WorldWideScience

Sample records for energy input requirements

  1. Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.; Grado, S.C.

    1992-01-01

    A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel

  2. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  3. MARS code manual volume II: input requirements

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  4. The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000 - An input-output analysis

    International Nuclear Information System (INIS)

    Park, Hi-Chun; Heo, Eunnyeong

    2007-01-01

    As energy conservation can be realized through changes in the composition of goods and services consumed, there is a need to assess indirect and total household energy requirements. The Korean household sector was responsible for about 52% of the national primary energy requirement in the period from 1980 to 2000. Of this total, more than 60% of household energy requirement was indirect. Thus, not only direct but also indirect household energy requirement should be the target of energy conservation policies. Electricity became the main fuel in household energy use in 2000. Households consume more and more electricity intensive goods and services, a sign of increasing living standards. Increases in household consumption expenditure were responsible for a relatively high growth of energy consumption. Switching to consumption of less energy intensive products and decrease in energy intensities of products in 1990s contributed substantially to reduce the increase in the total household energy requirement. A future Korean study should apply a hybrid method as to reduce errors occurred by using uniform (average) prices in constructing energy input-output tables and as to make energy intensities of different years more comparable. (author)

  5. Input data required for specific performance assessment codes

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Starmer, R.J.; Dicke, C.A.; Leonard, P.R.; Maheras, S.J.; Rood, A.S.; Smith, R.W.

    1992-02-01

    The Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory generated this report on input data requirements for computer codes to assist States and compacts in their performance assessments. This report gives generators, developers, operators, and users some guidelines on what input data is required to satisfy 22 common performance assessment codes. Each of the codes is summarized and a matrix table is provided to allow comparison of the various input required by the codes. This report does not determine or recommend which codes are preferable

  6. Mars 2.2 code manual: input requirements

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Won Jae; Jeong, Jae Jun; Lee, Young Jin; Hwang, Moon Kyu; Kim, Kyung Doo; Lee, Seung Wook; Bae, Sung Won

    2003-07-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS. MARS development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  7. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  8. Reducing external speedup requirements for input-queued crossbars

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2005-01-01

    This paper presents a modified architecture for an input queued switch that reduces external speedup. Maximal size scheduling algorithms for input-buffered crossbars requires a speedup between port card and switch card. The speedup is typically in the range of 2, to compensate for the scheduler...... performance degradation. This implies, that the required bandwidth between port card and switch card is 2 times the actual port speed, adding to cost and complexity. To reduce this bandwidth, a modified architecture is proposed that introduces a small amount of input and output memory on the switch card chip...

  9. Indirect energy input of agricultural machinery in bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, Hannu J.; Ahokas, Jukka [Department of Agrotechnology, University of Helsinki, P.O. Box 28 (Koetilantie) 3, FI-00014 Helsinki (Finland)

    2010-01-15

    Sustainability of bioenergy products should be evaluated by means of an energy analysis that takes into account all relevant direct and indirect energy inputs. Direct energy input is viewed as the major energy consuming factor, and is quite easy to measure. Indirect energy input, however, has received relatively scant attention, so it is likely to be insufficiently analysed and possibly underestimated. This paper reviews the data available and suggests the type of research that would be needed to get a better understanding of the indirect energy input. The analysis addresses questions about the use of energy to produce and maintain agricultural machinery, the allocation of energy to different bioenergy products, and the real use and lifetime of machinery. (author)

  10. Fishing input requirements of artisanal fishers in coastal ...

    African Journals Online (AJOL)

    Efforts towards increase in fish production through artisanal fishery can be achieved by making needed inputs available. Fishing requirements of artisanal fishers in coastal communities of Ondo State, Nigeria were studied. Data were obtained from two hundred and sixteen artisans using multistage random sampling ...

  11. KAJIAN INPUT ENERGI PADA BUDIDAYA PADI METODE SYSTEM OF RICE INTENSIFICATION Studies on Energy Input in System of Rice Intensification Method of Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Bambang Purwantana

    2012-05-01

    Full Text Available System of Rice Intensification (SRI is a rice cultivation method that intensively control and manage macro and micro nutrients as well as irrigation. This paper quantifies and compares the energy uses of SRI and conventional rice cultiva- tion systems. The study was conducted at some SRI’s experimental plots in the districts of Sleman, Kulonprogo, and Bantul, the province of Yogyakarta. The calculation of the energy was based on the farmers’ work schedule, the time required for each operation, the number of laborers, machines, tools, fuel, and all materials and inputs used. The result shows that SRI method consumed 35% less energy to conventional rice cultivation. Energy inputs from seed, water, fertilizer and pesticide were significantly reduces. However, there was higher input of human energy due to compost- ing, land preparation and weeding operations. The specific energy of SRI method was 1.96 MJ ha-1 lower than conven- tional method of 4.43 MJ ha-1. In the SRI method, 56.2 % of energy consumed was classified as direct energy and 43.8% was indirect energy. The SRI method used 61.9 % of renewable energy and 38.1 % of non-renewable energy. The working efficiency in composting and weeding operations should be improved in perspective of machine and tools to reduce the use of human energy. ABSTRAK System of Rice Intensification (SRI, merupakan suatu metode budidaya padi secara intensif dengan pengendalian unsur-unsur hara makro dan mikro disertai pengendalian dan pengaturan kebutuhan air. Penelitian ini bertujuan untuk menganalisis penggunaan energi dan mengidentifikasi kemungkinan penghematan energi pada budidaya padi SRI. Pe- nelitian dilakukan di Kabupaten Sleman, Kulonprogo, dan Bantul, Propinsi Daerah Istimewa Yogyakarta. Pengamatan dilakukan pada plot-plot percobaan budidaya padi SRI dengan melakukan audit seluruh input energi selama proses budidaya dan dikomparasikan dengan input energi pada budidaya padi cara konvensional. Hasil

  12. MONITORING OF ELECTRICAL ENERGY QUALITY ON THE TRACTION SUBSTATION INPUT

    Directory of Open Access Journals (Sweden)

    O.G. Gryb

    2015-12-01

    Full Text Available For the implementation of measures to maintain the quality of the energy industrial enterprises have to spend a significant material and monetary assets. In this regard, significant is the feasibility study of the allocation of such funds and, primarily, the determination of the economic damage arising from low quality of electricity. The reliability of the electricity metering system, relay protection and automation of modern digital substations depends on the quality of electrical energy. At the present time to improve the reliability of the substation operation it is necessary to monitor indicators of quality of electric energy, allowing you to take organizational and technical solutions for their improvement. Monitoring the power quality at the input traction substation has shown that indicators such as the coefficient of the n-th harmonic component of the voltage does not meet the standards GOST 13109-97. The source of higher harmonics is a voltage Converter used on the locomotive. To eliminate higher harmonics in the supply network for traction substations will need to install power filters. Today, the USB-analyzer of power quality «Digital measurement system of power quality» type of CSICE of accuracy class 0.2. Work energy requires reliable and quality electricity supply to consumers. The new model of balancing energy market are bilateral contracts. The main task of this market, it ensure the stable and reliable operation of the unified energy system of Ukraine, that is, transmission and supply of electricity of appropriate quality.

  13. Critical double impulse input and bound of earthquake input energy to building structure

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2015-06-01

    Full Text Available A theory of earthquake input energy to building structures under single impulse is useful for disclosing the property of energy transfer function. This property shows that the area of the energy transfer function is constant irrespective of natural period and damping of building structures. However single impulse may be unrealistic from a certain viewpoint because the frequency characteristic of input cannot be expressed by this input. In order to resolve such issue, a double impulse is introduced in this paper. The frequency characteristic of the Fourier amplitude of the double impulse is found in an explicit manner and a critical excitation problem is formulated with an interval of two impulses as a variable. The solution to that critical excitation problem is derived. An upper bound of the earthquake input energy is then derived by taking full advantage of the property of the energy transfer function that the area of the energy transfer function is constant. The relation of the double impulse to the corresponding one-cycle sinusoidal wave as a representative of near-fault pulse-type waves is also investigated.

  14. Microbial Communities Are Well Adapted to Disturbances in Energy Input.

    Science.gov (United States)

    Fernandez-Gonzalez, Nuria; Huber, Julie A; Vallino, Joseph J

    2016-01-01

    Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic "unstable" communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating

  15. Cumulative input/output balance of a mechanical-biological waste treatment plant. Comparison of construction material requirements, operating energy expenditure, and the requirement of auxiliary materials in comparison with waste combustion; Kumulative Bilanzierung der mechanisch-biologischen Restabfallbehandlung - Baumaterialien und betrieblicher Energie- und Hilfsstoffaufwand im Vergleich zur Muellverbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, R.; Fricke, K. [Ingenieurgemeinschaft Witzenhausen (Germany); Vogtmann, H. [Hessisches Landesamt fuer Regionalentwicklung und Landwirtschaft, Kassel (Germany)

    1998-12-31

    The study strikes a cumulative input/output balance of an existing waste conditioning plant considering not only operating energy demand but also the required construction materials for erecting the plant. In operation since 1996, the waste conditioning plant is entirely state of the art; hence the data obtained are up to date. The results are compared with relevant results for a waste processing plant and evaluated. (orig.) [Deutsch] Im Rahmen der vorliegenden Untersuchung erfolgt eine kumulative Bilanzierung einer bestehenden MBA-Anlage, wobei neben den betrieblichen Energieaufwendungen auch die Baumaterialien zur Herstellung der Anlage beruecksichtigt werden. Die seit 1996 in Betrieb befindliche Abfallbehandlungsanlage entspricht weitestgehend dem Stand der Technik der MBA, wodurch die Aktualitaet der Daten gegeben ist. Die Ergebnisse der Bilanzierung werden im Vergleich zu einer MVA dargestellt und bewertet. (orig.)

  16. Energy inputs and outputs in a chickpea production system in ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum L.) is one of the most important grain legumes which traditionally cultivated in marginal areas and saline soils. In this study, chickpea production in Kurdistan, Iran and the energy equivalences of input used in production were investigated. The aims of this study were to determine the amount of ...

  17. Revolutions in energy input and material cycling in Earth history and human history

    Science.gov (United States)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  18. Input-output analysis for installing renewable energy systems

    International Nuclear Information System (INIS)

    Itoh, Y.; Nakata, T.

    2004-01-01

    Renewable energy facilities have been installed in many regions, because of their possibility to be an alternative to fossil fuels for mitigating global warming. Besides the profitability of renewable energy businesses, indirect economic effects of installing renewable energy facilities should be clarified. This study examines the possibility that the renewable energy facilities give renewed impetus to regional economic progress. The economic effects are analysed with input-output techniques in a rural area in Japan. As a consequence, both positive and negative effects on the rural economy are derived. In addition, we will focus on the changes in sectors such as construction, business services, banking, etc. as a result of economic activities for renewable systems. The business benefits of renewable energy system are discussed. (author)

  19. Fertilizer consumption and energy input for 16 crops in the United States

    Science.gov (United States)

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  20. Energy analysis handbook. CAC document 214. [Combining process analysis with input-output analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, C. W.; Penner, P. S.; Pilati, D. A.

    1976-10-01

    Methods are presented for calculating the energy required, directly and indirectly, to produce all types of goods and services. Procedures for combining process analysis with input-output analysis are described. This enables the analyst to focus data acquisition cost-effectively, and to achieve a specified degree of accuracy in the results. The report presents sample calculations and provides the tables and charts needed to perform most energy cost calculations, including the cost of systems for producing or conserving energy.

  1. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  2. EROI of crystalline silicon photovoltaics : Variations under different assumptions regarding manufacturing energy inputs and energy output

    OpenAIRE

    Lundin, Johan

    2013-01-01

    Installed photovoltaic nameplate power have been growing rapidly around the worldin the last few years. But how much energy is returned to society (i.e. net energy) by this technology, and which factors contribute the most to the amount of energy returned? The objective of this thesis was to examine the importance of certain inputs and outputs along the solar panel production chain and their effect on the energy return on (energy) investment (EROI) for crystalline wafer-based photovoltaics. A...

  3. Energy embodied in the international trade of China. An energy input-output analysis

    International Nuclear Information System (INIS)

    Liu, Hongtao; Xi, Youmin; Guo, Ju'e; Li, Xia

    2010-01-01

    Growing international trade has not only positively affected the People's Republic of China's (China's) economic development, but also expanded the exportation of energy embodied in goods during their production. This energy flow out will pose risks to China's rational utilization of natural resources as well as environmental protection. In this paper, we evaluate the energy embodied in goods produced in China during 1992-2005 and use input-output structural decomposition analysis to identify five key factors causing the changes of energy embodied in exports. (Direct primary energy efficiency, primary energy consumption structure, structure of intermediate inputs, structure of exports, and scale of exports.) For the three sub-periods of 1992-1997, 1997-2002, and 2002-2005, results show that China is a net exporter of energy, and the energy embodied in exports tends to increase over time. The expanding total volume of exports and increasing exports of energy-intensive goods tend to enlarge the energy embodied in exports within all three sub-periods, but these driving forces were offset by a considerable improvement of energy efficiency and changes in primary energy consumption structure from 1992 to 2002 and the effects of structure of intermediate input only in the sub-period from 1992 to 1997. From 2002 to 2005, the sharp augmentation of energy embodied in exports was driven by all the five factors. Our research has practical implications for the Chinese economy. Results of this study suggest that the energy embodied in trade should receive special attentions in energy policies design to limit the energy resource out-flow and pollution generation. (author)

  4. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  5. Energy requirement of some energy resources

    International Nuclear Information System (INIS)

    Chapman, P.F.; Hemming, D.F.

    1976-01-01

    The energy requirements for the sources of energy under examination are expressed as the fraction of total energy consumed in the production of a unit of gross output. Clearly there are vast differences between the energy requirements of these sources of fuels. Using energy analysis it is possible to indicate points of futility where no net energy is produced (i.e. Xsub(f) = 1). For North Sea oil fields using current technology, this appears to occur at a field size of 100,000-200,000 tons of recoverable reserves of oil. For oil shales exploited using above-ground retorting, the outer limit is at a grade of about 5 gal/ton. For uranium ores used to fuel a burner reactor, the cut-off grade was found to be of the order of 20 ppm. However, it should be remembered that at Xsub(f) = 1, there is no net output and the price of the fuel would be infinite. Because of payments to labour and capital, the upper limit of economic viability may well occur at values of Xsub(f) from 0.1 to 0.2. Thus uranium ores of a grade of 100 ppm U 3 O 8 or less may not be ecomically viable using current burner reactors and this in turn implies an upper bound for the total thermal reactor capacity. For oil shales exploited using above-ground retorting and room-and-pillar mining 15-20 gal/ton shale may represent the upper limit of economic viability, depending on the efficiency that can be achieved in a commercial-scale retort

  6. Superluminal travel requires negative energies

    OpenAIRE

    Olum, Ken D.

    1998-01-01

    I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier time than any neig...

  7. Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming

    Directory of Open Access Journals (Sweden)

    Veronica Arthurson

    2011-05-01

    Full Text Available Both organic and conventional farming processes require energy input in the form of diesel fuel for farming equipment, animal feed, and fertilizer compounds. The most significant difference between the two methods is the use in conventional farming of mineral fertilizers and pesticides that are minimally employed in organic management. It is argued that organic farming is more environmentally friendly, given that synthetic fertilizers mainly used at conventional farms are replaced with animal manure and cover crops. Nutrient uptake by plants is additionally enhanced by the effective use of rhizobia and other types of plant growth-promoting bacteria, in combination with arbuscular mycorrhizal fungi. This article aims to compare the amounts and/or types of energy and nutrients required for both farming systems and provide feasible suggestions for the sustainable use of farm resources in combination with good crop yields.

  8. Effects of six primary tillage implements on energy inputs and residue cover in Central Italy

    Directory of Open Access Journals (Sweden)

    Roberto Fanigliulo

    2016-09-01

    Full Text Available The use of agricultural machinery represents the main aspect contributing to the total energy input in the agricultural system. The study evaluated the energy requirements and the work quality of two conventional (threefurrow plough and spading machine and of four conservation implements (rotary harrow, subsoiler, disk harrow, combined cultivator for mediumdeep primary tillage in a silty-clay soil, widespread in Central Italy. The tests were carried out with the aim of selecting the most energy-efficient implement. Working speed, force of traction, fuel consumption and energy demands were measured, using a 205 kW instrumented tractor. Cloddiness and roughness of the tilled soil, biomass coverage index and burying degree were evaluated. The conservation tillage implements gave the best results in fuel consumption and energy requirements respect to the conventional implements, with energy savings up to 86% in the case of disk harrow. The rotary harrow showed intermediate values and the best soil refinement. Among the conservation implements, the disk harrow showed the best performance on biomass coverage index (43.8%, while the combined cultivator showed the highest value of biomass burying (87.8% and the best performance on fuel consumption per hour (25.8 kg h–1.

  9. Requirements for an energy policy

    International Nuclear Information System (INIS)

    Conant, M.A.

    1987-01-01

    The central issue facing the US today lies in the rise of oil imports. No supergiant (5 billion barrels) oil discoveries have been made in the US. Production from existing fields is declining. The 1985-86 oil price collapse from $26 to less than $15 per barrel had a disastrous effect on the budgets of smaller oil companies which do most of the exploring, and on the service industry. Budgets for overseas exploration has been generally sustained. Oil prices are not expected to sustain domestic exploration. Gulf oil sources will, in the next five years, supply some 75 percent of all oil in international trade. Without an energy policy, involvement in Middle East oil will grow exponentially, as will the needs of others for Gulf oil. The natural gas situation is different, with a spare producing capacity of one trillion cubic feet this year, which could double next year. Natural gas deregulation has created an unbelievable mess in the requirements of producers/suppliers and purchasers to have dependable business arrangements. Coal is plentiful and will be until the end of time. Public opposition to emission problems and the greenhouse effect are an obstacle to greater use of coal. The nuclear option may be dead, with no new orders since 1978. Statistics are provided on proven world reserves of conventional crude oil, recoverable heavy oils, tar sands, and shale oil; which indicates for the long term an ability to transform the Geopolitics of oil away from the middle east. Energy options require energy R ampersand D, use of Alaskan gas, conservation and efficiency in energy use, strategic reserves, close energy relations with allies, and a government-industry link which insures meeting the US oil needs from the Western Hemisphere

  10. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  11. Investigation of energy inputs for peach production using sensitivity analysis in Iran

    International Nuclear Information System (INIS)

    Royan, Mahsa; Khojastehpour, Mehdi; Emadi, Bagher; Mobtaker, Hassan Ghasemi

    2012-01-01

    Highlights: ► We investigated energy use and inputs–output relationship in peach production. ► Total energy consumption in peach production was 37536.96 MJ ha −1 . ► Diesel fuel with about (26.32%) was the major energy consumer. ► Energy use efficiency and energy productivity were 0.55 and 0.29 kg MJ −1 . ► The machinery energy was the most significant input affecting the output level. - Abstract: The purpose of this research was to investigate the energy balance between the energy inputs and yield in peach production in Golestan province of Iran as a case study. The results showed that total energy consumption in peach production was 37536.96 MJ ha −1 where the diesel fuel with about (26.32%) was the major energy consumer. The direct energy shared about (50.98%) whereas the indirect energy did (49.02%). Energy use efficiency, energy productivity, specific energy and net energy were 0.55, 0.29 kg MJ −1 , 3.41 MJ kg −1 and −16642.03 MJ ha −1 , respectively. Econometric assessment results revealed that the energy inputs of human labor, machinery, diesel fuel, chemical fertilizers and farm yard manure had significant influence on the yield. The impact of human labor energy (1.36) was found as the highest among the other input parameters. Sensitivity analysis indicated that the MPP value of energy inputs was between −2.8 and 11.31. Also the MPP value of human labor was the highest, followed by diesel fuel and farm yard manure energy inputs, respectively.

