact score of its vulnerability to energy shock and inter-industrial effects. • We utilize the sample of input-output tables in Korea from 2010 to 2012. • We implement simulation, PCA, TOPSIS, cluster analysis about energy shock and industrial trades. • Subsectors of energy, services, raw material are subject to energy shock and influential to others. • These bridge industries can be targets that require policies for effective energy efficiency.

  18. The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2014-01-01

    The primary energy intensity of Kazakhstan is among the highest in the world. The aim of this paper is to explore, in a quantitative way, the reasons for this condition, and to highlight the opportunities for improvement. To do so, we have developed a detailed ‘bottom-up’ model of the Kazakh energy sector. With this model, we have calculated the potential energy savings on both the demand and supply sides, and for all the economy sectors. This potential is defined as the difference between the current energy consumption in each sector/activity and the energy consumption if best available technologies or energy efficiency standards prevailing in developed countries were adopted in Kazakhstan. We conclude that the main causes of the energy inefficiency in Kazakhstan are: the excessive energy demand of buildings (especially for space heating) in the household and service sector, the inefficiency of the industry sector, particularly in the iron and steel and non-ferrous metals subsectors, the obsolescence of the heating and power generation assets, and the inefficient management of associated gas (flaring and re-injection in oil wells). With current energy efficiency standards prevailing in developed countries, the primary energy consumption in Kazakhstan in 2010 would be reduced by 48.6%, from 75.4 to 38.7 Mtoe. - Highlights: • A detailed ‘bottom-up’ model of the Kazakh energy sector has been developed. • The reasons of the high primary energy intensity of Kazakhstan are determined. • Household and industrial sectors of Kazakhstan are highly inefficient. • Associated gas management shows the highest potential for energy saving. • Primary energy consumption would be reduced by 48.6% with the proposed measures

  19. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  20. Game theory approach in decisional process of energy management for industrial sector

    International Nuclear Information System (INIS)

    Aplak, H. Soner; Sogut, M. Ziya

    2013-01-01

    Highlights: • Decision-making process of the industry and the environment are evaluated in a game theoretic approach. • Industry and environment are considered as two players to find optimal strategies in governing energy policy. • Industry plays its renewable energy usage strategy. • Environment prefers to execute its protection reflex strategy for survivability and sustainability. • The industry’s insistence on the use of fossil fuels will forward strategy for the environment of uncertainty. - Abstract: Intensive energy consuming industrial sectors are the most important actors on global climate change which natural habitat and the environment faced. In this study, by the scope of energy management, decision-making process of the industry and the environment are evaluated in a game theoretic approach. Industry and environment are considered as two players which have conflicting objectives and try to find optimal strategies in governing energy policy. According to concept of study, while industry tries to maintain the sustainability of production with the strategies of fossil fuel, renewable energies, energy recovery and nuclear energy usage, environment exhibits reactive approach to ensure its sustainability. In the flow of study, players’ strategies are analyzed by using Multi-Criteria Decision Making (MCDM) methods and by calculating performance efficiency values of strategies, game payoff matrix is obtained. Finally, optimal strategies are found for both industry and environment in orienting their energy policy and results are evaluated. According to results of the payoff matrix, the equilibrium point is the cell (2, 1) with the values of 0.5324 and 0.5619. This implies that the environment develops protective reflexes for sustainable nature in case of using renewable energy in industry

  1. Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure

    International Nuclear Information System (INIS)

    Torvanger, A.

    1990-11-01

    In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs

  2. Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Lim, Hea-Jin; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-01-01

    This paper attempts to quantify energy consumption and CO 2 emissions in the industrial sectors of Korea. The sources of the changes in CO 2 emissions for the years 1990-2003 are investigated, in terms of a total of eight factors, through input-output structural decomposition analysis: changes in emission coefficient (caused by shifts in energy intensity and carbon intensity); changes in economic growth; and structural changes (in terms of shifts in domestic final demand, exports, imports of final and intermediate goods, and production technology). The results show that the rate of growth of industrial CO 2 emissions has drastically decreased since the 1998 financial crisis in Korea. The effect on emission reductions due to changes in energy intensity and domestic final demand surged in the second period (1995-2000), while the impact of exports steeply rose in the third period (2000-2003). Of all the individual factors, economic growth accounted for the largest increase in CO 2 emissions. The results of this analysis can be used to infer the potential for emission-reduction in Korea

  3. Energy intensity developments in 40 major economies: Structural change or technology improvement?

    International Nuclear Information System (INIS)

    Voigt, Sebastian; De Cian, Enrica; Schymura, Michael; Verdolini, Elena

    2014-01-01

    This study analyzes energy intensity trends and drivers in 40 major economies using the WIOD database, a novel harmonized and consistent dataset of input–output table time series accompanied by environmental satellite data. We use logarithmic mean Divisia index decomposition to (1) attribute efficiency changes to either changes in technology or changes in the structure of the economy, (2) study trends in global energy intensity between 1995 and 2007, and (3) highlight sectoral and regional differences. For the country analysis we apply the traditional two factor index decomposition approach, while for the global analysis we use a three factor decomposition which includes the consideration of regional structural changes in the global economy. We first show that heterogeneity within each sector across countries is high. These general trends within sectors are dominated by large economies, first and foremost the United States. In most cases, heterogeneity is lower within each country across the different sectors. Regarding changes of energy intensity at the country level, improvements between 1995 and 2007 are largely attributable to technological change while structural change is less important in most countries. Notable exceptions are Japan, the United States, Australia, Taiwan, Mexico and Brazil where a change in the industry mix was the main driver behind the observed energy intensity reduction. At the global level we find that despite a shift of the global economy to more energy-intensive countries, aggregate energy efficiency improved mostly due to technological change

  4. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  5. The unexpected challenges of using energy intensity as a policy objective: Examining the debate over the APEC energy intensity goal

    International Nuclear Information System (INIS)

    Samuelson, Ralph D.

    2014-01-01

    Aims: Energy intensity (energy demand per unit of economic output) is one of the most widely used indicators of energy efficiency in energy policy discussions. Yet its application in real-world policymaking can be surprisingly problematical. This paper aims to provide guidance to governments and organizations considering using energy intensity as a policy objective. Scope: In 2007 the APEC community adopted, then in 2011 revised, an APEC region-wide energy intensity improvement goal. This paper presents a case study of that experience, focusing on three key ‘lessons learned’. These lessons are not original findings. However, none of them have received the recognition they deserve, and consequently, they came as a surprise to many of those involved in APEC's policy discussions. Conclusions: The three lessons are as follows: (1) Energy intensity improvement is happening surprisingly quickly, but not quickly enough to meet the world's energy challenges. (2) It is difficult to find a definition of energy intensity that can make it suitable for use as an indicator of regional energy efficiency. (3) Whether the GDP's of individual economies are converted to common currency using market exchange rates or purchasing power parity (PPP) can dramatically change regional energy intensity improvement calculations. - Highlights: • APEC adopted, then subsequently revised, an energy intensity reduction goal. • This is a case study of APEC's use of energy intensity as a policy objective. • Energy intensity is declining more rapidly than many policymakers realized. • The definition of energy intensity adopted can dramatically change the incentives. • Currency conversion methodologies can dramatically change the calculations

  6. Energy conservation in industry

    International Nuclear Information System (INIS)

    Pembleton, P.

    1992-01-01

    Energy Conservation in Industry is the first number in the Energy and Environmental Series of the Industrial and Technological Information Bank (INTIB). The Series supersedes the INECA Journal and reflects the broader information programme undertaken by INTIB. The present number of the Series contains contributions from three major international databases and five topic-specific sources, including three United Nations Organizations. The present publication consists of a recent technical report on a current topic: reducing energy loss in four industrial sectors and improving energy conservation through waste-heat recovery, followed by two sections containing abstracts of technical materials

  7. Energy economy in Nordic industry

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P H; Finnedal, B H

    1980-01-01

    The employment, economic and energetic situation in various industrial branches and their importance for industry as a whole is mapped for Nordic countries. Future Nordic energy projects can base their attempts to decrease energy costs per unit on this report. In food and stimulants industry, chemical, glass and ceramic industry over 90% energy is used for processing while in steel- and metal-industry the processing consumes only about 25%. Rentability of new investments in energy saving should be considered in these branches against investments in automation, new equipment etc. Common Nordic energy-saving projects can provide much better energy economy. For instance 4% of USA energy which had formerly been used in drying processes is drastically decreased and if the USA result can be transferred to Nordic conditions DKr 160 million can be save. Prospective common projects are process-types like drying, spray-drying, heat treatments of mineral proproducts, and evaporation.

  8. The evolution of the energy demand in France in the industrial, residential and transportation sectors

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides information, from 1970 to 2005, on the evolution of the energy intensity (ratio between the primary energy consumption and the gross domestic product in volume) and the actions of energy control for the industrial, residential and transportation sectors. (A.L.B.)

  9. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  10. Energy conservation: motors in industry; Maitrise de l`energie: les moteurs dans l`industrie

    Energy Technology Data Exchange (ETDEWEB)

    Lavoine, O.; David, A. [Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    1996-12-31

    The Electricite de France demand side management policy towards industry is particularly aimed at reducing industry`s power consumption from electric motors through the use of electronic speed variators which may induce mean energy savings of 25 percent. Pumps, fans and compressors, amounting to two-third of the total electric motor energy consumption, are the main application fields for electronic variators. EDF proposes technical and energy diagnosis and audits in industrial plants in order to evaluate the possibility and potential of electronic variator introduction

  11. Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina

    International Nuclear Information System (INIS)

    Recalde, Marina; Ramos-Martin, Jesús

    2012-01-01

    The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990–2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations. -- Highlights: ► We analyze Argentinean energy consumption and social metabolism using MuSIASEM.

  12. Labour-Intensive Industrialization in Global History – A Review Essay

    NARCIS (Netherlands)

    Frankema, E.H.P.

    2015-01-01

    Labour-Intensive Industrialization in Global History, 11 leading economic historians explore whether East Asia's pathway into modern economic growth can be meaningfully characterized as a trajectory of ‘labour-intensive industrialization’, a route distinct from the North Atlantic capital-intensive

  13. Assessing measures of energy efficiency performance and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.

    2008-02-15

    This paper explores different measures of energy efficiency performance (hereafter referred to as 'MEEP'): absolute energy consumption, energy intensity, diffusion of specific energy-saving technology and thermal efficiency. It discusses their advantages and disadvantages and their roles within policy frameworks. MEEP may be necessary at several stages during policy design: in a developing regulatory framework; during the actual application; and in evaluation after policy implementation. Policy makers should consider the suitability of MEEP at each of these stages, based on criteria such as reliability, feasibility and verifiability. The paper considers the importance of so-called boundary definitions when measuring energy performance, and how these affect the appropriateness of country comparisons to guide policy decisions. The paper also addresses the limitations of both energy intensity and technology diffusion indicators as measures of energy efficiency performance. A case study on Japan's iron and steel industry illustrates the critical role of proper boundary definitions for a meaningful assessment of energy efficiency in industry. Depending on the boundaries set for the analysis, the energy consumption per ton of crude steel ranges from 16 to 21 GJ. Both a proper understanding of various methods to assess energy efficiency and the linkage with policy objectives and frameworks are important. Using the diffusion rates of specific energy-efficient processes is a technology-oriented approach which seeks to encourage the retrofitting or replacement of less efficient equipment. There are fewer boundary problems using diffusion rates than by calculating energy consumption. 42 refs., 15 figs., 4 tabs., 1 app.

  14. Application of an energy management system in combination with FMCS to high energy consuming IT industries of Taiwan

    International Nuclear Information System (INIS)

    Lee, Shin-Ku; Teng, Min-Cheng; Fan, Kuo-Shun; Yang, Kuan-Hsiung; Horng, Richard S.

    2011-01-01

    Research highlights: → A new FMCS architecture with an energy management system was developed. → The new coupling system was demonstrated feasible during in situ experiments. → A survey found that HVAC is the most energy intensive system in IT industries. → A 9.6% chiller efficiency increase and total 23.2% annual energy saving were reached. - Abstract: A commissioning unit with an energy management system (EMS) was developed to be used together with facility monitoring and control systems (FMCS). This paper describes the testing of the new coupling system, in which a detailed management program is embedded for real time control decision making. First, a survey was conducted to evaluate the current power consumption of the facility systems, and found that HVAC is the most energy intensive system. Then a case study was performed, while the plant was in operation, to demonstrate the feasibility of the new coupling system, and a 9.6% chiller efficiency increase and total 23.2% annual energy saving for the chillers were reached, by optimizing the part load ratio condition of chillers and pumps. The results from in situ experiments show that applying this energy management system to the IT industry is feasible. A better custom-made FMCS with EMS, and full scale testing to greatly increase the overall energy efficiency, is recommended.

  15. Energy taxation in a small, open economy: Social efficiency gains versus industrial concerns

    International Nuclear Information System (INIS)

    Bjertnaes, Geir H.; Faehn, Taran

    2008-01-01

    Welfare analyses of energy taxes typically show that systems with uniform rates perform better than differentiated systems, especially if revenue can be recycled by cutting taxes that are more distortionary. However, in practical policy, efficiency gains must be traded off against industrial concerns. Presumably, energy-dependent industries of small, open economies will suffer relatively more if taxed. This computable general equilibrium (CGE) study examines the social costs of compensating the energy-intensive export industries in Norway for their profit losses from imposing the same electricity tax on all industries. The costs are surprisingly modest. This is explained by the role of the Nordic electricity market, which is still limited enough to respond to national energy tax reforms. Thus, an electricity price reduction partly neutralizes the direct impact of the tax on profits. In addition, we examine the effects of different compensation schemes and find significantly lower compensation costs when the scheme is designed to release productivity gains. (author)

  16. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry

  17. CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2015-01-01

    Analysing different future trajectories of technological developments we assess the prospects for Nordic carbon-intensive industries to significantly reduce direct CO 2 emissions in the period 2010–2050. This analysis covers petroleum refining, integrated iron and steel production, and cement manufacturing in the four largest Nordic countries of Denmark, Finland, Norway, and Sweden. Our results show that the implementation of currently available abatement measures will not be enough to meet the ambitious emissions reduction targets envisaged for the Year 2050. We show how an extensive deployment of CCS (carbon capture and storage) could result in emissions reductions that are in line with such targets. However, large-scale introduction of CCS would come at a significant price in terms of energy use and the associated flows of captured CO 2 would place high requirements on timely planning of infrastructure for the transportation and storage of CO 2 . Further the assessment highlights the importance of, especially in the absence of successful deployment of CO 2 capture, encouraging increased use of biomass in the cement and integrated iron and steel industries, and of promoting the utilisation of alternative raw materials in cement manufacturing to complement efforts to improve energy efficiency. - Highlights: • Scenarios exploring the potential for reducing CO 2 emissions in Nordic industry. • Current measures not sufficient to comply with stringent emission reduction targets. • CCS enables carbon-intensive industries to comply with stringent reduction targets. • CCS would come at a high price in terms of energy use. • Without CO 2 capture increased use of biomass and alternative raw materials vital

  18. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  19. Scenarios with an intensive contribution of nuclear energy to the world energy supply

    International Nuclear Information System (INIS)

    Nifenecker, H.; Heuer, D.; Loiseaux, J.M.; Meplan, O.; Nuttin, A.; David, S.; Martin, J.M.

    2001-01-01

    Temperature stabilization requires that Co2 emissions be limited to less than 3 Gt Carbon equivalent, from the present level of more than 6 Gt. Despite an increase of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development of a 3000 GW pool of PWR reactors by 2030 and of an additional 6000 GW pool of U-Pu or Th-U reactors by 2050 would lead to temperature stabilization at a level 2 degrees above the pre-industrial level. (author)

  20. Government expenditure and energy intensity in China

    International Nuclear Information System (INIS)

    Yuxiang, Karl; Chen, Zhongchang

    2010-01-01

    The recent economic stimulus package of China has raised growing concern about its potential impact on energy demand and efficiency. To what extent does such expansion of government expenditure influence energy intensity? This question has not been well answered by the previous research. Using provincial panel data, this paper provides some evidence of a link between government expenditure and energy intensity in China. The empirical results demonstrate that the expansion of government expenditure since Asian financial crisis has exerted a significant influence on energy intensity. An increase in government expenditure in China leads to an increase in energy intensity. Further analysis compares such relationships in different economic situations. The comparison shows that such positive effect of government expenditure remains significant after the alteration in economic situation. Therefore, the results suggest introducing some measures to consolidate China's existing gains in energy efficiency. The analysis also explains why the downward trend in energy intensity is reversed in China since 2002. (author)

  1. Provincial energy intensity in China: The role of urbanization

    International Nuclear Information System (INIS)

    Yan, Huijie

    2015-01-01

    Chinese policymakers have attached great importance to energy intensity reduction. However, the unprecedented urbanization process exercises additional pressure on the realization of energy intensity reduction targets. A better understanding of the impacts of urbanization is necessary for designing effective policies aimed at reaching the next energy intensity reduction targets. This paper empirically investigates the impacts of urbanization on China's aggregate and disaggregated energy intensities using a balanced panel dataset of 30 provinces covering the period from 2000 to 2012 and panel estimation techniques. The results show that urbanization significantly increases aggregate energy intensity, electricity intensity and coal intensity. - Highlights: • This paper investigates the determinants of China's energy intensity. • Urbanization is responsible for the increase in China's energy intensity. • The fluctuation in China's energy intensity is also affected by other key factors.

  2. The impact of the energy cost on the competitiveness of the manufacturing industry. A review of the contributions of research in economy

    International Nuclear Information System (INIS)

    Bordigoni, Mathieu

    2013-01-01

    After a large introduction on the variations of energy prices (in relationship with energy sources, with end users, with competitiveness), on what can be found in the literature on competitiveness in the industry in relationship with energy, and on the current debates on energy prices and energy transition, this report discusses the variations of energy prices among countries and among industrial sectors, outlines that high oil prices threaten more economic growth than competitiveness, notices that countries possessing abundant energy resources tend to be specialised in intensive industries, that energy prices tends to have an important impact on competitiveness in some specific sectors, outlines that shale gases boost the demand of the whole American economy but that the associated competitiveness improvement rather concerns energy intensive sectors, and finally discusses the energy issue at a European level

  3. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  4. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  5. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  6. The impacts of energy prices on energy intensity: Evidence from China

    International Nuclear Information System (INIS)

    Hang, Leiming; Tu, Meizeng

    2007-01-01

    In this paper, we present a review of the deregulation of energy prices in China between 1985 and 2004 and assess the impacts of changes in energy prices on aggregate energy intensity and coal/oil/electricity intensity. We used time series data to provide estimates of energy price elasticities. Empirical results showed that: (1) The own-price elasticities of coal, oil, and aggregate energy were negative in periods both before and after 1995, implying that higher relative prices of different energy types lead to the decrease in coal, oil, and aggregate energy intensities. However, the positive own-price elasticity of electricity after 1995 probably indicates that the price effect was weaker than other factors such as income effect and population effect. (2) The impacts of energy prices were asymmetric over time. (3) Sectoral adjustment also drove the decrease in aggregate energy intensity. Although raising energy prices to boost efficiency of energy use seems to be an effective policy tool, other policy implications concerned with energy prices, such as energy supply security and fuel poverty, must also be considered

  7. The energy intensity target in China's 11th Five-Year Plan period-Local implementation and achievements in Shanxi Province

    International Nuclear Information System (INIS)

    Zhang Daisheng; Aunan, Kristin; Martin Seip, Hans; Vennemo, Haakon

    2011-01-01

    Facing the mounting pressure on energy security and increasing environmental concerns about air pollution and climate change, the Chinese government set a mandatory goal of 20% reduction of energy intensity in its 11th Five-Year Plan period (FYP, 2006-2010). In this paper we use Shanxi province to illustrate how policies and measures are implemented in practice at a provincial level as a response to the National FYP issued by the central government. Local policies are described and their effects are analyzed. We compare reported energy saving achievements with our own estimates and conclude that the achievements in Shanxi probably have been substantial since the start of the 11th FYP period. The most important measures taken by provincial and local governments seem to be in the secondary sector, such as Top-200/Top-1000 program and phasing out outdated technologies. However, Shanxi has still a long way to go to achieve satisfactory energy use. Further improvement of energy intensity will require continuing efforts. Although many measures are necessary, improving the energy efficiency in heavy industries and reducing the dependence on these industries should be particularly effective. - Highlights: → We use Shanxi province to illustrate how local policies respond to the National FYP. → Energy saving in Shanxi has been substantial since the start of the 11th FYP. → Assumptions about baseline energy use strongly affects energy saving estimates. → The most important measures taken by local governments are in the secondary sector. → Further improvement of energy intensity will require efforts especially in heavy industries.

  8. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  9. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  10. Process Industry and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Over a period of two years the NAP's Special Interest Group Energy (SIG-E) has dedicated itself to studying the way in which the process industry and its supply chain has been dealing with energy as a theme. In the past it was strongly believed that many opportunities were left unused and that different forms of cooperation inside the chain should contribute to accelerated improvement of energy efficiency in the process industry. Sixteen companies that are actively involved in the entire value chain have scrutinised their daily situation wondering how to operate more successfully. With approximately one quarter of total energy consumption the Dutch process industry is a major player in reaching national energy and climate objectives by 2020. The objective (improve energy efficiency by 2% annually) is as ambitious as that 'business as usual' is insufficient. A drastic change in how matters are approached is thus essential. The question is how to proceed? By analysing energy projects, in-depth interviews with decision makers in the industry, through literature searches and by organising lectures inside and outside the sector, SlG-E has been able to develop a true picture of the mechanisms concerning energy-related investments. Two major points of interest have been energy-oriented tendering (demand side) and the market introduction of innovations (supply side). The main problems of 'how to do more in the energy domain' is: (a) the process industry is insufficiently familiar with the capabilities of the supply chain, and (b) the supply chain is insufficiently aware of the questions that exist in the process industry. Therefore, the links in the value chain understand each other poorly. The answer to this problem is compound and consists of more interaction between the process industry and the supply chain (machine constructors, engineering firms and consultancies, education and research). As for the process industry: (a) Make improved energy

  11. China’s Energy Intensity, Determinants and Spatial Effects

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2016-06-01

    Full Text Available In the shadow of the energy crisis and environmental degradation, energy intensity is a hot topic in academic circles in China. The energy intensity distribution map of China indicates the fairly large geographic disparities globally and clustering locally in some areas, ascending from the southeast regions to the northwest provinces. Although energy intensity and its determinants vary from place to place, few studies have been made from the spatial perspective. Determinates of energy intensity and spatial spillover effects should be taken into consideration. Controlling for seven exogenous variables (per capita GDP; the share of the secondary sector; foreign direct investment; international trade, energy price, the share of coal, and transport sector and their spatial lags, we apply a spatial Durbin model to test for spatial spillover effects among energy intensity and exogenous variables from a panel of 29 Chinese provinces over 1998 to 2014. We find that per capita GDP has an insignificant and negative direct and indirect effect, but has a significant and negative total effect on energy intensity. The share of the secondary sector and the share of coal are found to have significant and positive direct and indirect effects on energy intensity. Foreign Direct Investment (FDI and Trade have significant and negative direct and indirect effects on energy intensity. The direct effect of energy price is found to be significantly positive while the indirect effect is negative. Only the direct effect of the Transport variable is significant and positive. The results of this study offer some theoretical evidence for differential localized policy making related to reduction in energy intensity.

  12. Study on the Pollution-heaven Hypothesis Focusing on Pollution-Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Lho, S.W. [Kyungnam University, Masan (Korea)

    2002-03-01

    The purpose of this study is to test pollution-heaven hypothesis on the Korean pollution-intensive industries, that is, textile and clothing, petrochemical and primary metal industry. The empirical study examines that foreign direct investment(FDI) of Korean pollution-intensive industries regresses on couple of exogenous variables and the environmental regulation on FDI. As the environmental regulation is not directly observed, it uses C0{sub 2} emissions as the pollutant. The results of the study show that the environmental regulation in a host country is an insignificant determinant of FDI for the Korean polluting industries. That is, they do not support Leonard (1988), Xing and Kolstad (2000) that the hypothesis is a significant for heavily polluting industries. (author). 34 refs., 10 tabs.