  12. Monitoring of electrical energy quality on the traction substation input

    OpenAIRE

    Gryb, O. G.; Gapon, D. A.; Ierusalimova, T. S.; Borodin, D. V.

    2015-01-01

    For the implementation of measures to maintain the quality of the energy industrial enterprises have to spend a significant material and monetary assets. In this regard, significant is the feasibility study of the allocation of such funds and, primarily, the determination of the economic damage arising from low quality of electricity. The reliability of the electricity metering system, relay protection and automation of modern digital substations depends on the quality of electrical energy. A...

  13. Input data requirements for performance modelling and monitoring of photovoltaic plants

    DEFF Research Database (Denmark)

    Gavriluta, Anamaria Florina; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    This work investigates the input data requirements in the context of performance modeling of thin-film photovoltaic (PV) systems. The analysis focuses on the PVWatts performance model, well suited for on-line performance monitoring of PV strings, due to its low number of parameters and high...... accuracy. The work aims to identify the minimum amount of input data required for parameterizing an accurate model of the PV plant. The analysis was carried out for both amorphous silicon (a-Si) and cadmium telluride (CdTe), using crystalline silicon (c-Si) as a base for comparison. In the studied cases...

  14. Energy prices and the post oil/energy crisis Brazilian inflation: an input-output study

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Resende, M.deM.

    1982-01-01

    This study is an attempt to understand the implications of the OPEC-induced severalfold increase in the international price of oil for average and sectoral domestic prices in Brazil, a large oil-importing open developing economy. Rather than using a Keynesian model (focusing on the universal characteristics of an economy), the study makes use of an open-price input-output model (capturing the structural characteristics of the Brazilian economy). The first three chapters, descriptive in nature, place in perspective the following three, which detail the model and the empirical results. The main conclusion is that, despite the significant increase observed in the post-crisis period, the relative percentage contribution of primary energy to wholesale inflation in Brazil is still relatively minor. A conservative estimate suggests that, in the years of substantial acceleration (1974 and 1979), approximately 15% of the wholesale inflation was due to energy (basically crude oil and oil derivatives). Though such low estimates are partly due to the limitations and assumptions underlying input-output analysis, it seems that the acceleration of inflation is related to more than cost increases originating in energy prices. It also seems to be related to agricultural and labor prices, as well as to the government's decision to abruptly and inopportunely raise several important product prices.

  15. Energy input in conventional and organic paddy rice production in Missouri and Italy: A comparative case study.

    Science.gov (United States)

    Pagani, Marco; Johnson, Thomas G; Vittuari, Matteo

    2017-03-01

    The expected decline in availability of fossil fuels over the next several decades, either because of resource depletion or because of limits on carbon emissions, is leading to a keen interest in finding more sustainable energy sources. For this reason, it is useful to assess the energy footprint of alternative agricultural systems for crops and animal production and to identify potential transition scenarios to systems largely based on renewable energy. The present work aims to assess for the first time a comparative analysis of energy inputs in rice production systems in Southern Europe (Piemonte, Italy) and in North America (Missouri, USA). A total of twelve rice farms, either conventional or organic, were selected, collecting detailed data on direct (fuel and electricity) and indirect (machinery, fertilizers, pesticides, and seeds) energy inputs. While energy input of conventional farms ranged from 3.5 to 7 MJ/kg paddy rice, organic farming could reduce inputs by more than 50% with only 8% yield decrease. A significant reduction in fuel or electricity use can be achieved also with no till and surface irrigation. The use of renewable energy sources, as already practiced by some farms, could more than cover their electrical energy requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Energy inputs for production of wheat in Pakistan

    International Nuclear Information System (INIS)

    Khan, M.A.

    2002-01-01

    The energetics of the wheat crop on rainfed farms have been worked out and compared with the farms having canal and tube well irrigation. A survey was conducted to investigate the pattern of energy used in production of wheat. The information was recorded from selected farms through biweekly visits. Results indicated that the farmers on bullock operated farms used more family labour than tractor operated farms, whereas, farmers on tractor operated farms used more casual labour. Bullocks were main source of power for all farms operations on bullock operated farms, however, threshing was performed with tractor driven threshers on almost all farms. Farmers on tube well irrigated farms used maximum energy to irrigate their crop.(author)

  17. Residential-commercial energy input estimation based on genetic algorithm (GA) approaches: an application of Turkey

    International Nuclear Information System (INIS)

    Ozturk, H.K.; Canyurt, O.E.; Hepbasli, A.; Utlu, Z.

    2004-01-01

    The main objective of the present study is to develop the energy input estimation equations for the residential-commercial sector (RCS) in order to estimate the future projections based on genetic algorithm (GA) notion and to examine the effect of the design parameters on the energy input of the sector. For this purpose, the Turkish RCS is given as an example. The GA Energy Input Estimation Model (GAEIEM) is used to estimate Turkey's future residential-commercial energy input demand based on gross domestic product (GDP), population, import, export, house production, cement production and basic house appliances consumption figures. It may be concluded that the three various forms of models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies. (author)

  18. Energy input-output analysis of rice cultivation in the coastal region of Bangladesh

    Directory of Open Access Journals (Sweden)

    Masudur Rahman

    2015-08-01

    Full Text Available An analysis of energy input-output in boro rice cultivation was undertaken for well recognized salinity classes (S1 -S5 and farm categories (landless, marginal, small, medium, and large in south-west coastal Bangladesh. A total of 125 target farmers were surveyed by using structured questionnaire during the boro season (January-May 2011. Survey data were converted into energy by using the respective energy co-efficient equivalents. The results revealed that the sequences of total energy input were S1 > S5 > S2 > S4 > S3 and medium > large > landless > small > marginal among salinity regimes and farm categories, respectively. The seedbed stage consumed the highest energy followed by growing stage, and harvesting and threshing. Inorganic fertilizers accounted for a major share (59.98% of energy input in rice field, while the lowest share was estimated for manpower (0.75%. Among fertilizers, nitrogen category was the most dominant source (54.94% of energy input following phosphate (3.82% and potassium (1.22%. The total output energy was in the sequences of S1 > S4 > S5 > S2 >S3 and landless > marginal > small > medium > large. Energy from main product (rice grains was higher than that of byproduct (straw. The study also found that total output energy decreases with increases in farm size. In case of energy efficiency (output-input ratio, S4 was found to be the most energy efficient (2.43 regime followed by S3, S1, S5 and S2, whereas marginal sized farmers were the most energy efficient (2.12 followed by landless, small, medium and large. This study shows that increased energy input in rice cultivation is not always necessary to get higher output energy in the salinity affected coastal Bangladesh. Therefore, it is necessary to practice environmentally sound management systems for sustainable rice production.

  19. Structural Decomposition Analysis of China’s Industrial Energy Consumption Based on Input-Output Analysis

    Science.gov (United States)

    Huang, X. Y.; Zhou, J. Q.; Wang, Z.; Deng, L. C.; Hong, S.

    2017-05-01

    China is now at a stage of accelerated industrialization and urbanization, with energy-intensive industries contributing a large proportion of economic growth. In this study, we examined industrial energy consumption by decomposition analysis to describe the driving factors of energy consumption in China. Based on input-output (I-O) tables from the World Input-Output Database (WIOD) website and China’s energy use data from 1995 to 2011, we studied the sectorial changes of energy efficiency during the examined period. The results showed that all industries increased their energy efficiency. Energy consumption was decomposed into three factors by the logarithmic mean Divisia index (LMDI) method. The increase in production output was the leading factor that drives up China’s energy consumption. World Trade Organization accession and financial crises had great impact on the energy consumption. Based on these results, a series of energy policy suggestions for decision-makers has been proposed.

  20. The long-term development of the energy input in transportation, 1970-2020

    Energy Technology Data Exchange (ETDEWEB)

    Meiren, P.B. [E.F.C.E.E., Mechelen (Belgium)

    1996-12-01

    This paper is a - modest - statistical and economic analysis of the energy input in the transportation sector over the past twenty-five years (1970 - 1995) and an attempt at looking ahead over the next twenty-five years (1995 - 2020). After World War II passenger cars and trucks became the means of transportation par excellence and are still the main vehicle for moving around, both men and freight. Energy input statistics were born. Let us see what they teach us. (EG)

  1. SaskEnergy small volume customers - direct gas purchase stakeholder discussion and public input report

    International Nuclear Information System (INIS)

    Davidson, M. A.

    1998-01-01

    With the approval of the Provincial Government of Saskatchewan, SaskEnergy, the provincial utility decided to extend the premise of natural gas deregulation to all sizes of customers by opening the core market for natural gas commodity sales to private sector natural gas agents, brokers and marketers (ABMs). SaskEnergy will continue to provide natural gas transportation and storage related services. Before doing so, the Utility sought to discuss with various stakeholders the terms and conditions that would need to be met by industry to enter into the Saskatchewan market. To assure a balanced interest during the discussions that would include a perspective on consumer protection requirements, the Utility contracted KPMG Regina to chair the stakeholders discussion table and facilitate a public input process for interested individuals to channel comments and seek responses to questions. This report contains the edited summary of the four meetings held by stakeholders. The stakeholders were successful in providing SaskEnergy with insight and suggestions to ensure that a direct purchase market will be developed in Saskatchewan, and that consumers will have objective information to make informed choices about their natural gas purchase options. The meetings also produced an ABMs Code of Conduct, a Direct Purchase 'Enrollment Agreement' and a 'Disclosure Agreement' and delivery terms and conditions for the core market that are similar to industry requirements in the rest of Canada. Copies of the draft forms are included in appendices to this summary report

  2. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    Energy Technology Data Exchange (ETDEWEB)

    Horsey, Henry; Fleming, Katherine; Ball, Brian; Long, Nicholas

    2016-08-26

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is called metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.

  3. Input data requirements for special processors in the computation system containing the VENTURE neutronics code

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1979-07-01

    User input data requirements are presented for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated

  4. Nursing home staffing requirements and input substitution: effects on housekeeping, food service, and activities staff.

    Science.gov (United States)

    Bowblis, John R; Hyer, Kathryn

    2013-08-01

    To study the effect of minimum nurse staffing requirements on the subsequent employment of nursing home support staff. Nursing home data from the Online Survey Certification and Reporting (OSCAR) System merged with state nurse staffing requirements. Facility-level housekeeping, food service, and activities staff levels are regressed on nurse staffing requirements and other controls using fixed effect panel regression. OSCAR surveys from 1999 to 2004. Increases in state direct care and licensed nurse staffing requirements are associated with decreases in the staffing levels of all types of support staff. Increased nursing home nurse staffing requirements lead to input substitution in the form of reduced support staffing levels. © Health Research and Educational Trust.

  5. Requirements on design earthquake input time-histories in different regulations for nuclear power plant

    International Nuclear Information System (INIS)

    Hou Chunlin; Pan Rong; Li Xiaojun

    2012-01-01

    In this paper, provisions referred to artificial ground motions in different regulations for nuclear power plant have been investigated, difference of design earthquake input time-histories requirements between regulations which cited nowadays in China has been compared. Then, corresponding relationship while used to design for France Pressurized Water Reactor M310 and The Third Generation Advanced Reactor AP1000 has been listed. We reviewed technical background, requirement details, application situation of different regulations, analyzed their difference. These works could offer important references for emending the code for seismic design of nuclear power plants and other related codes. (authors)

  6. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels...... of minimum energy performance requirements. In addition to the summary report released in August 2011, the full detailed report on this study is now also made available, just as the EC is about to publish its proposed Regulation for MS to apply in their process to update national building requirements....

  7. Magnetospheric energy inputs into the upper atmospheres of the giant planets

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-07-01

    Full Text Available We revisit the effects of Joule heating upon the upper atmospheres of Jupiter and Saturn. We show that in addition to direct Joule heating there is an additional input of kinetic energy – ion drag energy – which we quantify relative to the Joule heating. We also show that fluctuations about the mean electric field, as observed in the Earth's ionosphere, may significantly increase the Joule heating itself. For physically plausible parameters these effects may increase previous estimates of the upper atmospheric energy input at Saturn from ~10 TW to ~20 TW.

    Keywords. Ionosphere (Electric fields and currents; Planetary ionosphere – Magnetospheric physics (Auroral phenomena

  8. Coupled-Inductor-Based Aalborg Inverter With Input DC Energy Regulation

    DEFF Research Database (Denmark)

    Wang, Houqing; Wu, Weimin; Chung, Henry Shu-hung

    2018-01-01

    inverter, due to the imbalance of two independent dc sources, the input dc energies may not be fully utilized, which may reduce the efficiency of whole system. In order to extract the maximum energy from two independent dc sources, a coupled-inductor-based “half bridge” type Aalborg inverter is proposed...

  9. An input-output energy analysis in pistachio nut production: A case ...

    African Journals Online (AJOL)

    This research examined the energy use pattern and energy input/output analysis of pistachio nut widely grown in the South-eastern Anatolia, Turkey. For this purpose, data from pistachio nut production were collected in 61 farms from ten villages by a questionnaire which was selected according to their regional properties.

  10. Edible energy: balancing inputs and waste in food supply chain and biofuels from algae

    Science.gov (United States)

    Alimonti, Gianluca; Brambilla, Riccardo; Pileci, Rosaria; Romano, Riccardo; Rosa, Francesca; Spinicci, Luca

    2017-01-01

    Energy is life. Without it there is no water, there is no nutrition. Man's ability to live, grow, produce wealth is closely linked to the energy availability and use. Fire has been the first energy conversion technology; since that moment, the link between energy and progress has been indissoluble. Nowadays, a much greater energy input into the food supply chain has made a much higher food production possible. This might have an impact on the water availability. Algae are a promising solution for the energy-food-water nexus.

  11. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements

    Directory of Open Access Journals (Sweden)

    Giuseppe Todde

    2018-02-01

    Full Text Available Dairy cattle farms are continuously developing more intensive systems of management which require higher utilization of durable and not-durable inputs. These inputs are responsible of significant direct and indirect fossil energy requirements which are related to remarkable emissions of CO2. This study aims to analyze direct energy requirements and the related carbon footprint of a large population of conventional dairy farms located in the south of Italy. A detailed survey of electricity, diesel and Liquefied Petroleum Gas (LPG consumptions has been carried out among on-farm activities. The results of the analyses showed an annual average fuel consumption of 40 kg per tonne of milk, while electricity accounted for 73 kWh per tonne of milk produced. Expressing the direct energy inputs as primary energy, diesel fuel results the main resource used in on-farm activities, accounting for 72% of the total fossil primary energy requirement, while electricity represents only 27%. Moreover, larger farms were able to use more efficiently the direct energy inputs and reduce the related emissions of carbon dioxide per unit of milk produced, since the milk yield increases with the herd size. The global average farm emissions of carbon dioxide equivalent, due to all direct energy usages, accounted for 156 kg CO2-eq per tonne of Fat and Protein Corrected Milk (FPCM, while farms that raise more than 200 heads emitted 36% less than the average value. In this two-part series, the total energy demand (Part 1 + Part 2 per farm is mainly due to agricultural inputs and fuel consumption, which have the largest quota of the annual requirements for each milk yield class. These results also showed that large size farms held lower CO2-eq emissions when referred to the mass of milk produced.

  12. The Free Energy Requirements of Biological Organisms; Implications for Evolution

    Directory of Open Access Journals (Sweden)

    David H. Wolpert

    2016-04-01

    Full Text Available Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer’s semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic map π from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map π of an organism that optimally trades off the free energy needed to run π with the phenotypic fitness that results from implementing π. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere’s information processing by the flux of sunlight on the Earth.

  13. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    Science.gov (United States)

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  14. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  15. Energy Requirements of Military Personnel

    National Research Council Canada - National Science Library

    Tharion, William J; Lieberman, Harris R; Montain, Scott J; Young, Andrew J; Baker-Fulco, Carol J

    2005-01-01

    ...) have been measured while training under various conditions. Group mean total energy expenditures for 424 male military personnel from various units engaged in diverse missions ranged from 13.0 to 29.8 MJ per day...

  16. Energy input and dissipation in a temperate lake during the spring transition

    Science.gov (United States)

    Woolway, R. Iestyn; Simpson, John H.

    2017-08-01

    ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.

  17. Direct and indirect energy requirements of households in India

    International Nuclear Information System (INIS)

    Pachauri, S.; Spreng, D.

    2002-01-01

    This study is based on the 115 sector classification input-output tables for India for the years 1983-84, 1989-90 and 1993-94. Calculated total primary energy intensities along with private final consumption expenditures are used as a basis for determining the indirect energy requirements of Indian households. Results reveal that household energy consumption is about evenly divided between direct and indirect energy and together comprises 75% of the total energy consumption of India. Most of household energy consumed directly is still non-commercial and the consumption of food is responsible for about half the indirect energy consumption. Household energy requirements have increased significantly, both in total and per capita terms over this time period. The commercial component of direct household energy consumption and the indirect energy requirements have increased continuously. The main drivers of this increase have been (1) the growing expenditure per capita, (2) population and (3) increasing energy intensity in the food and agricultural sectors. (author)

  18. Energy Requirements in Critically Ill Patients

    Science.gov (United States)

    2018-01-01

    During the management of critical illness, optimal nutritional support is an important key for achieving positive clinical outcomes. Compared to healthy people, critically ill patients have higher energy expenditure, thereby their energy requirements and risk of malnutrition being increased. Assessing individual nutritional requirement is essential for a successful nutritional support, including the adequate energy supply. Methods to assess energy requirements include indirect calorimetry (IC) which is considered as a reference method, and the predictive equations which are commonly used due to the difficulty of using IC in certain conditions. In this study, a literature review was conducted on the energy metabolic changes in critically ill patients, and the implications for the estimation of energy requirements in this population. In addition, the issue of optimal caloric goal during nutrition support is discussed, as well as the accuracy of selected resting energy expenditure predictive equations, commonly used in critically ill patients.

  19. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  20. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  1. Input rights or licenses, competition or complementanty in the energy business

    International Nuclear Information System (INIS)

    Midttun, Atle; Gautesen, Kristian L.

    2006-01-01

    The article discusses aspects of the Norwegian energy policies. The focus is on economical and political measures and the consequences of the shift from emphasis on ''green licesenes'' to input tariffs. Various European and environmental aspects are considered and comparisons to the Norwegian development are made. (tk)

  2. Energy input for tomato production what economy says, and what is good for the environment

    DEFF Research Database (Denmark)

    Houshyar, Ehsan; Dalgaard, Tommy; Tarazkar, Mohammad Hassan

    2015-01-01

    The central Fars province is the main tomato producer region in Southwest Iran. This study was undertaken to evaluate the energy consumption patterns of tomato production, corresponding GHG emissions, and relationships between inputs and output by a Cobb–Douglass econometric model. The changes...... in GHG emissions were also investigated to display if the result is in favor of the environment as well as economy. The non-hierarchical cluster analysis determined three groups of tomato farmers with respect to the energy inputs and tomato yield; C1, C2 and C3 including 90, 46 and 20 farmers......, respectively. The findings showed that around 40–60 GJ/ha energy is needed to produce 54–70 ton/ha tomato. Although, the C1 farmers consumed around 20 GJ/ha higher energy than C3, they also had a higher output–input energy ratio; 1.15 and 1.12, respectively. The GHG emission index (IGHG) disclosed that energy...

  3. The strictest energy requirements in the world

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jensen, Jens Stissing

    2013-01-01

    50 years of progressively strengthened energy requirements in the Danish building code appear to be a success, as the energy consumption has remained constant despite an increase in the total area in requirement of heating. This article however argues that the building code mechanism is heavily i...

  4. Household energy requirement and value patterns

    International Nuclear Information System (INIS)

    Vringer, Kees; Aalbers, Theo; Blok, Kornelis

    2007-01-01

    For an effective consumer energy policy, it is important to know why some households require more energy than others. The aim of the study described here was to examine whether there is a relationship between the total household energy requirement, on one hand, and value patterns, the motivation to save energy or the problem perception of climate change, on the other. To examine these relationships, we held a consumer survey among 2304 respondent households. We did not find significant differences in the energy requirement of groups of households with different value patterns, taking into account the differences in the socio-economic situation of households. Only for the 'motivation to save energy' we did find that the least motivated group requires 10 GJ more energy than the average and most motivated groups; this is about 4% of the total household energy requirement. This means that a self-regulating energy policy, solely based on the fact that a strategy of internalising environmental responsibility will not be effective in saving energy. There are indications that a social dilemma is one of the reasons why people's consumption patterns do not conform to their value patterns, problem perception or motivation to save energy

  5. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  6. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream

    Directory of Open Access Journals (Sweden)

    Stefano Fenoglio

    2014-10-01

    Full Text Available Despite the enormous importance of alpine streams, information about many aspects of their ecology is still insufficient. Alpine lotic systems differ in many environmental characteristics from those lower down, for example because above tree line streams drain catchments where terrestrial vegetation is scarce and allochthonous organic input is expected to be small. The main objectives of this study were to examine seasonal variation of autochthonous and allochthonous energetic inputs and their relationship with macroinvertebrate communities in the Po river, an alpine non-glacial stream (NW Italy. For one year, samplings were monthly performed in a homogeneous 100 m stream reach for discharge, autochthonous energy input (benthic chlorophyll a, allochthonous energy input (coarse particulate organic matter, abundance and structure of benthic macroinvertebrate community. Chlorophyll a concentrations were in the range of what reported for other alpine streams, but presented a time-lag with respect to what has been reported for glacial-fed mountain rivers. CPOM amounts were lower than those in lowland, forested streams of the same area but exhibited an intriguing, different seasonal variability, probably reported for the first time, with a maximum in spring and a minimum in winter. We collected 29,950 macroinvertebrates belonging to 13 families and 10 orders. Benthic communities were essentially dominated by Ephemeroptera, Plecoptera and Diptera. Scrapers was the most important FFG, but also Shredders were well represented. Relationships between chlorophyll a concentrations, CPOM availability and macroinvertebrate community characteristics were analysed and discussed considering the existence of different top-down or bottom-up regulation mechanisms. This study confirms that benthic algae constitute an essential resource for macroinvertebrates in alpine streams above the tree line but also underlines the importance of terrestrial organic input, a

  7. Energy requirements of infants, children and adolescents

    Science.gov (United States)

    Energy requirements of infants, children and adolescents are defined as the amount of energy needed to balance total energy expenditure (TEE) at a desirable level of physical activity, and to support optimal growth and development consistent with long-term health. The latest FAO/WHO/UNU recommendati...

  8. Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Asgharipour

    2016-11-01

    Full Text Available The recognition of forage production methods that maximize energy efficiency and minimize Greenhouse Gases (GHGs emissions is essential. The aims of this survey were to assess the energy consumption, emissions of GHGs and global warming potential (GWP of alfalfa production systems in Sistan region, Sistan and Baluchestan province in the South–east of Iran. Data were collected randomly from 110 alfalfa farm using face-to-face questionnaire survey. Energy inputs included chemical fertilizers, diesel fuel, pesticides, seed, machinery and human labor. The results indicated that average total input and output energies in alfalfa production during the entire lifetime of the farm were 313.52GJha−1 and 962.85GJha−1, respectively. The most important energy inputs belonged to electricity (72.5%, followed by diesel fuel (12.3% and N fertilizer (6.0%. Energy use efficiency and energy productivity were 3.07 and 0.209kgMJ−1, respectively. Share of direct and indirect energy were 85% and 15%, respectively. Total emissions of CO2, N2O and CH4 in alfalfa farms were 8262.67kgha−1, 557.31kgha−1 and 7.65kgha−1, respectively. Hence, total GWP was 181190 kg CO2eha−1 and 2.77 kg of CO2ekg−1 of dry hay produced. In terms of CO2e, 95.3% of the GWP originate from N2O, 4.6% from CO2 and 0.1% from CH4. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in alfalfa agroecosystems.

  9. Fast Prediction of Differential Mode Noise Input Filter Requirements for FLyback and Boost Unity Power Factor Converters

    DEFF Research Database (Denmark)

    Andersen, Michael Andreas E.

    1997-01-01

    Two new and simple methods to make predictions of the differential mode (DM) input filter requirements are presented, one for flyback and one for boost unity power factor converters. They have been verified by measurements. They give the designer the ability to predict the DM input noise filter...

  10. Analysis of different inputs share and determination of energy Indices in broilers production in Mashhad city

    Directory of Open Access Journals (Sweden)

    H Sadrnia

    2017-05-01

    Full Text Available Introduction The high energy consumption is one of the serious problems in poultry industry. The poultry industry consume about five percent of total energy sources in different countries, with consideration of losses, it increases up to 16-20%. In the year 2003 also, the Iranian chicken meat consumption per capita was 13.3 kg, while in the year 2013 it increased to 25.9 kg (FAO, 2014. It shows that in the diet of Iranian people, the chicken meat has become a strategic food. Poultry industry is one of the biggest and most developed industries in Iran. In the past two decays, mainly due to population growth and increase demand of white meats, it is necessary to change and improve energy efficiency in this industry. Technical efficiency of broiler farms in the central region of Saudi Arabia was analyzed through stochastic frontier approach (Alrwis and Francis, 2003. They reported that many farms under study work lower than their total capacity. In the research, the output was chicken meat weight in the term of the kilogram per one period and the inputs were the number of chicks, feed, the total of all variable expenses and fixed input except chicks and feed and the total cost of fixed inputs including building, equipment and machinery used for the broiler houses. They found that the small and large size broiler farms in the Central Region of Saudi Arabia were produced chicken with mean technical efficiency 83 and 88%, respectively (Alrwis and Francis, 2003. Efficiency measurement of broiler production units in Hamadan province was investigated by Fotros and Solgi (2003. They reported that the minimum, maximum and mean technical efficiency under variable return to scale were 12.7, 100 and 64.4%, respectively. Their results showed that technical efficiency at 16.5 (14 units and 42.35% (24 units of farms were more than 90 and 70%, respectively (Fotros and Salgi, 2003. Khorasan Razavi province after Esfahan and Mazandaran provinces is the third

  11. Documentation of Calculation Methodology, Input data, and Infrastructure for the Home Energy Saver Web Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinckard, Margaret J.; Brown, Richard E.; Mills, Evan; Lutz, James D.; Moezzi, Mithra M.; Atkinson, Celina; Bolduc, Chris; Homan, Gregory K.; Coughlin, Katie

    2005-07-13

    The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

  12. Short communication: Prediction of energy requirements of ...

    African Journals Online (AJOL)

    Data collected on metabolizable energy (ME) intake and growth performance of preruminant female kids of the Murciano-Granadina breed was used to assess the accuracy of the latest U. S. National Research Council (NRC) recommendations to predict their energy requirements. Female kids were fed a milk replacer ...

  13. Energy inputs-yield relationship and sensitivity analysis of pistachio (Pistacia vera L. production in Markazi Region of Iran

    Directory of Open Access Journals (Sweden)

    R. Keshavarz Afshar

    2013-07-01

    Full Text Available Pistachio is considered as an important agricultural commodity in Iran and ranks top amongst all exported agricultural products. Conducting an overall energy audit and economic analysis of pistachio production can provide useful information to help implement management strategies for improving energy efficiency. A study was conducted during 2009 and 2010 to evaluate the overall energy inputs and outputs and to perform an economic analysis of pistachio production in the Iranian province of Markazi. The results revealed that the total energy input for pistachio production was 54305 MJ ha-1. Electricity, followed by diesel fuel and nitrogen fertilizer application were the highest contributors to energy input in pistachio orchards. The contribution of direct energy was higher than indirect energy and share of non-renewable energy was more than renewable energy. Net energy, energy use efficiency, energy productivity and specific energy were 7522 MJ ha-1, 0.86, 0.08 kg MJ-1 and 13.69 MJ kg-1, respectively. Econometric model based on Cobb-Douglas function indicated that impacts of electricity, diesel fuel and chemical fertilizer energy inputs on pistachio yield were positive while the impact of machinery was negative. The marginal physical productivity (MPP value for diesel fuel was the highest among other variables, followed by energy inputs related to the chemicals and irrigation water. The results revealed that production of pistachios in Markazi Province, under current management practices, are not energy efficient and efforts should be made to improve energy use efficiency.

  14. Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole

    Science.gov (United States)

    Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.

    2017-10-01

    The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.

  15. Variability of energy input into selected subsystems of the human-glove-tool system: a theoretical study.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-05-31

    This article presents an application of the energy method to assess the energy input introduced into two subsystems of the human-glove-tool system. To achieve this aim, a physical model of the system was developed. This consists of dynamic models of the human body and the glove described in Standard No. ISO 10068:2012, and a model of a hand-held power tool. The energy input introduced into the subsystems, i.e., the human body and the glove, was analysed in the domain of energy and involved calculating three component energy inputs of forces. The energy model was solved using numerical simulation implemented in the MATLAB/simulink environment. This procedure demonstrates that the vibration energy was distributed quite differently in the internal structure of the two subsystems. The results suggest that the operating frequency of the tool has a significant impact on the level of energy inputs transmitted into both subsystems.

  16. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    Science.gov (United States)

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  17. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements

    Directory of Open Access Journals (Sweden)

    Giuseppe Todde

    2018-02-01

    Full Text Available Dairy cattle farms are continuously developing more intensive systems of management, which require higher utilization of durable and non-durable inputs. These inputs are responsible for significant direct and indirect fossil energy requirements, which are related to remarkable emissions of CO2. This study focused on investigating the indirect energy requirements of 285 conventional dairy farms and the related carbon footprint. A detailed analysis of the indirect energy inputs related to farm buildings, machinery and agricultural inputs was carried out. A partial life cycle assessment approach was carried out to evaluate indirect energy inputs and the carbon footprint of farms over a period of one harvest year. The investigation highlights the importance and the weight related to the use of agricultural inputs, which represent more than 80% of the total indirect energy requirements. Moreover, the analyses carried out underline that the assumption of similarity in terms of requirements of indirect energy and related carbon emissions among dairy farms is incorrect especially when observing different farm sizes and milk production levels. Moreover, a mathematical model to estimate the indirect energy requirements of dairy farms has been developed in order to provide an instrument allowing researchers to assess the energy incorporated into farm machinery, agricultural inputs and buildings. Combining the results of this two-part series, the total energy demand (expressed in GJ per farm results in being mostly due to agricultural inputs and fuel consumption, which have the largest share of the annual requirements for each milk yield class. Direct and indirect energy requirements increased, going from small sized farms to larger ones, from 1302–5109 GJ·y−1, respectively. However, the related carbon dioxide emissions expressed per 100 kg of milk showed a negative trend going from class <5000 to >9000 kg of milk yield, where larger farms were able to

  18. TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement

    International Nuclear Information System (INIS)

    Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae

    2008-10-01

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained

  19. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  20. Input-output analysis of various elements of an energy-agro-waste complex

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The mass input and output streams of various agricultural and waste treatment processes were quantified and models developed to serve in the engineering analysis of potential waste heat utilization schemes. The unit process models can be integrated into energy-agro-waste complexes, in which waste heat from power plants is used by certain processes and the wastes of some processes are used as inputs to others. The models provide a means of determining the sizing or subsystems, the compatibility of subsystems, and the overall feasibility of an integrated complex. Ten potential complexes were qualitatively discussed and the considerations involved in forming such complexes explained. A mass balance analysis was performed on four integrated complexes demonstrating the engineering value of the analytical models developed.

  1. Low carbon energy scenarios for sub-Saharan Africa: An input-output analysis on the effects of universal energy access and economic growth

    International Nuclear Information System (INIS)

    Hamilton, Thomas Gerard Adam; Kelly, Scott

    2017-01-01

    Meeting Sub-Saharan African (SSA) human development goals will require economic development to be the priority over the coming decades, but economic development ‘at all cost’ may not be acceptable across these goals. This paper aims to explore five development scenarios for the five largest economies in SSA to understand the implications to CO 2 -equivalent emissions (CO 2 -e) and off-grid energy modernisation in 2030. Within this scope GDP growth; economic structure; availability of energy resources; international trade; and, the development of distributed generation for remote locations are considered. Regional CO 2 emissions were studied using a Multi-Regional Input-Output Model for Africa. Under the scenarios analysed all five nations will be unable to reduce 2030 CO 2 -e emissions below 2012 levels, whilst simultaneously achieving forecast GDP growth and universal access to modernised energy services. 100% off-grid modernisation is estimated to require a three-fold increase in Primary Energy Supply and a 26% (1317 Mt) increase in 2030 CO 2 -e emissions. Total regional CO 2 -e emissions could be reduced from 45% to 35% by meeting a 50% renewable energy supply target by 2030. Climate Change policy would need to focus on multi-sector reform to reduce regional emissions as the agricultural sector is the largest emitter in Nigeria, Ethiopia and Kenya. - Highlights: • GHG 1 emissions were studied with a Multi-Regional Input-Output Model for Africa. • SSA 2 GDP growth is inextricably linked with access to additional energy supply. • SSA will not attain universal energy access and low carbon growth in parallel. • GHG emissions decline needs both renewable energy adoption and agriculture reform. • SSA Climate Change policy would need to target multiple GHG emitting sector reform.

  2. Influence of Energy Input on Degradation Behavior of Plastic Components Manufactured by Selective Laser Melting

    Science.gov (United States)

    Drummer, Dietmar; Wudy, Katrin; Drexler, Maximilian

    Additive manufacturing techniques, such as selective laser melting of plastics, generate components directly from a CAD data set without using a specific mold. High building chamber temperatures in combination with long building times lead to physical and chemical degradation of the surrounding powder and the manufactured component in the case of selective laser melting of polyamide 12 (PA12). Thus the following investigations show the influence of energy densities on mechanical properties as well as on the aging behavior of the manufactured components. Therefore several building processes with varying energy densities will be conducted. Aged polymer components were analyzed with physical, thermo analytical and mechanical methods with regards to their process relevant material properties. Considered material properties for example are phase transition temperatures, melting viscosity or molecular weight. The basic understanding of the influence of energy input on material properties will lead to new process strategies with minimized polymer degradation.

  3. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics

    Directory of Open Access Journals (Sweden)

    Guo-Sheng eYi

    2015-05-01

    Full Text Available Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism.

  4. Input-output energy analysis in dry apricot production of Turkey

    International Nuclear Information System (INIS)

    Esengun, Kemal; Guenduez, Orhan; Erdal, Guelistan

    2007-01-01

    The aims of this study were to determine the amount of input-output energy used in dry apricot production, to investigate the efficiency of energy consumption and to make an economic analysis of dry apricot production in Malatya, Turkey. Data used in this study were obtained from 97 farmers using a face to face questionnaire method. The sample farms were selected through a stratified random sampling technique. The population investigated was divided into two strata based on the size of apricot farms as 0.1-3.0 ha (66 farms) and larger than 3.1 ha (31 farms). The results revealed that 28647.03 MJ ha -1 energy were consumed by the first group and 17884.72 MJ ha -1 by the second group of farmers. The input-output ratio and productivities were 1.24 and 0.24 in the first strata and 1.31 and 0.25 in the second strata, respectively. Results further indicated that in both types of farms, 3/4 of the total energy cost was in non-renewable energy forms, and only 1/4 was in renewable forms. The economic analyses showed that the profit-cost ratios of the farms were 1.11 and 1.19, respectively. Net returns calculated were 414.51 $ ha -1 and 495.59 $ ha -1 in the farms investigated. It was concluded that extension activities are needed to improve the efficiency of energy consumption in dry apricot production and to employ environmentally friendly agricultural management practices and production methods

  5. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    Science.gov (United States)

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na(+) and K(+) currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism.

  6. Energy and carbon embodied in the international trade of Brazil. An input-output approach

    International Nuclear Information System (INIS)

    Machado, G; Schaeffer, R.; Worrell, E.

    2001-01-01

    All goods and services produced in an economy are directly and/or indirectly associated with energy use and, according to the type of fuel utilized, with CO2 emissions as well. International trade is an important factor in shaping the industrial structure of a country and, consequently, in affecting a country's energy use and CO2 emissions. This study applies input-output techniques to the Brazilian economy to evaluate the total impacts of international trade on its energy use and CO2 emissions. A commodity-by-industry IO model in hybrid units (energy commodities in physical units and non-energy commodities in monetary units) is applied to the Brazilian economy in 1995. Results show that total energy embodied in the exports of non-energy goods of Brazil equals 831 PJ, while total carbon embodied is 13.5 MtC. These amounts are larger than the relevant amounts embodied in the imports of non-energy goods, respectively 679 PJ and 9.9 MtC. These figures are better understood by contrasting them with the total energy use and the corresponding total carbon emissions of the Brazilian economy in 1995 estimated by this work: 6781 PJ and 99.4 MtC, respectively. This means that international inflows and outflows of energy embodied in non-energy goods are in the order of 10 and 12% of the total energy use, while inflows and outflows of carbon embodied in non-energy goods are approximately 10 and 14% of the corresponding total carbon emissions of the Brazilian economy in 1995. The general picture is that Brazil is not only a net exporter of energy (153 PJ) and of carbon (3.6 MtC) embodied in the non-energy goods internationally traded by the country in 1995, but also that each dollar earned with exports embodied 40% more energy and 56% more carbon than each dollar spent on imports. These findings suggest that Brazilian policy-makers should be concerned about the extra impacts international trade policy may have on energy use and carbon emissions of the country. 71 refs

  7. Impact of Window Frames Inputs in EnergyPlus on the Estimation of Building Energy Efficiency

    OpenAIRE

    de Gastines, Maureen; Pattini, Andrea

    2017-01-01

    El diseño de edificios sustentables hace uso de herramientas de simulación energética como EnergyPlus. Un elemento clave en la eficiencia energética es la ventana, y particularmente el marco, debido a su transmitancia térmica generalmente elevada en relación a los elementos que componen la envolvente edilicia. Además, el diseño de marco reduce la superficie vidriada, disminuyendo el recurso solar aprovechable por ganancia directa. Por lo tanto, cuando se realice una simulación en EnergyPlus, ...