  13. The Chinese nonferrous metals industry-energy use and CO2 emissions

    International Nuclear Information System (INIS)

    Wang Yanjia; Chandler, William

    2010-01-01

    China is the largest nonferrous metals producer in the world and largest consumer for six kinds of common nonferrous metals including copper, aluminum, zinc, lead, nickel and tin. This paper provides an overview of the nonferrous metals industry in China, from a CO 2 emissions reduction perspective. It addresses energy use disaggregated by energy carrier and by province. It focuses on an analysis of energy efficiency in the production of aluminum, copper and nickel. A few large-scale enterprises produce most of the aluminum, copper and nickel in China, and use manufacturing facilities that were built within the last 20 years or have recently upgraded their main production equipment and processes. The energy efficiency of these operations is not particularly low compared to international practice. A large number of small and medium-sized enterprises (SME) operate nonferrous metals production facilities which rank low in energy efficiency and therefore are highly energy intensive per unit of physical output. Backward production capacity would be phased out continuously by enforcing the energy intensity norms.

  14. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of

  15. Forest industries energy research

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. C.

    1977-10-15

    Data on energy use in the manufacturing process of the wood products industry in 1974 are tabulated. The forest industries contributed 10% of New Zealand's factory production and consumed 25% of all industrial energy (including that produced from self-generated sources such as waste heat liquors and wood wastes) in that year. An evaluation of the potential for savings in process heat systems in existing production levels is shown to be 3% in the short, medium, and long-term time periods. The industry has a high potential for fuel substitution in all sectors. The payback periods for the implementation of the conservation measures are indicated.

  16. What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level

    International Nuclear Information System (INIS)

    Song, Feng; Zheng, Xinye

    2012-01-01

    We employ decomposition analysis and econometric analysis to investigate the driving forces behind China's changing energy intensity using a provincial-level panel data set for the period from 1995 to 2009. The decomposition analysis indicates that: (a) all of the provinces except for a few experienced efficiency improvement, while around three-fourths of the provinces' economics became more energy intensive or remained unchanged; (b) consequently the efficiency improvement accounts for more than 90% of China's energy intensity change as opposed to the economic structural change. The econometric analysis shows that the rising income plays a significant role in the reduction of energy intensity while the effect of energy price is relatively limited. The result may reflect the urgency of deregulating the price and establishing a market-oriented pricing system in China's energy sector. The implementation of the energy intensity reduction policies in the Eleventh Five-Year Plan (FYP) has helped reverse the increasing trend of energy intensity since 2002. Although the Chinese Government intended to change the industry-led economic growth pattern, it seems that most of the policy effects flow through the efficiency improvement as opposed to the economic structure adjustment. More fundamental changes to the economic structure are needed to achieve more sustainable progress in energy intensity reduction. - Highlights: ► We examine the determinants of China's energy intensity change at provincial level. ► Rising income plays a significant role in reducing China's energy intensity. ► Policy effects mainly flow through the efficiency improvement. ► Fundamental structure changes are needed to further reduce China's energy intensity.

  17. Energy abatement in Chinese industry: Cost evaluation of regulation strategies and allocation alternatives

    International Nuclear Information System (INIS)

    Xia, X.H.; Chen, G.Q.

    2012-01-01

    For Chinese industry, the costs of different energy consumption abatement scenarios are evaluated by the method of directional distance function. These scenarios are based on the combinations of regulation strategies and allocation alternatives—the former are sectors and provinces, and the latter include the five principles of average, intensity share, absolute share, discriminatory absolute and discriminatory intensity. For all the scenarios, the quantitative impacts in terms of output potential loss are calculated and compared. Due to less output potential loss for all the allocation alternatives, the sector regulation strategy is shown to be more effective than the province regulation strategy. It is also demonstrated that, among all the scenarios considered, the sector regulation based on the intensity share principle and the province regulation based on the absolute share principle are the two optimal. The performances of energy abatement allocation of the 11th and 12th Five Year Plans of China are assessed against the simulated scenarios. - Highlights: ► The costs of different energy consumption abatement scenarios are evaluated for Chinese industry. ► The impacts on all entities under all allocation alternatives are calculated and compared. ► The optimal scenarios for the different strategies are identified. ► The performances of the 11th and 12th Five Year Plans are assessed.

  18. The industrial energy consumption in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The statistics present the industry's energy consumption and composition, and the development from 1973 to 2003. In this period the composition of the energy consumption has changed considerably: a decrease in the consumption of liquid fuels and an increase in the consumption of natural gas and electric power. The energy consumption in the Danish industry decreased with almost 9 % from 2001 to 2003. This relatively large decrease was mainly due to the closing down of a steel factory. In the wood industry the energy consumption decreased with 36 % from 2001 to 2003, while the energy consumption in the electronics industry increased. (ln)

  19. Scenarios with an intensive contribution of the nuclear energy to the world energy supply

    International Nuclear Information System (INIS)

    Nifenecker, H.; Heuer, D.; Huffer, E.; David, S.; Loiseaux, J.M.; Meplan, O.; Nuttin, A.; Martin, J.M.

    2002-01-01

    Temperature stabilization requires that CO 2 emissions be limited to less than 3 Gt Carbon equivalent, from the present level of more than 6 Gt. Despite an increase of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development of a 3000 GWe pool of PWR reactors by 2030 and of an additional 6000 GWe pool of U-Pu or Th-U reactors by 2050 would lead to temperature stabilization at a level 2 degrees above the pre-industrial level. (authors)

  20. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  1. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Northeastern Univ., Shenyang (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  2. International distortions of competition under emissions trading due to differences in national permit allocation. Theory and empirical analysis of the EU-energy intensive industry

    International Nuclear Information System (INIS)

    Brockhagen, D.

    2004-03-01

    The first part develops a theory of distortions of competition among competing firms, induced by differences in the method and/or stringency of national allocation of greenhouse gas emission permits in an international emissions trading system. By applying neoclassical theory on output optimisation, price setting and other factors such as R and D expenditures, five potentially distorting effects are identified for perfect and imperfect markets,. The second part develops economic indicators and a two tier approach, which can be applied empirically, in order to test whether an industry is vulnerable to the potential effects found before. The third part applies the two tier approach empirically to four sectors of the energy intensive industry in the EU: steel making, cement, oil refining and electricity generation. The steel industry is the most vulnerable industry, followed by oil refining, whereas cement and electricity are not vulnerable. At a permit price of 20 euros/ton CO 2 , and with national allocations that differ more than 40% in terms of allowed emissions per ton product output, this thesis predicts that some steel makers would be forced out of the market. (author)

  3. 2002 Industry Studies: Energy

    Science.gov (United States)

    2002-01-01

    Information technologies have facilitated the rapid growth of electronic market places across the energy industry for trading energy commodities, such as...and information technology industry has further increased the importance of abundant, low-cost, and reliable electric power. Recently, public...California, the country has recently slowed its efforts to make electricity markets more competitive. Recommendations. Unless some technological “silver bullet

  4. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  5. Taxation of the energy industries

    International Nuclear Information System (INIS)

    Armstrong, G.

    1995-01-01

    Taxation of the energy industries is an issue of major importance for each energy sector. This has always been the situation for the primary fossil fuel sectors but, with corporatization and privatization, is now also an issue for the electricity supply industry. This article examines the most significant forms of taxation affecting the major industry sectors, namely secondary taxation, corporate taxation and, as a consequence of the corporatization and privatization of the electricity supply industry, surrogate taxation as it affects that industry. While essentially considering secondary taxation, the paper also reviews corporate and surrogate taxes. Tax exemptions for various energy sector activities such as mining operations, exploration and rehabilitation related activities are outlined. It is considered that there is insufficient evidence of the influence of taxation and other factors on electricity pricing. 2 tabs

  6. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  7. The Department of Energy`s Solar Industrial Program: 1995 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

  8. Energy use and CO2 emissions of China's industrial sector from a global perspective

    International Nuclear Information System (INIS)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-01-01

    The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO 2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO 2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. - Highlights: • Eleven industrial subsectors in China are detail analyzed from a global perspective. • Industrial energy use and CO 2 emissions will approach a plateau between 2030 and 2040. • Industrial CHP and CCS are truly encouraged by carbon tax. • Some degree of industrial sector electrification are observed by carbon tax

  9. Nuclear energy = more jobs. [Capital-intensive vs labor-intensive systems

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, L G

    1979-07-01

    In the April 1979 issue of Energy Manager, Dr. David Elliott of Open University says capital-intensive systems employ less labor per unit of output, concluding that nuclear energy represented a poor bargain in terms of money invested per job created. Responding to this earlier article, Dr. Brookes argues that capital-intensive systems may employ less labor per unit of output, but they also produce more output and income per worker. Dr. Brookes uses a simple analysis to illustrate how progress results by increasing capital investment and disagrees strongly with Elliotts conclusions - says output must become more capital-intensive to provide more employment opportunities. Further, he feels that Elliott and other antinuclear and environmentalist writers have fallen into the trap of the fallacy of composition - assuming that what is true for a small number of constituent parts taken singly is true also for the total system taken as a whole. Examples can be found in economics of microeconomic elements which do not add up to the expected macroeconomic composition, which explains why some capital-intensive strategies are good and others are not. The excess income produced by capital-intensive energy strategies supports the service and public administration sectors. 3 figures, 1 table. (DCK)

  10. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  11. Carbon emissions reduction in China's food industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Lei, Xiaojing

    2015-01-01

    In this paper, we evaluate the changes in carbon dioxide emissions from energy consumption in China's food industry from 1986 to 2010 based on the Logarithmic Mean Divisia Index (LMDI) method. The results show that energy intensity (EI) and industrial activity (IA) are the main determinants of the changes in carbon dioxide. Energy intensity (EI) contributes to decrease in emissions within 25 years while industrial activity (IA) acts in a positive way to increase the emissions level. Industry scale (IS) mostly contributes to increase in emissions except for the time interval 1996–2000. However, for both carbon intensity (CI) and energy structure (ES), they have a volatile but not significant influence on emissions in the different time intervals. To further understand the effects, we analyze the cumulative emission during the whole period 1986–2010. The results further testify that energy intensity and industrial activity are the most important factors affecting reduction and growth of carbon emissions. The results indicate that efforts to reduce emission in China's food industry should focus on the enhancement of energy efficiency, the optimization of industrial scale and the restructuring energy use. Finally, recommendations are provided for the reduction of carbon dioxide in China's food industry. - Highlights: • We analyze the energy consumption and CO 2 emissions in China's food industry. • LMDI decomposition analysis is conducted for finding out the driving forces. • Industrial activity is the main driving force of CO 2 emissions in this industry. • Energy intensity is the main factor mitigating carbon emissions in this industry. • Main advice: improving energy efficiency, optimizing industrial scale.

  12. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  13. Energy prospects for industry

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, P P; Roberts, G F.I.; Thomas, V E; Davies, D; Crow, L M

    1983-01-01

    Contents: Electricity today and tomorrow; Gas--supply prospects for the future; Petroleum based energy--the UK perspective; Future markets for coal; Flexibility--the key to Dunlop's energy strategy; Energy conservation in Alcan; Present and future energy patterns in Courtaulds PLC; New energy technology for the quarrying industry.

  14. Energy intensity and its determinants in China's regional economies

    International Nuclear Information System (INIS)

    Wu Yanrui

    2012-01-01

    This paper contributes to the existing literature as well as policy debates by examining energy intensity and its determinants in China's regional economies. The analysis is based on a comprehensive database of China's regional energy balance constructed for this project. Through its focus on regional China, this study extends the existing literature, which mainly covers nationwide studies. It is found in this paper that energy intensity declined substantially in China. The main contributing factor is the improvement in energy efficiency. Changes in the economic structure have so far affected energy intensity modestly. Thus there is considerable scope to reduce energy intensity through the structural transformation of the Chinese economy in the future. - Highlights: ► First study examining energy intensity and its determinants using sectoral data in Chinese regions. ► Major findings. ► Decline in energy intensity is due to the rise in energy efficiency. ► Economic structural change has played little role. ► Growth in capital intensity alone would not lead to the decline in energy consumption.

  15. Dangers of big investment in energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, L

    1980-05-01

    New Zealand needs efficient industries which can compete effectively with those overseas, but a popular view that major import-replacement projects are the way to economic salvation is not shared by Mr. Bayliss, one of New Zealand's leading economists. Capital, skilled labor, and skilled management are scarce, and overseas borrowing is limited. What is needed, he continues, is to maximize the return from these scarce resources (in financial and employment terms); not dissipate them on grandiose projects that sound good. Future investment must be examined with substantial regard for growing unemployment problems. Development of Maui gas is specifically discussed; rather than adopting a policy of not exporting non-renewable fuels. Mr. Bayliss would export it in LPG or CNG form and use the proceeds to buy imported oil. He also points out that New Zealand is unprepared to develop skill-based industries such as microelectronics.

  16. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  17. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  18. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    International Nuclear Information System (INIS)

    Laurijssen, Jobien; De Gram, Frans J.; Worrell, Ernst; Faaij, Andre

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in conventional multi-cylinder drying sections are investigated, calculating the effect on energy use. Optimization measures include a) decreasing the amount of water evaporation by applying additives in higher consistencies and by lowering the water viscosity, b) decreasing the heat use of water evaporation by increasing the dew point temperature of the dryer and c) increasing the amount of heat recovery by using exhaust air to not only pre-heat the incoming air but also to increase process water temperatures. These could all be achieved by retrofitting and/or choosing different processing conditions in existing factories. The combined thermal heat saving potential due to the optimization actions is 1.3 GJ h /t paper (or 32% of the drying section's heat use) as compared to the reference situation.

  19. Intensity of rivalry in Czech furniture production industry

    Directory of Open Access Journals (Sweden)

    Lucie Špačková

    2012-01-01

    Full Text Available The paper focuses on furniture production industry in the Czech Republic and evaluates the influence of competition forces within this industry. These forces have a direct impact on success of competitive strategies of the firms. Furniture production industry is a typical branch occupied by numerous small and medium-sized firms. Small firms aim on satisfying domestic (or rather local demand, medium-sized and big firms are much more aiming on exports. The methodical sources for evaluation of rivalry represent particular influences defined by Porter in his model of five competitive forces. Main influences identified by Porter, which are increasing the intensity of competition in the furniture production industry in the Czech Republic include low industry concentration, relatively low diversity of competitors, decline in sales, low (or none switching costs, and existing excessive capacity within the industry. Further development will be most significantly influenced by a growing concentration of the bigger Czech producers on domestic market and overall economic development.

  20. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  1. Energy and the English Industrial Revolution.

    Science.gov (United States)

    Wrigley, E A

    2013-03-13

    Societies before the Industrial Revolution were dependent on the annual cycle of plant photosynthesis for both heat and mechanical energy. The quantity of energy available each year was therefore limited, and economic growth was necessarily constrained. In the Industrial Revolution, energy usage increased massively and output rose accordingly. The energy source continued to be plant photosynthesis, but accumulated over a geological age in the form of coal. This poses a problem for the future. Fossil fuels are a depleting stock, whereas in pre-industrial time the energy source, though limited, was renewed each year.

  2. Fostering renewable energy integration in the industry

    International Nuclear Information System (INIS)

    Galichon, Ines; Dennery, Pierre; Julien, Emmanuel; Wiedmer, Damien; Brochier, Jean Baptiste; Martin, Etienne; Touokong, Benoit; Paunescu, Michael; Philibert, Cedric; ); Gerbaud, Manon; Streiff, Frederic; Petrick, Kristian; Bucquet, Coraline; Jager, David de; )

    2017-03-01

    Renewable energy (RE) integration in the industry is already widespread worldwide. Beyond GHG emissions reduction, it brings direct operational, economical and non-financial benefits to industrial players in a changing energy environment. ENEA Consulting published the results of a study on the integration of RE in the industry conducted in partnership with Kerdos Energy for the International Energy Agency Renewable Energy Technology Deployment (IEA-RETD) who operates under the legal framework of the International Energy Agency. This study aims to provide inspiration and state-of-the-art applications of RE in the industry (identification of more than 200 projects worldwide), present best practices and key developments of such projects for industrial players (21 detailed case studies); and formulate policy recommendations for policy makers and provide lessons learned for industrial actors to make RE integration a widespread practice in the industry globally. Different integration schemes are possible, from simple and investment-light projects to more complex integration projects which can lead to core production processes adaptation. RE integration in industrial assets brings direct benefits to industrial players to better operate their assets, such as energy costs reduction and energy prices hedging, and improved energy supply reliability. Nevertheless, various barriers still hinder full RE development in the industry. However, industrial players and policy makers have a wide array of options to overcome them. Eight issues have been identified that can tilt an industrial actor towards or away from deploying RE production assets in its facilities. Thus, third party energy production schemes represent a significant opportunity for industrial players who lack the equity capital / cash needed to develop RE projects. Similarly, new shorter-term contractual schemes that fit better with industrial players' and third party energy producers' constraints are being developed

  3. A multi-regional structural path analysis of the energy supply chain in China's construction industry

    International Nuclear Information System (INIS)

    Hong, Jingke; Shen, Qiping; Xue, Fan

    2016-01-01

    The construction industry in China exerts significant environmental impacts and uses considerable resources because of rapid urbanization. This study conducted a structural path analysis (SPA) based on the multi-regional input–output table to quantify environmental impact transmission in the entire supply chain. Results indicated that the direct resource input (the first stage) along with on-site construction (the zeroth stage) consumed the highest amount of energy in the supply chain and accounted for approximately 50% of total energy consumption. Regional analysis showed that energy consumption in the construction industry at the provincial level was self-sufficient. Sectoral analysis demonstrated that the direct inputs from the sectors of “manufacture of non-metallic mineral products” and “smelting and pressing of metals” generated the most important energy flows, whereas the sectors of “production and distribution of electric power and heat power” and “extraction of petroleum and natural gas” significantly but indirectly influenced energy use. Sensitivity analysis exhibited that the system boundary of SPA could be narrowed down into the first two upstream stages that contained nearly 50% of energy flow information or expanded toward the first five upstream stages that represented 80% of total energy consumption. - Highlights: •We designed an optimized algorithm for multi-regional SPA. •We extracted energy-intensive paths throughout the upstream supply chain. •We explored self-sufficiency characteristic for provincial construction industries. •We identified energy-intensive sectors hidden in higher-order supply chain. •We developed an effective strategy for narrowing down the system boundary of SPA.

  4. Energy demand analysis in the industrial sector

    International Nuclear Information System (INIS)

    Lapillone, B.

    1991-01-01

    This Chapter of the publication is dealing with Energy Demand Analysis in the Industrial Sector.Different estimates of energy consumption in Industry taking Thailand as an example is given. Major energy consuming industrial sectors in selected Asian countries are given. Suggestion for the analysis of the energy consumption trends in industry, whether at the overall level or at the sub-sector level (e.g. food) using the conventional approach , through energy/output ratio is given. 4 refs, 7 figs, 13 tabs

  5. Industrial strategies for improving energy efficiency and reducing greenhouse gas emissions: Examples from the Climate Wise program

    International Nuclear Information System (INIS)

    Buhsmer, K.; Nelson, H.; Wayman, A.; Winkelman, S.; Milmoe, P.H.

    1997-01-01

    Climate Wise is a partnership initiative between the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and industry designed to stimulate the voluntary reduction of greenhouse gas emissions among participating manufacturing companies. Climate Wise works with the manufacturing sector, which comprises 25 to 30 percent of the total US energy consumption, to promote the continued and increased implementation of energy efficiency and other pollution prevention measures. This paper reviews the energy use and CO 2 emissions profiles of the following three energy intensive industries: cement, petroleum, and iron and steel. The paper also identifies what a typical Action Plan for a company from each of these industries might look like and the types of savings (energy, CO 2 emissions, and energy costs) which might be achieved. The measures featured in these Action Plans are widely applicable and are likely to offer relatively short payback times. In addition, the paper describes other measures and existing or emerging technologies that may be available to these industries

  6. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    of the industry could be split up into energy intensive subsectors where single production processes dominate the energy consumption, and non-energy intensive subsectors. Ways to reduce the energy consumption in the industrial sector are the use of alternative or improved production or cross cutting technologies and the use of energy saving measures to reduce the demand for useable energy. Based on the analysis within this study, 21 % of the current energy consumption of the industrial sector of the EU and 17 % in Germany could be reduced. Based on the extended understanding of energy efficiency, the model based scenario analysis of the European energy system with the further developed energy system model TIMES PanEU shows that the efficient use of energy at an emission reduction level of 75 % is a slightly increasing primary energy consumption. The primary energy consumption is characterised by a diversified energy carrier and technology mix. Renewable energy sources, nuclear energy and CCS play a key role in the long term. In addition the electricity demand in combination with a strong decarbonisation of the electricity generation is increasing constantly. In the industrial sector the emission reduction is driven by the extended use of electricity, CCS and renewables as well as by the use of improved or alternative process and supply technologies with lower specific energy consumption. Thereby the final energy consumption stays almost on a constant level with increasing importance of electricity and biomass. Both regulatory interventions in the electricity sector and energy saving targets on the primary energy demand lead to higher energy system costs and therewith to a decrease of efficiency based on the extended understanding. The energy demand is reduced stronger than it is efficient and the saving targets lead to the extended use of other resources resulting in totally higher costs. The integrated system analysis in this study points out the interactions

  7. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  8. Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors

    International Nuclear Information System (INIS)

    Olanrewaju, O.A.; Jimoh, A.A.; Kholopane, P.A.

    2012-01-01

    This paper puts forward an integrated approach, based on logarithmic mean divisia index (LMDI) – an index decomposition analysis (IDA) method, an artificial neural network (ANN) and a data envelopment analysis (DEA) for the analysis of total energy efficiency and optimization in an industrial sector. The energy efficiency assessment and the optimization of the proposed model use LMDI to decompose energy consumption into activity, structural and intensity indicators, which serve as inputs to the ANN. The ANN model is verified and validated by performing a linear regression comparison between the specifically measured energy consumption and the corresponding predicted energy consumption. The proposed approach utilizes the measure-specific, super-efficient DEA model for sensitivity analysis to determine the critical measured energy consumption and its optimization reductions. The proposed method is validated by its application to determine the efficiency computation and an analysis of historical data as well as the prediction and optimization capability of the Canadian industrial sector. -- Highlights: ► An integrated IDA–ANN–DEA model for energy management is proposed. ► The model relies on aggregate energy and GDP data. ► The model explains how energy can be managed in the Canadian Industrial sector.

  9. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  10. Effects of the energy and mining industry on management of national competitiveness

    Directory of Open Access Journals (Sweden)

    Peter Madzík

    2016-04-01

    influence of energy and mining industry on competitiveness over the last 40 years has increased, particularly in the case of countries with low or medium economic development, and it has decreased in developed countries. The resulting information about the intensity of the mutual relations might be useful for management of competitiveness and planning of strategic economic tools.

  11. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  12. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  13. A Statistical Analysis of Industrial Penetration and Internet Intensity in Taiwan

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2018-01-01

    markdownabstractThis paper investigates the effect of industrial penetration (geographic concentration of industries) and internet intensity (the proportion of enterprises that use the internet) for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements.

  14. New approaches to energy efficiency programs in the Brazilian industry; Novas abordagens para programas de eficiencia energetica na industria brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Sant' ana, Paulo Henrique de Mello [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia e Ciencias Sociais Aplicadas. Nucleo Interdisciplinar de Planejamento Energetico; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico

    2010-07-01

    A modern approach often used in international literature says that the government has the role to create favorable conditions for improving energy efficiency in industry, either through policies, programs or actions. This article's main objective is to describe the main programs for promoting energy efficiency in industry in Brazil and in other countries, for later to propose a new approach for the management and development of energy efficiency programs for the Brazilian industry. The creation of an executive agency, connected to the MME and with strong ties to ELETROBRAS and PETROBRAS, could manage effectively the enormous resources that are needed to mobilize the energy efficiency programs as real alternatives to programs for additional expansion in energy supply. The creation of energy assessment centers, along with an energy efficiency program for energy-intensive industry, would help in promoting energy efficiency in industry. These actions would likely bounce in other industries, and would assist in achieving optimal management standards in the energy industry, consistent with ISO 9000 and ISO 14000, used in countries like the USA and Sweden. (author)

  15. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  16. Endogenous innovation, the economy and the environment : impacts of a technology-based modelling approach for energy-intensive industries in Germany

    International Nuclear Information System (INIS)

    Lutz, C.; Meyer, B.; Nathani, C.; Schleich, J.