  8. Projecting India's energy requirements for policy formulation

    International Nuclear Information System (INIS)

    Parikh, Kirit S.; Karandikar, Vivek; Rana, Ashish; Dani, Prasanna

    2009-01-01

    Energy policy has to have a long-term perspective. To formulate it one needs to know the contours of energy requirements and options. Different approaches have been followed in literature, each with their own problems. A top down econometric approach provides little guidance on policies, while a bottom up approval requires too much knowledge and too many assumptions. Using top-down econometric approach for aggregate overall benchmarking and a detailed activity analysis model, Integrated Energy System Model, for a few large sectors, provides a unique combination for easing the difficulties of policy formulation. The model is described in this paper. Eleven alternate scenarios are built, designed to map out extreme points of feasible options. Results show that even after employing all domestic energy resource to their full potential, there will be a continued rise of fossil fuel use, continued importance of coal, and continued rise of import dependence. Energy efficiency emerges as a major option with a potential to reduce energy requirement by as much as 17%. Scenario results point towards pushing for development of alternative sources. (author)

  9. Substitution between energy and nonenergy inputs in the Netherlands, 1950--1974

    Energy Technology Data Exchange (ETDEWEB)

    Magnus, J.R.

    1978-01-01

    The effects of the 1973 oil embargo as a physical restriction were readily demonstrated by imposing bottleneck constraints in an input-output model. It is not so easy to enlarge on a longer-term perspective. This contains the threat of a continued increase in the real costs of energy rather than of sudden disruptions of supply, and it is clear that the response to this will involve substitution. For if the popular view is that energy scarcity reduces economic growth just as cheap, abundant supplies favor it, the underlying belief is that these effects arise precisely because the economic process responds to these stimuli by adaptation. An economic model is desired that corresponds to these simple beliefs and demonstrates inter alia why output should react to variations in factor prices. This paper is limited to the substitution between factors in response to price changes without explicit consideration of the level of output. It does, however, include energy among the factors of production, and thus opens the way to introduction of non-factor inputs in the aggregate production function. Two sections present the economic model which is based on the Generalized Cobb-Douglas Cost function developed by Diewert (1973). One section discusses construction of the relevant annual aggregate data for the Dutch economy 1950 to 1974, while another is devoted to estimation problems. In the last two sections the validity of the model is assessed by fitting it to the data. Results are related to the existing literature. 29 references.

  10. Input price risk and optimal timing of energy investment: choice between fossil- and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Murto, Pauli; Nese, Gjermund

    2002-05-01

    We consider energy investment, when a choice has to be made between fossil fuel and biomass fired production technologies. A dynamic model is presented to illustrate the effect of the different degrees of input price uncertainty on the choice of technology and the timing of the investment. It is shown that when the choice of technology is irreversible, it may be optimal to postpone the investment even if it would otherwise be optimal to invest in one or both of the plant types. We provide a numerical example based on cost, estimates of two different power plant types. (author)

  11. Input price risk and optimal timing of energy investment: choice between fossil- and biofuels

    International Nuclear Information System (INIS)

    Murto, Pauli; Nese, Gjermund

    2002-01-01

    We consider energy investment, when a choice has to be made between fossil fuel and biomass fired production technologies. A dynamic model is presented to illustrate the effect of the different degrees of input price uncertainty on the choice of technology and the timing of the investment. It is shown that when the choice of technology is irreversible, it may be optimal to postpone the investment even if it would otherwise be optimal to invest in one or both of the plant types. We provide a numerical example based on cost, estimates of two different power plant types. (author)

  12. Technological change in energy systems. Learning curves, logistic curves and input-output coefficients

    International Nuclear Information System (INIS)

    Pan, Haoran; Koehler, Jonathan

    2007-01-01

    Learning curves have recently been widely adopted in climate-economy models to incorporate endogenous change of energy technologies, replacing the conventional assumption of an autonomous energy efficiency improvement. However, there has been little consideration of the credibility of the learning curve. The current trend that many important energy and climate change policy analyses rely on the learning curve means that it is of great importance to critically examine the basis for learning curves. Here, we analyse the use of learning curves in energy technology, usually implemented as a simple power function. We find that the learning curve cannot separate the effects of price and technological change, cannot reflect continuous and qualitative change of both conventional and emerging energy technologies, cannot help to determine the time paths of technological investment, and misses the central role of R and D activity in driving technological change. We argue that a logistic curve of improving performance modified to include R and D activity as a driving variable can better describe the cost reductions in energy technologies. Furthermore, we demonstrate that the top-down Leontief technology can incorporate the bottom-up technologies that improve along either the learning curve or the logistic curve, through changing input-output coefficients. An application to UK wind power illustrates that the logistic curve fits the observed data better and implies greater potential for cost reduction than the learning curve does. (author)

  13. The structures of energy consumption and emissions into air in Finnish economy in 1990. An input-output analysis

    International Nuclear Information System (INIS)

    Maeenpaeae, I.; Tervo, H.

    1994-01-01

    The structures of utilization of primary energy, final consumption of electricity, and the main emissions into the air in Finnish economy in 1990 have been derived in this report on the basis of input-output analysis. By using an input-output model it is possible to calculate what is the productional content of different products, i.e. how much in total, directly or indirectly, work of different fields of production is needed for production of commodities. Energy and emissions into air can be assumed as basic inputs of the production. By using input-output analysis it is possible to follow up how the energy inputs and emissions of different branches are bound into commodity flows of economy. Hence a systematic and expiring figure is obtained of energy and emission contents of different branches. The basic matrix for calculation of primary energy and emission coefficients of different branches are made in the chapter no. 2. The formulae for calculation of the energy and emission contents of commodities are derived from common basic formulae of input-output analysis in the chapter no. 3. The branch-based energy and emission coefficients of commodities are presented in the chapter no. 4. The energies bound into household commodities and emissions into the air are presented in the chapter no. 5. The total presentation of the Finnish national product, the gross national product and the energy and emission contents of the main commodities is made in the chapter no. 6. (11 refs.)

  14. Comparison of energy performance requirements levels

    DEFF Research Database (Denmark)

    Spiekman, Marleen; Thomsen, Kirsten Engelund; Rose, Jørgen

    This summary report provides a synthesis of the work within the EU SAVE project ASIEPI on developing a method to compare the energy performance (EP) requirement levels among the countries of Europe. Comparing EP requirement levels constitutes a major challenge. From the comparison of for instance...... the present Dutch requirement level (EPC) of 0,8 with the present Flemish level of E80, it can easily be seen that direct comparison is not possible. The conclusions and recommendations of the study are presented in part A. These constitute the most important result of the project. Part B gives an overview...

  15. Determination of solar wind energy input during different form of geomagnetic disturbances.

    Science.gov (United States)

    Dahal, S.; Adhikari, B.; Narayan, C.; Shapkota, N.

    2017-12-01

    A quantitative study on solar wind energy input during different form of geomagnetic disturbances as well as during quite period was performed. To enable a quantitative analysis, we estimate Akasofu parameter which plays an important role to understand the relationships between ionosphere-magnetosphere and solar wind energy input. For comparative purpose, the total energy budget of Non storm HILDCAA event (19th to 24th April 2003), Storm preceding HILDCAA event (14th to 19th May 2005), Geomagnetic sub-storm (12nd to 16th November 2003), Geomagnetic super sub-storm (12nd to 16th November 2003) and a Quiet period (18th to 21st July 2006) were also analyzed. Among these events the highest total energy budget was found during the occurrence of storm preceding HILDCAA. This is due to significant geomagnetic field perturbation as displayed on the value of interplanetary parameters. The principal cause of geomagnetic disturbance is the magnetic reconnection, which establishes an electrodynamic coupling between the solar plasma and the magnetosphere. Although there is distinct perturbation on SYM-H index for all events but the values are different. The highest pick value of SYM-H index ( -300nT) was found for the storm preceding HILDCAA.This results suggest that the effects of HILDCAAs, displayed on the value of the SYM-H index, depends on the amount of the energy injected into the ring current. In a complementary way, fluctuation pattern of Temperature, IMF magnitude, Bx component, By component, and AE index are also studied and the possible physical interpretations for the statistical results obtained during each events were discussed. We shall report the characteristics of Bz component during each events by the implementation of discrete wavelet transform (DWT) and cross correlation analysis. We did cross-correlation between solar wind energy and Bz component of IMF and found a negative correlation between them during the main phase of geomagnetic disturbances. These

  16. Energy-dominated local carbon emissions in Beijing 2007: inventory and input-output analysis.

    Science.gov (United States)

    Guo, Shan; Liu, J B; Shao, Ling; Li, J S; An, Y R

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO(2)-eq, of which energy-related CO(2) emissions comprise 90.49%, non-energy-related CO(2) emissions 6.35%, CH(4) emissions 2.33%, and N(2)O emissions 0.83%, respectively. In terms of energy-related CO(2) emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO(2)-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO(2)-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  17. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    Science.gov (United States)

    Guo, Shan; Liu, J. B.; Shao, Ling; Li, J. S.; An, Y. R.

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers. PMID:23193385

  18. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    Directory of Open Access Journals (Sweden)

    Shan Guo

    2012-01-01

    Full Text Available For greenhouse gas (GHG emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry holds the top local emissions embodied in final demand of 1.86E + 07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals. The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  19. Applying physical input-output tables of energy to estimate the energy ecological footprint (EEF) of Galicia (NW Spain)

    International Nuclear Information System (INIS)

    Carballo Penela, Adolfo; Sebastian Villasante, Carlos

    2008-01-01

    Nowadays, the achievement of sustainable development constitutes an important constraint in the design of energy policies, being necessary the development of reliable indicators to obtain helpful information about the use of energy resources. The ecological footprint (EF) provides a referential framework for the analysis of human demand for bioproductivity, including energy issues. In this article, the theoretical bases of the footprint analysis are described by applying input-output tables of energy to estimate the Galician energy ecological footprint (EEF). It is concluded that the location of highly polluting industries in Galicia makes the Galician EEF quite higher than more developed regions of Spain. The relevance of the outer component of the Galician EEF is also studied. First, available information seems to indicate that the energy incorporated to the trading of manufactured goods would notably increase the Galician consumption of energy. On the other hand, the inclusion of electricity trade in the EEF analysis, including an adjustment, following the same philosophy as with manufactured goods is proposed. This adjustment would substantially reduce the Galician EEF, as the exported electricity widely exceeds the imported one

  20. Applying physical input-output tables of energy to estimate the energy ecological footprint (EEF) of Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Carballo Penela, Adolfo; Sebastian Villasante, Carlos [Fisheries Economics and Natural Resources Research Group, Department of Applied Economics, University of Santiago de Compostela, Faculty of Economics and Business Administration, Avenida Burgo das Nacions s/n. CP. 15782 Santiago de Compostela, A Coruna Galicia (Spain)

    2008-03-15

    Nowadays, the achievement of sustainable development constitutes an important constraint in the design of energy policies, being necessary the development of reliable indicators to obtain helpful information about the use of energy resources. The ecological footprint (EF) provides a referential framework for the analysis of human demand for bioproductivity, including energy issues. In this article, the theoretical bases of the footprint analysis are described by applying input-output tables of energy to estimate the Galician energy ecological footprint (EEF). It is concluded that the location of highly polluting industries in Galicia makes the Galician EEF quite higher than more developed regions of Spain. The relevance of the outer component of the Galician EEF is also studied. First, available information seems to indicate that the energy incorporated to the trading of manufactured goods would notably increase the Galician consumption of energy. On the other hand, the inclusion of electricity trade in the EEF analysis, including an adjustment, following the same philosophy as with manufactured goods is proposed. This adjustment would substantially reduce the Galician EEF, as the exported electricity widely exceeds the imported one. (author)

  1. Influence of geomagnetic energy inputs in the polar cap on the upper atmosphere during geomagnetic storms

    Science.gov (United States)

    Deng, Y.; Sheng, C.; Huang, Y.; Maute, A. I.; Lu, Y.

    2016-12-01

    Large Poynting flux has been observed in the polar cap by Defense Meteorological Satellite Program (DMSP) satellites during the main phase of the August 5, 2011 storm, the magnitude of which is comparable to that in the auroral zone. In order to understand the mechanisms for the observed large Poynting flux in the polar cap, the particle precipitation and small-scale electric field variability along DMSP satellite trajectory has been studied. Meanwhile, the global ionosphere-thermosphere model (GITM) has been run to examine the relative contribution of convection pattern and conductance to the polar cap Poynting flux enhancement. The influence of energy inputs in the polar cap including Joule heating related to both large-scale and small-scale electric field and soft particle precipitation on the thermosphere has been examined through the analysis of the GRACE neutral density observations and GITM simulations with different forcings. This study will help to illustrate the mechanisms and impacts of the polar cap energy inputs.

  2. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases

    Science.gov (United States)

    Malshe, M.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2010-05-01

    The variation in the fitting accuracy of neural networks (NNs) when used to fit databases comprising potential energies obtained from ab initio electronic structure calculations is investigated as a function of the number and nature of the elements employed in the input vector to the NN. Ab initio databases for H2O2, HONO, Si5, and H2CCHBr were employed in the investigations. These systems were chosen so as to include four-, five-, and six-body systems containing first, second, third, and fourth row elements with a wide variety of chemical bonding and whose conformations cover a wide range of structures that occur under high-energy machining conditions and in chemical reactions involving cis-trans isomerizations, six different types of two-center bond ruptures, and two different three-center dissociation reactions. The ab initio databases for these systems were obtained using density functional theory/B3LYP, MP2, and MP4 methods with extended basis sets. A total of 31 input vectors were investigated. In each case, the elements of the input vector were chosen from interatomic distances, inverse powers of the interatomic distance, three-body angles, and dihedral angles. Both redundant and nonredundant input vectors were investigated. The results show that among all the input vectors investigated, the set employed in the Z-matrix specification of the molecular configurations in the electronic structure calculations gave the lowest NN fitting accuracy for both Si5 and vinyl bromide. The underlying reason for this result appears to be the discontinuity present in the dihedral angle for planar geometries. The use of trigometric functions of the angles as input elements produced significantly improved fitting accuracy as this choice eliminates the discontinuity. The most accurate fitting was obtained when the elements of the input vector were taken to have the form Rij-n, where the Rij are the interatomic distances. When the Levenberg-Marquardt procedure was modified

  3. Perspectives in energy requirements of mankind

    International Nuclear Information System (INIS)

    Symonds, J.L.

    1975-08-01

    The growth of energy demand from the nineteenth century to the present and its likely future development are described, for the interested layman, in the context of the changing pattern of resource use. The availability and distribution of the renewable and non-renewable resources of energy, which will provide for the future, show that developed and developing countries will incur supply problems in the decades ahead unless the potential of all energy reserves is tapped. Factors such as the market penetration of new resources and the depletion of resources are outlined. It is pointed out that coal may be used increasingly for some time but that nuclear energy is the only other energy form which is immediately available and which can be utilised commercially. Nuclear energy will be needed even if countries are prepared to cut back to low growth rates in energy use. It is suggested that lower growth rates may well be necessary in the next twenty to thirty years, since it takes this time to bring new alternative technologies into commercial use, and a further similar period will be required to achieve significant resource substitution. (author)

  4. Energy use for building construction. Preliminary progress report for period March 1, 1976--May 15, 1976. [Energy intensities of various sectors and overall industry from Energy Input/Output Model

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, B M; Stein, R G; Segal, B; Serber, D

    1976-05-01

    The building construction industry, as broken down by the Bureau of Economic Analysis, U.S. Department of Commerce, was integrated into the Energy Input/Output Model developed at the Center for Advanced Computation, University of Illinois. The resulting expanded model was used to determine energy intensities of various (49) building construction (new and maintenance) sectors and of the overall building construction industry, for year 1967. The latter figure was computed at about 70,000 Btu/$, i.e., the construction industry on the average required about 70,000 Btu of direct and indirect energy per dollar of output produced. The most energy intensive sector was New Construction of Petroleum Pipelines (about 150,000 Btu/$), while the least intensive was Maintenance Construction for Electric Utilities (about 25,000 Btu/$). Also developed were total energy (direct and indirect) requirements to final demand for the building construction industry, for 1967. The overall industry required about 6000 trillion Btu, or about nine percent of the total U.S. energy requirement. New Highway Construction required the most energy to final demand (about 1000 trillion Btu, or 16 percent of the total construction industry requirement), while Maintenance Construction Residential required the least (about 9 trillion Btu, or 0.1 percent of the total industry requirement.

  5. The Giant Reed as an energy crop: assessing the energy requirements within its supply chain

    DEFF Research Database (Denmark)

    Rodias, Efthymis; Busato, P.; Bochtis, Dionysis

    2013-01-01

    Biomass energy is one form of renewable energy sources that are in the core of interesting for many researchers. There many different biomass sources that can be exploited for energy production, such as crop residues, waste materials, forestry residues and energy crops. Regarding energy crops......, there are many different types of crops significantly varies in terms of energy potential yields, production and provision methods, etc. To this end, a thoroughly assessment of the energy inputs and outputs of each potential energy crop is necessary. In this paper, the Giant Reed is evaluated energetically...... as a potential energy crop. The assessment regards a 10 year period. The considered energy elements include direct inputs (e.g. fuel consumption) as well as indirect inputs (e.g. embodied energy of materials and machinery). According to the results, the balance between the estimated total energy input...

  6. Impact of operational factors on fossil energy inputs in motor-manual tree felling and processing: results of two case studies

    Directory of Open Access Journals (Sweden)

    Gheorghe Ignea

    2017-07-01

    Full Text Available In many cases tree felling and processing operations are carried out motor-manually and knowledge about fossil fuel consumption and direct energy inputs when using such equipment is required for different purposes starting with operational costing and ending with environmental assessment of forest operations. In this study, fuel mixture, chain oil and direct fossil energy inputs were evaluated for two chainsaws which were used to fell and process trees in two silvicultural systems. The results of this study suggest that there is a strong dependence relation between selected tree size variables such as the diameter at breast height and tree volume on one hand and the fuel mixture, chain oil and direct fossil energy inputs when felling and processing broadleaved hardwood and resinous softwood trees on the other hand. For the broadleaved trees (mean tree volume of 1.50 m3 × tree-1, DBH of 45.5 cm and tree height of 21.84 m the mean direct fossil energy input was of 3.86 MJ m-3 while for resinous trees (mean tree volume of 1.77 m3 tree-1, DBH of 39.28 cm and tree height of 32.49 m it was of 3.93 MJ m-3. Other variables, including but not limited to the technology used, work experience and procedural pattern, may influence the mentioned figures and extensive studies are required to clarify their effects.