    2007-01-01

    Policy simulations in environmental-economic models are influenced by the modelling of technological change. However, environmental-economic models have generally treated technological change as exogenous. This paper presented simulations with a new modelling approach in which technological change was portrayed and linked to actual production processes in 3 industry sectors in Germany, namely iron and steel; cement; and, pulp and paper. Technological choice was modelled via investments in new production process lines. The generic modelling procedure for all 3 industry sectors was presented along with an overview of the relevant sector-specific modelling results and the integration into the macro-economic model PANTA RHEI. The new modelling approach endogenizes technological change. As such, it considers that policy interventions may affect the rate and direction of technological progress. Carbon tax simulations were also performed to investigate the influence of a tax in both the new and conventional modelling approach. For the energy- and capital-intensive industries considered in this study, the conventional top-down approach overestimated the short-term possibilities to adapt to higher carbon dioxide (CO 2 ) prices in the early years. Since the new approach includes policy-induced technological change and process shifts, it also captures the long-term effects on CO 2 emissions far beyond the initial price impulse. It was concluded that the new modelling approach results in significantly higher emission reductions than the conventional approach. Therefore, the estimated costs of the climate policy are lower using the new modelling approach. 37 refs., 2 tabs., 4 figs., 1 appendix

  17. Potential for energy conservation and reduction of CO2 emissions in the Brazilian cement industry through 2015

    International Nuclear Information System (INIS)

    Soares, J.B.; Tolmasquim, M.T.

    1999-01-01

    The cement industry is characterized by intensive energy consumption throughout its production stages which, together with the calcination of its raw materials, accounts for significant amounts of greenhouse gases (GHG) emissions. In 1996, the Brazilian cement industry consumed 4.3% of the energy required by the industrial sector, contributing over 22 Mtons (Million of tons) of CO 2 . The prospects for growth in this sector in Brazil indicate rising demands for fossil fuels, with a consequent upsurge in emissions. The purpose of this article is to present the prospects for energy conservation in the Brazilian cement industry through to 2015, taking into account the introduction of new production technologies in this sector, the use of waste and low-grade fuels, cogeneration, the use of additives, and other measures, based on a technical and economic energy demand simulation model

  18. Energy management оf industrial enterprise

    Directory of Open Access Journals (Sweden)

    Lyaskovskaya E.A.

    2017-01-01

    Full Text Available In the intensifying condition of economic situation and increasing competitiveness in domestic and foreign markets, the most important way to develop competitive ability of an industrial company is to reduce energy costs in the production process. Insufficient level of the efficiency of energy resources usage affects an industrial company’s performance indicators and its investment attractiveness. A promising way of solving this matter is to develop and implement a strategy of rational energy consumption, which is aimed at the realization of company’s potential to optimize the consumption of electric energy by using internal and external resources in order to minimize energy costs. The strategy of rational energy consumption defines how an industrial company acquires electric energy and uses it to sustain the production. While developing and implementing the strategy, one should use a systemic and complex way and consider the following: peculiarities of electric energy and power as products; the structure of electric energy market and the possibilities of its consumers; peculiarities of price-formation on electric energy market; technical and technological, organizational and administrative, social and economic parameters of a company, characteristic features of its resource potential and production processes; the results of company’s energy efficiency audit and energy problems; company’s reserves that can increase its energy efficiency. An integral strategy of energy consumption includes a strategy for energy preservation and efficiency and a strategy for energy costs management. Both strategies are interrelated and serve for one purpose, which is minimizing the energy costs. This division helps simplify the analysis, search for alternatives and realization of energy management on operative, tactical and strategic levels, considering the regional and industry-specific peculiarities of an industrial company, its financial performance and

  19. The impact of energy efficiency interventions on industry – the Industrial Energy Efficiency Project in South Africa

    CSIR Research Space (South Africa)

    Hartzenburg, A

    2015-10-01

    Full Text Available The IEE Project was set up in 2010 to help transform the energy-use patterns of South African industry by means of energy management systems and energy systems optimisation. Through IEE Project implementation, around 100 industry plants have saved 1...

  20. Study of energy efficiency measures in cement industry; Estudo de medidas de eficiencia energetica na industria de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Roberta Ferreira Carrijo; Gorla, Filipe Debonzi [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    Methods of energy conservation play an important role in the future energetic supply. The cement industry, being energetic intensive, is an important niche of performance of such methods. It is intended, in the present work, to estimate the impact of energy conservation through different scenarios. The projections have been realized considering both the technical (equipment efficiency) and economical (Industrial Transformation Worth - ITW) aspects of the cement sector. (author)

  1. Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2016-08-01

    Full Text Available Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

  2. Industrial energy economy, national and international aspects

    International Nuclear Information System (INIS)

    1993-01-01

    VDI-report 1061 contains the papers given on the Conference of the same name in Essen on the 22 and 23.6.1993. German industry suffers not only from high wage and on-cost but high, energy costs as well. Waste disposal problems and impending taxes on wages are the cause of these difficulties. The EC believes that competition between energy supplies may help to reduce energy costs. This report deals with cost-efficient energy supply for the German industry and books at the background of this scenario. This industry puts forward its wishes and demands to politicians and energy economy. Representatives of energy suppliers discuss energy supplies, demand, availability, safety of supplies, competitiveness, quality and environmental aspects. The influence of energy costs and environmental taxation on the industrial and economic future of Germany and the situation in the Eastern States of Germany are a further subject of discussion. The views of the EC commission, the industry and the energy suppliers on energy transports across the EC are discussed as well. (orig./UA) [de

  3. Energy industry

    Science.gov (United States)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  4. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  5. A statistical analysis of industrial penetration and internet intensity in Taiwan

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2018-01-01

    textabstractThis paper is the first to investigate the effect of industrial penetration (geographic concentration of industries) and internet intensity (the proportion of enterprises that uses the internet) for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or

  6. Department of Energy workshops on industrial energy conservation reporting

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Douglas G.

    1979-01-01

    A voluntary industrial energy-conservation program was initiated and now includes 50 trade organizations representing over 3,000 companies. Their current reporting system is an effort to respond to the Energy Policy and Conservation Act requirements, as now modified by the National Energy Conservation Policy Act. DOE's Office of Industrial Programs held six workshops in various key locations between November 1978 and February 1979 to enable energy managers to develop ideas and make suggestions that would improve the current and future energy-reporting programs. This report is a summary of the wide range of recommendations that the workshop participants offered as a means of meeting the NECPA requirements and the criticism of the current reporting program. It also reflects industry's views on potential approaches to future reporting. (MCW)

  7. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    International Nuclear Information System (INIS)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors

  8. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors.

  9. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  10. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  11. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  12. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  13. Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network

    International Nuclear Information System (INIS)

    Wu, Junnian; Wang, Ruiqi; Pu, Guangying; Qi, Hang

    2016-01-01

    Highlights: • Exergy, energy and CO_2 emissions assessment of iron and steel industrial network. • Effects of industry symbiosis measures on exergy, energy and CO_2 emissions. • Exploring the environmental impact from exergy losses. • The overall performance indexes are proposed for iron and steel industrial network. • Sinter strand and the wet quenching process have the lowest exergy efficiency. - Abstract: Intensive energy consumption and high pollution emissions in the iron and steel industry have caused problems to the energy system, in the economy, and in the environment. Iron and steel industrial network as an example of energy conservation and emissions reduction, require better analysis and assessment. The present study comprehensively assesses an iron and steel industrial network and its environmental performance with respect to exergy, energy and CO_2 emissions. The results show that the sinter strand needs to be greatly improved and the wet quenching process needs to be completely redesigned. The overall exergy efficiency and energy efficiency can be improved by adopting industrial symbiosis (IS) measures. We found that adjusting the energy structure to use renewable energy and recycling solid waste can greatly reduce CO_2 emissions. Moreover, the maximum exergy losses occurred in the blast furnace with the maximum CO_2 emissions. The iron making plant exerted a strong effect on the environment based on the equivalent CO_2 emission potentials. Many performance indicators of the entire industrial network were also examined in this work. It can be seen that integrated evaluation of energy and CO_2 emissions with exergy is necessary to help to mitigate adverse environmental impacts and more effectively fulfill the goals for energy conservation and emissions reduction.

  14. Canada's voluntary industrial energy conservation programme

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Jr., C. A.

    1979-07-01

    The organization of the voluntary industrial energy conservation program is described. There are 15 industrial sectors in the program and the plan implemented by the sectors including individual companies, trade associations, industry task forces, task force coordinating committee, and government is described. Targets for attack are mainly housekeeping projects, energy efficiency in retrofitting, and new processes. Problems are identified. It is concluded that compiled total performance has essentially achieved its target of 12% improved energy efficiency two years ahead of schedule. (MCW)

  15. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  16. Estimating the Contribution of Industry Structure Adjustment to the Carbon Intensity Target: A Case of Guangdong

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2016-04-01

    Full Text Available Industry structure adjustment is an effective measure to achieve the carbon intensity target of Guangdong Province. Accurately evaluating the contribution of industry structure adjustment to the carbon intensity target is helpful for the government to implement more flexible and effective policies and measures for CO2 emissions reduction. In this paper, we attempt to evaluate the contribution of industry structure adjustment to the carbon intensity target. Firstly, we predict the gross domestic product (GDP with scenario forecasting, industry structure with the Markov chain model, CO2 emissions with a novel correlation mode based on least squares support vector machine, and then we assess the contribution of industry structure adjustment to the carbon intensity target of Guangdong during the period of 2011–2015 under nine scenarios. The obtained results show, in the ideal scenario, that the economy will grow at a high speed and the industry structure will be significantly adjusted, and thus the carbon intensity in 2015 will decrease by 25.53% compared to that in 2010, which will make a 130.94% contribution to the carbon intensity target. Meanwhile, in the conservative scenario, the economy will grow at a low speed and the industry structure will be slightly adjusted, and thus the carbon intensity in 2015 will decrease by 23.89% compared to that in 2010, which will make a 122.50% contribution to the carbon intensity target.

  17. Low energy intense electron beams with extra-low energy spread

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Calabrese, R.; Ciullo, G.; Dikansky, N.S.; Guidi, V.; Kot, N.C.; Kudelainen, V.I.; Lamanna, G.; Lebedev, V.A.; Logachov, P.V.; Tecchio, L.; Yang, B.

    1994-01-01

    Maximum achievable intensity for low energy electron beams is a feature that is not very often compatible with low energy spread. We show that a proper choice of the source and the acceleration optics allows one to match them together. In this scheme, a GaAs photocathode excited by a single-mode infrared laser and adiabatic acceleration in fully magnetised optics enables the production of a low-energy-spread electron beam with relatively high intensity. The technological problems associated with the method are discussed together with its limitations. (orig.)

  18. Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity, and Economic Structure on SO2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese Provinces

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available Atmospheric pollution gradually become a focus of concern all over the world owing to its detrimental influence on human health as well as long range impact on global ecosystem. This paper investigated the relationship among SO2 emissions, GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure of five provinces in China with the highest SO2 emissions spanning from 2002–2015 based on panel data model. Through comparatively analyzing the coefficients in the established panel data model for Hebei, Henan, Inner Mongolia, Shandong, and Shanxi, we can obtain that: (1 fossil fuel energy consumption made the most devotion to SO2 discharge compared with GDP, energy consumption intensity, and economic structure. And the more the fossil fuel energy consumption, the more the devotion made by it to SO2 discharge. (2 GDP devoted less to SO2 emissions than fossil fuel energy consumption, and the larger the scale of the economy, the greater the contribution made by it to SO2 emissions. (3 The higher the proportion of the secondary industry added value accounted in GDP, the more the devotion made by the economic structure and energy consumption intensity to SO2 emissions. Through analyzing the Granger causality examination results, it can be concluded that: (1 there existed a bi-directional causal relationship between fossil fuel energy consumption and SO2 emissions among five selected provinces. (2 There existed uni-directional causal nexus running from GDP to SO2 emissions, from energy consumption intensity to SO2 emissions, and from economic structure to SO2 emissions among five chosen provinces. Based on the empirical analysis, several policy implications were proposed to provide references for policy makers, which were (1 Giving full play to the guiding role of price signals, and improving the price policy for desulfurization. (2 Formulating a new comprehensive evaluation system to measure the regional development level

  19. Energy use in the food manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, A.C.; Earle, M.D.

    1980-01-01

    A survey was conducted to find the level of energy consumption in the food manufacturing industry, which is the food processing industry excluding meat, dairy, and brewing. Data were used from 74 factories. The manufacturing industry was divided into 14 industry groups and the 4 major energy consumers were found to be fruit and vegetable processing, sugar refining, animal feed production, and bread and pastry baking. The present report summarizes results from the survey. It determined the following: the sources of energy used by the insu industry and the annual consumption of each energy form; the consumption of fuel and electricity in the production of the various manufactured food products; the minimum practical energy requirement for processing the various food products; and the potential for conservation and the methods for achieving savings.

  20. Energy use in the U.S. steel industry: a historical perspective and future opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Stubbles, John

    2000-09-01

    The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in

  1. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-01-01

    Full Text Available This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.

  2. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  3. Evaluating the Economic Performance of High-Technology Industry and Energy Efficiency: A Case Study of Science Parks in Taiwan

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2013-02-01

    Full Text Available High-technology industries provide opportunities for economic growth, but also raise concerns because of their energy-demanding nature. This paper provides an integrated evaluation of both economic benefits and energy efficiency of high-technology industries based on the real data from one of the globally recognized high-technology industrial clusters, the national science parks in Taiwan. A nation-wide industrial Input-Output Analysis is conducted to demonstrate the positive effects of science parks on national economic developments and industrial upgrades. The concept of energy intensity and an energy-efficient economy index are applied to an integrated assessment of the relationship between economic growth and energy consumption. The proposed case study suggests that economic and energy efficiency objectives can be simultaneously achieved by the development of high-technology industries, while three energy policy implications are considered. First, a nation-wide macro viewpoint is needed and high-technology industries should be considered as parts of the national/regional economies by governmental agencies. Second, a proper industrial clustering mechanism and the shared environmental facilities supported by the government, such as planned land and road usage, electricity and water supply, telecommunications system, sewerage system and wastewater treatments, can improve energy efficiency of high-technology industries. Third, the governmental policies on the taxing and management system in science parks would also direct energy-efficient economy of high-technology industries.

  4. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  5. Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax

    International Nuclear Information System (INIS)

    Bordigoni, Mathieu; Hita, Alain; Le Blanc, Gilles

    2012-01-01

    Role of energy in the manufacturing industry is a major concern for energy and environmental policy design. Issues like energy prices, security of supply and carbon mitigation are often connected to the industry and its competitiveness. This paper examines the role and consequences of embodied energy in the European industry. To this end, a multi-regional input–output analysis including 59 industrial sectors for all European Union countries and 17 more aggregated industries for other regions of the World is developed. Other segments of the economy are not included. This base is combined with energy consumption, carbon emission as well as bilateral trade data for every sector in all included countries. Our main result is that embodied energy in manufactured products' imports represents a significant aspect of the energy situation in European industries, with quantities close to the direct energy consumption. These flows can further be broken down for detailed analysis at the sector level thanks to the number of distinct industries included. Results demonstrate that an important part of embodied energy inside European products is not concerned with domestic energy price changes. In addition, a European-wide carbon tax would induce an unbalanced burden on industries and countries. - Highlights: ► We calculate embodied energy and carbon flows in the European and World industry. ► A multi-regional input–output analysis is used with a detailed nomenclature. ► National industries' energy prices dependence is a domestic issue. ► With a European carbon tax energy-intensive industries would be penalised. ► Such a tax may also induce competition distortion among EU countries.

  6. A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry

    International Nuclear Information System (INIS)

    Ansari, Nastaran; Seifi, Abbas

    2012-01-01

    Iron and steel industry is the most energy intensive industrial sector in Iran. Long time subsidized energy has led to low energy efficiency in this industry. The sudden subsidy reform of energy prices in Iran is expected to have a great impact on steel production and energy consumption. A system dynamics model is presented in this paper to analyze steel demand, production and energy consumption in an integrated framework. A co-flow structure is used to show how subsidy reform affects energy consumption in the long run. The main focus of this paper is on direct and indirect natural gas consumption in the steel industry. Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient way for steel making. The energy consumption in steel industry is estimated under various steel production and export scenarios while taking into account new energy prices to see the outlook of possible energy demand in steel industry over next 20 years. For example it is shown that under reference production scenario, potential reduction in gas consumption forced by complete removal of energy subsidy and utilizing scrap could lead to 85 billion cubic meters of gas saving over the next 20 years. -- Highlights: ► We develop a system dynamics model to analyze steel demand, production and energy consumption in Iran. ► Various scenarios have been simulated to see the energy demand of Iranian steel industry over the next 20 years. ► A co-flow structure is used to show how subsidy reform would affect energy consumption in the long run. ► A co-flow structure has been built into the SD model to formulate consumers' behavior in response to energy prices. ► Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient alternative for steel making.

  7. Renewable energy technologies and the European industry

    International Nuclear Information System (INIS)

    Whiteley, M.; Bess, M.

    2000-01-01

    The European renewable energy industry has the potential to be a world leader. This has been achieved within the European region for specific technologies, through a set of policy activities at a national and regional level, driven primarily by employment, energy self-sufficiency and industrial competitiveness. Using the experience gained in recent years, European industry has the opportunity to continue to expand its horizons on a worldwide level. Through the use of the SAFIRE rational energy model, an assessment has been made of the future penetration of renewable energy within Europe and the effects on these socio-economic factors. In conjunction with these outputs, assessments of the worldwide markets for wind, photovoltaics, solar thermal plant and biomass have been assessed. A case study of the Danish wind industry is used as a prime example of a success story from which the learning opportunities are replicated to other industries, so that the European renewable energy industry can achieve its potential. (orig.)

  8. Industrial energy thrift scheme. Report No. 16. Energy use in the knitting industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The knitting industry includes organizations concerned with hosiery, other weft knitted goods and warp-knitting and in some cases also with subsequent dyeing and finishing of knitted goods. In 1976, the industry had 116,000 employees located at approximately 600 sites, mostly in the East Midlands. The total energy consumption of the industry in 1976 was estimated to be 12,180 TJ. Sites with dyeing and finishing interests could save 15% of their energy. The major sources of savings (6%) are by recovering process heat which is currently wasted and from better process control. Other significant savings (5%) are possible from better control, maintenance and insulation of boilers and pipes. Attention to better housekeeping, to controlling draughts and to space heating generally could account for a further 3.5% saving in energy. Sites without dyeing and finishing interests could save 13% of the total energy used by this group. The most important opportunities are better control of space heating (5.5%) and better control and insulation of boilers, pipes and services (5%). These sites have fewer opportunities to recover heat from processes (2%) than where dyeing and finishing takes place but opportunities do exist.

  9. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  10. Barriers to and drivers for energy efficiency in the Swedish foundry industry

    International Nuclear Information System (INIS)

    Rohdin, Patrik; Thollander, Patrik; Solding, Petter

    2007-01-01

    Despite the need for increased industrial energy efficiency, studies indicate that cost-efficient energy conservation measures are not always implemented, explained by the existence of barriers to energy efficiency. This paper investigates the existence of different barriers to and driving forces for the implementation of energy efficiency measures in the energy intensive Swedish foundry industry. The overall results from a questionnaire show that limited access to capital constitutes by far the largest barrier to energy efficiency according to the respondents. A comparison between group-owned and privately owned foundries shows that, except for limited access to capital, they face different high-ranked barriers. While barriers within group owned companies are more related to organizational problems, barriers within private foundries are more related to information problems. This study also found that energy consultants or other actors working with energy issues in foundries are of major importance in overcoming the largest barriers, as the foundries consider them trustworthy. They may thus help the foundries overcome organizational problems such as lack of sub-metering and lack of budget funds by quantifying potential energy efficiency investments. The two, by far, most important drivers were found to be people with real ambition and long-term energy strategies

  11. Energy consumption 2005 with Danish industry

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The energy consumption in the Danish industries decreased with 4% from 2003 to 2005. The consumption of liquid fuels and district heat decreased with 27% and 21%, respectively. The consumption of solid fuels increased with 13%. The aim of the statistics is to elucidate the industry's energy consumption and its composition. The statistics present the development in the industry from 1973 to 2005, in which period the composition of the energy consumption has changed significantly. Especially, consumption of liquid fuels has decreased and consumption of gas and electricity has increased. (ln)

  12. Quantifying the Co-benefits of Energy-Efficiency Programs: A Case Study of the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lobscheid, Agnes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dai, Yue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    China’s cement industry accounted for more than half of the world’s total cement production in 2010. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries and one of the key industrial contributors to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of industrial PM emissions and 27 percent of total national PM emissions. Although specific regulations and policies are needed to reduce the pollutant emissions from the cement industry, air pollution can also be reduced as a co-benefit of energy efficiency and climate-change mitigation policies and programs. Quantifying and accounting for these co-benefits when evaluating energy efficiency and climate-change mitigation programs reveals benefits beyond the programs’ energy and global warming impacts and adds to their cost effectiveness. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emissions reductions that result from energy-saving measures in China’s cement industry.

  13. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  14. Food industry hungry for energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, D

    1989-04-01

    The United Kingdom food and drink industry is a significant user of energy. Energy use figures are given showing the breakdown in terms of different sectors of the industry and also in terms of the fuel used. Four energy monitoring and target setting demonstration projects are outlined at factories typical of their type in different sectors. The projects have resulted in a much greater awareness by management in the factories involved of energy consumption and waste. Examples are given of improved energy efficiency and consequent energy savings which have resulted from this awareness. (U.K.).

  15. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  16. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  17. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  18. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  19. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  20. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  1. Assessment of the industrial energy-conservation program. Final report of the Committee on Assessment of the Industrial Energy Conservation Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Industrial operations in the United States account for some 37% of the nation's consumptions of energy. It has been estimated that this figure will increase to 50% by 1990 unless appropriate industrial energy conservation measures are adopted. However, such measures are difficult to implement in spite of the potential of various existing, emerging, and advanced technologies that can be applied to the problem. Specifically, the application of many industrial energy conservation measures entails high economic, technological, and institutional risks and uncertainties that constrain industries from adopting such measures. Accordingly, in 1975 the federal government started a program designed to mitigate these risks and uncertainties via government-industry partnership arrangements in the interests of national energy conservation. An important element of this program is the Industrial Energy Conservation Program in the Federal Department of Energy (DOE). In June 1980, DOE asked the National Materials Advisory Board, a unit of the National Academy of Sciences-National Research Council, to form a study committee to assess the effectiveness of the Industrial Energy Conservation Program. The committee concluded that federal support embodied in the DOE program, present and planned, is important to conserving additional industrial energy. However, the committee also concluded that the program needs various improvements in project selection and management and in transfer of results to industry. The committee's findings and recommendations and the results of the deliberation of the committee's three panels, a special report on heat and power, and a report on the visit by four members of the committee to Japan are presented.

  2. Industrial view of Hydrogen Energy

    International Nuclear Information System (INIS)

    Francois Jackow

    2006-01-01

    Industrial Gases Companies have been mastering Hydrogen production, distribution, safe handling and applications for several decades for a wide range of gas applications. This unique industrial background positioned these companies to play a key role in the emerging Hydrogen Energy market, which can rely, at early stage of development, on already existing infrastructure, logistics and technical know-how. Nevertheless, it is important to acknowledge that Hydrogen Energy raised specific challenges which are not totally addressed by industrial gas activities. The main difference is obviously in the final customer profile, which differs significantly from the qualified professional our industry is used to serve. A non professional end-user, operating with Hydrogen at home or on board of his family car, has to be served with intrinsically safe and user-friendly solutions that exceed by far the industrial specifications already in place. Another significant challenge is that we will need breakthroughs both in terms of products and infrastructure, with development time frame that may require several decades. The aim of this presentation is to review how a company like Air Liquide, worldwide leader already operating more than 200 large hydrogen production sites, is approaching this new Hydrogen Energy market, all along the complete supply chain from production to end-users. Our contributions to the analysis, understanding and deployment of this new Energy market, will be illustrated by the presentation of Air Liquide internal development's as well as our participation in several national and European projects. (author)

  3. Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia

    Directory of Open Access Journals (Sweden)

    Stefan Lechtenböhmer

    2015-10-01

    Full Text Available The German federal state of North Rhine-Westphalia (NRW is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL. This paper describes the long-term (up to 2050 mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage. All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of “re-industrialisation” for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050, would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT scenario CO2 emission reductions of only 16% are achieved, whereas the low carbon (LC and the carbon capture and storage (CCS scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry—such as electrification, hydrogen-based processes for steel, alternative cements or CCS—if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.

  4. Substitution possibilities and determinants of energy intensity for China

    International Nuclear Information System (INIS)

    Ma, Hengyun; Oxley, Les; Gibson, John

    2009-01-01

    This paper measures technological change, factor demand and inter-factor and inter-fuel substitutability measures for China. We use individual fuel price data and a two-stage approach to estimate total factor cost functions and fuel share equations. Both inter-factor and inter-fuel substitution elasticities are calculated and the change in energy intensity is decomposed into its driving forces. The results suggest that energy is substitutable for capital regionally and for labor nationally. Capital substitutes for energy more easily than labor does. Energy intensity changes vary by region but the major drivers seem to be 'budget effect' and the adoption of energy-intensive technologies, which might be embodied in high-level energy-using exports and sectors, capital investment and even old technique and equipment imports. Whether the trend in rising energy intensity continues will be significant for China and the rest of the world. (author)

  5. Substitution possibilities and determinants of energy intensity for China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengyun [College of Economics and Management, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002 (China); Department of Economics, University of Canterbury, Private bag 4800, Christchurch 8140 (New Zealand); Oxley, Les [Department of Economics, University of Canterbury, Private bag 4800, Christchurch 8140 (New Zealand); Gibson, John [Department of Economics, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2009-05-15

    This paper measures technological change, factor demand and inter-factor and inter-fuel substitutability measures for China. We use individual fuel price data and a two-stage approach to estimate total factor cost functions and fuel share equations. Both inter-factor and inter-fuel substitution elasticities are calculated and the change in energy intensity is decomposed into its driving forces. The results suggest that energy is substitutable for capital regionally and for labor nationally. Capital substitutes for energy more easily than labor does. Energy intensity changes vary by region but the major drivers seem to be 'budget effect' and the adoption of energy-intensive technologies, which might be embodied in high-level energy-using exports and sectors, capital investment and even old technique and equipment imports. Whether the trend in rising energy intensity continues will be significant for China and the rest of the world. (author)

  6. Energy taxes and industrial competitiveness: the case of Italian carbon tax

    International Nuclear Information System (INIS)

    Bardazzi, Rossella; Pazienza, Maria Grazia

    2005-01-01

    An international debate on which economic instrument should be used to reduce pollutant emissions has begun since the nineties when the awareness of climatic risks aroused and first attempts to introduce a European carbon tax were made. Although this project failed, several national programmes of carbon/energy taxes have been developed with a common concern for industrial competitiveness of energy and/or carbon-intensive firms. Therefore, double dividend schemes have been applied to reduce existing distorsive taxes while introducing a higher burden on energy products. This paper reviews the most important European case studies and analyses the effects of the introduction of a carbon tax in Italy on energy expenditure and economic profitability of Italian manufacturing enterprises. This tax has been introduced in 1998 and should have progressively increased up to the final tax rates in 2005. However, this process halted in the year 2000 - as the world energy prices increased - and the ultimate rates have never been applied. Nonetheless, our analysis offers relevant insights both because energy excises are a major instrument in environmental policy and because industrial activities affected by energy taxes will also be affected by the tradable permits scheme recently adopted by the European Union. The study is performed with a micro simulation model to simulate changes, in energy excises and the associated reduction of social contributions to achieve the double dividends. Existing empirical analyses have usually been carried out at aggregate or sectoral level, but the effects on costs both of carbon tax and of compensative measures differ at the firm level, thus it is significant to study the impact on economic profitability on individual units of analysis. The data show that energy expenditure as a component of intermediate costs varies by economic activity as well as the energy mix used in the production process, thus suggesting possible competitiveness problems

  7. Corporate Social Responsibility (CSR) and energy industry

    International Nuclear Information System (INIS)

    Landhaeusser, Werner; Hildebrandt, Alexandra

    2016-01-01

    What means Corporate Social Responsibility (CSR) in the energy industry? A rising energy demand with limited natural resources pose utilities, industry and consumers with new challenges. This book follows an interdisciplinary approach and for the first time brings together debates and findings from industry, science, politics, culture and media. Because the energy transition can only succeed if it is comprehensible for the individual and fragmented perspectives and interests are merged. [de

  8. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  9. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  10. Embodied energy use in China's industrial sectors

    International Nuclear Information System (INIS)

    Liu Zhu; Geng Yong; Lindner, Soeren; Zhao Hongyan; Fujita, Tsuyoshi; Guan Dabo

    2012-01-01

    As the world’s top energy consumer, China is facing a great challenge to solve its energy supply issue. In this paper energy use from all industrial sectors in China’s economy of 2007 was explored by conducting an extended environmental input–output analysis. We compare the energy consumption embodied in the final demand for goods and services from 29 sectors with the energy demand required for the actual production process in each sector. Two different viewpoints for sectoral energy use have been presented: energy use is directly allocated to the producer entity, and energy use is reallocated to sector’s supply chain from consumption perspective. Our results show that considerable amount of energy use is embodied in the supply chain, especially for “Construction” and “Other Service Activities” sectors, which is not detected if energy use is allocated on a production basis. When further dividing embodied energy consumption into direct energy consumption and indirect energy consumption, total indirect energy consumption is much higher than that of total direct energy consumption, accounting for 80.6% of total embodied energy consumption in 2007. Our results provide a more holistic picture on sectoral energy consumption and therefore can help decision-makers make more appropriate policies. - Highlights: ► A hybrid IO-LCA model was employed to analyze China’s energy use at sectoral level. ► A case study on China’s sectoral energy consumption is done. ► Construction and service sectors are actually energy intensive from the supply chain perspectives. ► Upstream and downstream ectoral collaboration along the whole supply chain is necessary. ► Energy conservation policies should be based upon a comprehensive analysis on sectoral energy use.

  11. Market Report for the Industrial Sector, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, Bhima [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Brueske, Sabine [Energetics Inc., Columbia, MD (United States); de los Reyes, Pamela [Energetics Inc., Columbia, MD (United States); Jamison, Keith [Energetics Inc., Columbia, MD (United States); Justiniano, Mauricio [Energetics Inc., Columbia, MD (United States); Margolis, Nancy [Energetics Inc., Columbia, MD (United States); Monfort, Joe [Energetics Inc., Columbia, MD (United States); Raghunathan, Anand [Energetics Inc., Columbia, MD (United States); Sabouni, Ridah [Energetics Inc., Columbia, MD (United States)

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  12. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  13. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    Science.gov (United States)

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.

  14. Energy use in the U.S. steel industry: a historical perspective and future opportunities; TOPICAL

    International Nuclear Information System (INIS)

    Stubbles, John

    2000-01-01

    The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in the areas of reduced blast

  15. Intensive Culture on Northern Forest-Industry Lands: Trends, Expectations, and Needs

    Science.gov (United States)

    David A. Gansner; Owen W. Herrick; Dietmar W. Rose

    1977-01-01

    Results of a survey of intensive forest-culture practices on forest-industry lands in the North. Timber-stand improvement and commercial thinning have been and apparently will continue to be the most popular practices undertaken. Estimated increases in recent annual harvests due to intensive culture averaged about 4 percent, and greater increases are expected during...

  16. Industry's energy specialists find strength in numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bell, K W

    1978-09-08

    While national energy conservation measures have lost the urgency they assumed during the oil crisis, they remain just as valid. Energy managers' groups offer industry a way of achieving significant savings, but they do need support from Government, the energy supply industries and other organisations.

  17. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  19. US long-term energy intensity: Backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, Hadi; Oravetz, Matthew A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency-especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand ε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions

  20. US long-term energy intensity: backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Oravetz, M.A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demandε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  1. US long-term energy intensity: backcast and projection

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H. [University of British Columbia, Vancouver (Canada); Oravetz, M.A. [International Energy Agency, Paris (France)

    2006-11-15

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, {pi}, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand{epsilon}. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires {pi} to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with {pi} than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO{sub 2} emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  2. Restructuring the energy industry: A financial perspective

    International Nuclear Information System (INIS)

    Abrams, W.A.

    1995-01-01

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs

  3. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  4. Energy use and implications for efficiency strategies in global fluid-milk processing industry

    International Nuclear Information System (INIS)

    Xu Tengfang; Flapper, Joris

    2009-01-01

    The fluid-milk processing industry around the world processes approximately 60% of total raw milk production to create diverse fresh fluid-milk products. This paper reviews energy usage in existing global fluid-milk markets to identify baseline information that allows comparisons of energy performance of individual plants and systems. In this paper, we analyzed energy data compiled through extensive literature reviews on fluid-milk processing across a number of countries and regions. The study has found that the average final energy intensity of individual plants exhibited significant large variations, ranging from 0.2 to 12.6 MJ per kg fluid-milk product across various plants in different countries and regions. In addition, it is observed that while the majority of larger plants tended to exhibit higher energy efficiency, some exceptions existed for smaller plants with higher efficiency. These significant differences have indicated large potential energy-savings opportunities in the sector across many countries. Furthermore, this paper illustrates a positive correlation between implementing energy-monitoring programs and curbing the increasing trend in energy demand per equivalent fluid-milk product over time in the fluid-milk sector, and suggests that developing an energy-benchmarking framework, along with promulgating new policy options should be pursued for improving energy efficiency in global fluid-milk processing industry.

  5. What Are the Antecedents of Collaboration Intensity between Industry and Universities in Public Subsidized Projects?

    DEFF Research Database (Denmark)

    Cannito, Davide

    firms’ decision to engage in university-industry collaboration. This paper contribute to the antecedents of U-I collaboration by investigating whether a scientific oriented knowledge base is an important factor for explaining the intensity of collaborations. In line with the theory, we expect...... of citations, on the intensity of university industry collaboration, in terms of share of university collaborators. We control for program fixed effect and previous co-patenting with university. We expect a positive relationship between scientific orientation and intensity of collaboration with universities.......University-industry collaboration has attracted in the last decades an increasing attention both from scholars and public policy. An increasing number of national and European programs has been designed to increase public-private collaboration. The extensive literature on University Industry...

  6. Papers of the Canadian Institute's 3. annual conference on public relations for the energy industry : best practices for communication in volatile energy markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In recent years, the energy industry has been subjected to intense public scrutiny and has faced difficult years that have had a damaging effect on its reputation. The industry is now faced with the challenge of rebuilding public confidence and trust. This conference provides some of the tools needed for communications departments to succeed in rebuilding the image of the industry. The topics of discussion ranged from managing public perception, communication challenges regarding high energy prices, joint ventures, and social responsibility regarding environmental impacts. Strategies to prevent crisis situations were also described. The conference featured 13 presentations, of which 5 have been indexed separately for inclusion in this database. refs., tabs., figs.

  7. Present day problems concerning the energy industry

    International Nuclear Information System (INIS)

    Hecker, G.

    1978-01-01

    Problems of the regional energy supply industry touching directly the energy supply utilities (e.g. territorial reform, power prices) are discussed. In a survey on the overall energy situation in the FRG as seen by energy supply utilities, the following conclusions are drawn: 1) The electricity supply industry is in the favourite position to make the required structural changes by utilizing primary energy for generating electric power. It offers - via electric energy - an effective opportunity for substituting oil. 2) The electricity supply industry alone will be in a position to use nuclear energy during the next few decades. A decision in favour of nuclear energy must not be at disposal to make oneself momentarily politically popular. This indispensable decision results exclusively from our responsibility for the future of our national economy and thus our society. (orig./HP) [de

  8. European energy policy and Italian industry

    International Nuclear Information System (INIS)

    Cardinale, A.; Verdelli, A.

    2008-01-01

    The competitiveness of the Italian industry is very sensitive to the rising costs of energy. The European energy policy, if intended as an additional constraint, could deteriorate the situation. It could be, however, a good opportunity for the Italian industry to become more independent from fossil fuels, through an innovatory project at country level [it

  9. The organization of the energy industry

    International Nuclear Information System (INIS)

    Pearson, L.F.

    1981-01-01

    The subject is covered in chapters, entitled: introduction; machinery of government; the Department of Energy (history, Ministers and structure, including relevant references to the atomic energy programme); the tools of public expenditure control; unofficial government; the energy industry (covering the work of the UK Atomic Energy Authority and the nuclear industry, the national organizations for coal, gas, oil and electricity, research bodies, interest and cause groups, Europe, political groups, mutual relationships); major policy issues (generally as set out in Green Papers, White Papers, consultative documents and reports of ad hoc committees); policy definition and development; the origins of policy; the future of energy policy. (U.K.)

  10. A Statistical Model for Energy Intensity

    Directory of Open Access Journals (Sweden)

    Marjaneh Issapour

    2012-12-01

    Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.

  11. Energy Savings from Industrial Water Reductions

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  12. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  13. Subjects of the energy industry under yen appreciation; Endakaka ni okeru energy sangyo no kadai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This paper studied effects of yen appreciation on the Japanese economy and changes in energy demand when assuming the medium-term yen appreciation trend, and subjects in the energy industry. The paper also refers to the trend of the Asian material industry largely influencing the energy supply/demand, the risk hedge problem of the exchange, and international cooperation and business development of the energy industry. The energy industry is extremely high in public interest and is rice of the industry. Therefore, the development of the business has focused on the domestic market. However, such a recognition is forced to be changed by waves of the worldwide deregulation. Discussions on foreign/domestic price differences caused by high yen and a series of deregulation policy in the energy industry affected thereby may be concrete signs. The subject in the energy industry under the yen appreciation is that the energy industry will be close to common sense in general industrial circles and change to an industry which is strong and internationally competitive enough to brave the exchange variation. 101 refs., 104 figs., 31 tabs.

  14. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  15. Applied energy an introduction

    CERN Document Server

    Abdullah, Mohammad Omar

    2012-01-01

    Introduction to Applied EnergyGeneral IntroductionEnergy and Power BasicsEnergy EquationEnergy Generation SystemsEnergy Storage and MethodsEnergy Efficiencies and LossesEnergy industry and Energy Applications in Small -Medium Enterprises (SME) industriesEnergy IndustryEnergy-Intensive industryEnergy Applications in SME Energy industriesEnergy Sources and SupplyEnergy SourcesEnergy Supply and Energy DemandEnergy Flow Visualization and Sankey DiagramEnergy Management and AnalysisEnergy AuditsEnergy Use and Fuel Consumption StudyEnergy Life-Cycle AnalysisEnergy and EnvironmentEnergy Pollutants, S

  16. LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Suyi Kim

    2017-02-01

    Full Text Available The energy consumption of Korea’s manufacturing sector has sharply increased over the past 20 years. This paper decomposes the factors influencing energy consumption in this sector using the logarithmic mean Divisia index (LMDI method and analyzes the specific characteristics of energy consumption from 1991 to 2011. The analysis reveals that the activity effect played a major role in increasing energy consumption. While the structure and intensity effects contributed to the reduction in energy consumption, the structure effect was greater than the intensity effect. Over the periods, the effects moved in opposite directions; that is, the structure effect decreased when the intensity effect increased and vice versa. The energy consumption by each industry is decomposed into two factors, activity and intensity effects. The increase of energy consumption due to the activity effect is largest in the petroleum and chemical industry, followed by the primary metal and non-ferrous industry, and the fabricated metal industry. The decrease of energy consumption due to the intensity effect is largest in the fabricated metal industry, followed by the primary metal and non-ferrous industry, and the non-metallic industry. The energy consumption due to intensity effect in the petroleum and chemical industry has risen. To save energy consumption more efficiently for addressing climate change in this sector, industrial restructuring and industry-specific energy saving policies should be introduced.

  17. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  18. Energy utilization and environmental aspects of rice processing industries in Bangladesh

    International Nuclear Information System (INIS)

    Ahiduzzaman, M.; Sadrul Islam, A. K. L.

    2009-01-01

    In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJ e and 3.51 million GJ e in 2000 and in 2030, respectively... Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well. (author)

  19. Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Ahiduzzaman

    2009-03-01

    Full Text Available In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJe and 3.51 million GJe in 2000 and in 2030, respectively. Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well.

  20. Energy utilization and environmental aspects of rice processing industries in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Ahiduzzaman, M. [Farm Machinery and Postharvest Technology Division, Bangladesh Rice Research Institute, Gazipur-1701 (Bangladesh); Sadrul Islam, A. K. L. [Department of Mechanical and Chemical Engineering, Islamic University of Technology, Organization of the Islamic Conference (OIC), Board Bazar, Gazipur-1704 (Bangladesh)

    2009-07-01

    In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJ{sub e} and 3.51 million GJ{sub e} in 2000 and in 2030, respectively... Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well. (author)

  1. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  2. Gap analysis of industrial energy management systems in Slovenia

    International Nuclear Information System (INIS)

    Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.

    2016-01-01

    Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.

  3. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  4. The availability of biomass for energy in the agricultural industry; De beschikbaarheid van biomassa voor energie in de Agro-industrie

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Wageningen UR Food and Biobased Research, Wageningen (Netherlands); Janssens, B. [Wageningen UR LEI, Wageningen (Netherlands); Koppejan, J. [Procede Biomass, Enschede (Netherlands)

    2010-01-15

    The Dutch Agricultural Covenant included a target for sustainable energy of 200 PJ. The agricultural industry is expected to contribute 75 to 125 PJ (bio-energy). The sector is wondering whether this target is realistic. The aim of this project was to map the quality and quantity of residual flows in the agricultural industry that exist and are available or are already deployed for bio-energy (in the Netherlands), both today and in 2020. [Dutch] In het Agroconvenant is een doelstelling opgenomen voor duurzame energie van 200 PJ. Van de agro-industrie wordt een bijdrage van 75 tot 125 PJ (bio-energie) verwacht. De sector vraagt zich af of deze doelstelling wel realistisch is. Het doel van dit project was het in kaart brengen van de kwaliteit en kwantiteit van reststromen uit de agro-industrie die aanwezig of beschikbaar zijn of reeds (in Nederland) ingezet worden voor bio-energie nu en in 2020.

  5. World energy use in 2010: over 5% growth. Energy markets have combined crisis recovery and strong industry dynamism. Enerdata analyses the trends in energy demand, based on its 2010 data for G20 countries. May 5, 2011

    International Nuclear Information System (INIS)

    2011-01-01

    Energy markets have combined crisis recovery and strong industry dynamism. Analysis of the energy consumption in 2010 of major countries by Enerdata, based on our global energy database. Energy consumption in the G20 soared by more than 5% in 2010, after the slight decrease of 2009. This strong increase is the result of two converging trends. On the one-hand, industrialized countries, which experienced sharp decreases in energy demand in 2009, recovered firmly in 2010, almost coming back to historical trends. Oil, gas, coal, and electricity markets followed the same trend. On the other hand, China and India, which showed no signs of slowing down in 2009, continued their intense demand for all forms of energy. (authors)

  6. Energy-economical optimization of industrial sites

    International Nuclear Information System (INIS)

    Berthold, A.; Saliba, S.; Franke, R.

    2015-01-01

    The holistic optimization of an industrial estate networks all electrical components of a location and combines energy trading, energy management and production processes. This allows to minimize the energy consumption from the supply network and to relieve the power grid and to maximize the profitability of the industrial self-generation. By analyzing the potential is detected and the cost of optimization solution is estimated. The generation-side optimization is supported through demand-side optimization (demand response). Through a real-time optimization the of Use of fuels is managed, controlled and optimized. [de

  7. Why does the energy intensity of freight transport rise?

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, D [Scientific Council for Government Policy (Netherlands)

    1996-12-01

    In advanced economies it is normal to observe declining energy intensities. Both improvements in conversion efficiency and in organisational efficiency of energy use cause energy demand to grow at a slower pace than the economy. In this context it is somewhat particular that in the vital sector of freight transport the energy intensity does not decline, but instead increases. The energy demand of this sector only takes a small share of the total energy demand. According to the World Energy Council the transport sector takes 30 percent of world energy demand and freight transport again takes 30 percent of the transport sector share, maritime transport excluded. Despite this small share some explanation is needed why the increase in energy demand form the volume growth of freight demand is not at least partly countered by a decline in the energy intensity. The purpose of this paper is to review some of the explanations that are given in the literature and to support these explanations with empirical evidence on the case of the Netherlands. (EG)

  8. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for

  9. Role of development banks in promoting industrial energy efficiency: India case studies

    International Nuclear Information System (INIS)

    Sathaye, J.; Gadgil, A.; Mukhopadhyay, M.

    1999-01-01

    The Industrial Development Bank of India (IDBI) is the premier institution in India purveying financial assistance to the industrial-sector projects. Its annual lending amounts to $6 billion. Recognizing the need to increase lending for energy efficiency and environmental management (ee/em) projects, the Asian Development Bank (ADB) provided a $150 million line of credit to IDBI. These funds were lent to cement, steel, paper, sugar and other industries. Accompanying the line of credit, ADB also provided funds for technical assistance to strengthen IDBI's capability for the assessment of projects related to energy efficiency and environmental management (ee/em). The technical assistance (TA) focused on IDBI's institutional capability, the procedures it follows for lending in this area, studies of ten energy-intensive sectors, and training and data needs to improve its lending. The findings of the TA reveal a need to (1) use ee/em indicators during IDBI's appraisal, approval, and monitoring of projects, (2) increase the ee/em information resource base - in-house and out-house ee/em experts, handbooks, computerized data bases - that IDBI staff can access, and (3) increase awareness of ee/em components among industrial borrowers. The sector studies show that there is at least a 20% lag compared to best practice for energy use, and that a significant potential, $1.0 billion, exists for investment in ee/em activities. These activities include (a) housekeeping measures such as improved lighting, variable-speed motors/drives, improving power factor, etc., (b) installing co-generation and captive power generation units, and (c) changing manufacturing processes to more efficient and less polluting ones. Training and data needs were also identified which would improve IDBI's lending for energy efficiency and environmental management

  10. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...

  11. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    ...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...

  12. Model Effectiviteit Instrumenten-Energiebesparing Industrie (MEI-Energie)

    NARCIS (Netherlands)

    Wijk JJ van; Engelen RFJM; Ros JPM; LAE

    2001-01-01

    Within the context of the Kyoto Protocol insight into industrial energy savings and the influence of policy instruments is desirable, both for the past and the future. By virtue of its legal central policy analysis function, the RIVM is currently developing an energy-saving model for industrial

  13. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  14. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  15. Office of Industrial Technologies (OIT): Profiles and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    DOE Office of Industrial Technologies

    2001-01-17

    A 126-page brochure that describes the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) Strategy. Through the IOF initiatives, OIT partners with the nation's nine most energy intensive industries to improve their energy and cost efficiencies.

  16. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  17. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  18. Energy transition: which opportunities for the French industry?

    International Nuclear Information System (INIS)

    Bousson, Guillaume; Pouzeratte, Francois; Pierret, Christian; Bensasson, Bruno; Bouttes, Jean-Paul; Bouygues, Olivier; Durdilly, Robert; Geoffron, Patrice; Ladoucette, Philippe de; Lepercq, Thierry; Maillard, Dominique; Rosier, Philippe; Sauquet, Philippe

    2014-05-01

    Regulatory requirements introduced by the new policy of energy transition will force the French industry to look for alternatives to oil and coal. Within this context, this publication contains contributions proposed by industrial and academic experts which aim at discussing how the French industry can seize the opportunity of energy transition to strengthen itself. The authors discuss the issue of competitiveness, the role of de-carbonated electricity, the context of energy transition in France, the evolutions and transformations of the energy market. They also outline the lack of an energy vision in France, the role of the electricity grid as a vector of energy transition, and the fact that the debate on energy transition did not result in concrete solutions

  19. Integrating Energy and Environmental Management in Wood Furniture Industry

    Science.gov (United States)

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  20. Integrating energy and environmental management in wood furniture industry.

    Science.gov (United States)

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  1. Industrial electricity demand and energy efficiency policy: The role of price changes and private R and D in the Swedish pulp and paper industry

    International Nuclear Information System (INIS)

    Henriksson, Eva; Söderholm, Patrik; Wårell, Linda

    2012-01-01

    The objective of this paper is to analyze electricity demand behaviour in the Swedish pulp and paper industry in the context of the increased interest in so-called voluntary energy efficiency programs. In these programs tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. We employ a panel data set of 19 pulp and paper firms, and estimate both the own- and cross-price elasticities of electricity demand as well as the impact of knowledge accumulation following private R and D on electricity use. The empirical results show that electricity use in the Swedish pulp and paper industry is relatively own-price insensitive, and the self-reported electricity savings following the voluntary so-called PFE program support the notion of important information asymmetries at the company level. However, the results display that already in a baseline setting pulp and paper firms tend to invest in private R and D that have electricity saving impacts, and our model simulations suggest that up to about one-third of the industry sector's self-reported electricity savings in PFE could be attributable to pure baseline effects. Future evaluations of voluntary energy efficiency programs must increasingly recognize the already existing incentives to reduce energy use in energy-intensive industries. - Highlights: ► We analyze electricity demand behaviour in the Swedish pulp and paper industry. ► An important context is the voluntary energy efficiency programs PFE. ► The electricity savings following PFE are significant, but price responses are low. ► Still, already in a baseline setting firms tend to invest in electricity-saving R and D. ► These baseline issues are not adequately addressed in PFE.