  7. Power Flow Control of a Dual-Input Interleaved Buck/Boost Converter with Galvanic Isolation for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold

    2015-01-01

    DC microgrids or nanogrids have attracted increasing research interest in recent years. Therefore, as a critical component, dc-dc converters with multiple inputs are required. In this paper, a dual-input interleaved buck/boost converter is proposed and its corresponding power flow control methods...

  8. Optimization of energy input for massive forming manufacturing processes. Optimaler Energieeinsatz bei der Fertigung durch Massivumformung

    Energy Technology Data Exchange (ETDEWEB)

    Herlan, T. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Umformtechnik)

    1989-01-01

    The specific end or primary energy consumption of single manufacturing stages is determined with the help of process chain analysis. The overall system considered is divided into process chain segments which themselves are represented in units of process stages. For the investigation of the energy used in single-piece manufacture by massive forming, there is a projected process stage which shows the energy consumption of the initial semi-finished product. The second process stage determines the energy used for manufacturing by means of massive forming. The materials examined are steel and aluminium materials from which workpieces are produced almost waste-free by means of cold, warm or hot extrusion. The required energy consumption as well as the manufacturing and energy costs for any manufacturing by means of massive forming are determined with the help of a computer program. From surveys of several manufacturing sequences it can be shown that 10-20% of the energy consumption can be saved under existing operational conditions, without investments having to be made. On a long-term basis, up to 40% of the energy consumption may be saved by adjusting the manufacturing equipment. (orig./MM).

  9. Effect of Farm Size on Energy Consumption and Input Costs of Peanut Production in Guilan Province of Iran

    Directory of Open Access Journals (Sweden)

    B Emadi

    2015-03-01

    Full Text Available In this study, the energy and economic analysis of peanut production in Guilan province of Iran was studied. Data were collected from questionnaires of 75 farmers. The data were collected from three farm size categories namely: 0.1–0.5 ha, 0.5-1 ha and larger than 1 ha. The results revealed that 19407.36 MJ ha-1 energy input was totally consumed. The highest share of energy consumption belonged to diesel fuel (50.05% followed by chemical fertilizers (19.14%. The mean difference of energy inputs including machinery, diesel fuel and electricity among different sizes of farms was significant at the 5% level. The average energy efficiency in different farm size categories including less than 0.5 ha, 0.5-1 ha and more than 1 ha were 3.67, 4.02 and 4.12, respectively. The energy productivity of these sizes was calculated as 0.155, 0.169 and 0.174 kg MJ-1, respectively. The Cobb-Douglas model results showed that the effects of inputs including human labor, machinery, chemical fertilizers and electricity on the yield were positive, while the effect of inputs including seed, diesel fuel and chemicals on peanut yield were negative. The benefit-cost ratio was calculated as 1.82. Farmers with a farm larger than 1 ha used the least amount of energy and input costs.

  10. Lessons learned using HAMMLAB experimenter systems: Input for HAMMLAB 2000 functional requirements

    International Nuclear Information System (INIS)

    Sebok, Angelia L.

    1998-02-01

    To design a usable HAMMLAB 2000, lessons learned from use of the existing HAMMLAB must be documented. User suggestions are important and must be taken into account. Different roles in HAMMLAB experimental sessions are identified, and major functions of each role were specified. A series of questionnaires were developed and administered to different users of HAMMLAB, each tailored to the individual job description. The results of those questionnaires are included in this report. Previous HAMMLAB modification recommendations were also reviewed, to provide input to this document. A trial experimental session was also conducted, to give an overview of the tasks in HAMMLAB. (author)

  11. RELAP5/MOD3 code manual: User`s guide and input requirements. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. Volume II contains detailed instructions for code application and input data preparation.

  12. STUDY OF IMPACT ENERGY REQUIRED FOR EFFECTIVE

    Directory of Open Access Journals (Sweden)

    O. O. Antia

    2011-06-01

    Full Text Available This paper attempts to obtain the impact energy required for effective cracking of dried oil palm nuts to obtain high yield of whole kernels irrespective of the sizes and varieties. This is necessary because small scale farmers involved in cracking nuts do obtain nuts in most cases from processing of bulk nuts of mixed varieties. In this study, each variety (Dura, Tenera and Pisifera of dried palm nuts were selected into classified size ranges based on their geometric mean diameter. Twenty-five nuts from each classified size range were picked randomly and mixed to form a group of nuts per variety. Ten groups and ten predetermined height drop of hammer mass were used per nut variety. Visual observations of cracking status after each nut has experienced hammer mass impact were assessed. In each group per variety, only energies that caused nuts to fully crack and release whole kernel were computed. For each variety, a plot of percentage fully cracked nuts in each group versus its corresponding average energy showed that impact energies of 2.6,1.82 and 0.97 Joules can crack well Dura, Tenera and Pisifera nuts respectively. The result further revealed that impact energy of 2.34 Joules was adequate to crack any of the nut varieties to release 91.5 percentages of whole kernels. This implies that cost in terms of time and energy for sorting; and identifying nuts into each variety and size ranges from bulk nuts of mixed varieties before cracking would be conserved.

  13. Energy required to pinch a DNA plectoneme

    Science.gov (United States)

    Barde, Céline; Destainville, Nicolas; Manghi, Manoel

    2018-03-01

    DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the kBT range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.

  14. Energy input and response from prompt and early optical afterglow emission in γ-ray bursts

    Science.gov (United States)

    Vestrand, W. T.; Wren, J. A.; Wozniak, P. R.; Aptekar, R.; Golentskii, S.; Pal'Shin, V.; Sakamoto, T.; White, R. R.; Evans, S.; Casperson, D.; Fenimore, E.

    2006-07-01

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a γ-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt γ-ray emission, and early optical afterglow emission uncorrelated with the γ-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.

  15. Analyzing Requirements for and Designing a Collaborative Tool Based on Functional and User Input

    National Research Council Canada - National Science Library

    Curtis, Christopher K; Burneka, Chris; Whited, Vaughan; Kancler, David E

    2006-01-01

    .... Technology provides a multitude of potential collaborative tools and techniques, and this must be balanced against the requirement to leverage and/or support maintainer's existing interaction skills...

  16. Infrared thermography requirements study for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Headley, R B; Larsen, R J; Goldberg, G G; Boyd, R J

    1977-04-01

    A description is given of a study to identify users (and their needs) of infrared (IR) instrumentation that may be applicable in the measurement of heat gains and/or losses from buildings, and to identify research, development and demonstration opportunities. The study is intended to provide the following information: (1) identify present and potential users and uses of infrared thermographic technology as related to energy conservation in buildings; (2) identify presently available IR thermographic instrumentation, techniques, and services, and determine how well it can serve the users and uses identified above; and (3) identify the technical opportunities for research, development, and demonstration on new IR thermographic technology that will better serve the users and uses identified above. The building sector requirements were analyzed, the user measurement requirements were identified, and cost guidelines for instrumentation are provided. An analysis is given of the constraints, requirements, and limitations of measurable parameters. This analysis provides the basis against which an IR instrument survey was conducted. The building sector requirements study indicates the general satisfaction of the user community with the use of IR thermography for qualitative evaluation of heat loss from buildings.

  17. Chipping machines: disc and drum energy requirements

    Directory of Open Access Journals (Sweden)

    Alessio Facello

    2013-09-01

    Full Text Available Air pollution and fossil fuel reserves exhaustion are increasing the importance of the biomass-derived products, in particular wood, as source of clean and renewable energy for the production of electricity or steam. In order to improve the global efficiency and the entire production chain, we have to evaluate the energetic aspects linked to the process of transformation, handling and transport of these materials. This paper reports results on a comparison between two chippers of similar size using different cutting technology: disc and drum tool respectively. During trials, fuel consumption, PTO torque and speed, processing time and weight of processed material were recorded. Power demand, fuel consumption, specific energy and productivity were computed. The machine was fed with four different feedstock types (chestnut logs, poplar logs, poplar branches, poplar sawmill residues. 15 repetitions for each combination of feedstock-tool were carried out. The results of this study show that the disc tool requires, depending on the processed material, from 12 to 18% less fuel per unit of material processed than the drum tool, and consequently, from 12 to 16% less specific energy. In particular, the highest difference between tools was found in branches processing whereas the smallest was in poplar logs. Furthermore the results of the investigation indicate, that, in testing conditions, the productivity of drum tool is higher (8% than disc tool.

  18. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy......, the proposed converter can draw power from two different DC sources with lower voltage and deliver it to the higher voltage DC bus or load individually and simultaneously. The detailed operation principle of the proposed converter has been analyzed in dual-input mode and single-input mode, respectively...

  19. Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran

    International Nuclear Information System (INIS)

    Ghatrehsamani, Shirin; Ebrahimi, Rahim; Kazi, Salim Newaz; Badarudin Badry, Ahmad; Sadeghinezhad, Emad

    2016-01-01

    The aim of this study was to determine the amount of input–output energy used in peach production and to develop an optimal model of production in Chaharmahal va Bakhtiari province, Iran. Data were collected from 100 producers by administering a questionnaire in face-to-face interviews. Farms were selected based on random sampling method. Results revealed that the total energy of production is 47,951.52 MJ/ha and the highest share of energy consumption belongs to chemical fertilizers (35.37%). Consumption of direct energy was 47.4% while indirect energy was 52.6%. Also, Total energy consumption was divided into two groups; renewable and non-renewable (19.2% and 80.8% respectively). Energy use efficiency, Energy productivity, Specific energy and Net energy were calculated as 0.433, 0.228 (kg/MJ), 4.38 (MJ/kg) and −27,161.722 (MJ/ha), respectively. According to the negative sign for Net energy, if special strategy is used, energy dismiss will decrease and negative effect of some parameters could be omitted. In the present case the amount is indicating decimate of production energy. In addition, energy efficiency was not high enough. Some of the input energies were applied to machinery, chemical fertilizer, water irrigation and electricity which had significant effect on increasing production and MPP (marginal physical productivity) was determined for variables. This parameter was positive for energy groups namely; machinery, diesel fuel, chemical fertilizer, water irrigation and electricity while it was negative for other kind of energy such as chemical pesticides and human labor. Finally, there is a need to pursue a new policy to force producers to undertake energy-efficient practices to establish sustainable production systems without disrupting the natural resources. In addition, extension activities are needed to improve the efficiency of energy consumption and to sustain the natural resources. - Highlights: • Replacing non-renewable energy with renewable

  20. Monitoring the inputs required to extend and sustain hygiene promotion: findings from the GLAAS 2013/2014 survey.

    Science.gov (United States)

    Moreland, Leslie D; Gore, Fiona M; Andre, Nathalie; Cairncross, Sandy; Ensink, Jeroen H J

    2016-08-01

    There are significant gaps in information about the inputs required to effectively extend and sustain hygiene promotion activities to improve people's health outcomes through water, sanitation and hygiene (WASH) interventions. We sought to analyse current country and global trends in the use of key inputs required for effective and sustainable implementation of hygiene promotion to help guide hygiene promotion policy and decision-making after 2015. Data collected in response to the GLAAS 2013/2014 survey from 93 countries of 94 were included, and responses were analysed for 12 questions assessing the inputs and enabling environment for hygiene promotion under four thematic areas. Data were included and analysed from 20 External Support Agencies (ESA) of 23 collected through self-administered surveys. Firstly, the data showed a large variation in the way in which hygiene promotion is defined and what constitutes key activities in this area. Secondly, challenges to implement hygiene promotion are considerable: include poor implementation of policies and plans, weak coordination mechanisms, human resource limitations and a lack of available hygiene promotion budget data. Despite the proven benefits of hand washing with soap, a critical hygiene-related factor in minimising infection, GLAAS 2013/2014 survey data showed that hygiene promotion remains a neglected component of WASH. Additional research to identify the context-specific strategies and inputs required to enhance the effectiveness of hygiene promotion at scale are needed. Improved data collection methods are also necessary to advance the availability and reliability of hygiene-specific information. © 2016 John Wiley & Sons Ltd.

  1. Optimizing production with energy and GHG emission constraints in Greece: An input-output analysis

    International Nuclear Information System (INIS)

    Hristu-Varsakelis, D.; Karagianni, S.; Pempetzoglou, M.; Sfetsos, A.

    2010-01-01

    Under its Kyoto and EU obligations, Greece has committed to a greenhouse gas (GHG) emissions increase of at most 25% compared to 1990 levels, to be achieved during the period 2008-2012. Although this restriction was initially regarded as being realistic, information derived from GHG emissions inventories shows that an increase of approximately 28% has already taken place between 1990 and 2005, highlighting the need for immediate action. This paper explores the reallocation of production in Greece, on a sector-by-sector basis, in order to meet overall demand constraints and GHG emissions targets. We pose a constrained optimization problem, taking into account the Greek environmental input-output matrix for 2005, the amount of utilized energy and pollution reduction options. We examine two scenarios, limiting fluctuations in sectoral production to at most 10% and 15%, respectively, compared to baseline (2005) values. Our results indicate that (i) GHG emissions can be reduced significantly with relatively limited effects on GVP growth rates, and that (ii) greater cutbacks in GHG emissions can be achieved as more flexible production scenarios are allowed.

  2. 75 FR 30395 - Stakeholder Input; National Pollutant Discharge Elimination System (NPDES) Permit Requirements...

    Science.gov (United States)

    2010-06-01

    ..., the elderly and those with weakened immune systems, can be at a higher risk of illness from exposure... municipal collection systems including satellite portions. 4. What is the appropriate role of NPDES permits... Pollutant Discharge Elimination System (NPDES) Permit Requirements for Municipal Sanitary Sewer Collection...

  3. Circadian variation in defibrillation energy requirements.

    Science.gov (United States)

    Venditti, F J; John, R M; Hull, M; Tofler, G H; Shahian, D M; Martin, D T

    1996-10-01

    Reports have demonstrated a circadian variation in the incidence of acute myocardial infarction, ventricular arrhythmias, and sudden cardiac death. We tested the hypothesis that a similar circadian variation exists for defibrillation energy requirements in humans. We reviewed the time of defibrillation threshold (DFT) measurements in 134 patients with implantable cardioverter-defibrillators (ICDs) who underwent 345 DFT measurements. The DFT was determined in 130 patients at implantation, in 121 at a 2 months, and in 94 at 6 months. All patients had nonthoracotomy systems. The morning DFT (8 AM to 12 noon) was 15.1 +/- 1.2 J compared with 13.1 +/- 0.9 J in the midafternoon (12 noon to 4 PM) and 13.0 +/- 0.7 J in the late afternoon (4 to 8 PM), P < .02. In a separate group of 930 patients implanted with an ICD system with date and time stamps for each therapy, we reviewed 1238 episodes of ventricular tachyarrhythmias treated with shock therapy. To corroborate the hypothesis that energy requirements for arrhythmia termination vary during the course of the day, we plotted the failed first shock frequency for all episodes per hour. There was a significant peak in failed first shocks in the morning compared with other time intervals (P = .02). There is a morning peak in DFT and a corresponding morning peak in failed first shock frequency. This morning peak resembles the peaks seen in other cardiac events, specifically sudden cardiac death. These findings have important implications for appropriate ICD function, particularly in patients with marginal DFTs.

  4. Design optimization of radial flux permanent magnetwind generator for highest annual energy input and lower magnet volumes

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, J.; Rajabi-Sebdani, M.; Ebrahimi, B. M. (Univ. of Tehran, Tehran (Iran)); Khan, M. A. (Univ. of Cape Town, Cape Town (South Africa))

    2008-07-01

    This paper presents a multi-objective optimization method to maximize annual energy input (AEI) and minimize permanent magnet (PM) volume in use. For this purpose, the analytical model of the machine is utilized. Effects of generator specifications on the annual energy input and PM volume are then investigated. Permanent magnet synchronous generator (PMSG) parameters and dimensions are then optimized using genetic algorithm incorporated with an appropriate objective function. The results show an enhancement in PMSG performance. Finally 2D time stepping finite element method (2D TSFE) is used to verify the analytical results. Comparison of the results validates the optimization method

  5. The influence of riparian vegetation on the energy input of the rivers Lafnitz and Pinka

    Science.gov (United States)

    Holzapfel, Gerda; Rauch, Hans Peter; Weihs, Philipp; Trimmel, Heidelinde; Formayer, Herbert; Leitner, Patrick; Graf, Wolfram; Melcher, Andreas; Dossi, Florian

    2013-04-01

    mitigate effects of climate change on biological assemblages of small and medium sized running waters will be investigated. The results support river managers in implementing integrative guidelines for sustainable river restoration towards climate change adaptation, ecological services and socio-economic consequences. In this paper the influence of riparian vegetation on the energy input of rivers will be highlighted. As a first step in field works habitat characteristics will be examined and described. First results show riparian vegetation datasets for different riparian vegetation types with 3D spatial distribution of vegetation, riparian vegetation composition and radiation attenuation coefficients for different vegetation types.

  6. Energy requirements of Dorper crossbred ewe lambs.

    Science.gov (United States)

    Deng, K D; Jiang, C G; Tu, Y; Zhang, N F; Liu, J; Ma, T; Zhao, Y G; Xu, G S; Diao, Q Y

    2014-05-01

    The ME and NE requirements of Dorper crossbred ewe lambs grown from 35 to 50 kg BW were assessed in a comparative slaughter trial. Thirty-five ewe lambs (33.5 ± 0.6 kg BW) of F1 crosses of purebred Dorper and thin-tailed Han sheep were used: 7 lambs were slaughtered at the start of the trial to provide baseline measures of body composition and 7 lambs were fed ad libitum and slaughtered when they reached 43 kg BW to provide intermediate measures of body composition. The remaining 21 lambs were divided into 3 groups of 7 lambs each and fed a pelleted mixed diet (concentrate:roughage = 44:56, DM basis) for ad libitum intake or 65 or 45% of ad libitum intake. All 3 groups were slaughtered when the ad libitum group reached 50 kg BW. Total body energy, N, fat, ash, and moisture content were measured. In a separate trial, 15 ewe lambs (39.5 ± 0.7 kg BW) of F1 crosses of purebred Dorper and thin-tailed Han sheep were housed in metabolism cages to evaluate the ME value of the diet at each of the 3 levels of feed intake. In vivo methane production was measured by open-circuit respirometry along with the collection of all feces and urine. The daily NEm requirement of the ewe lambs was 280 kJ/kg metabolic BW (BW(0.75)) or 292 kJ/kg metabolic shrunk BW (SBW(0.75)), whereas the daily ME requirement for maintenance was 418 kJ/kg BW(0.75) or 437 kJ/kg SBW(0.75), with a partial efficiency of ME utilization for maintenance of 0.67. The NEg requirement ranged from 1.37 to 3.94 MJ/d for ADG from 100 to 250 g BW, and the partial efficiency of ME utilization for gain was 0.44. The NE and ME requirements of Dorper × thin-tailed Han crossbred ewe lambs were lower than the recommendations of the United States' nutritional system.

  7. RET Functions as a Dual-Specificity Kinase that Requires Allosteric Inputs from Juxtamembrane Elements

    Directory of Open Access Journals (Sweden)

    Iván Plaza-Menacho

    2016-12-01

    Full Text Available Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.

  8. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  9. An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus

    Science.gov (United States)

    Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael

    2017-10-01

    We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected

  10. The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis

    International Nuclear Information System (INIS)

    Li, Ke; Jiang, Zhujun

    2016-01-01

    Facing with the increasing contradiction of economic growth, energy scarcity and environmental deterioration, energy conservation and emissions abatement have been ambitious targets for the Chinese government. Improving energy efficiency through technological advancement is a primary measure to achieve these targets. However, the existence of energy rebound effects may completely or partially offset energy savings associated with technological advancement. This paper adopted a modified input-output model to estimate the economy-wide energy rebound effects across China's economic sectors with the consideration of energy subsidies. The empirical results show that the aggregate rebound effect of China is about 1.9% in 2007–2010, thus technological advancement significantly restrains energy consumption increasing. Removing energy subsidies will cause the aggregate rebound effect declines to 1.53%. Specifically, removing subsidies for coal and nature gas can reduce the rebound effects signifcantly, while removing the subsidies for oil products has a small impact on rebound effect. The existence of rebound effects implies that technological advancement should be cooperated with energy price reform so as to achieve the energy saving target. In addition, the government should consider the diversity of economic sectors and energy types when design the reform schedule. - Highlights: • Rebound effects with the consideration of energy subsidies are estimated in China. • When considering the interactions among sectors, the aggregate rebound effect become small. • Removing subsidies will reduce energy consumption, thereby declining the rebound effects. • Removing subsidies for different energy types has varies effects on rebound effect.

  11. An approach to defining the energy requirements of dairy sheep

    International Nuclear Information System (INIS)

    Susmel, P.; Cuzzit, R.

    1988-01-01

    Evaluation of the interaction between nutrition and reproduction in Mediterranean sheep requires knowledge of the energy requirements of animals in different productive and reproductive stages. The available energy systems developed for temperate climates and genotypes are not directly applicable to Mediterranean breeds of dairy sheep. Using already available data, metabolizable energy requirements for these types of animals are proposed. (author). 59 refs, 9 tabs

  12. Output Filter Design for a Novel Dual-Input PV-Wind Power Converter by Energy Balance Principle

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-09-01

    Full Text Available In this paper, a detailed and systematic derivation of the output filter in a novel dual-input photovoltaic (PV-wind converter (DIPWC is presented. The theoretical derivation is based on an energy balance principle. While the DIPWC operates in steady state, the amount of charged energy of the output filter will be equal to that of the energy pumped away within one switching cycle. From this zero net change in energy, the minimum value of the output filter can be found. With the determined value, the DIPWC is able to operate in continuous conduction for high power applications. The developed procedure of the inductance determination can be applied to other types of dual-input converters. Therefore, it makes significant contributions to the design toward a green-energy, multi-input converter. To verify the correctness of the mathematical analysis, the DIPWC—with the derived output inductance—is built and tested. Practical measurements and results have verified the inductance determination.

  13. Energy Storage Requirements & Challenges for Ground Vehicles

    Science.gov (United States)

    2010-03-18

    provide electric power to start the vehicle power generation (Engines / APUs)  Hybrid Vehicle Boost Acceleration and Regenerative Braking Energy Capture...Cooling Thermal Architectures Po we r Ma na ge m en t Power Controllers for Power Management Power Converters/ Inverters Wide Band Gap Materials (SiC...to recover wasted energy in vehicle braking  Silent Watch Batteries can provide the energy storage capability to power mission equipment with

  14. Multi-Input Multi-Output Integrated Ionic Polymer-Metal Composite for Energy Controls

    Directory of Open Access Journals (Sweden)

    Gou Nishida

    2012-02-01

    Full Text Available This paper presents an integrated sensor/actuator device with multi-input and multi-output designed on the basis of a standard control representation called a distributed port-Hamiltonian system. The device is made from soft material called an ionic polymer-metal composite (IPMC. The IPMC consists of a base film of a polyelectrolyte gel and a double layer of plated metal electrodes. The electrodes of the experimental IPMC are sectioned, and it is implemented as a control system with four pairs of inputs/outputs. We stabilize the system, and detect changes in dynamics by using the control representation.

  15. Energy Shaping of Port-Hamiltonian Systems by Using Alternate Passive Input-Output Pairs

    NARCIS (Netherlands)

    Venkatraman, A.; Schaft, A. van der

    2010-01-01

    We consider port-Hamiltonian systems with dissipation (PHSD) whose underlying geometric structure is represented as the composition of a Dirac and a resistive structure. We show how the choice of a new passive input-output pair for a PHSD is reflected in a new Dirac structure. We define a general

  16. Trends and Effective Use of Energy Input in the Palm Kernel Oil Mills

    Directory of Open Access Journals (Sweden)

    Bamgboye, AI.

    2007-01-01

    Full Text Available This work aims at studying the importance and the efficiency of energy use in a few palm kernel oil mills selected for their representativity. Pattern of energy use, the cost of energy per unit product, energy intensity and normalized performance indicator (NPI were determined. Results show that the medium and the large mills depend largely on fossil fuel; while the small mill depends on electricity. It was found out that the large mill has the most effective use of energy with high energy intensity. The annual cost of energy per unit product of N8,360,000 ($64,307.69; N12,262,250 ($94,325 and N13,353,870 ($102, 722.08 were obtained for small, medium and large mills respectively. The NPI results show that there was no wastage of energy through space heating in energy supplied for production within the factory site.

  17. Energy inputs and outputs and sustainability of corn silage production; Balanco energetico e sutentabilidade na producao de silagem de milho

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Alessandro Torres; Daga, Jacir [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana], e-mail: atcampos3@yahoo.com.br; Zanini, Agostinho; Prestes, Tania Maria Vicentini; Dalmolin, Maria Fatima da Silva [Centro Federal de Educacao Tecnologica do Parana (CEFET-PR), Medianeira, PR (Brazil); Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias; Campos, Aloisio Torres de [EMBRAPA Gado de Leite, Juiz de Fora, MG (Brazil); Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana

    2004-07-01

    The agricultural ecosystem as way of converting solar energy in products, needs several energy sources, among that sources stand out fertilizers, agricultural defensives and others. These inputs are derived from fossils. In the present paper, it was studied the energy flows involved in corn silage production in a no tillage crop system, in Sao Miguel of Iguacu-Parana State/Brazil. In the direct energy flow, the fuels and lubricants were the largest consumers, representing 45.90% of the total, the agricultural defensives were responsible for the consumption of 24.12% of the total, while the fertilizers for 10.53% of the total consumption. By computing the fossil origin components, fuels, lubricants, defensive and fertilizers, the participation of the total consumption of energy was of 84.07%. (author)

  18. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    Science.gov (United States)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  19. Cost optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...

  20. Requirements for success in competitive energy markets

    International Nuclear Information System (INIS)

    Wallis, E.

    1997-01-01

    A summary of a lecture delivered to the Institute of Energy on a power generator's experience of the UK competitive electricity market is given. It is concluded that privatization has met the public interest better than nationalisation and that the future lies in international growth and globalisation. (UK)

  1. Substitution between energy and classical factor inputs in the Chinese steel sector

    International Nuclear Information System (INIS)

    Smyth, Russell; Narayan, Paresh Kumar; Shi, Hongliang

    2011-01-01

    China's steel sector is the largest in the world and has been a major driving force behind China's high rate of economic growth. This sector, however, is also a major consumer of energy and, in particular, coal. As a result, the iron and steel sector in China is a major contributor to greenhouse gas emissions and other pollutants. In this article we examine the potential for inter-factor substitution between capital, energy and labor in the Chinese steel sector and find that capital and energy and energy and labor are substitutes. This result suggests that removal of price ceilings on energy would tend to reduce energy use and increase capital intensiveness. While the potential for substitution between energy and labor is less than that between energy and capital, the elasticity of substitution between energy and labor is high compared with previous findings for other countries. This fact suggests that there may be potential for substituting labor for energy, given China's abundance of labor.

  2. Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods.

    Science.gov (United States)

    Williams, Eric

    2004-11-15

    The total energy and fossil fuels used in producing a desktop computer with 17-in. CRT monitor are estimated at 6400 megajoules (MJ) and 260 kg, respectively. This indicates that computer manufacturing is energy intensive: the ratio of fossil fuel use to product weight is 11, an order of magnitude larger than the factor of 1-2 for many other manufactured goods. This high energy intensity of manufacturing, combined with rapid turnover in computers, results in an annual life cycle energy burden that is surprisingly high: about 2600 MJ per year, 1.3 times that of a refrigerator. In contrast with many home appliances, life cycle energy use of a computer is dominated by production (81%) as opposed to operation (19%). Extension of usable lifespan (e.g. by reselling or upgrading) is thus a promising approach to mitigating energy impacts as well as other environmental burdens associated with manufacturing and disposal.

  3. Distribution of large-earthquake input energy in viscous damped outrigger structures

    NARCIS (Netherlands)

    Morales Beltran, M.G.; Turan, Gursoy; Yildirim, Umut

    2017-01-01

    This article provides an analytical framework to assess the distribution of seismic energy in outrigger structures equipped with viscous dampers. The principle of damped outriggers for seismic control applications lies on the assumption that the total earthquake energy will be absorbed by the

  4. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    Science.gov (United States)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J.

    2015-05-01

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare the effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau-Lifshitz-Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.

  5. Impact of chashma right-canal on energy-inputs and crop production in dera ismail khan

    International Nuclear Information System (INIS)

    Khan, M.A.; Rehman, A.; Singh, G.

    2005-01-01

    The main objective of the present study was to investigate the patterns of energy-consumption and their relationship with crop-production and poverty-alleviation of the farming community, before and after the completion of Chashma Right-Bank Canal (CRBC) Project. A survey was made of daily inputs of energy for crop-production operations on more than 60 crop plots of 10 farms in three villages. The selection of farms in the villages was based on the financial condition of the farmers, as judged by the main power-source (bullock or tractor) that the farmer uses on his farm. Sources of energy recorded on biweekly basis were: human labor, bullocks and tractors. Crops-yields and values of output were recorded. Energy-inputs were computed on per hectare basis by summing the energy inputs to all crop-plots. Results indicated that the use of tractors does result in a reduction of human labor-hours and bullock-energy on per hectare basis. Due to lack of a permanent source of irrigation (crops were dependent on rain and floodwater), the crop-yield in the study areas was low before CRBC improvement work. Moreover, floods also damaged the crops on some plots before harvesting; therefore the consumption of energy on both bullock-operated farms (BOF) and Tractor-Operated Farms (TOF) was very low in the 1992-93 year. Post CRBC project, during 1997-98 and 2000-2001, the farms used more energy. In 1997-98, TOF obtained higher wheat-yields than BOF. However, in 2000-2001, both BOF and TOF were using tractors as their main power source, which indirectly indicated a reduction 'in poverty. As the yields and therefore crop-values were higher on TOF than BOF, the TOF obtained higher gross margins. Cost of production was low in 1992-93, but the crop-values were also low, so the gross margins remained low. Results indicate that there will be an increase in production and a reduction in cost of production through mechanized farming, however, there will be an increase in energy

  6. Quantifying Energy and Mass Fluxes Controlling Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012)

    DEFF Research Database (Denmark)

    Langen, P.L.; Mottram, R.H.; Christensen, J.H.

    2015-01-01

    to elevations of 2000m) and shortwave radiation (at all elevations). Southerly wind anomalies and declining cloudiness due to an increase in atmospheric pressure over north Greenland contribute to increased summer melt. This results in declining surface mass balance (SMB), increasing surface runoff, and upward...... climate model, allowing high detail in topography and surface types, to estimate freshwater input to Godthåbsfjord in southwest Greenland. Model output is compared to hydrometeorological observations and, while simulated daily variability in temperature and downwelling radiation shows high correlation...... with observations (typically .0.9), there are biases that impact the results. In particular, overestimated albedo leads to underestimation of melt and runoff at low elevations. In the model simulation (1991–2012), the ice sheet experiences increasing energy input from the surface turbulent heat flux (up...

  7. Modelling of capital requirements in the energy sector: capital market access. Final memorandum

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Formal modelling techniques for analyzing the capital requirements of energy industries have been performed at DOE. A survey has been undertaken of a number of models which forecast energy-sector capital requirements or which detail the interactions of the energy sector and the economy. Models are identified which can be useful as prototypes for some portion of DOE's modelling needs. The models are examined to determine any useful data bases which could serve as inputs to an original DOE model. A selected group of models are examined which can comply with the stated capabilities. The data sources being used by these models are covered and a catalog of the relevant data bases is provided. The models covered are: capital markets and capital availability models (Fossil 1, Bankers Trust Co., DRI Macro Model); models of physical capital requirements (Bechtel Supply Planning Model, ICF Oil and Gas Model and Coal Model, Stanford Research Institute National Energy Model); macroeconomic forecasting models with input-output analysis capabilities (Wharton Annual Long-Term Forecasting Model, Brookhaven/University of Illinois Model, Hudson-Jorgenson/Brookhaven Model); utility models (MIT Regional Electricity Model-Baughman Joskow, Teknekron Electric Utility Simulation Model); and others (DRI Energy Model, DRI/Zimmerman Coal Model, and Oak Ridge Residential Energy Use Model).

  8. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Tettey, Uniben Yao Ayikoe; Gustavsson, Leif

    2017-01-01

    In this study, we modelled the influence of different simulation assumptions on energy balances of two variants of a residential building, comprising the building in its existing state and with energy-efficient improvements. We explored how selected parameter combinations and variations affect the energy balances of the building configurations. The selected parameters encompass outdoor microclimate, building thermal envelope and household electrical equipment including technical installations. Our modelling takes into account hourly as well as seasonal profiles of different internal heat gains. The results suggest that the impact of parameter interactions on calculated space heating of buildings is somewhat small and relatively more noticeable for an energy-efficient building in contrast to a conventional building. We find that the influence of parameters combinations is more apparent as more individual parameters are varied. The simulations show that a building's calculated space heating demand is significantly influenced by how heat gains from electrical equipment are modelled. For the analyzed building versions, calculated final energy for space heating differs by 9–14 kWh/m 2 depending on the assumed energy efficiency level for electrical equipment. The influence of electrical equipment on calculated final space heating is proportionally more significant for an energy-efficient building compared to a conventional building. This study shows the influence of different simulation assumptions and parameter combinations when varied simultaneously. - Highlights: • Energy balances are modelled for conventional and efficient variants of a building. • Influence of assumptions and parameter combinations and variations are explored. • Parameter interactions influence is apparent as more single parameters are varied. • Calculated space heating demand is notably affected by how heat gains are modelled.

  9. Energy requirements of adult dogs: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Emma N Bermingham

    Full Text Available A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75 body weight (BW. Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation maintenance energy requirements were 142.8±55.3 kcal·kgBW(-0.75·day(-1. The corresponding allometric equation was 81.5 kcal·kgBW(-0.9·day(-1 (adjusted R2 = 0.64; 70 treatment groups. Type of husbandry had a significant effect on maintenance energy requirements (P<0.001: requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001, but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09. This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds is needed.

  10. Energy Requirements of Adult Dogs: A Meta-Analysis

    Science.gov (United States)

    Bermingham, Emma N.; Thomas, David G.; Cave, Nicholas J.; Morris, Penelope J.; Butterwick, Richard F.; German, Alexander J.

    2014-01-01

    A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg0.75 body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal.kgBW−0.75.day−1. The corresponding allometric equation was 81.5 kcal.kgBW−0.93.day−1 (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed. PMID:25313818

  11. Resource, capital, and labor requirements of the National Energy Policy Plan: 1980 to 2000

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Beller, M.; Lamontagne, J.

    1982-08-01

    Recent prominent forecasts of future energy supply include a major role for technologies that will require substantial capital, labor, and material inputs. This report defines the direct resource requirements for the scenarios presented in the National Energy Policy Plan (NEPP), and attempts to identify potential resource constraints. The Energy Supply Planning Model (ESPM) was utilized to derive resource requirements based on energy demand, supply, and price projections under the National Energy Policy Plan. Detailed requirements for capital, person-power, materials, equipment, and land and water resources are identified on an annual basis to the year 2000. Although no obvious resource constraints were identified based directly on requirements for energy facilities, the scope of the study did not allow for consideration of activities in other areas (e.g., defense) which, when coupled with energy facility requirements, might create critical shortages in some areas (e.g., engineering labor). Also, manufacturing capability for certain specialized equipment items (e.g., large pressure vessels) which might impose limits were not explicitly considered in this analysis.

  12. TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  13. The net employment impact of energy transition in France: An input-output analysis of the 'negaWatt' scenario

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2013-04-01

    We study the impact on employment in France of the implementation of the energy transition scenario built by negaWatt (2011), which provides a massive development of energy savings (through measures of sufficiency and energy efficiency) and renewable energy between 2012 and 2050. Compared to 2010, this scenario results in a halving of CO 2 emissions from energy sources in France in 2030 and a division by 16 in 2050, without capture and storage of CO 2 , without implementation of new nuclear power plant and closing existing plants after 40 years of operation at maximum. We calculate the effect on employment of the implementation of this scenario compared to a baseline scenario that extends recent developments and considers the policies already decided. The method used to calculate the effect on employment of each scenario is to calculate the cost of the main technical and organizational options used, to allocate these costs among the 118 branches of the French economy and multiply these costs by the employment content of each branch. The latter is estimated by input-output analysis, which enables the recording of jobs generated by the production of all inputs. One of two scenarios being more expensive than the other, one must take into account the negative effect on employment of funding such costs. For this, it is assumed that this additional cost is borne by households and that they decrease their consumption accordingly by the same amount. This avoids biasing the results in favour of the most expensive scenario. The implementation of negaWatt scenario leads to a positive effect on employment, on the order of 240 000 full-time equivalent jobs in 2020 and 630,000 in 2030. We study the sensitivity of results to assumptions on prices of imported energy, the evolution of labour productivity, the distribution of costs between households and governments, and finally the consumption-savings decision. The effect on employment is largely positive in all cases. (author)

  14. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  15. Energy balance in the solar transition region. II - Effects of pressure and energy input on hydrostatic models

    Science.gov (United States)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1991-01-01

    The radiation of energy by hydrogen lines and continua in hydrostatic energy-balance models of the transition region between the solar chromosphere and corona is studied using models which assume that mechanical or magnetic energy is dissipated in the hot corona and is then transported toward the chromosphere down the steep temperature gradient of the transition region. These models explain the average quiet sun and also the entire range of variability of the Ly-alpha lines. The relations between the downward energy flux, the pressure of the transition region, and the different hydrogen emission are described.