  2. China's numerical management system for reducing national energy intensity

    International Nuclear Information System (INIS)

    Li, Huimin; Zhao, Xiaofan; Yu, Yuqing; Wu, Tong; Qi, Ye

    2016-01-01

    In China, the national target for energy intensity reduction, when integrated with target disaggregation and information feedback systems, constitutes a numerical management system, which is a hallmark of modern governance. This paper points out the technical weaknesses of China's current numerical management system. In the process of target disaggregation, the national target cannot be fully disaggregated to local governments, sectors and enterprises without omissions. At the same time, governments at lower levels face pressure for reducing energy intensity that exceeds their respective jurisdictions. In the process of information feedback, information failure is inevitable due to statistical inaccuracy. Furthermore, the monitoring system is unable to correct all errors, and data verification plays a limited role in the examination system. To address these problems, we recommend that the government: use total energy consumption as the primary indicator of energy management; reform the accounting and reporting of energy statistics toward greater consistency, timeliness and transparency; clearly define the responsibility of the higher levels of government. - Highlights: •We assess drawbacks of China's numerical management system for energy intensity. •The national energy intensity target cannot be fully disaggregated without omissions. •Data distortion is due to failures in statistics, monitoring and examination system. •Lower-level governments’ ability to meet energy target is weaker than their pressure. •We provide three policy recommendations for China's policy-makers.

  3. Alternatives to the EEG levy. Possible effects of a reform of the energy transition financing on the industry

    International Nuclear Information System (INIS)

    Scheyhing, Joerg

    2017-01-01

    Although it has been adjusted six times since the year 2000, it has not yet been possible to manage the unrestricted growth of the EEG levy. In the 2017 election year, it becomes therefore ever more obvious that an alternative way to finance the energy transition is high on the political agenda. This would lead to significant changes for energy-intensive companies, regardless of whether they have benefited from a release from the levy or not. At the same time, the alternatives currently discussed have quite different effects on the industrial companies concerned and thereby the industry location Germany. [de

  4. Canadian wind energy industry directory

    International Nuclear Information System (INIS)

    1996-01-01

    The companies and organizations involved, either directly or indirectly, in the wind energy industry in Canada, are listed in this directory. Some U.S. and international companies which are active or interested in Canadian industry activities are also listed. The first section of the directory is an alphabetical listing which includes corporate descriptions, company logos, addresses, phone and fax numbers, e-mail addresses and contact names. The second section contains 54 categories of products and services associated with the industry

  5. The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Youngsang; Lee, Jongsu; Kim, Tai-Yoo [Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, Shillim-Dong San56-1, Gwanak-Ku, Seoul 151-742 (Korea)

    2007-09-15

    The authors investigate the effects of information and communications technology (ICT) investment, electricity price, and oil price on the consumption of electricity in South Korea's industries using a logistic growth model. The concept electricity intensity is used to explain electricity consumption patterns. An empirical analysis implies that ICT investment in manufacturing industries that normally consume relatively large amounts of electricity promotes input factor substitution away from the labor intensive to the electricity intensive. Moreover, results also suggest that ICT investment in some specific manufacturing sectors is conducive to the reduction of electricity consumption, whereas ICT investment in the service sector and most manufacturing sectors increases electricity consumption. It is concluded that electricity prices critically affect electricity consumption in half of South Korea's industrial sectors, but not in the other half, a finding that differs somewhat from previous research results. Reasons are suggested to explain why the South Korean case is so different. Policymakers may find this study useful, as it answers the question of whether ICT investment can ultimately reduce energy consumption and may aid in planning the capacity of South Korea's national electric power. (author)

  6. The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach

    International Nuclear Information System (INIS)

    Cho, Youngsang; Lee, Jongsu; Kim, Tai-Yoo

    2007-01-01

    The authors investigate the effects of information and communications technology (ICT) investment, electricity price, and oil price on the consumption of electricity in South Korea's industries using a logistic growth model. The concept electricity intensity is used to explain electricity consumption patterns. An empirical analysis implies that ICT investment in manufacturing industries that normally consume relatively large amounts of electricity promotes input factor substitution away from the labor intensive to the electricity intensive. Moreover, results also suggest that ICT investment in some specific manufacturing sectors is conducive to the reduction of electricity consumption, whereas ICT investment in the service sector and most manufacturing sectors increases electricity consumption. It is concluded that electricity prices critically affect electricity consumption in half of South Korea's industrial sectors, but not in the other half, a finding that differs somewhat from previous research results. Reasons are suggested to explain why the South Korean case is so different. Policymakers may find this study useful, as it answers the question of whether ICT investment can ultimately reduce energy consumption and may aid in planning the capacity of South Korea's national electric power. (author)

  7. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  8. Industrial energy efficiency in light of climate change negotiations: Comparing major developing countries and the U.S

    International Nuclear Information System (INIS)

    Phylipsen, D.; Price, L.; Worrell, E.; Blok, K.

    1999-01-01

    In light of the commitments accepted within the Framework Convention on Climate Change there is an increasing need for useful information on energy consumption and energy efficiency. Governments can use this information in designing policies to reduce greenhouse gas emissions and prioritizing energy savings options. International comparison of energy efficiency can provide a benchmark against which a country's performance can be measured and policies can be evaluated. A methodology for international comparisons of industrial energy efficiency was developed by the International Network on Energy Demand analysis in the Industrial Sector. In this paper this methodology is used to analyze the energy efficiency of two energy-intensive industries in major developing countries. Energy consumption trends are shown for the steel and cement industry and an analysis is made of technologies used. In light of the Byrd-Hagel resolution, which states that the US will not ratify any climate treaty unless it also mandates commitments to limit greenhouse gas emissions for developing countries, the energy efficiency in the two sectors is compared to that of the US. The analysis shows that in the iron and steel sector South Korea and Brazil are more energy-efficient than the US, while Mexico has achieved a comparable energy efficiency level in recent years. For cement, South Korea, Brazil and Mexico are the most efficient countries analyzed. In recent years, China, and especially, India appear to have achieved energy efficiency levels, more or less comparable to that of the US. In light of data constraints, however, further analysis is required

  9. An outlook into energy consumption in large scale industries in India: The cases of steel, aluminium and cement

    International Nuclear Information System (INIS)

    Dutta, Monica; Mukherjee, Saptarshi

    2010-01-01

    All the growth-oriented sectors in a developing economy consume enormous energy in their production processes. Steel, aluminium and cement are the key manufacturing industries in India which provide inputs to various other sectors such as construction, transportation, power transmission, etc. As a result, their demand is consistently rising. These industries are heavily energy-intensive and use raw materials such as iron ore, coal, electricity, steam, and fuel oil, whose supply can act as severe production constraints over a period of time and can hinder sustainable development. Hence it becomes imperative for these industries to continuously innovate more energy efficient techniques. This paper makes a foray into the energy demand for these industries and explores the potential of any future reduction in their energy consumption. The paper offers a projection scenario for 2001-2031 (based on the MARKAL Modeling exercise for India) for possible catching up in reduction in energy consumptions in these sectors under alternative situations. The analysis suggests the existence of some plausible energy efficiency enhancing techniques in these industries. Exploring these options will definitely ensure cost effectiveness and competitiveness of these three key sectors in the global market. -- Research highlights: →Energy reduction potential exists in Indian steel, aluminium and cement sectors and can go up to 8%, 17% and 6% respectively in these sectors in 2031 if appropriate energy saving technologies are introduced and implemented. →In aluminium industry energy reduction potential is huge in fabrication stage in the production process and extensive improvement can be done in terms of energy efficiency in this stage. Cogeneration of power through waste heat recovery, change in norms in standard to take advantage of producing composite cements using more than one industrial waste, like both fly ash and slag are important required changes in Indian cement sector.

  10. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  11. Actions on climate change, Intended Reducing carbon emissions in China via optimal industry shifts: Toward hi-tech industries, cleaner resources and higher carbon shares in less-develop regions

    International Nuclear Information System (INIS)

    Fu, Xue; Lahr, Michael; Yaxiong, Zhang; Meng, Bo

    2017-01-01

    This paper uses an optimal interregional input-output model to focus on how interregional industrial shifts alone might enable China to reduce carbon intensity instead of national shifts. The optimal industry shifts assure integration of all regions by regional products and goods in which carbon emissions are embodied via energy consumption. Generally speaking, high-tech industries concentrate in affluent regions to replace construction. Selected services increase output shares across most of regions. Meanwhile, energy-intensive manufacturing, rather than agriculture, decrease their shares to achieve the national annual growth constrained by nation’s carbon targets. Due to the need to decelerate energy use, carbon intensity goal puts particularly extreme pressure on less-developed regions to shutter heavy industries. Explicit shifts toward cleaner resources and renewable energy appear to be quite important for coal mines in Central China. - Highlights: • The model optimizes GDP constrained by industry-based emissions targets. • Scenario on carbon intensity, growth rate, energy mix, and technology advance. • Interregional I-O table informs technology, industry mix, and interregional trade. • China could raise the output of high-tech in South Coast and of selected services. • Shifts toward cleaner resources and renewable energy are important in the Central.

  12. PROBLEMS AND POTENTIAL OF DEVELOPMENT OF THE INDUSTRIAL ENTERPRISES OF THE KNOWLEDGE-INTENSIVE BRANCHES

    Directory of Open Access Journals (Sweden)

    Mikhail Yakovlevich Veselovsky

    2016-01-01

    Full Text Available In the article the problems of enterprise development high-tech industries, analyzes the factors that complicate the processes of knowledge-intensive production management. It provided a number of problems that make it difficult to increase the economic efficiency of high-tech industry. To solve the above problems need to increase the investment program and the economic attractiveness of high-tech industries that is to be developed, modern management system, carried out the reform of the knowledge-based industry to provide high levels of efficiency of new organizational structures in the current economic conditions compared to the existing, outdated forms. The purpose / goal. The aim of this study is to analyze the causes that affect the development potential of knowledge-based industries and enterprises identify problems that impede improving the economic efficiency of the Russian high-tech industry. Purpose: To identify the problems that are most difficult to improve the economic efficiency of the Russian high-tech industry; consider the high-tech industry; examine the reasons for the reform of the knowledge-based industry; explore the level of innovation activity of organizations of high-tech industries. Methodology. The methodological and theoretical basis of the study are the works, monographs, research papers, studies of Soviet authors on the development of knowledge-intensive industries, materials of State Statistics. We used scientific methods of research, such as the comparative method of analysis, synthesis, analysis and synthesis. Results. Given the concept of the domestic high-tech complex (NEC, defined the environment in which businesses operate NEC. The features of these companies, where there is the presence of a strong innovation potential. The requirements for knowledge-intensive production as the backbone of a new stage of the development lifecycle. A number of problems hampering the development and transformation of enterprise

  13. Current situation of energy conservation in high energy-consuming industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, D.Y.-L.; Yang, K.-H.; Hsu, C.-H.; Chien, M.-H.; Hong, G.-B.

    2007-01-01

    Growing concern in Taiwan has arisen about energy consumption and its adverse environmental impact. The current situation of energy conservation in high energy-consuming industries in Taiwan, including the iron and steel, chemical, cement, pulp and paper, textiles and electric/electrical industries has been presented. Since the energy consumption of the top 100 energy users (T100) comprised over 50% of total industry energy consumption, focusing energy consumption reduction efforts on T100 energy users can achieve significant results. This study conducted on-site energy audits of 314 firms in Taiwan during 2000-2004, and identified potential electricity savings of 1,022,656 MWH, fuel oil savings of 174,643 kiloliters (KL), steam coal savings of 98,620 ton, and natural gas (NG) savings of 10,430 kilo cubic meters. The total potential energy saving thus was 489,505 KL of crude oil equivalent (KLOE), representing a reduction of 1,447,841 ton in the carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 39,131-ha plantation forest

  14. The implications of the historical decline in US energy intensity for long-run CO2 emission projections

    International Nuclear Information System (INIS)

    Sue Wing, Ian; Eckaus, Richard S.

    2007-01-01

    This paper analyzes the influence of the long-run decline in US energy intensity on projections of energy use and carbon emissions to the year 2050. We build on our own recent work which decomposes changes in the aggregate US energy-GDP ratio into shifts in sectoral composition (structural change) and adjustments in the energy demand of individual industries (intensity change), and identifies the impact on the latter of price-induced substitution of variable inputs, shifts in the composition of capital and embodied and disembodied technical progress. We employ a recursive-dynamic computable general equilibrium (CGE) model of the US economy to analyze the implications of these findings for future energy use and carbon emissions. Comparison of the simulation results against projections of historical trends in GDP, energy use and emissions reveals that the range of values for the rate of autonomous energy efficiency improvement (AEEI) conventionally used in CGE models is consistent with the effects of structural changes at the sub-sector level, rather than disembodied technological change. Even so, our results suggest that US emissions may well grow faster in the future than in the recent past

  15. Energy intensity in road freight transport of heavy goods vehicles in Spain

    International Nuclear Information System (INIS)

    Andrés, Lidia; Padilla, Emilio

    2015-01-01

    This paper examines the factors that have influenced the energy intensity trend of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of these factors and to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices. -- Highlights: •We examine energy intensity of Spanish road freight transport over 1996–2012. •We employ single-period and chained multi-period multiplicative LMDI-II decomposition. •Energy intensity reduction is explained by the change in real energy intensity index. •This is partially offset by the behaviour of the structural index. •The attribution of Divisia indices changes gives the contribution of each commodity

  16. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  17. The industrial energy consumption in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The Danish industrial energy consumption in 2001 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 2001 based on each group of branches and energy category, and the emission of CO 2 . (LN)

  18. Energy conservation in the primary aluminum and chlor-alkali industries

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  19. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector; Energieeffizienz in der Industrie. Modellgestuetzte Analyse des effizienten Energieeinsatzes in der EU-27 mit Fokus auf den Industriesektor

    Energy Technology Data Exchange (ETDEWEB)

    Kuder, Ralf

    2014-01-09

    subsectors of the industry could be split up into energy intensive subsectors where single production processes dominate the energy consumption, and non-energy intensive subsectors. Ways to reduce the energy consumption in the industrial sector are the use of alternative or improved production or cross cutting technologies and the use of energy saving measures to reduce the demand for useable energy. Based on the analysis within this study, 21 % of the current energy consumption of the industrial sector of the EU and 17 % in Germany could be reduced. Based on the extended understanding of energy efficiency, the model based scenario analysis of the European energy system with the further developed energy system model TIMES PanEU shows that the efficient use of energy at an emission reduction level of 75 % is a slightly increasing primary energy consumption. The primary energy consumption is characterised by a diversified energy carrier and technology mix. Renewable energy sources, nuclear energy and CCS play a key role in the long term. In addition the electricity demand in combination with a strong decarbonisation of the electricity generation is increasing constantly. In the industrial sector the emission reduction is driven by the extended use of electricity, CCS and renewables as well as by the use of improved or alternative process and supply technologies with lower specific energy consumption. Thereby the final energy consumption stays almost on a constant level with increasing importance of electricity and biomass. Both regulatory interventions in the electricity sector and energy saving targets on the primary energy demand lead to higher energy system costs and therewith to a decrease of efficiency based on the extended understanding. The energy demand is reduced stronger than it is efficient and the saving targets lead to the extended use of other resources resulting in totally higher costs. The integrated system analysis in this study points out the interactions

  20. R&D subsidiary isolation in knowledge-intensive industries: evidence from Austria

    NARCIS (Netherlands)

    Williams, C.; Nones, B.

    2009-01-01

    We investigate R&D subsidiary isolation within Multinational Corporations (MNCs) competing in knowledge-intensive industries. For such MNCs, accessing knowledge and nurturing the innovative potential of R&D subsidiaries is vital for on-going competitiveness. This, according to conventional thinking,

  1. Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry

    International Nuclear Information System (INIS)

    Lovdal, Nicolai; Neumann, Frank

    2011-01-01

    Research on conditions to develop new innovations within emerging renewable energy industries is often done with a national focus. However, recent research on international entrepreneurship has revealed that firms operate on international levels very early in their life time. Thus, based on former research on international entrepreneurship and case examples, we build the propositions that firms in the marine energy industry use internationalization as a strategy to overcome industry barriers. Our primary source of data is a unique dataset from a global survey of all the companies in the marine energy industry who are aiming to commercialize a wave or tidal energy device. This paper is organized in two steps: first we identified the most challenging industry barriers perceived by companies. Second we use these to form propositions which we assess through empirical data. The two most challenging barriers perceived by the companies are need for capital and need for supportive political schemes. Our findings reveal that internationalization certainly is a common strategy to access capital and attractive support schemes in foreign countries. The early internationalization has implications for researchers, managers and policy makers. - Research highlights: → Industry barriers identified as access to capital and supportive political schemes. → International entrepreneurship is used to overcome industry barriers. → Start-ups in emerging energy industries 'shop' national support schemes. → Future research to provide policy advice should adapt to the international reality. → Research based on a worldwide survey of wave and tidal energy device developers.

  2. Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Lovdal, Nicolai, E-mail: nicolai.lovdal@iot.ntnu.n [Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Neumann, Frank, E-mail: frank@wave-energy-centre.or [Wave Energy Centre, Av. Manuel Maia, 36, r/c Dto., 1000-201 Lisboa (Portugal)

    2011-03-15

    Research on conditions to develop new innovations within emerging renewable energy industries is often done with a national focus. However, recent research on international entrepreneurship has revealed that firms operate on international levels very early in their life time. Thus, based on former research on international entrepreneurship and case examples, we build the propositions that firms in the marine energy industry use internationalization as a strategy to overcome industry barriers. Our primary source of data is a unique dataset from a global survey of all the companies in the marine energy industry who are aiming to commercialize a wave or tidal energy device. This paper is organized in two steps: first we identified the most challenging industry barriers perceived by companies. Second we use these to form propositions which we assess through empirical data. The two most challenging barriers perceived by the companies are need for capital and need for supportive political schemes. Our findings reveal that internationalization certainly is a common strategy to access capital and attractive support schemes in foreign countries. The early internationalization has implications for researchers, managers and policy makers. - Research highlights: {yields} Industry barriers identified as access to capital and supportive political schemes. {yields} International entrepreneurship is used to overcome industry barriers. {yields} Start-ups in emerging energy industries 'shop' national support schemes. {yields} Future research to provide policy advice should adapt to the international reality. {yields} Research based on a worldwide survey of wave and tidal energy device developers.

  3. Brazil's energy industry in a crisis

    International Nuclear Information System (INIS)

    Sangmeister, H.

    1988-01-01

    In volume 8/1986 of this periodical, Brazil's moving away from the program for the building and expansion of a national nuclear power industry had been reported on back of foreign currencies and urgently necessary saving measures of the public means influence not only the construction of nuclear power plants, they also decay instruments in other areas of energy industry. In the area of electric power, some nationalisations have already taken place and in petroleum supply, the need for imports is increasing again. Furthermore, there is reason to believe that some of the energy-political solutions which Brazil had chosen as answers to the petroleum price shocks of 1973/74 and 1979/80 are likely to lead to some considerable problems in the near future. In the middle of these crises in which Brazil's energy industry has been for some time now, there is nonetheless one spectacular event. Brazil's President, Mr. Jose Sarney, announced the command of the nuclear cycle by means of national technology. (orig.) [de

  4. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  5. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  6. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  7. The Industrial Engineer and Energy and Environment

    Directory of Open Access Journals (Sweden)

    Sirichan Thongprasert

    2009-02-01

    Full Text Available Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  8. The Industrial Engineer and Energy and Environment

    OpenAIRE

    Sirichan Thongprasert

    2009-01-01

    Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  9. Changes in energy intensiveness of Hong Kong economy, 1995-2007

    International Nuclear Information System (INIS)

    Chow, Larry C.H.

    2010-01-01

    The growth of Primary Energy Requirements (PER) slackened appreciably since the late 1990s in Hong Kong while Final Energy Requirements (FER) actually declined. Yet GDP continued to grow at a respectable average annual growth rate during the period, leading to a drastic drop in the energy intensiveness of the economy. The article analyzed the factors that contributed to the emergence of the above phenomena and discussed its consequences. The factors that led to the drop in energy intensiveness with respect to FER includes the rising electrification of the fuel mix, improvements in energy end-use efficiency (partly induced by government policy), and changes in the structure of the Hong Kong economy. With respect to the decline in PER energy intensiveness, the following aspects are pertinent: the share of electricity consumption accounted for by nuclear imports, the efficiency of electricity generation in Hong Kong (partly determined by the type of fuels used) and losses due to transmission and distribution as well as station consumption (system losses). The decline in energy intensiveness is good to Hong Kong, both in terms of the economy and the environment. Its ramifications will be briefly discussed.

  10. Industrial relocation and energy consumption: Evidence from China

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Yin Haitao

    2011-01-01

    With economic development and the change of industrial structure, industrial relocation is an inevitable trend. In the process of industrial relocation, environmental externality and social cost could occur due to market failure and government failure. Little attention has been paid to this issue. In this paper, we address it with a theoretical analysis and an empirical investigation on the relationship between China's industrial relocation in the early 1990s and energy consumption which is the primary source of CO 2 emission, an environmental externality that causes increasing concerns. The macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). Using fixed-effect regression model and simulation method, we provide an empirical support to this argument. In order to further reduce environmental externalities and social cost in the process of industrial relocation, we provide policy suggestions as follows: First, strengthen the evaluation of environmental benefits/costs; Second, pay more attention to the coordinated social-economic development; Third, avoid long-lived investment in high-carbon infrastructure in areas with industries moved in; Fourth, address employment issue in the areas with industries moved out. - Research highlights: → Little attention has been paid to the linkage between industrial relocation and environmental externality. → Our macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). → Using fixed-effect regression model and simulation method, we find a positive link between China's industrial relocation in the early 1990s and energy saving. → Policy suggestions to further reduce environmental externalities and social cost in the process of industrial relocation are discussed.

  11. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  12. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  13. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  14. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  15. A model approach for analysing trends in energy supply and demand at country level: case study of industrial development in China

    International Nuclear Information System (INIS)

    Miranda-da-Cruz, S.M.

    2007-01-01

    Ideally, national energy supply and demand choices would be based on comprehensive models and predictions of the energy sources, energy transformations, energy carriers and energy end-uses expected to play major roles into the foreseeable future (20-40 years). However, in many cases, the necessary detailed, high quality, consistent and timely data is not available for such comprehensive models to be constructed, in particular in large and complex developing economies expected to be major energy users in the near future. In the developing countries that are the focus of UNIDO's work, attention has been concentrated on making progress simultaneously on two fronts: (a) a dramatic decrease in energy intensity, particularly in activities linked to industrial production and (b) a major increase in the contribution of local renewable energy to limit growth in fossil fuel use. National policies need to be oriented towards a strict and strategic monitoring of the respective energy matrices with a simultaneous focus on both fronts. Robust assessments of industrial development trends throughout the whole 20-40 year transition phase are needed to achieve both objectives. Until more comprehensive energy-related models can be built up, to overcome the limited availability of data at country level it is proposed that a simple energy supply and demand model analysis consisting of three phases be used for identifying the consistency of future scenarios and corresponding policy requirements. This model analysis, which is a dynamic exercise, consists, first, of an analysis at aggregate level of the current and future national energy matrices; secondly, an analysis of perspectives for decreasing the energy intensity of the most inefficient systems or industrial sectors; and thirdly, an analysis of perspectives for increasing the supply and cost-effectiveness of sustainable energy sources. As an illustration of this model approach, the case of China is analysed with emphasis on the

  16. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies

    International Nuclear Information System (INIS)

    Zhang, Sufang; Andrews-Speed, Philip; Zhao, Xiaoli; He, Yongxiu

    2013-01-01

    This paper analyzes China's policy approach to renewable energies and assesses how effectively China has met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. First we briefly discuss the interactions between these two policies. Then we outline China's key renewable energy and renewable industrial policies and find that China's government has well recognized the need for this policy interaction. After that, we study the achievements and problems in China's wind and solar PV sector during 2005–2012 and argue that China's policy approach to renewable energies has placed priority first on developing a renewable energy manufacturing industry and only second on renewable energy itself, and it has not effectively met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. Lastly, we make an in-depth analysis of the three ideas underlying this policy approach, that is, the green development idea, the low-carbon leadership idea and indigenous innovation idea. We conclude that Chinas' policy approach to renewable energies needs to enhance the interactions between renewable energy policy and renewable energy industrial policy. The paper contributes to a deeper understanding of China's policy strategy toward renewable energies. -- Highlights: •Interactions between renewable energy policy and renewable energy industrial policy are discussed. •China's key renewable energy and renewable energy industrial policies are outlined. •Two empirical cases illustrate China's policy approach to renewable energies. •We argue that China needs to enhance the interactions between the two policies. •Three ideas underlie China's policy approach to renewable energies

  17. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  18. Energy research in the mechanical forest industry 1980-1982. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Usenius, A.

    1982-12-01

    The energy research project of the mechanical forest industry studied the energy consumption in 1979 and the possibilities to save energy in the sawmill, plywood, particleboard, fibreboard, joinery, wooden houses, gluelam and impregnation industries. The energy consumption per product unit is on the minimum level in sawmilling, 1.38 GJ/m/sup 3/, and on the maximum level in fibreboard manufacturing, 9.98 GJ/t. In plywood production, 6.95 GJ/m/sup 3/, the energy consumption is about double compared with the consumption in particleboard production, 3.40 GJ/m/sup 3/. The main part of the energy is heat. In the drying process about 70-85% of the total energy is used in individual processes. Over a half, 53.9%, of the total energy consumption, 23 169 TJ, is used in sawmill industry. The proportion of plywood industry is 19.2%, of particleboard industry 12.2% and of fibreboard industry 7.2%. The proportion of the processing industry is 7.5%; the main part is used in joinery industry. The fuel consumption in transportation of wooden raw materials was 2 260 TJ and in transportation of products 4 800 TJ. In fibreboard industry it is possible to save energy by leading the waste steam from defibratory into chip silos for preheating of the chips. In veneer and chip drying it is possible to save energy by using higher moisture content of the drying air and by utilizing the drying capacity as well as possible. In kiln drying of timber the changing of drying circumstances can in some cases save 50-150 FIM per 1 cbm of dried timber.

  19. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  20. French industry and the energy conservation challenge

    Energy Technology Data Exchange (ETDEWEB)

    Serpette, M.

    1979-07-01

    The general position of France and its energy conservation objectives; the action taken by the government to stimulate this policy; and government cooperation with industrial circles and the action of industry itself are discussed. It is observed that the potential for future energy savings are smaller in France than in other countries because consumptions are already down to minimal levels. Consumption patterns in France are illustrated. (MCW)

  1. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs

    International Nuclear Information System (INIS)

    Shi, G.-M.; Bi Jun; Wang Jinnan

    2010-01-01

    Data envelopment analysis (DEA) has recently become a popular method in measuring energy efficiency at the macro-economy level. However, previous studies are limited in that they failed to consider the issues of undesirable outputs and minimisation of energy consumption. Thus, this study considers both factors in measuring Chinese industrial energy efficiency and investigates the maximum energy-saving potential in 28 administrative regions in China. The results show that industries in the east area have the best average energy efficiency for the period 2000-2006, followed by the central area. Further, after comparing the industrial energy overall efficiency, pure technical efficiency (IEPTE), and scale efficiency of the 28 administrative regions examined, the study finds that in most regions of this study, the two main reasons causing the wastage of a large amount of energy during the industrial production process are that the industrial structure of most regions still relies on the massive use of energy in order to support the industrial-based economy and the IEPTE is too low. Based on these findings, this paper correspondingly proposes some policies to improve regional industrial energy efficiency.

  2. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Science.gov (United States)

    2013-12-06

    ... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors; Proposed... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors AGENCY... proposes energy conservation standards for a number of different groups of electric motors that DOE has not...

  3. The drivers of energy intensity in China : A spatial panel data approach

    NARCIS (Netherlands)

    Jiang, Lei; Folmer, Henk; Ji, Minhe

    2014-01-01

    We use a panel of 29 Chinese provinces for the period 2003-2011 to estimate the drivers of energy intensity by means of a spatial Durbin error model. We find an inverted U-shaped relationship between energy intensity and income (energy intensity Kuznets curve). Ten provinces, notably the developed

  4. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  5. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  6. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  7. The industrial energy consumption in 1999

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Danish industrial energy consumption in 1999 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 1999 based on each group of branches and energy category, the energy consumption in 1997 for each group of branches and the percentage distribution on energy category, and the fuel and energy consumption of motor vehicles in 1999 based on each group of branches. (SM)

  8. Energy indicators; Energiekennzahlen in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Mauch, W. [Technische Univ. Muenchen (Germany); Forschungsstelle fuer Energiewirtschaft (FfE), Muenchen (Germany); Layer, G. [Forschungsstelle fuer Energiewirtschaft (FfE), Muenchen (Germany); Schneider, J. [Ogreb-Institut fuer Kraftwerke, Cottbus (Germany). Abt. Prozessforschung und Energetik; Ministerium fuer Umwelt, Naturschutz, Energie und Reaktorsicherheit, Berlin (Germany); Bundeswirtschaftsministerium, Bonn (Germany). Energieabteilung

    2004-07-01

    Indicators of the energy requirements of industrial plants, production processes and products provide criteria for evaluating resource consumption, emissions and saving potential. Energy indicators are used as base data for energy concepts and holistic energy balances in the framework of the exchange of information on best available techniques. The following contribution describes a methodology for the determination of energy indicators for industrial production plants. On this basis, it then analyses a number of example processes, i.e. manufacture of mineral chips and asphalt, provision of compressed air, and flue gas dedusting. (orig.) [German] Kennzahlen ueber den Energiebedarf von industriellen Anlagen, Herstellungsverfahren und Erzeugnissen liefern Kriterien zur Beurteilung des Ressourcenaufwands, der Emissionen und Einsparpotenziale. Als Basisdaten fuer Energiekonzepte und ganzheitliche Bilanzierungen eingesetzt dienen Energiekennzahlen dem Informationsaustausch ueber die besten verfuegbaren Techniken. Nachfolgend wird die methodische Vorgehensweise zur Ermittlung von Kennzahlen fuer industrielle Produktionsanlagen beschrieben. Auf dieser Basis werden beispielhaft die Mineralsplitter- und Asphaltherstellung sowie die Druckluftbereitstellung und -entstaubung analysiert. (orig.)

  9. Report on an industrial machinery engineering policy study meeting. Studies on new energy industries; Sangyo kikai engineering seisaku kenkyukai (shin energy sangyo no kenkyu) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-07-01

    Effects extended to industrial areas by new energy development were analyzed by using the industrial relation table. Technological development of new energies can mass-produce energy without being restricted by energy resource availability, and retaining manufacturing facilities can exhibit energy reserve function with security. The technologies may be suitable for local energy supply. In the aspects of industrial policies and people's living, demands on diversification and improvement of the people's living may be responded, levels of scientific technologies may be enhanced, and contribution to improving the industrial structure may be expected. The energy industry includes a large number of related industries and has vast related areas. A large number of technology induced effects can be expected in the course of research and development. A market of huge size may be estimated in the future, by which level elevation of the industrial structure would be supported. Early promotion of the new energy development is an urgent assignment for the 1980's. In order to achieve this goal, it is necessary to promote research and development, proliferation and practical application, for which the physical strength of the present Japan must be utilized to its maximum in making human and fund investments. Expansion and improvement in the industrialization infrastructures are also important, whereas the government's subsidies must be increased, and vitality in the private sector must be incorporated into organized force. (NEDO)

  10. EU energy policies achievement by industries in decentralized areas

    Science.gov (United States)

    Destro, Nicola; Stoppato, Anna; Benato, Alberto; Schiro, Fabio

    2017-11-01

    Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees) for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  11. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  12. Energy Conservation Projects to Benefit the Railroad Industry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction

  13. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  14. EU energy policies achievement by industries in decentralized areas

    Directory of Open Access Journals (Sweden)

    Destro Nicola

    2017-01-01

    Full Text Available Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  15. Strategic aspects of exploiting geothermal energy for industrial purposes

    International Nuclear Information System (INIS)

    Ludviksson, V.

    1992-01-01

    Geothermal energy is widely used in Iceland for space heating swimming pools and snow melting systems as well as for greenhouses and soil heating and aquaculture. Its contribution to the standard of living in Iceland is very substantial. The industrial applications are, however, fewer today than anticipated twenty years ago. This paper considers some of the socio-economic reasons for that. Although geothermal energy is generally a cost competitive source of energy, it is site limited and does not by itself provide sufficient economic incentive to attract manufacturing or process industries. This generally requires another, locally available production factor offering further competitive advantage to justify greenfield investments. World economic slow-downs, and structural problems in many process industries after the energy crisis of the seventies have reduced interest for investments in energy intensify industries world wide. While public sector initiative motivated by technological possibilities was instrumental for developing geothermal resources in the past, time has now come for private sector initiative, led by market interest, to identify and exploit opportunities for using geothermal energy for industrial purposes. National and local governments must, however, provide the appropriate incentives to stimulate such developments

  16. Efficient use of energy: investment practice in industry; Effiziente Energienutzung: Investitionspraxis in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, J. [BHP - Brugger, Hanser und Partner AG, Zuerich (Switzerland); Zweiacker, J.-F. [Rapp AG Ingenieure und Planer, Biel (Switzerland); Rosch, M. [Consulting Verfahrenstechnik, Allschwil (Switzerland)

    2000-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on drying processes used in industry and possible ways of promoting investment in measures to increase the efficient use of energy. The energy consumption of dehydration and drying processes used in industry is examined and the savings potential for these processes estimated. Examples of the processes investigated are given and figures for the energy consumption for dehydration and drying processes in several different industrial sectors are quoted. The report then examines, on the one hand, the factors that hem innovations in this area and, on the other, those that promote them. Further, the report looks into which reasons are responsible for the realisation or non-realisation of technically and economically viable solutions for improving the energy-efficiency of the dehydration and drying processes.

  17. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  18. Report on an industrial machinery engineering policy study meeting. Studies on new energy industries; Sangyo kikai engineering seisaku kenkyukai (shin energy sangyo no kenkyu) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-07-01

    Effects extended to industrial areas by new energy development were analyzed by using the industrial relation table. Technological development of new energies can mass-produce energy without being restricted by energy resource availability, and retaining manufacturing facilities can exhibit energy reserve function with security. The technologies may be suitable for local energy supply. In the aspects of industrial policies and people's living, demands on diversification and improvement of the people's living may be responded, levels of scientific technologies may be enhanced, and contribution to improving the industrial structure may be expected. The energy industry includes a large number of related industries and has vast related areas. A large number of technology induced effects can be expected in the course of research and development. A market of huge size may be estimated in the future, by which level elevation of the industrial structure would be supported. Early promotion of the new energy development is an urgent assignment for the 1980's. In order to achieve this goal, it is necessary to promote research and development, proliferation and practical application, for which the physical strength of the present Japan must be utilized to its maximum in making human and fund investments. Expansion and improvement in the industrialization infrastructures are also important, whereas the government's subsidies must be increased, and vitality in the private sector must be incorporated into organized force. (NEDO)

  19. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  1. Sustainable development of new energy vehicle industry in China

    Science.gov (United States)

    Li, Mingyang; Li, Lingzhi

    2018-03-01

    The new energy vehicle industry in China has developed rapidly in recent years, but there is still a gap in core technology. Some problems are brought the adverse effect on it, such as imperfect infrastructures, imperfect systems in market access and regulatory, single channels for marketing and low acceptance among consumer. Based on the development of new energy vehicle industry home and abroad, this paper puts forward some problems of new energy vehicles industry in China, then offers some feasible suggestions.

  2. The fluctuations of China’s energy intensity: Biased technical change

    International Nuclear Information System (INIS)

    Wang, Ce; Liao, Hua; Pan, Su-Yan; Zhao, Lu-Tao; Wei, Yi-Ming

    2014-01-01

    Highlights: • Biased technical change is considered in the adjusting the input–output tables. • The level of biased technical change is determined by TFP and energy efficiency. • The increase in energy intensity was mostly attributed to the structural change. • The changes in the production technology actually decreased the energy intensity. • The decomposition results are sensitive to the level of biased technical change. - Abstract: The fluctuations of China’s energy intensity have attracted the attention of many scholars, but fewer studies consider the data quality of official input–output tables. This paper conducts a decomposition model by using the Divisia method based on the input–output tables. Because of the problems with input–output tables and price deflators, we first produce constant prices to deflate the input–output tables. And then we consider different levels of biased technical change for different sectors in the adjusting the input–output table. Finally, we use RAS technique to adjust input–output matrix. Then the decomposition model is employed to empirically analyze the change of China’s energy intensity. We compare the decomposition results with and without biased technical change and do sensitive analysis on the level of biased technical change. The decomposition results are that during 2002–2007, the energy intensity of coal and electricity increased, the changes were mostly attributed to the structural change and the contribution was 594.08%, 73.88%, respectively; as for crude oil and refined oil, the energy intensity decreased, the changes were mostly attributed to the changes in the production technology and the contribution was 978.89%, 246.95%, respectively. And the results of sensitive analysis shows that 1% variation of the level of biased technical change will cause at most 0.6% change of decomposition results. Therefore, we can draw our conclusions: compared to the decomposition without biased technical

  3. Green Energy-Industrial Innovation: A Comparative Study of Green Energy Transformations in Northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Per Ove; Christiansen, Atle Christer; Koefoed, Anne Louise; Midttun, Atle; Tangen, Kristian

    1999-07-01

    Greening of industry is a prominent topic on the European agenda and has received a new impetus with the Kyoto process, where the European Union and its member states are facing new obligations. Due to its role as a major infrastructure sector and due to its extensive emissions, the electricity sector has become a focal industry in this context. These same factors, as well as the large public ownership has, in fact, traditionally placed energy in a central public political focus. The energy and electricity sector hence exemplify the intertwined nature of economics and politics in sector developments, where technology choices and capacity expansions have numerous motivations and diverse interests to please. This report discusses ''green'' innovation in the energy industry. By selecting some of the most advanced examples of breakthrough for new green technologies in Europe, it explores the basic elements of successful greening of industry. To account for the fact that product innovation- and diffusion-processes are embedded in a complex politico-economic setting, we have developed an analytical framework, incorporating both economic, political and societal elements and the interplay between them. More specifically, environmentally oriented innovation is seen as evolving out of the interplay between: 1) a technical-commercial core (major market agents, i.e. the renewable energy supply industry, associated complementary industries and consumers); 2) the political-administrative system; and 3) the societal basis, referring to existing societal customs, norms, and modes of social organisation. Drawing on Porter's (1990) analysis of business clusters, we have termed our focus ''green energy-industrial cluster'' emergence and growth. We have taken Porter's attempt to break out of a limited market analysis into a broader strategic focus one step further, where the political and institutional dimensions are more explicitly included. This implies that we see the emergence of

  4. Green Energy-Industrial Innovation: A Comparative Study of Green Energy Transformations in Northern Europe

    International Nuclear Information System (INIS)

    Eikeland, Per Ove; Christiansen, Atle Christer; Koefoed, Anne Louise; Midttun, Atle; Tangen, Kristian

    1999-01-01

    Greening of industry is a prominent topic on the European agenda and has received a new impetus with the Kyoto process, where the European Union and its member states are facing new obligations. Due to its role as a major infrastructure sector and due to its extensive emissions, the electricity sector has become a focal industry in this context. These same factors, as well as the large public ownership has, in fact, traditionally placed energy in a central public political focus. The energy and electricity sector hence exemplify the intertwined nature of economics and politics in sector developments, where technology choices and capacity expansions have numerous motivations and diverse interests to please. This report discusses ''green'' innovation in the energy industry. By selecting some of the most advanced examples of breakthrough for new green technologies in Europe, it explores the basic elements of successful greening of industry. To account for the fact that product innovation- and diffusion-processes are embedded in a complex politico-economic setting, we have developed an analytical framework, incorporating both economic, political and societal elements and the interplay between them. More specifically, environmentally oriented innovation is seen as evolving out of the interplay between: 1) a technical-commercial core (major market agents, i.e. the renewable energy supply industry, associated complementary industries and consumers); 2) the political-administrative system; and 3) the societal basis, referring to existing societal customs, norms, and modes of social organisation. Drawing on Porter's (1990) analysis of business clusters, we have termed our focus ''green energy-industrial cluster'' emergence and growth. We have taken Porter's attempt to break out of a limited market analysis into a broader strategic focus one step further, where the political and institutional dimensions are more explicitly included. This implies that we see the emergence of

  5. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  6. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  7. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  8. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  9. Potential for energy efficiency in the Norwegian land-based industry; Potensial for energieffektivisering i norsk landbasert industri

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Process Industry Association (PIL, now the Federation of Norwegian Industries) conducted in collaboration with Enova SF, Kjelforeningen - Norwegian Energy and Institute for Energy Technology, in 2002 a study to determine the potential for more environmentally efficient energy use and production in the Norwegian process industry. It was in 2007 conducted a review of the 2002-study, and this work showed that large parts of the potential identified in 2002 were not realized, and that in addition there was further potential. Enova therefore took the initiative in 2009 to do a new review of the potential for energy efficiency in the Norwegian industry. (AG)

  10. Climate Change Policy in European Countries and its effects on industry

    International Nuclear Information System (INIS)

    Proost, S.; Van Regemorter, D.

    2004-01-01

    In this paper we discuss the effects of different climate change policies on industrial activity and on welfare. We compare the effects of carbon taxes and grandfathered permits and the effects of exemptions for energy-intensive industries. We survey first the insights from economic theory and from model experiments for the US. Next we use a general equilibrium model to assess the effect of different climate change policies on industrial activity per sector and per member country in the EU. We pay particular attention to the effects of policies where one EU member state exempts its energy-intensive sectors from abatement efforts. The main findings are that, in the EU, the effects on industrial activity and the welfare costs of tradable permits or carbon taxes are small when no industrial sectors are exempted. When one member country exempts its energy intensive sector, this will reduce somewhat the impact on its activity level but will generate an extra welfare cost for the EU

  11. Ingerop - Energy activities and industry - General brochure 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Ingerop is a leading player in France and a major player internationally in engineering and consulting in sustainable mobility, energy transition and living environment and in major issues of today and tomorrow. The industrial engineering provided by Ingerop in France and for export, provides a response to customer expectations, integrating more and more the theme of sustainable development. Faced with a growing demand for electricity both in the world and in Europe Ingerop made the energy sector its priority development. The controlled use of energy (energy efficiency, renewable energy) is an ongoing challenge for Ingerop. The group continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad until the decommissioning phases in France and abroad. Ingerop continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad to decommissioning in France and abroad. Ingerop strengthens its expertise in new energy with new projects in biomass boilers and heat networks. The group has profound geothermal skills in heating networks or fatal energy recovery, permitting them to intervene with local authorities such as farmers, from feasibility studies to commissioning and assisting project management with technical studies. The expertise acquired by the group Ingerop in the 1990's, through the construction of fifty data centers on behalf of SFR, enables a significant experience going back twenty years. Furthermore, development continued on the design of more energy-efficient projects and ensuring increasingly high reliability. This brochure presents Ingerop's skills and main references in its four domains of intervention: energy industry (operation in nuclear environment, conventional power plants, new energy technologies, data centers), other industries, infrastructures, and building industry

  12. Energy conservation by hyperfiltration: food industry background literature survey

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-15

    The application of hyperfiltration to selected food product streams and food processing wastewaters for energy conservation was examined. This literature survey had led to the following conclusions: no research has been conducted in the food industry using membranes with hot process streams due to the temperature limitation (< 40/sup 0/C) of the typically studied cellulose acetate membranes; based on the bench-scale research reviewed, concentration of fruit and vegetable juices with membranes appears to be technically feasible; pretreatment and product recovery research was conducted with membranes on citrus peel oil, potato processing and brine wastewaters and wheys. The experiments demonstrated that these applications are feasible; many of the problems that have been identified with membranes are associated with either the suspended solids or the high osmotic pressure and viscosity of many foods; research using dynamic membranes has been conducted with various effluents, at temperatures to approx. 100/sup 0/C, at pressures to 1200 psi and with suspended solids to approx. 2%; and, the dynamic membrane is being prototype tested by NASA for high temperature processing of shower water. The literature review substantiates potential for dynamic membrane on porous stainless tubes to process a number of hot process and effluent streams in the food processing industry. Hot water for recycle and product concentrations are major areas with potential for economic application. The two plants involved in the first phase of the project should be reviewed to identify potential energy conservation applications. As many as possible of the conservation applications should be tested during the screening phase at each site. The most promising applications at each site should be evaluated more intensively to establish engineering estimates of the economics of this technology for the canned fruit and vegetable segment of the food industry.

  13. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure

  14. Present status and perspective of Japanese atomic energy industry

    International Nuclear Information System (INIS)

    Miura, Kenzo

    1990-01-01

    Already 35 years are going to elapse since atomic energy industry was founded in Japan, and the positive development has been carried out in the nuclear power generation mainly with light water reactors as the base energy, as the result, now both the result of electric power generation and the technology have reached the highest level in the world. These are due to the accumulation of efforts, the preponderant assignment of able men and the positive investment for the research and development of the atomic energy industry. However, since 1985, the slowdown of power reactor development, the practical use of new type power reactors such as fast breeder reactors and the establishment of nuclear fuel cycle such as uranium enrichment and fuel reprocessing have been the new situation to be dealt with. In order to properly and flexibly cope with such change of situation, the healthy development of the atomic energy industry so as to secure the market on a certain scale and develop the business with responsibility is indispensable. The outlay of electric power industry related to atomic energy, the development of atomic energy market and the sales of mining and manufacturing industries, the trend of research and development and personnel, and the perspective and subjects of hereafter are reported. (K.I.)

  15. Impact of improved technology on industrial greenhouse-gas emissions in developing countries. Phase 1

    International Nuclear Information System (INIS)

    1997-06-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. These sectors currently include iron and steel, petroleum refining, cement, paper and pulp and nitrogen fertilizers. The aim of this first phase was to describe: how energy is used in the energy-intensive industries in developing countries today; what current trends indicate for the future; the potential contribution of improved technologies and practices to moving toward more sustainable industrial production in developing countries, and to provide developing countries with an analytical tool for evaluating opportunities to limit industrial greenhouse-gas (GHG) emissions in their industrial sectors through the transfer of improved technologies and processes. The immediate objectives of Phase 1 were twofold: to provide information to developing countries in the form of an inventory of energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors, and; to provide an analytical methodology in the form of a software tool that enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology and process options. To meet these objectives, the first phase of the study comprised: a Report entitled Industrial Greenhouse-gas Emissions from Developing Countries; a Software Package containing, an Industrial Technology Inventory, and an Analysis Tool, and; Industry/country-specific Case Studies. The Report describes current energy use and greenhouse-gas emissions in energy-intensive industries in developing countries, and similar industries exemplifying good

  16. Energy Audit as a Tool for Improving System Efficiency in Industrial Sector

    OpenAIRE

    Gopi Srinath,; N. Uday Kumar

    2014-01-01

    This paper presents the characteristics of energy consumption in industrial sector, the methodology and results of energy audits (EA) performed in industrial sites and potentials for energy efficiency (EE) improvements. The present state of industrial energy in India could be characterized by significant technological out-of–date, low energy efficiency and low level of environmental protection. Presented analysis of the results of conducted energy audits in selected industrial...