  16. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Science.gov (United States)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  17. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Sama Amid

    2016-06-01

    Full Text Available A literature review shows that energy consumption in agricultural production in Iran is not efficient and a high degree of inefficiency in broiler production exists in Iran. Energy consumption of broiler production in Ardabil province of Iran was studied and the non-parametric method of data envelopment analysis (DEA was used to analyze energy efficiency, separate efficient from inefficient broiler producers, and calculate wasteful use of energy to optimize energy. Data was collected using face-to-face questionnaires from 70 broiler farmers in the study area. Constant returns to scale (CCR and variable returns to scale (BCC models of DEA were applied to assess the technical efficiency of broiler production. The results indicated that total energy use was 154,283 MJ (1000 bird−1 and the share of fuel at 61.4% was the highest of all inputs. The indices of energy efficiency, energy productivity, specific energy, and net energy were found to be 0.18, 0.02 kg MJ−1, 59.56 MJ kg−1, and −126,836 MJ (1000 bird−1, respectively. The DEA results revealed that 40% and 22.86% of total units were efficient based on the CCR and BCC models, respectively. The average technical, pure technical, and scale efficiency of broiler farmers was 0.88, 0.93, and 0.95, respectively. The results showed that 14.53% of total energy use could be saved by converting the present units to optimal conditions. The contribution of fuel input to total energy savings was 72% and was the largest share, followed by feed and electricity energy inputs. The results of this study indicate that there is good potential for increasing energy efficiency of broiler production in Iran by following the recommendations for efficient energy use.

  18. Fuel input substitution under tradable carbon permits system. Evidence from Finnish energy plants 2003-2007

    Energy Technology Data Exchange (ETDEWEB)

    Linden, M. (Joensuu Univ. (Finland), Dept. of Business and Economics., email:mika.linden@joensuu.fi); Maekelae, M.; Uusivuori, J. (The Finnish Forest Reserch Institute (Metla), Vantaa (Finland))

    2009-07-01

    Following the Kyoto protocol and the European Union climate policies larger than 20 MW energy plants are part of the EU's emissions-trading scheme (ETS). This greenhouse gas emission mitigation strategy, tradable carbon quota system, started in 2005. The scheme is not mandatory for the firms with size less than 20MW. Also the firms using renewable fuels will not pay for allowances. Advanced energy production technologies enable power and heating plants to use both nonrenewable fossil fuels and renewable wood fuels in energy production. Wood fuel demand may constitute a substitute for fossil fuel demand if the price of tradable carbon allowances is relatively high. In this context plant level panel data from years 2003 - 2007 in Finland is analyzed with panel and mixed models. Econometric demand equations are specified for the ratio of wood and fossil fuel. The results show that high allowance prices in the years 2005 and 2006 compared to the years 2003 and 2004 decreased the use of fossil fuels and the demand for wood fuels increased. This increase was the larger the smaller proportional user of wood-fuel a plant was. However the downturn of allowance prices in year 2007 ended this process. The heterogeneity of energy plants in size, industry and location determines the intensity and extension of fuel use but their role is limited in the fuel substitution. (orig.)

  19. A forecast of energy requirements in South Africa

    International Nuclear Information System (INIS)

    Kotze, D.J.

    1975-01-01

    The aim of this paper is to evaluate the adequacy of South Africa's energy resources relative to projected demands. The forecasting procedure embraces the construction of suitable energy balances and the development of econometric demand models. An energy balance is employed which integrates supply and demand data on all forms of energy for a particular year. The demand side of the balance is divided into both final demand and demand by the conversion sector. Useful energy consumption in each sector is estimated by applying utilisation efficiency co-efficients to the physics energy content of each energy form. Total final demand is determined by developing sub-models for each sector of final demand including households, industry, mining and transport. In these sub-models, economic series representing the type of activity in the particular sub-sector, are used as explanatory variables. Further relationships, quantifying the contributions of each form of energy to the sectorial totals, are constructed. Having established the future value of final useful energy demand, total future production and final consumption is obtained. The forecast of primary energy requirements is therefore made via a reversed calculation from the final energy demand through all conversion processes to the primary energy stage. Once the future distribution of energy by source, form and end use sector is known it is possible to plan the optimum allocation of energy resources in the country. It is also possible to evaluate the life of indigenous energy resources, their adequacy, and import requirements

  20. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.

    Science.gov (United States)

    Port, Dagoberto; Perez, Jose Angel Alvarez; de Menezes, João Thadeu

    2016-06-15

    This study provides first-time estimates of direct fuel inputs and greenhouse gas emissions produced by the trawl fishing fleet operating off southeastern and southern Brazil. Analyzed data comprised vessel characteristics, landings, fishing areas and trawling duration of 10,144 fishing operations monitored in Santa Catarina State from 2003 to 2011. Three main fishing strategies were differentiated: 'shrimp trawling', 'slope trawling' and 'pair trawling'. Jointly these operations burned over 141.5millionl of diesel to land 342.3millionkg of fish and shellfish. Annually, 0.36-0.48l were consumed for every kg of catch landed. Because all fishing strategies relied on multispecific catches to raise total incomes, estimates of fuel use intensity were generally low but increased 316-1025% if only nominal targets were considered. In nine years, trawling operations emitted 104.07GgC to the atmosphere, between 36,800-49,500tons CO2 per year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The science and the technology like input for the environmental administration of the energy sector

    International Nuclear Information System (INIS)

    Guerrero, Eduardo

    1999-01-01

    It is presented an analysis of the scientific-technological dynamics of Colombia in function of the environmental administration of the energy sector. The importance of the investigation is emphasized the flow of knowledge in terms of the competitiveness and environmental effectiveness of the electric, oil and carboniferous companies. Of critical way and positive, the effective of the institution is evaluated and relative suggestions are made to the interaction and coordination inter-institutional. Some of the variables that condition the offer and demand of science and technology are discussed and, with base in it, they think about elements to be kept in mind in the design and implementation of strategies and politics of environmental investigation for the energy sector

  2. Solar energy conversion systems engineering and economic analysis radiative energy input/thermal electric output computation. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Russo, G.

    1982-09-01

    The direct energy flux analytical model, an analysis of the results, and a brief description of a non-steady state model of a thermal solar energy conversion system implemented on a code, SIRR2, as well as the coupling of CIRR2 which computes global solar flux on a collector and SIRR2 are presented. It is shown how the CIRR2 and, mainly, the SIRR2 codes may be used for a proper design of a solar collector system. (LEW)

  3. Factorial estimation of energy requirement for egg production

    DEFF Research Database (Denmark)

    Chwalibog, André

    1992-01-01

    Based on balance and respiration measurements with 60 White Leghorns during the laying period from 27 to 48 wk of age, a factorial method for estimating the energy requirement for egg production is proposed. The present experiment showed that the deposition of fat and energy increased during...... the laying period, but protein deposition slightly decreased. It has been shown that the efficiency of ME utilization for fat energy deposition is higher than for protein energy deposition in the egg. Because the proportions of protein and fat differ during the laying period, and because energy utilization...... is different between protein and fat, the ME requirement was calculated as the sum of ME for maintenance and the partial requirements for protein, fat, and carbohydrate deposition. For practical applications, functions for prediction of protein (OP), fat (OF), and energy (OE) in eggs during the laying period...

  4. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  5. Development and supply of the world energy requirement

    International Nuclear Information System (INIS)

    Schulz, E.

    1981-01-01

    Recently published research reveals that the world energy requirement can and must grow more slowly than previously anticipated. In order to supply developing nations with the energy necessary for the expansion of their economies, energy saving and oil substitution assume greater significance in the industrialised countries such as the Federal Republic. Future fulfillment of the world energy requirement will be characterised by escalating costs for supply, especially for the current main energy carrier oil, on the one hand and by increased use of coal and nuclear energy as well unconventional fossils such as regenerative energies on the other. Nuclear energy and thus the electricity economy must play a key function in the future energy supply of industrial nations such as Federal Germany. Nuclear energy enables, both directly and indirectly, the substitution of oil in the heat market, supplies the process heat required for coal production and, due to the ease of storage or uranium, provides a hedge against fluctuations on the world energy market. (orig.) [de

  6. The energy requirement of holidays and household reduction options

    International Nuclear Information System (INIS)

    Van den Berg, M.; Vringer, K.

    1999-12-01

    Like all consumer products and services, holidays require energy. The aim of this study is to give insight to the energy consumption for holidays of Dutch households and to suggest options to reduce this energy demand. To examine the energy consumption for holidays, nine holiday packages are composed, each representing a large group of Dutch vacationers. The packages describe the destination, means of transport, duration, accommodation and number of vacationers. The average energy requirement for the accommodation and transport for long summer holidays is 12.5 GJ per Dutch household, excluding the energy requirement for food and activities. About 10% of the Dutch households, the ones that travel by plane to their holiday destination, consume 70% of the total amount of energy all households require for holiday purposes. This is mainly due to the distance travelled, rather than to the chosen means of transport. If the travelled distances will be reduced by 50% and all nights are spent in a tent, the average household energy requirement would be 6.1 GJ, a reduction of more than 50%. 36 refs

  7. PC index as a ground-based characteristic for the solar wind energy input into the magnetosphere

    Science.gov (United States)

    Troshichev, Oleg; Stauning, Peter

    The solar wind energy input into the magnetosphere is usually evaluated by power of the magnetic disturbances detected at the Earth and estimated by the AE(AL) and Dst indices, characterizing, correspondingly, the magnetospheric substorm and geomagnetic storm dynamics and intensity. It is generally agreed, however, that the magnetospheric substorms and magnetic storms are the result of release of the energy accumulated by that time in the magnetosphere. Theoretical estimations of the solar wind energy input, making allowance for the actually observed solar wind parameters (for example, -function of Akasofu), turned out impracticable on the reasons of their imperfection and impossibility to organize the reliable monitoring the solar wind parameters in the key points of the space. By now the only PC index is serving as an on-line ground-based indicator of the geoeffective solar wind impact on the magnetosphere. The PC index characterizes the polar cap magnetic activity, generated by the geeffective interplanetary electric field (GIEF). The index is derived by magnetic data of only two stations Thule and Vostok, located in the northern (PCN) and southern (PCS) near-pole regions. The index was put into practice about 25 years ago, but obtained his final design as late as 2006. The unified procedure provides the on-line calculation of the PCN and PCS indices consistent with the GIEF value irrespective of the UT time, season and solar cycle. The proper response of the PC index to actual changes in the interplanetary electric field and the solar wind dynamic pressure is demonstrated. The main attention is given to relationships between the PC index behavior and development of the magnetospheric substorms and geomagnetic storms. It is shown that the magnetospheric substorms intensity and the substorm growth phase duration can be predicted by the PC index growth rate, whereas the geomagnetic storms magnitude and their lenght is indicated by the PC values averaged for the

  8. The German energy policy: between national requirements and community exigencies

    International Nuclear Information System (INIS)

    Notz, K.

    2007-01-01

    Taking into account the strategic and economic stakes that are associated with the security of energy supplies, the German federal government has made of this question one of the priorities of its european presidency. In this note, the author observes a radical change in the German energy policy with the future phaseout of nuclear energy and the perspectives of Russian gas supply. The author also reviews the challenges of the elaboration of a European energy policy, with certain member States refusing to transfer their sovereignty in the energy domain, and the large split between national requirements and community exigencies in this field

  9. The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input-output analysis

    International Nuclear Information System (INIS)

    Yuan, Chaoqing; Liu, Sifeng; Xie, Naiming

    2010-01-01

    The dependence on foreign trade increased sharply in China, and therefore Chinese economy is obviously export-oriented. The Global Financial Crisis will impact the Chinese economic growth violently. Chinese government has recently adopted some effective measures to fight against the Global Financial Crisis. The most important measure is the 4 trillion Yuan ($586 billion) stimulus plan which was announced on November 9, 2008. This paper discusses the influence on energy consumption and economic growth of Global Financial Crisis and the stimulus plan against it by input-output analysis. The results show that the fall of exports caused by the Global Financial Crisis will lead to a decrease of 7.33% in GDP (Gross Domestic Production) and a reduction of 9.21% in energy consumption; the stimulus plan against the Global Financial Crisis will lead to an increase of 4.43% in economic growth and an increase of 1.83% in energy consumption; In the Global Financial Crisis, energy consumption per unit GDP will fall in China. (author)

  10. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation

    Science.gov (United States)

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. These processes include examples of coupling reactions, the synthesis of heterocyclic compounds, and a variety of reactio...

  11. Solar Energy Employment and Requirements, 1978-1985.

    Science.gov (United States)

    Levy, Girard W.; Field, Jennifer

    Based on data collected from a mailed survey of 2800 employers engaged in solar energy activities, a study identified the characteristics of establishments engaged in solar work and the number and occupational distribution of persons working in solar energy activities in 1978, and projected solar labor requirements through 1983. The scope of the…

  12. Analysis of the energy requirement for household consumption

    NARCIS (Netherlands)

    Vringer, Kees

    2005-01-01

    Humans in households use energy for their activities. This use is both direct, for example electricity and natural gas, but also indirect, for the production, transport and trade of other goods and services. The main objective of this thesis is to gain insight into the energy requirement associated

  13. Introducing cost-optimal levels for energy requirements

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2012-01-01

    The recast of the Directive on the Energy Performance of Buildings (EPBD) states that Member States (MS) must ensure that minimum energy performance requirements for buildings are set “with a view to achieve cost-optimal levels”, and that the cost-optimal level must be calculated in accordance...

  14. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  15. Short Rotation Forestry (SRF in a Mediterranean Environment Under Limited Energy Inputs

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    2010-12-01

    Full Text Available The aim of this work is comparing the two year performance (diameter, total height and mortality of twenty tree and shrub species in a semi arid environment. The research also wants to supply recommendation on the agronomic cropping techniques in areas where rainfall is the main limiting factor and water use is strictly limited. Woody biomass is gaining increasing importance for energy production in Italy. During the last five years, roughly 5000 ha of Short Rotation Forestry (SRF have been planted, mostly in northern Italy, especially using poplar clones. However, in Southern Italy, due to the poor rainfall and the lack of knowledge existing on the species to use, few groves have been established. The studied groves were set in December 2005 in a Mediterranean area where the total year rainfall is not higher than 600 mm (mostly in autumn and winter. Twenty species (Salix cinerea, Ulmus carpinifolia, Corylus avellana, Spartium junceum, Acer saccharinum, Morus alba, Saphora japonica, Eleagnus angustifolia, Fraxinus angustifolia (var oxicarpa, Sambucus nigra, Robinia pseudoacacia, Populus nigra, Albizia julibrissis, Populus alba, Salix alba, Ailanthus altissima, Alnus cordata, Ficus carica, Eucalyptus camaldulensis, Celtis australis were planted in “collection” plots and set in singular plots on single rows (3 m X 0.5 m spacing. Six species (R. pseudoacacia, P. nigra, P. alba, S. nigra, E. camaldulensis, and A. altissima were planted in eighteen random “experimental” split-plots, using single and twin rows (0.5 m spacing between plants. Plots had a rectangular plant spacing (3 m between singular and twin rows, 0.5 m on each row. Plant density was roughly 6670 cuttings ha-1 in “collection” plots with singular rows and 10950 cuttings ha-1 in “experimental” plots using single and twin rows. The expected harvest interval ranges from 2 to 5 years, depending on the first results. In the “collection” plots, the first results showed

  16. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available signal. The input-output characteristic of the nowadays power amplifiers is not linear, thus the typical power amplifier will compress or even cut the transmitted signal if the operating point of this power amplifier will be close to the compression...) creates in time domain a multicarrier signal which amplitude varies significantly. Such a great variation of the signal amplitude has a great impact on energy efficiency of the used power amplifier as well as on the presence of the power leakage...

  17. Quantifying the risk of an increase in the prices of non-energy products by combining the portfolio and input-output approaches

    International Nuclear Information System (INIS)

    Suzuki, Kengo; Uchiyama, Yohji

    2010-01-01

    An increase in the price of imported fossil fuels indirectly increases the producer price in non-energy sectors; however, this indirect influence cannot be taken into account by the traditional portfolio approach. This study proposes an analytical framework combining the input-output (I-O) model and the portfolio approach that can take the indirect influence into account. A risk of an increase in the producer price in Japanese non-energy sectors during the period 1970-2000 is estimated, and the causes of a decrease in the risk through the analysis period are clarified by decomposing an index of the risk. The result indicates that almost all non-energy sectors have decreased this risk during the analysis period. The degree and cause of the decrease depends on a sector's location in the hierarchical structure of Japanese industries. For example, assembly sectors have decreased their risk mainly as the result of improvement in energy usage by upstream sectors, such as material sectors, rather than their own improvements. Proper policies considering such a structure are required to decrease the risk further because the effort taken to do so is seldom motivated by economic profit.

  18. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  19. Metabolic utilization of energy and maintenance requirements in lactating sows.

    Science.gov (United States)

    Noblet, J; Etienne, M

    1987-03-01

    Metabolizable energy (ME), heat production (measured by indirect calorimetry in respiration chambers), milk energy output and body energy mobilization were measured in 20 gilts (10 replicates of two littermates) during a 21-d lactation. Two energy levels were used: 14.2 and 10.4 Mcal ME X d-1 X sow-1 in the high energy (HE) and low energy (LE) groups, respectively. The daily supply of other nutrients in the diets was identical in both treatments. Measurements of metabolic rate and energy balance of the litters were carried out. These data were used to estimate the maintenance requirements of the sows (MEm) and the efficiencies of utilization of energy of food (kl) and body reserves (krl) for energy production in milk. Nitrogen balance of the sows was also determined. Energy mobilization was increased by energy restriction (-5.35 vs -2.04 Mcal X d-1 X sow-1 for HE and LE gilts, respectively) and by the increment of milk production with the advancement of lactation. Energy restriction (LE vs HE gilts) resulted in increased weight loss consisting mainly of fat tissue depletion. Muscle depletion represented a rather large proportion of weight loss, even in sows fed the high energy level. Maintenance requirements amounted to 109 kcal ME X kg weight-.75 X d-1. The estimations for kl and krl were 72 and 88%, respectively. These results show that the overall efficiency of energy storage during pregnancy and its mobilization during lactation (68.6 to 70.9%) is similar to that of direct utilization of ME during lactation.

  20. Total embodied energy requirements and its decomposition in China's agricultural sector

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuyan [Department of Public Management, Beijing Institute of Petrochemical Technology, 19 Qingyuan North Road, Daxing District, Beijing 102617 (China); Center for Resources Science, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101 (China); Xie, Gaodi; Zhen, Lin [Center for Resources Science, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101 (China)

    2010-05-15

    Humanity faces the important challenge of understanding and integrating human and natural processes, including agriculture. In China, the scarcity of arable land (0.09 ha per capita), increasing population, and migration of the workforce to cities pose a significant challenge for food security. Agricultural energy productivity has therefore become a key concern. In this study, we used input-output analysis to measure energy productivity at a national agro-ecosystem scale for China using the total embodied energy requirement (TEER) to reveal hidden energy flows. We introduced a structural decomposition technique that reveals how changes in TEER for the agricultural sector were driven by changes in energy-use technology and the inter-relationships among two agricultural sectors (farming and animal husbandry). The results will help both policymakers and farmers to improve the efficiency and environmental compatibility of agricultural production. Declining TEER for both sectors means that China's overall agro-ecosystem has increased its energy productivity since 1978 due to improved relationships between the agricultural sectors and increased use of biological energy. However, the net positive energy income decreased in the farming sector and an increasing proportion of fossil energy use, accompanied by increased energy income in the animal sector, provide incentives to increase yield and decrease labor by using more fossil energy, thus raising more animals in the animal husbandry sector. Overuse of fossil energy since 1990 has resulted in decreasing fossil energy efficiency, requiring immediate measures to improve the use of fossil-fuel-intensive materials such as fertilizers. (author)

  1. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    International Nuclear Information System (INIS)

    Downing , M.; Graham, R.L.