  17. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  18. Energy indicators for Norway 1990-2009; Energiindikatorer for Norge 1990-2009

    Energy Technology Data Exchange (ETDEWEB)

    Boeeng, Ann Christin; Isaksen, Elisabeth; Jama, Sadiya M.; Stalund, Marita

    2011-07-01

    The main purpose with this report is to present indicators that show the coherence between energy consumption and economic activity in Norway, and by this indicate if the energy consumption becomes more efficient. The report describes trends in energy use and energy intensity for Norway for the period 1990-2009, both at the national level and for detailed industries. The total energy consumption in Norway amounted to 282 TWh in 2009. Much of this energy is used in manufacturing industries, households, oil and gas extraction and road transport. In the period 1990-2009, the total energy consumption in Norway rose by 28 per cent. An important reason for the large increase in energy consumption in Norway is the increased activity in the oil and gas extraction and road transport.The main focus in this report is energy consumption per unit of production (activity level) in constant prices as we believe this is the most suitable indicator for energy intensity in the Norwegian economy. Energy use per unit of production has shown a decline of 29 per cent from 1990 to 2009. For comparison, energy use per unit of value added decreased by 17 per cent. The decline in energy intensity is due to several factors. Energy efficient equipment and improved productivity through technological change have played an important role together with the shifts in industrial structure towards less energy-intensive manufacturing industries, energy efficient buildings, increased outdoor temperature and increased labor productivity. Industry Specific indicators Energy use in manufacturing industries has leveled off since the late nineties and energy intensity declined 44 per cent in the period 1990-2009. The decrease reflects the closure of several energy-intensive businesses and facilities in the last ten years, while the remaining companies have shifted to more energy efficient equipment. It is important to keep in mind that 2009 was a special year due to the financial crisis, and the energy-intensive

  19. Comparison and Evolution of Energy Consumption in Moroccan Agro-food Industries

    Science.gov (United States)

    El Badaoui, Meryem; Touzani, Abdellatif

    2017-06-01

    The aim of this article is to establish a comparison between the Moroccan energy consumption and the BREF the reference document on best available techniques in the food industries, then an evolution of this consumption by 2030 in order to better understand it and to define strategies to reduce energy bill. According to a survey conducted among 5000 Moroccan companies, we were able to compare the energy consumption of the agro-food industries including sugar industry, dairy industry, cereal industry; fatty substances industry and fishing industry with that of the BREF. Also an evolution of Moroccan consumption was established by 2030 using the linear regression method, and then calculated a non-negligible average annual growth rate (AAGR). The results show that the Moroccan energy consumption is adequate to that of the BREF, and an energy consumption constantly increasing by registering a non-negligible AAGR.

  20. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  1. Changes in carbon intensity in China. Empirical findings from 1980-2003

    International Nuclear Information System (INIS)

    Fan, Ying; Wei, Yi-Ming; Liu, Lan-Cui; Wu, Gang; Tsai, Hsien-Tang

    2007-01-01

    China experienced sustainable, rapid economic growth over the period 1980-2003 but, at the same time, energy-related carbon intensity showed a downward trend. It begs the question, therefore, what factors were driving this decline in carbon intensity and will this decline be maintained in future? Moreover, what measures can be adopted to ensure a continual decline in carbon intensity? These questions led to increased research in the factors governing CO 2 emission in China. This paper quantifies the driving force behind China's primary energy-related carbon intensity and measures the material production sectors' final energy-related carbon intensity. Our results show that the overwhelming contributor to the decline of energy-related carbon intensity was the reduction in real energy intensity. However, policies that focus only on the decline in energy intensity are insufficient to further decrease carbon intensity. The change of primary energy mix can improve the decline of carbon intensity. This should focus on the material production sectors' development strategies and final energy use. Greater emphasis should be given to secondary industry, which needs national and regional governments' policy support. (author)

  2. Low carbon society scenario 2050 in Thai industrial sector

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit; Masui, Toshihiko; Hanaoka, Tatsuya; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Thai industrial sector has been modelled using AIM/Enduse model. • Potential mitigation of CO 2 for 2050 is approximately 20% from Baseline scenario. • Abatement cost curves show that varied counter measures are practical in the industrial sector. • Energy security is enhanced due to CO 2 mitigation in the LCS scenario. - Abstract: Energy plays a dominant role in determining the individual competitiveness of a country and this is more relevant to emerging economies. That being said, energy also plays an important and ever expanding role in carbon emissions and sustainability of the country. As a developing country Thailand’s industrial sector is vibrant and robust and consumes majority of the energy. In addition, it also has the highest CO 2 emissions, provided the emissions of power generation are taken into account. Industry also accounts for the highest consumption of electricity in Thailand. The objective of this study is to model the Thai industrial energy sector and estimate the mitigation potential for the timeframe of 2010–2050 using the principles of Low Carbon Society (LCS). In addition, the paper would also evaluate emission tax as a key driver of Greenhouse Gas (GHG) mitigation along with Marginal Abatement Cost (MAC) analysis. Another secondary objective is to analyse the impact of mitigation on energy security of the industrial sector. The Thai industrial sector was modelled using AIM/Enduse model, which is a recursive dynamic optimisation model belonging to the Asia–Pacific Integrated Model (AIM) family. Thai industrial sector was divided into nine sub-sectors based on national economic reporting procedures. Results suggest that the mitigation potential in 2050, compared to the Baseline scenario, is around 20% with positive impacts on energy security. The Baseline emission will approximately be 377 Mt-CO 2 in the industrial sector. All four indicators of energy security, Primary Energy Intensity, Carbon Intensity, Oil

  3. Energy and emission analysis for industrial motors in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Rahim, N.A.; Ping, H.W.; Jahirul, M.I.; Mekhilef, S.; Masjuki, H.H.

    2009-01-01

    The industrial sector is the largest user of energy in Malaysia. Industrial motors account for a major segment of total industrial energy use. Since motors are the principle energy users, different energy savings strategies have been applied to reduce their energy consumption and associated emissions released into the atmosphere. These strategies include using highly efficient motors, variable speed drive (VSD), and capacitor banks to improve the power factor. It has been estimated that there can be a total energy savings of 1765, 2703 and 3605 MWh by utilizing energy-efficient motors for 50%, 75% and 100% loads, respectively. It was also found that for different motor loads, an estimated US$115,936 US$173,019 and US$230,693 can be saved in anticipated energy costs. Similarly, it is hypothesized that a significant amount of energy can be saved using VSD and capacitor banks to reduce speed and improve the power factor, thus cutting energy costs. Moreover, a substantial reduction in the amount of emissions can be effected together with the associated energy savings for different energy savings strategies. In addition, the payback period for different energy savings strategies has been found to be reasonable in some cases.

  4. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  5. Utilization of pneumatic energy in industries and Nuclear Energy Unit - a brief review

    International Nuclear Information System (INIS)

    Muhd Noor Muhd Yunus

    1984-01-01

    The purpose of this paper is to evaluate the extent of utilisation of pneumatic energy in UTN, besides depicting the capabilities of pneumatics in various field, especially in nuclear industry. Thus, a few examples of the usage of this energy in industry and UTN are explained and listed briefly. Comparisons and advantages of the pneumatics with respect to other forms of energy also discussed briefly. It is hoped that this pneumatic technology will advanced in UTN and becoming one of the alternatives of offered apart from other form of energy like hyrdaulics and electricity. (author)

  6. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  7. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  8. The energy consumption in the ceramic tile industry in Brazil

    International Nuclear Information System (INIS)

    Ciacco, Eduardo F.S.; Rocha, Jose R.; Coutinho, Aparecido R.

    2017-01-01

    The ceramic industry occupies a prominent place in the Brazilian industrial context, representing about 1.0% in the GDP composition. On the other hand, it represent about 1.9% of all energy consumed in the country, and 5.8% of the energy consumed in the Brazilian industrial sector in 2014. Regarding the power consumption by the ceramic industry, most is derived from renewable sources (firewood), followed by use of fossil fuels, mainly natural gas (NG). This study was conducted to quantify the energy consumption in the production of ceramic tiles (CT), by means of experimental data obtained directly in the industry and at every step of the manufacturing process. The step of firing and sintering has the highest energy consumption, with approximately 56% of the total energy consumed. In sequence, have the atomization steps with 30% and the drying with 14%, of total energy consumption in the production of ceramic tiles, arising from the use of NG. In addition, it showed that the production of ceramic tiles by wet process has energy consumption four times the dry production process, due to the atomization step.

  9. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  10. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  11. Proceedings of the wind energy industry conference : develop, innovate, export : held in conjunction with Quebec's first wind energy industry gala

    International Nuclear Information System (INIS)

    2008-01-01

    This conference was dedicated to the wind energy industry and business opportunities in Quebec, the rest of Canada and abroad. It was held in conjunction with Quebec's first wind energy industry gala which highlighted the organizations and individuals that have made outstanding contributions to the wind power sector in Quebec over the past three years. The entire conference focused on current and future requests for proposals in Quebec, innovation, and exports. Some fifteen reputed speakers shared their knowledge and experience regarding technological development and technical support available in Quebec. It was intended to clarify current and future issues affecting the wind power industry and to build key relations with leading wind energy players. The sessions of the conference were entitled: the wind energy industry in Quebec and Canada; issues surrounding requests for proposals; the players involved in the request for proposals; visual impacts of wind farms; data transmission during wind farm construction; innovating to move ahead of the crowd; innovation in practice; exporting as a means of development; and, exports in practice. A tour of the Baie-des-Sable wind farm was also provided. The conference featured 24 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Energy, industrialization and exportation: analysis of the metallurgy, paper and cellulose sectors; Energia, industrializacao e exportacoes: analise dos ramos metalurgico e papel e celulose

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro D.

    1993-01-01

    This work discusses the energetic issue in the Brazilian industrial area, taking into consideration historical, socio, economic, and environmental aspects. An important emphasis is given to the fact that the country accepted the installation of energy-intensive and environmentally damaging industries from developed countries, and its consequences in the Brazilian energetic system. 31 refs., 48 figs., 78 tabs.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  14. The competitive environment of the North American energy marketing industry

    International Nuclear Information System (INIS)

    Tonkin, S.L.

    1999-01-01

    Various issues regarding U.S. wholesale energy marketing were discussed with particular emphasis on how energy marketing is changing industries in North America. In 1998, the energy industry reported a growth in revenue of 26 per cent despite declining natural gas prices. It was emphasized that several major competitive issues need to be addressed by industry competitors in order to operate in this unpredictable market. These issues include profitability, market volatility and mergers and acquisitions. This paper presented a list of the top 10 North American Energy marketers in 1998. Although the number of marketers in the energy sector continues to grow, it is expected that the numbers will decline significantly within three years. This will be due mostly to the continuation of major mergers and acquisitions. It was concluded that in general, energy marketing may become an even more attractive industry because of increasing operating margins. 5 tabs., 2 figs

  15. Modeling the effects of involvement and attitudes on energy industry pursuit intentions: A systems analysis of the university-industry environment

    Science.gov (United States)

    Gross, Jordan M.

    The energy industry's struggle to attract and retain qualified employees continues to threaten the nation's economy, global competitiveness, and national security. Given the nationwide skills and labor shortage in the energy industry, this study was conducted in response to a need to identify causes of person-environment fit and its effects on engineering students' intentions to work in the energy industry after graduation. Structural equation modeling was used to examine the relationships between student inputs, environmental factors, and career-related outcomes. Two models were compared using data collected from 381 undergraduate engineering students from across the country. Results suggest that students who gained knowledge about professions in the energy industry from participating in an internship or co-op at an energy-related company perceived greater fit with the goals and values of the energy industry. In addition, this study found that students who perceive high levels of fit with the energy industry also have high industry attraction, which directly affects their energy industry pursuit intentions. Overall, this research indicates that high quality internships have the potential to increase students' perceived industry fit, which is closely tied to their career intentions. Outcomes of this study are expected to provide stakeholders with new insights to improve practices within the university-industry environment that will educate, promote, and sustain a strong energy workforce for years to come.

  16. Cyber Attacks: A New Threat to the Energy Industry

    International Nuclear Information System (INIS)

    Desarnaud, Gabrielle

    2016-01-01

    The Network and Information Security (NIS) Directive has been adopted on July 6, 2016 by the European Parliament, three years after the initial proposal by the European Commission. It paves the way for a much needed common cyber security strategy within the EU. This Edito explains the reasons why the energy industry is particularly vulnerable to cyber- attacks, and what tools this new directive brings about to protect European critical infrastructures. In about two decades, the energy industry has been deeply transformed by the digital revolution, which penetrated companies' commercial, administrative and financial branches, but also their industrial systems. From the optimization of electric grids to the precision of oil drilling, information and communication technologies (ICT) are now essential to every stage of energy production, transport and distribution processes. Data mining and analysis are increasingly considered as the energy sector's new 'black gold', and generate new activities just like the platform Predix, designed by General Electric to help energy companies (among others) collect and analyze industrial data. This silent revolution offers countless economic opportunities and paves the way for a better resource distribution and use. But it also puts physical energy infrastructures at risk

  17. Energy markets in the 1990's and beyond: A comparison of energy intensity in the United States and Japan

    Science.gov (United States)

    McDonald, S. C.

    1989-10-01

    A comparative analysis is provided of energy intensity in the U.S. and Japan. According to aggregate International Energy Agency (IEA) data, the U.S. has one of the most energy-intensive economies while Japan has one of the least. Energy-intensity measures are constructed and examined which that are more detailed than aggregate measures used by the IEA to see if they can better explain these differences. The year chosen for this analysis is 1985. The issue of energy intensity may become particularly critical if scientific findings on global climate change and greenhouse emissions lead to negotiations on restricting carbon emissions. The burning of fossil fuels is the most important anthropogenic source of carbon emissions. As shown by this analysis, developing a consistent and fair set of goals for each country for carbon emissions, which are interlocked with energy intensity, may be a difficult task.

  18. Transition of Russian energy industry to a market economy

    International Nuclear Information System (INIS)

    Makarov, A.

    1992-01-01

    The Russian energy industry by totality of politic, social and economic circumstances has entered into the sharpest crisis. Development of energy industry has practically ceased, it has appeared a decline in electricity , oil and coal production. However it has been accumulated a vast intact potential for energy conservation and the change of energy consuming equipment in USSR by the best models of the world could reduce the present annual consumption by about 500 millions.tonnes of coal equivalent

  19. Potential for energy conservaton in the metal forming industries. Progress report, July 1, 1978-August 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Avitzur, B.; Beidleman, C.R.; Smackey, B.M.

    1979-08-01

    Reduced energy consumption and improved product attributes are realizable benefits that are achievable through the adoption of optimal metal forming techniques. With the meteoric rise in energy costs, certain segments of the metal forming industries have accelerated their efforts in switching from energy intensive manufacturing techniques, e.g., casting, to metal forming, and, furthermore, from hot forming and machined components to cold forming, notably the automotive industry. The first year results of a two year study that will identify and document potential energy and cost savings associated with the adoption of low energy consumption techniques are presented. When compared with techniques requiring energy for hot forming, heat treatments, and excess or scrap material, the utilizaton of alternative metal forming processes offer considerable promise for energy savings. Descriptions of savings achieved by a combination of analytical methods and imaginative new processes are provided in the form of specific industrial case studies. The elimination of defects through the use of an analytical criteria for the prevention of the central burst is presented. Such available criteria for central burst serve as a justification for the desirability to develop criteria for the prevention of fishskin and other defects. Other savings which may be possible through the development of new technologies are included in an Appendix entitled: Recent Developments in Wire Making. One specific new process, Continuous Hydrostatic Extrusion, has been developed at Western Electric and is described in detail.

  20. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C.W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  1. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C. W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  2. Energy strategy 2050 and its effects on the industrial location Switzerland

    International Nuclear Information System (INIS)

    Maeder, Christoph

    2013-01-01

    scienceindustries is the Swiss trade association chemical pharmaceuticals biotechnology. The branch comprises around 250 companies in the most intensive value-creating fields chemicals, pharmaceuticals and biotechnology. With approx. 70,000 employees in Switzerland and 310,000 in over 80 countries, this sector generates 40 % of the total Swiss exports and contributes 44 % to the private research expenses of Switzerland. At the same time the companies face hard international competition. This lets us recognize immediately just how much the industry in Switzerland depends on good parameters for research, production and export. This value creation could not be achieved without these prerequisites. In Switzerland, besides being a regulatory and internationally outstanding corporate location, this includes, for example, an attractive tax environment or a monetary policy geared to stability. Our companies also require competitive production factors in sufficient amounts to be able to generate their important contribution to the national economy. In this context, electricity is assigned an important role, as a clean, versatile energy source that is available anytime and everywhere. That is why scienceindustries as an industrial association feels more than obliged to declare its position regarding electricity supply unambiguously to the public and politics. For our industry it is simply also a question of economic survival: the macroeconomic contribution of our industry cannot be ensured in future without a sufficient, uninterrupted and competitive electricity supply. (orig.)

  3. Wind energy in industrial areas optional, but not obvious. A study on the chances and constraints for the use of wind energy in industrial parks

    International Nuclear Information System (INIS)

    Schoolderman, J.A.; Verbeet, E.; Jochems, A.; Versteeg, K.

    2000-06-01

    The feasibility of installing wind turbines in industrial parks in the Netherlands has been investigated. An overview is given of possibilities and constraints to fit in wind turbines in industrial areas, based on the results of a literature study, a market consultation of sectoral organizations, representatives of local industrial circles and industrial experts in the field of renewable energy. Also a telephone survey was carried out among 130 entrepreneurs in the Netherlands to determine their attitudes towards the use of sustainable energy and wind energy in industrial parks. The results of the attitude study are published in a separate report for which a separate abstract has been prepared. The intermediate results were discussed at a meeting (23 February 2000), in which representatives from the industry, provinces, municipalities and the government participated

  4. Energy and Production Planning for Process Industry Supply Chains

    OpenAIRE

    Waldemarsson, Martin

    2012-01-01

    This thesis addresses industrial energy issues from a production economic perspective. During the past decade, the energy issue has become more important, partly due to rising energy prices in general, but also from a political pressure on environmental awareness concerning the problems with climate change. As a large user of energy the industry sector is most likely responsible for a lot of these problems. Things need to change and are most likely to do so considering current and assumed fut...

  5. The US textile industry: An energy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  6. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  7. Variations in embodied energy and carbon emission intensities of construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wan Omar, Wan-Mohd-Sabki [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia); Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); Panuwatwanich, Kriengsak [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia)

    2014-11-15

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.

  8. Variations in embodied energy and carbon emission intensities of construction materials

    International Nuclear Information System (INIS)

    Wan Omar, Wan-Mohd-Sabki; Doh, Jeung-Hwan; Panuwatwanich, Kriengsak

    2014-01-01

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models

  9. Calculating economy-wide energy intensity decline rate: The role of sectoral output and energy shares

    International Nuclear Information System (INIS)

    Baksi, Soham; Green, Chris

    2007-01-01

    We specify formulas for computing the rate of decline in economy-wide energy intensity by aggregating its two determinants-technical efficiency improvements in the various sectors of the economy, and shifts in economic activity among these sectors. The formulas incorporate the interdependence between sectoral shares, and establish a one-to-one relation between sectoral output and energy shares. This helps to eliminate future energy intensity decline scenarios which involve implausible values of either sectoral share. An illustrative application of the formulas is provided, using within-sector efficiency improvement estimates suggested by Lightfoot-Green and Harvey

  10. Necessity for Industry-Academic Economic Geology Collaborations for Energy Critical Minerals Research and Development

    Science.gov (United States)

    Hitzman, M.

    2012-12-01

    Economic geology is a highly interdisciplinary field utilizing a diverse set of petrologic, geochemical, geophysical, and tectonic data for improved scientific understanding of element migration and concentration in the crust (ore formation). A number of elements that were once laboratory curiosities now figure prominently in new energy technologies (e.g. wind turbines, solar energy collectors). If widely deployed, such technologies have the capacity to transform the way we produce, transmit, store, and conserve energy. To meet domestic and worldwide renewable energy needs these systems must be scaled from laboratory, to demonstration, to widespread deployment. Such technologies are materials intensive. If widely deployed, the elements required by these technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. There is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology to secure sufficient energy critical elements to undertake large-scale renewable energy development. Available federal funding for critical elements focuses on downstream areas such as metallurgy, substitutions, and recycling rather than primary deposits. Undertaking the required research to discover and mine critical element deposits in an environmentally friendly manner will require significant partnering with industry due to the current lack of federal research support.

  11. Wind energy in industrial areas. Results of an attitude survey

    International Nuclear Information System (INIS)

    Schoolderman, J.A.; Huiberts, R.G.J.

    2000-06-01

    The feasibility of installing wind turbines in industrial parks in the Netherlands has been investigated. An overview is given of possibilities and constraints to fit in wind turbines in industrial areas, based on the results of a literature study, a market consultation of sectoral organizations, representatives of local industrial circles and industrial experts in the field of renewable energy. Also a telephone survey was carried out among 130 entrepreneurs in the Netherlands to determine their attitudes towards the use of sustainable energy and wind energy in industrial parks. The results of the attitude study are published in this report. The main report is a separate report for which a separate abstract has been prepared. The intermediate results were discussed at a meeting (23 February 2000), in which representatives from the industry, provinces, municipalities and the government participated

  12. The impact of the crisis on the energy demand and energy intensity in Central and Eastern European countries

    Directory of Open Access Journals (Sweden)

    Attila HUGYECZ

    2011-12-01

    Full Text Available The purpose of our paper is to analyze the impact of the recent crisis on the oil and electricity demand and the energy intensity of different Central and Eastern European countries, namely the Czech Republic, Hungary, Poland and Slovakia. Furthermore, we would like to reveal whether there is a lag in the adjustment of energy consumption. In analyzing energy intensity, we use motor gasoline, diesel oil and electricity consumption data and ignore coal and natural gas data. By so doing, we avoid failures arising from changing coal/gas consumption due to changing weather conditions. Our results show that the crisis did impact energy consumption and reveal that the improvement of energy intensity halted in 2009, implying that the economic players did not immediately adjust their energy consumption according to their economic activity. The gasoline and diesel intensity, however, deteriorated (increased only in the Czech Republic and in Hungary. In Slovakia and Poland there were no significant changes.

  13. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    International Nuclear Information System (INIS)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  14. Canadian industry at a crossroads : submission to the Council of Energy Ministers

    International Nuclear Information System (INIS)

    2002-01-01

    This paper discusses the importance of the the oil and gas sector to the Canadian economy and emphasizes the fact that every effort should be made to ensure that the industry continues to provide long-term energy security for Canadians. The paper refers to several policy issues currently under consideration by various levels of government in Canada that could result in lack of investor confidence and competitiveness of Canada's petroleum industry. The Canadian Association of Petroleum Producers (CAPP) argues that Canada cannot meet its Kyoto target domestically without significant damage to the economy, and claims that ratification of Kyoto would force Canada to purchase major volumes of foreign credits, using money that could be better applied to research and development. If ratified, Canada would be the only country in the Americas with a Kyoto commitment, competing directly with Mexico, Columbia, Venezuela and the United States, none of which have Kyoto targets. An added disadvantage would be the risk of an extra cost of doing business in Canada. While CAPP supports a plan to reduce greenhouse gas emissions, the plan must work to include: end-use energy efficiency, sectoral agreements, focus on technology, no regional or sectoral disadvantages, and balanced policy priorities. It is emphasized that in order to continue to attract investment dollars, Canada's capital intensive oil and gas industry must remain competitive globally and nationally. The issue of taxation as a major hurdle to competitiveness is also discussed. 9 figs

  15. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  16. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    Ren Shenggang; Hu Zhen

    2012-01-01

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO 2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO 2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO 2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO 2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  17. Climate policy and energy-intensive manufacturing: A comprehensive analysis of the effectiveness of cost mitigation provisions in the American Energy and Security Act of 2009

    International Nuclear Information System (INIS)

    Bassi, Andrea M.; Yudken, Joel S.

    2011-01-01

    In response to the ongoing climate policy debates, this study examines the cost impacts of carbon-pricing legislation on selected US energy-intensive manufacturing industries. Specifically, it evaluates output-based rebate measures and the border adjustment provision specified in the bill, and tests the effectiveness of cost containment features of the policy, such as the international offsets, under various market assumptions. Results of the examination confirm that in all policy cases or industries, the output-based rebates would effectively mitigate the manufacturers' carbon-pricing costs in the short-to-medium term. However as the rebates decline after 2020, especially in a case where low-carbon electricity generation or international offsets are not readily available or implemented, these industries would suffer greater declines in profitability. At the same time, the study's findings were mixed concerning the effectiveness of the border adjustment measure in reducing cost impacts after 2020. While border adjustments could reduce costs to US manufacturing sectors, at least temporarily, they could create problems for domestic downstream producers and exports, under cost pass-along conditions. However at best, the output-based rebates, international offset, and border adjustment and measures primarily buy time for manufacturers. The only long-term solution is for EITE industries to invest in energy-saving and next-generation low-carbon technologies. - Highlights: → The output-based rebates would effectively mitigate the costs of carbon-pricing for EITE industries. → After 2021 economic impacts on the EITE industries would escalate. → The BA measure would support US firms passing through their emissions costs to their US customers. → The BA measure would not alleviate the higher production costs of US. EITE exports. → In the medium term the only true solution is for US. EITE manufacturers to invest in energy-saving technologies.

  18. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  19. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  20. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis

    International Nuclear Information System (INIS)

    Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q.

    2012-01-01

    Global awareness on energy security and climate change has created much interest in assessing economy-wide energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO 2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production framework of desirable and undesirable outputs, in this paper we construct both static and dynamic energy efficiency performance indexes for measuring industrial energy efficiency performance by using several environmental DEA models with CO 2 emissions. The dynamic energy efficiency performance indexes have further been decomposed into two contributing components. We finally apply the indexes proposed to assess the industrial energy efficiency performance of different provinces in China over time. Our empirical study shows that the energy efficiency improvement in China's industrial sector was mainly driven by technological improvement. - Highlights: ► China's industrial energy efficiency is evaluated by DEA models with CO 2 emissions. ► China's industrial energy efficiency improved by 5.6% annually since 1997. ► Industrial energy efficiency improvement in China was mainly driven by technological improvement.

  1. Energy, economic, and environmental impacts of advanced industrial process innovations, 1976--1996

    International Nuclear Information System (INIS)

    Quinn, J.E.; Reed, J.E.

    1997-01-01

    The mission of the Office of Industrial Technologies (OIT), within the Office of Energy Efficiency and Renewable Energy, is to develop and deploy advanced energy efficiency, renewable energy, and pollution-prevention technologies, through partnerships with industry, government, and non-governmental organizations. OIT's objectives have evolved and broadened over nearly two decades, continually responding to a changing energy situation and shifting national priorities. Today, the key focus of the OIT programs is the Industries of the Future approach. This strategy of close collaboration with industry catalyzes and facilitates technology development and transfer efforts in seven manufacturing industries that together account for over 80% of the energy used and over 80% of the wastes produced by the manufacturing sector. In this approach senior level industry groups develop a future vision of their industry and a technology roadmap to attain the vision. DOE helps facilitate this process and partners with industry to identify and pursue an advanced technology R and D portfolio. The seven industries are aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel. In managing all its activities, OIT draws upon program support provided primarily by national Laboratories, universities, and private-sector research organizations throughout the country that have the diverse and specialized expertise needed to develop advanced industrial technologies. Approximately 78 industrial technologies developed with Office of Industrial Technology (OIT) support have successfully entered commercial markets. These technologies have saved a cumulative total of almost 900 trillion Btu, representing a new production cost savings of over $1.8 billion. These dollar savings represent the net total value of all energy saved by technologies developed with OIT support minus the net cost to industry of using the technologies (including capital costs, operating and

  2. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  3. The Energy Industry Law - legislative deficits or appropriate legal instrument

    International Nuclear Information System (INIS)

    Boerner, B.

    1986-01-01

    Conclusion: The job of the Energy Industry Law is to secure for the government the necessary influence without endangering the private enterprise structure of the power supply industry. The Energy Industry Law has achieved satisfactory results. For it is in no way obvious that a different system would have achieved lower prices or a level of capacity more exactly tuned to sales. The powers of objection and prohibition contained in Sect. 4 of the Energy Industry Law are limited to (all) circumstances which influence the reliability and cheapness of supply. These powers should not be used to promote a nuclear power phaseout, introduce renewable energy sources, promote the protection of the environment, to counter the demand for cheapness of supply, to enforce power-heat cogeneration and to enforce decentralisation. (orig./HSCH) [de

  4. Competitive assessment of the US: Renewable energy equipment industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    This report is a competitive assessment of the U.S. renewable energy equipment industry. The contents include: Definition of technologies; Industry characteristics; Historical perspectives; Industry performance; Trends and projections; The world marketplace; and Issues and options.

  5. Nuclear dual-purpose plants for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1976-01-01

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as ten miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations

  6. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    International Nuclear Information System (INIS)

    Oladiran, M.T.; Meyer, J.P.

    2007-01-01

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries

  7. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  8. Industrial energy demand and the effect of taxes, agreements and subsidies

    International Nuclear Information System (INIS)

    Bue Bjoerner, T.; Holm Jensen, H.

    2000-10-01

    This report presents an econometric analysis of industrial companies demand for energy. The effect of energy taxes, energy agreements and subsidies to investments in energy efficiency, which have been applied as policy instruments in Denmark since 1993, is also quantified. The econometric analysis is based on an extensive database, which contains information on industrial companies consumption of energy and their value added in a number of years covering the period 1983 to 1997 (information from the years 1983, 1985, 1988, 1990, 1993, 1995, 1996 and 1997 is included). The database has been constructed by combining information from different registers in Statistics Denmark. The database contains information on the majority of all existing industrial companies with more than 20 employees (from 1995 to 1997 primary data on energy consumption were only collected for half the industrial companies with 20-50 employees). The database has a panel (longitudinal) nature, where each industrial company can be followed over time. This makes it possible to compare energy consumption in companies before and after they have been given a subsidy to invest in energy efficiency or entered an energy agreement with the Danish Energy Agency. The econometric analysis utilises the panel nature of the data by relying on so-called fixed effect estimators. (EHS)

  9. Market in Germany. Renewable energy and energy conservation in the German construction industry

    International Nuclear Information System (INIS)

    2008-02-01

    This market survey for Germany is on the subject of renewable energy and energy efficient constructing and housing improvement. In order to meet sectoral or thematic information needs of Dutch exporting industries and investing companies, the EVD facilitates the realisation of up-to-date market surveys on promising markets in selected countries. The requested study is very relevant for the Dutch exporting industry, as the German building and construction market is of increasing importance to the Dutch building, installation and equipment building sector. Moreover the German market is a European innovator on renewable energy (RE) and energy efficient (EE) homes or even so-called 'passive' houses. The developments in the German market can guide the Dutch industry in the development of their export strategies. The main target groups for the market surveys are small- and medium-sized enterprises (SMEs) in the Netherlands. Interesting groups among these SMEs are those enterprises that start their business on a foreign market [nl

  10. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  11. Kalimantan energy resource management to support energy independence and industry growth

    International Nuclear Information System (INIS)

    Rizki Firmansyah Setya Budi; Wiku Lulus Widodo; Djati Hoesen Salimy

    2014-01-01

    There are a large number of energy resource in Kalimantan such as coal, oil, CBM, gas and nuclear. While the electricity consumption still low. That condition caused by the bad energy planning. The aim of the study are to know the number and the ability of energy resource to supply the energy demand that support the growth of Kalimantan industry. The methodology are collecting and processing data through calculation using MESSAGE Program. The result is energy resource in Kalimantan can support Kalimantan energy independence and industry growth in Kalimantan. The coal resource is 34,814 million ton consumption 835 million ton, gas resource is 31,814 BSCF consumption 3,281 BSCF, Oil resource is 920 MMSTB consumption 4406 MMSTB, CBM resource is 210 TCF consumption 2.1 TCF, U 3 O 8 resource is 12,409 ton consumption zero. Whereas for hydro and biomass, the resource are 256 and 138 MWyr, the maximum consumption 185 and 126 MWyr every year. Oil consumption will exceed the resource so need import from other island or replaced by others energy that have large resource such as gas, CBM, or coal. Potency to make cleaner environment can be done by used nuclear energy. (author)

  12. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  13. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  14. Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study

    International Nuclear Information System (INIS)

    Li, Li; Lu, Yonglong; Shi, Yajuan; Wang, Tieyu; Luo, Wei; Gosens, Jorrit; Chen, Peng; Li, Haiqian

    2013-01-01

    Energy conservation and PAHs (polycyclic aromatic hydrocarbon) control are two challenges for the iron and steel industry, especially where the industry has developed at high speed. How to select appropriate technologies to improve energy efficiency and control pollution from PAHs simultaneously is encountered by both the researchers and the decision makers. This study sets up a framework on technology selection and combination which integrates technology assessment, multiple objective programming and scenario analysis. It can predict proper technology combination for different emission controls, energy conservation targets and desired levels of production. An iron and steel factory in Southwestern China is cited as a case. It is shown that stricter PAHs control will drive the transformation from process control technology to alternative smelting technology. In low PAHs limit, 25% energy reduction is a threshold. Before inclusion of a restraint on energy consumption at 25% reduction, PAHs emission is the key limiting factor for the technology selection; while after inclusion of this restraint, energy consumption becomes the key limiting factor. The desired level of production will also influence the technology selection. This study can help decision makers to select appropriate technologies to meet the PAHs control objectives and energy conservation strategies in energy-intensive industries. - Highlights: ► We predict technical strategy for energy and PAHs reduction in iron and steel mill. ► With low PAHs control objectives, process control technologies are preferable. ► With medium and high PAHs control goals, alternative smelting technology is dominate. ► In low PAHs control objective, 25% energy reduction is a threshold

  15. Energy in Eastern Europe

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The present energy market in Central and Eastern Europe differs strongly from the energy situation in open market economies. Compared to the European Communities, the energy market in Central and eastern Europe is characterized by its high energy intensity, high quantity of imported oil and gas from a one country (the ex-Soviet Union), the dominant role of solid fossil fuels in some countries, and environmental pollution. Expected future developments are the reduction of the energy intensity and the total energy consumption, the reduction of the industrial energy consumption, the reduction of the solid fossil fuels as well as the geographic distribution of energy import. The restructuring of the energy industry has been started by introducing a market orientated policy including privatisation and the promotion of the free play of price-making forces, accompanied by relatively small-scale investments. Recent data indicate a decrease of energy consumption due to the economic decline and the shut-down of companies in the heavy industries. (A.S.) 4 figs. 5 tabs

  16. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs: An Assessment of Performance Incentive Models

    Science.gov (United States)

    Gosman, Nathaniel

    of alternative performance incentive program models to manage DSM risk in BC. Three performance incentive program models were assessed and compared to BC Hydro's current large industrial DSM incentive program, Power Smart Partners -- Transmission Project Incentives, itself a performance incentive-based program. Together, the selected program models represent a continuum of program design and implementation in terms of the schedule and level of incentives provided, the duration and rigour of measurement and verification (M&V), energy efficiency measures targeted and involvement of the private sector. A multi criteria assessment framework was developed to rank the capacity of each program model to manage BC large industrial DSM risk factors. DSM risk management rankings were then compared to program costeffectiveness, targeted energy savings potential in BC and survey results from BC industrial firms on the program models. The findings indicate that the reliability of DSM energy savings in the BC large industrial sector can be maximized through performance incentive program models that: (1) offer incentives jointly for capital and low-cost operations and maintenance (O&M) measures, (2) allow flexible lead times for project development, (3) utilize rigorous M&V methods capable of measuring variable load, process-based energy savings, (4) use moderate contract lengths that align with effective measure life, and (5) integrate energy management software tools capable of providing energy performance feedback to customers to maximize the persistence of energy savings. While this study focuses exclusively on the BC large industrial sector, the findings of this research have applicability to all energy utilities serving large, energy intensive industrial sectors.

  17. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  18. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  19. Analysis on Potential of Electric Energy Market based on Large Industrial Consumer

    Science.gov (United States)

    Lin, Jingyi; Zhu, Xinzhi; Yang, Shuo; Xia, Huaijian; Yang, Di; Li, Hao; Lin, Haiying

    2018-01-01

    The implementation of electric energy substitution by enterprises plays an important role in promoting the development of energy conservation and emission reduction in china. In order to explore alternative energy potential of industrial enterprises, to simulate and analyze the process of industrial enterprises, identify high energy consumption process and equipment, give priority to alternative energy technologies, and determine the enterprise electric energy substitution potential predictive value, this paper constructs the evaluation model of the influence factors of the electric energy substitution potential of industrial enterprises, and uses the combined weight method to determine the weight value of the evaluation factors to calculate the target value of the electric energy substitution potential. Taking the iron and steel industry as an example, this method is used to excavate the potential. The results show that the method can effectively tap the potential of the electric power industry

  20. China's ongoing energy efficiency drive: Origins, progress and prospects

    International Nuclear Information System (INIS)

    Andrews-Speed, Philip

    2009-01-01

    In 2004 China's government launched a vigorous programme to reverse the trend of rising national energy intensity and to reduce intensity by 20% over the period 2006-2010. The aim of this paper is to examine this programme in the context of nearly 30 years of measures to enhance energy efficiency in China, and thus to evaluate the likelihood that today's policies will yield improvements over a longer period. The country achieved a sustained decline of energy intensity in the period 1980-2001 but this trend was reversed in 2002. This reversal arose from a shift in the structure of the economy to more energy-intensive industries and from a decline in the rate of technical innovation. The measures taken since 2003 have been directed principally at energy-intensive industries, but have also addressed other sectors of the economy. Though the energy intensity target for the year 2010 may be achieved, greater efforts will be needed to address a number of constraints which include: the reluctance to use economic and financial instruments; the dependency of energy policy on industrial and social policies; the nature of political decision-making and of public administration; a shortage of skills; and social attitudes to energy

  1. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  2. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    DEFF Research Database (Denmark)

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    In Germany, 19.6 % of the industrial final energy consumption (FEC) can be allocated to the chemical industry. Energy efficiency measures with focus on the chemical industry could thus significantly contribute to reaching the German goal of reducing greenhouse gas emissions by 80 % in 2050 compared...

  3. Review of policies and measures for energy efficiency in industry sector

    International Nuclear Information System (INIS)

    Tanaka, Kanako

    2011-01-01

    Energy efficiency in industry plays key roles in improving energy security, environmental sustainability and economic performance. It is particularly important in strategies to mitigate climate change. The evidence of great potential for cost-effective efficiency-derived reductions in industrial energy use and greenhouse gas (GHG) emissions have prompted governments to implement numerous policies and measures aimed at improving their manufacturing industries' energy efficiency. What can be learned from these many and varied initiatives? This paper provides foundation for policy analysis for enhancing energy efficiency and conservation in industry, by surveying more than 300 policies, encompassing about 570 measures, implemented by governments in IEA countries, Brazil, China, India, Mexico, Russia and South Africa. It outlines the measures' main features, their incidence of use, and their connections with specific technical actions and key stakeholders (i.e., how and where measures affect the energy efficiency of industry). It also examines the key features underlying the measures' success: (1) potential to reduce energy use and CO 2 emissions cost-efficiently; (2) ease of policy development, execution and assessment and (3) ancillary societal effects. - Highlights: → Provides foundation for policy analysis for energy efficiency in industry. → Surveys more than 300 policies and their trends, of mainly IEA countries. → Outlines measures' features, incidence of use, technical actions and stakeholders. → Examines the key features underlying the measures' success.

  4. Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand

    International Nuclear Information System (INIS)

    Adeyemi, Olutomi I.; Hunt, Lester C.

    2014-01-01

    This paper explores the way technical progress and improvements in energy efficiency are captured when modelling OECD industrial energy demand. The industrial sectors of the developed world involve a number of different practices and processes utilising a range of different technologies. Consequently, given the derived demand nature of energy, it is vital when modelling industrial energy demand that the impact of technical progress is appropriately captured. However, the energy economics literature does not give a clear guide on how this can be achieved; one strand suggests that technical progress is ‘endogenous’ via asymmetric price responses whereas another strand suggests that it is ‘exogenous’. More recently, it has been suggested that potentially there is a role for both ‘endogenous’ technical progress and ‘exogenous’ technical progress and consequently the general model should be specified accordingly. This paper therefore attempts to model OECD industrial energy demand using annual time series data over the period 1962–2010 for 15 OECD countries. Using the Structural Time Series Model framework, the general specifications allow for both asymmetric price responses (for technical progress to impact endogenously) and an underlying energy demand trend (for technical progress and other factors to impact exogenously, but in a non-linear way). The results show that almost all of the preferred models for OECD industrial energy demand incorporate both a stochastic underlying energy demand trend and asymmetric price responses. This gives estimated long-run income elasticities in the range of 0.34 to 0.96; estimated long-run price-maximum elasticities in the range of − 0.06 to − 1.22; estimated long-run price-recovery elasticities in the range of 0.00 to − 0.27; and estimated long-run price-cut elasticities in the range of 0.00 to − 0.18. Furthermore, the analysis suggests that when modelling industrial energy demand there is a place for

  5. Research and Development Financing in the Renewable Energy Industry in Brazil

    Directory of Open Access Journals (Sweden)

    Muriel de Oliveira Gavira

    2014-09-01

    Full Text Available In the last decades, the Brazilian government has put many public policies in place in order to create a favourable environment to promote energy efficiency and clean energy. In this paper we discuss the use of research and development financing support by the clean energy industry in Brazil. To do so, we carried out an empirical research analysing secondary data from legislation, literature case studies, and public and industry reports in order to determine if the companies of the clean energy industry have public financial support to research and development. Our ongoing research shows that, despite incentives to stimulate the dissemination of clean energy, the participation of some of the clean energy is very small (especially solar. We believe that the contributions of this study will assist policy makers, and the whole industry, to improve clean energy research and development investments in Brazil.

  6. Survey on alternative energy for industrial processes in Indonesia

    International Nuclear Information System (INIS)

    Masduki, B.; Sukarsono, R.; Wardaya; Suryawan, I.

    1997-01-01

    In consequence of the national industrial development, it is necessary to supply a lot of energy. This paper presented a discussion about the option of supplying nuclear processed heat as alternative energy sources for industry especially in Java island. The electrical energy requirement can be estimated rising. The stock and the requirement of energy in Indonesia is unbalance. If the oil production rate is constant, such as that of today, it can be estimated that the oil stock would be over in 20 years. The country is trying to difertify its source of energy and reduce its dependence on oil. High Temperature Reactor (HTR) produces electric and also heat at various temperature in the form of steam and gas. Heat processes from a high temperature reactor, could be used in industry for supplying heat for coal hidroforming, gasification of coal, metal annealing, petrochemical hydrogenation, distillation, purification of petrochemicals, evaporation, water heat, etc. (author). 8 refs, 1 fig., 5 tabs

  7. Demands for energy policy by industry and the economy

    International Nuclear Information System (INIS)

    Thumann, J.R.

    2007-01-01

    'The Use of Nuclear Power for Peaceful Purposes' is a key topic in energy policy which produces a split of opinions in Germany, and which the policy of the Grand Coalition seeks to bypass. The Federation of German Industries (BDI) wants to achieve a sensible way of handling this source of energy because, after all, we are facing the challenge of having to secure economic development and prosperity and, at the same time, reduce global CO 2 emissions. If this is to be achieved, industry and politics together must build a bridge into a future with less CO 2 . That bridge would be supported on 4 pillars: - a global strategy of CO 2 reduction, - energy efficiency, - a broad energy mix, - energy research and development. In these efforts, industry and the BDI consider nuclear power an indispensable part of a viable climate and energy policy. Next to lignite, nuclear power offers electricity generation at the lowest cost, and promotes climate protection through CO 2 -free generation. As far as energy efficiency and a broad energy mix are concerned, the potentials for technical development play an important role. This is an area in which German industry can develop future markets for itself by being a leader in technology. Energy research should advance the development of existing technologies and open up new options. In this way, energy research contributes to high technologies in Germany. For nuclear power, it must be ensured that German scientists are able to participate in promising developments of new reactors in the same way in which this is the case in the development and construction of ITER, the international fusion reactor, in France. (orig.)

  8. Energy and materials flows in the iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  9. Energy efficiency achievements in China's industrial and transport sectors: How do they rate?

    International Nuclear Information System (INIS)

    Wu, Libo; Huo, Hong

    2014-01-01

    China is experiencing intensified industrialisation and motorisation. In the world's largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors' performances reflect the effectiveness of China's energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector's demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China's near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and GHGs by 34–35 per cent. - Highlights: • This article makes an investigation into the effectiveness of energy conservation policies in China. • Efficiency improvement reflects the effective governance of energy conservation in China. • Numerous actions have been taken to reduce the road transport sector's demand for energy. • Coal-based energy saving technologies are critical for China's near and medium-term energy saving. • In the long run, renewable energy and expanding the railway transport system are the most effective ways

  10. The energy intensity in Lithuania during 1995-2009: A LMDI approach

    International Nuclear Information System (INIS)

    Balezentis, Alvydas; Balezentis, Tomas; Streimikiene, Dalia

    2011-01-01

    The measurement, assessment, and effective mitigation of energy intensity compose a foremost objective of contemporary energy policy. Although the European Union (EU) Member States have been experiencing the convergence in energy efficiency indicators, Lithuania, acceded to the EU in 2004, still remains peculiar with relatively high energy intensity. Our study, therefore, is aimed at analyzing the energy intensity trends in Lithuanian economy as a whole as well as in separate economic sectors. The investigation covers the period of 1995-2009. The Logarithmic Mean Divisia Index was applied for decomposition analysis. Our analysis has shown that energy efficiency falls during economic downturn. In order to facilitate these challenges the Lithuanian Government as well as business should opt for increasing energy efficiency in the most problematic sectors of transport and services. In addition, the analysis of legal acts, namely National Energy Efficiency Programme for 2006-2010 and Energy Efficiency Action plan for 2010-2016, was taken into consideration. Some suggestions, thus, were offered for successful implementation of strategic goals outlined in the aforementioned strategic documents. - Highlights: → The Logarithmic Mean Divisia Index was applied for decomposition analysis. → Our analysis has shown that energy efficiency is the most problematic issue for transport and services sectors. → The main policy document to promote energy efficiency in Lithuania, namely National Energy Efficiency Programme for 2006-2010, is analyzed in the paper.

  11. Survey of employment in the UK wind energy industry

    International Nuclear Information System (INIS)

    Jenkins, G.

    1997-01-01

    A survey of employment in the UK wind energy industry has been carried out. It related to the financial years 1993-4 and 1994-5. A questionnaire was sent to all organisations working in wind energy in the UK. Some 249 replies were received. The paper reports on the findings regarding overall employment in the industry, employment in the major sectors of the industry, jobs by type of organisation, the major employers, the location of jobs, and the overall impact on employment in the UK economy. (Author)

  12. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  13. Inequality of energy intensities across OECD countries: a note

    International Nuclear Information System (INIS)

    Alcantara, Vicent; Duro, J.A.

    2004-01-01

    This paper proposes the use of Theil's second measure to analyze international energy intensity differences. This index allows differences to be broken down within and between groups of countries in a consistent manner. An analysis of OECD countries for the period 1971-1999 shows some basic points: first, the fall in energy intensities differences is attributable both to within-group and between-group inequality components; second, between-group inequalities are currently the main contributor to the whole inequality value; finally, a detailed exploration on within-group inequalities reveals the significant explanatory role played by EU-countries

  14. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  15. [Decomposition model of energy-related carbon emissions in tertiary industry for China].

    Science.gov (United States)

    Lu, Yuan-Qing; Shi, Jun

    2012-07-01

    Tertiary industry has been developed in recent years. And it is very important to find the factors influenced the energy-related carbon emissions in tertiary industry. A decomposition model of energy-related carbon emissions for China is set up by adopting logarithmic mean weight Divisia method based on the identity of carbon emissions. The model is adopted to analyze the influence of energy structure, energy efficiency, tertiary industry structure and economic output to energy-related carbon emissions in China from 2000 to 2009. Results show that the contribution rate of economic output and energy structure to energy-related carbon emissions increases year by year. Either is the contribution rate of energy efficiency or the tertiary industry restraining to energy-related carbon emissions. However, the restrain effect is weakening.

  16. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  17. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  18. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  19. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  20. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

    International Nuclear Information System (INIS)

    Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C.

    2010-01-01

    The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles. This paper describes a life cycle assessment (LCA) methodology and the general modeling assumptions used to evaluate the impact of Al intensive vehicle on GHG emissions and energy consumption. The results indicated that the reductions in life cycle GHG emissions and energy consumption were not significant when the maximum Al content in an automobile is 145 kg, which is the average level of Al usage in automobiles in North America. A neural network methodology was used to forecast the vehicle stock in China from 2010 to 2020 and a vehicle fleet model was established to track GHG emissions and energy consumption of the vehicle fleet. A material availability factor was also introduced into the LCA methodology to further assist decision makers in providing rational proposals for a widespread implementation of Al in automobiles. A sensitivity analysis was also conducted to study the impact of the Al content in a vehicle on the final outcomes. The GHG emissions and energy consumption could be further reduced when the Al content in an automobile increases.