    1993-01-01

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. The general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion

  2. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L.

    1993-12-31

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. This general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion.

  3. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  4. Analysis and Control of Buck-Boost Converter with the Same Input Polarity Based on Novel Energy Factor Evaluation

    Directory of Open Access Journals (Sweden)

    Mahmoud Shaker Nasr

    2017-03-01

    Full Text Available This paper presents firstly a buck-boost circuit with the advantage that its output voltage polarity is the same as the input polarity. The circuit operation is presented and analyzed in different modes of operation. The well known parameters used in evaluation of DC/DC converters like Total Harmonic Distortion THD, Power Factor PF, and Ripple Factor RF have no meaning in DC/DC converters, so it is to introduce efficient concepts to permit a fair evaluation of the converter. This paper present other parameters that can be used to study the characteristics of the converter and gives a real and logic means of its operation. These main parameters are: pumping energy PE, storage energy SE, energy factor EF, and energy losses EL. In addition, the converter efficiency is not considered as 100 % as taken in most analyzing studies. The positive DC/DC buck-boost converter is evaluated according to the new concepts and the system model is deduced for different cases of operation taking into account the resistance of the circuit inductor. The circuit is implemented practically and the presented obtained results show the correct operation under different modes of operation. In addition the control design of the converter is built such that a PI controller with windup is considered. In order to test the effectiveness of the designed control algorithm, the system were exposed to different voltage reference values and the obtained results demonstrate that the system responses for all cases are very acceptable according to the criteria of the control system theory.

  5. Assessing the required additional organic inputs to soils to reach the 4 per 1000 objective at the global scale: a RothC project

    Science.gov (United States)

    Lutfalla, Suzanne; Skalsky, Rastislav; Martin, Manuel; Balkovic, Juraj; Havlik, Petr; Soussana, Jean-François

    2017-04-01

    the 4 per 1000 target). A spatial representation of this difference shows the distribution of the required returns to the soil. This first tool will provide the basis for the next steps: choosing and implementing practices to obtain the required additional input. Results will be presented from simulations at the regional scale (country: Slovakia) and at the global scale (0,5° grid resolution). Soil input data comes from the HWSD, climatic input data comes from AgMERRA climate dataset averaged of a 30 years period (1980-2010). They show that, at the global scale, given some data corrections which will be presented and discussed, the 4 per 1000 increase in top soil organic carbon can be reached with a median additional input of +0.89 tC/ha/year for cropland soils.

  6. A ‘Carbon Saving Multiplier’ as an alternative to rebound in considering reduced energy supply chain requirements from energy efficiency?

    International Nuclear Information System (INIS)

    Turner, Karen; Katris, Antonios

    2017-01-01

    A growing area of research into rebound effects from increased energy efficiency involves application of demand-driven input-output models to consider indirect energy consumption effects associated with re-spending decisions by households with reduced energy spending requirements. However, there is often a lack of clarity in applied studies as to how indirect effects involving energy use and/or carbon emissions in supply chains of both energy and non-energy goods and services have been calculated. We propose that more transparency for policymakers may be introduced by replacing consideration of what are often referred to as ‘indirect rebound’ effects with a simple Carbon Saving Multiplier metric. We illustrate using results from a demand-driven input-output model that tracks supply chain activity at national and/or global level. We argue that this captures and conveys the same information on quantity adjustments in energy used in supply chain activity but does so in a manner that is more positive, transparent, understandable and useful for a policy audience. This is achieved by focusing (here via carbon emissions) on the net benefits of changes in different types of energy use at both household and supply chain levels when energy efficiency improves in households. - Highlights: • Considers energy supply adjustments when household energy efficiency improves. • Focuses on energy supply chain impacts that may offset direct rebound effects. • Carbon Saving Multiplier proposed as a useful indicator of net energy use benefits.

  7. A Three-Phase Dual-Input Matrix Converter for Grid Integration of Two AC Type Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Chiang Loh, Poh

    2013-01-01

    -to-output voltage boost capability since power flows from the converter’s voltage source side to its current source side. Commanded currents can be extracted from the two input sources to the grid. The proposed control and modulation schemes guarantee sinusoidal input and output waveforms as well as unity input...

  8. Forecast of wind energy production and ensuring required balancing power

    International Nuclear Information System (INIS)

    Merkulov, M.

    2010-01-01

    The wind energy is gaining larger part of the energy mix around the world as well as in Bulgaria. Having in mind the irregularity of the wind, we are in front of a challenge for management of the power grid in new unknown conditions. The world's experience has proven that there could be no effective management of the grid without forecasting tools, even with small scale of wind power penetration. Application of such tools promotes simple management of large wind energy production and reduction of the quantities of required balancing powers. The share of the expenses and efforts for forecasting of the wind energy is incomparably small in comparison with expenses for keeping additional powers in readiness. The recent computers potential allow simple and rapid processing of large quantities of data from different sources, which provides required conditions for modeling the world's climate and producing sophisticated forecast. (author)

  9. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  10. Cost of energy from utility-owned solar electric systems. A required revenue method for ERDA/EPRI evaluations

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation and maintenance, and the financial structure and tax environment of the utility.

  11. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  12. The millennium development goals and household energy requirements in Nigeria.

    Science.gov (United States)

    Ibitoye, Francis I

    2013-01-01

    Access to clean and affordable energy is critical for the realization of the United Nations' Millennium Development Goals, or MDGs. In many developing countries, a large proportion of household energy requirements is met by use of non-commercial fuels such as wood, animal dung, crop residues, etc., and the associated health and environmental hazards of these are well documented. In this work, a scenario analysis of energy requirements in Nigeria's households is carried out to compare estimates between 2005 and 2020 under a reference scenario, with estimates under the assumption that Nigeria will meet the millennium goals. Requirements for energy under the MDG scenario are measured by the impacts on energy use, of a reduction by half, in 2015, (a) the number of household without access to electricity for basic services, (b) the number of households without access to modern energy carriers for cooking, and (c) the number of families living in one-room households in Nigeria's overcrowded urban slums. For these to be achieved, household electricity consumption would increase by about 41% over the study period, while the use of modern fuels would more than double. This migration to the use of modern fuels for cooking results in a reduction in the overall fuelwood consumption, from 5 GJ/capita in 2005, to 2.9 GJ/capita in 2015.

  13. Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case

    International Nuclear Information System (INIS)

    Mongelli, I.; Tassielli, G.; Notarnicola, B.

    2006-01-01

    In the Kyoto Protocol the absence of Green House Gases (GHGs) commitments of developing countries (non-Annex I) and the more flexible terms of implementation which are allowed to countries shifting toward a market economy (transition economies) naturally lead to the absence or to less constraining national measures and policies of reduction of the GHGs emissions which, in turn, may determine a comparative advantage in the production of the highest energy/carbon intensive commodities for these countries. These arguments are valid also considering the future implementation of the European Emission Allowance Trading Scheme (EATS). Thus, developing countries may become a haven for the production of not environmental-friendly commodities; in this case, the so-called Pollution Haven Hypothesis, stating that due to freer international trade the comparative advantage may change the economic structure and consequently the trade patterns of the countries linked by trade relationships, could occur. This would lead to the increase of the transfers of energy and carbon embodied in traded commodities from developing countries and transition economies toward Kyoto or EATS constrained countries. The aim of this paper is to verify if for Italy, as a Kyoto and EATS complying country, evidence of a change in the trade patterns, occurred on the basis of the Pollution Haven Hypothesis, does exist and to estimate the magnitude of the under-estimation of the carbon actually emitted: the carbon leakage. The Input-Output model has been used to calculate the intensities of energy consumption and the related Green House Gases emission, for each Italian economic sector

  14. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    International Nuclear Information System (INIS)

    Custer, W.R. Jr.; Messick, C.D.

    1996-01-01

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies

  15. The European Union requires energy conservation; EU krever energisparing

    Energy Technology Data Exchange (ETDEWEB)

    Abelsen, Atle

    2004-07-01

    New building rules pave the way for an EU directive that require Norwegian builders to provide energy certificates for new buildings after 2006. The sector itself prefers a voluntary arrangement prior to this time. A lot of energy is wasted in Norwegian buildings on the whole and some experts are talking about Norway's largest power reserve if this potential for energy efficiency is realized. The annual consumption of energy in buildings is 82 TWh, 63 TWh being electric power of which 33 TWh is used for heating. In theory, the saving potential is about 10 TWh, but it has been very difficult to make private people and business people do the necessary investments in new or existing buildings to save energy.

  16. Required Assets for a Nuclear Energy Applied R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs

  17. Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation

    International Nuclear Information System (INIS)

    Njakou Djomo, S.; El Kasmioui, O.; De Groote, T.; Broeckx, L.S.; Verlinden, M.S.; Berhongaray, G.; Fichot, R.; Zona, D.; Dillen, S.Y.; King, J.S.; Janssens, I.A.; Ceulemans, R.

    2013-01-01

    Highlights: • A full energy and GHG balance of bioelectricity from SRWC was performed. • Bioelectricity was efficient; it reduced GHG by 52–54% relative to the EU non-renewable grid mix. • Bioelectricity required 1.1 m 2 of land kWh −1 ; land conversion released 2.8 ± 0.2 t CO 2e ha −1 . • SRWC reduced GHG emission when producing electricity during the 1st rotation period. - Abstract: Short-rotation woody crops (SRWCs) are a promising means to enhance the EU renewable energy sources while mitigating greenhouse gas (GHG) emissions. However, there are concerns that the GHG mitigation potential of bioelectricity may be nullified due to GHG emissions from direct land use changes (dLUCs). In order to evaluate quantitatively the GHG mitigation potential of bioelectricity from SRWC we managed an operational SRWC plantation (18.4 ha) for bioelectricity production on a former agricultural land without supplemental irrigation or fertilization. We traced back to the primary energy level all farm labor, materials, and fossil fuel inputs to the bioelectricity production. We also sampled soil carbon and monitored fluxes of GHGs between the SRWC plantation and the atmosphere. We found that bioelectricity from SRWCs was energy efficient and yielded 200–227% more energy than required to produce it over a two-year rotation. The associated land requirement was 0.9 m 2 kWh e -1 for the gasification and 1.1 m 2 kWh e -1 for the combustion technology. Converting agricultural land into the SRWC plantation released 2.8 ± 0.2 t CO 2e ha −1 , which represented ∼89% of the total GHG emissions (256–272 g CO 2e kWh e -1 ) of bioelectricity production. Despite its high share of the total GHG emissions, dLUC did not negate the GHG benefits of bioelectricity. Indeed, the GHG savings of bioelectricity relative to the EU non-renewable grid mix power ranged between 52% and 54%. SRWC on agricultural lands with low soil organic carbon stocks are encouraging prospects for

  18. Microalgae Oil Production: A Downstream Approach to Energy Requirements for the Minamisoma Pilot Plant

    Directory of Open Access Journals (Sweden)

    Dhani S. Wibawa

    2018-02-01

    Full Text Available This study investigates the potential of microalgae oil production as an alternative renewable energy source, in a pilot project located at Minamisoma City in the Fukushima Prefecture of Japan. The algal communities used in this research were the locally mixed species, which were mainly composed of Desmodesmus collected from the Minamisoma pilot project. The microalgae oil-production processes in Minamisoma consisted of three stages: cultivation, dewatering, and extraction. The estimated theoretical input-energy requirement for extracting oil was 137.25 MJ to process 50 m3 of microalgae, which was divided into cultivation 15.40 MJ, centrifuge 13.39 MJ, drum filter 14.17 MJ, and hydrothermal liquefaction (HTL 94.29 MJ. The energy profit ratio (EPR was 1.41. The total energy requirement was highest in the HTL process (68% followed by cultivation (11% and the drum filter (10%. The EPR value increased along with the yield in the cultivation process. Using HTL, the microalgae biomass could be converted to bio-crude oil to increase the oil yield in the extraction process. Therefore, in the long run, the HTL process could help lower production costs, due to the lack of chemical additions, for extracting oil in the downstream estimation of the energy requirements for microalgae oil production.

  19. Energy inputs and outputs in the wheat production at different localizations; Balanco de energia na producao de trigo em diferentes locais

    Energy Technology Data Exchange (ETDEWEB)

    Gollmann, Pedro; Greco, Marcelo; Campos, Alessandro Torres [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana], e-mail: jefersonklein@yahoo.com.br; Klein, Jeferson [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil); Palagi, Celso A.; Jurach, Jorge J. [Cooperativa Central de Pesquisa Agricola Tecnologia da Nossa Terra (COODETEC), Cascavel, PR (Brazil)

    2004-07-01

    The intensifying and modernization of agriculture, in spite of improving the productivity, it caused a complete petroleum derived dependence, so much in the form of fuels, lubricants and machinery, as in the form of inputs for the production. This work had as objective to esteem the energy inputs and outputs and the energy conversion, in two different local, in the west of Parana State/Brazil. The largest consumption was observed for the direct energy category, with 95.6% and 95.28% in Cascavel and Palotina, respectively. In the direct energy flow, the Palotina production spent 5,0% more. The consumption of fossil energy was of 22.32% for the Palotina farm and of 23.84% for the Cascavel farm. The energy conversion was of 3.2 and 1.8, for the wheat productions in Cascavel and Palotina, respectively. (author)

  20. The Role of Photovoltaics in Energy Requirements in Pakistan

    International Nuclear Information System (INIS)

    Shah, I.A.; Haq, N.U.; Nasir, H.

    2011-01-01

    In this review article global energy issue is discussed with specific reference to Pakistan. The energy consumption and supply from different sources like oil, gas, electricity, nuclear power, bio gas and especially from renewables is taken into account. Also discussed some suggestions for the energy requirements. Focus is given to the production of renewable energy sources like technology of photovoltaics in which solar power is converted into electricity. Solar cell is discussed including its two basic types inorganic solar cell and organic solar cell, its way of functioning, process of fabrication etc is also discussed. Organic or polymeric solar cell is discussed in detail. keeping in view the financial condition and requirement of energy for our country suggestions are given for low cost and simple processing of organic solar cells. It is also suggested that availability of all the materials required for the development of organic solar cells should be guaranteed. Interest should be developed at the university and other research organization level of Pakistan to do work on polymeric solar cells for increasing their efficiencies so that they can be practically utilized. (author)

  1. Energy requirements and perceived body discomfort of the various ...

    African Journals Online (AJOL)

    The main aim of this preliminary study was to assess the energy cost of the various sub tasks required of workers during manual sugar cane harvesting. A secondary aim was to assess body mass changes, levels of dehydration and body discomfort. Eight workers were randomly selected to participate in this pilot study and ...

  2. In Vitro Studies on the Metabolic Energy Requirements of ...

    African Journals Online (AJOL)

    Krebs buffer, pH 7.3 free from zinc and whose metabolic energy requirement of absorption was to be investigated until slightly distended. Sacs were incubated for 30 minutes at 37oC with continuous aeration in media containing the buffer and ...

  3. Energy requirement for firing porcelain | M. de O. Madivate | Bulletin ...

    African Journals Online (AJOL)

    Results from studies on the ternary system Ribaué kaolin–Carapira feldspar– Marracuene quartz sands were used to test a procedure that we developed for calculation of the energy requirement for firing porcelain. Results obtained vary between 1300 and 1800 kJ/kg porcelain. These results differ largely from the ones ...

  4. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  5. Compact toroid challenge experiment with the increasing in the energy input into plasma and the level of trapped magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romadanov, I.V.; Ryzhkov, S.V., E-mail: ryzhkov@power.bmstu.ru

    2014-12-15

    Highlights: • Compact torus formation method with high level of magnetic flux is proposed. • A compact torus is produced in a theta-pinch-coil with pulse mode of operation. • Key feature is a pulse of current in an axial direction. • We report a level of linked magnetic flux is higher than theta-pinch results. - Abstract: The present work reports on compact toroid hydrogen plasma creation by means of a specially designed discharge system and results of magnetic fields introduction. Experiments in the compact toroid challenge (CTC) device at P.N. Lebedev Physical Institute (FIAN) have been conducted since 2005. The CTC device differs from the conventional theta-pinch formation in the use of an axial current for enhanced efficiency. We have used a novel technique to maximize the flux linked to the plasma. The purpose of this method is to increase the energy input into the plasma and the level of trapped magnetic flux using an additional toroidal magnetic field. A study of compact torus formation with axial and toroidal currents was done and a new method is proposed and implemented.

  6. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  7. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy

  8. A 2nd generation static model for predicting greenhouse energy inputs, as an aid for production planning

    CERN Document Server

    Jolliet, O; Munday, G L

    1985-01-01

    A model which allows accurate prediction of energy consumption of a greenhouse is a useful tool for production planning and optimisation of greenhouse components. To date two types of model have been developed; some very simple models of low precision, others, precise dynamic models unsuitable for employment over long periods and too complex for use in practice. A theoretical study and measurements at the CERN trial greenhouse have allowed development of a new static model named "HORTICERN", easy to use and as precise as more complex dynamic models. This paper demonstrates the potential of this model for long-term production planning. The model gives precise predictions of energy consumption when given greenhouse conditions of use (inside temperatures, dehumidification by ventilation, …) and takes into account local climatic conditions (wind radiative losses to the sky and solar gains), type of greenhouse (cladding, thermal screen …). The HORTICERN method has been developed for PC use and requires less...

  9. Material and Energy Requirement for Rare Earth Production

    Science.gov (United States)

    Talens Peiró, Laura; Villalba Méndez, Gara

    2013-10-01

    The use of rare earth metals (REMs) for new applications in renewable and communication technologies has increased concern about future supply as well as environmental burdens associated with the extraction, use, and disposal (losses) of these metals. Although there are several reports describing and quantifying the production and use of REM, there is still a lack of quantitative data about the material and energy requirements for their extraction and refining. Such information remains difficult to acquire as China is still supplying over 95% of the world REM supply. This article attempts to estimate the material and energy requirements for the production of REM based on the theoretical chemical reactions and thermodynamics. The results show the material and energy requirement varies greatly depending on the type of mineral ore, production facility, and beneficiation process selected. They also show that the greatest loss occurs during mining (25-50%) and beneficiation (10-30%) of RE minerals. We hope that the material and energy balances presented in this article will be of use in life cycle analysis, resource accounting, and other industrial ecology tools used to quantify the environmental consequences of meeting REM demand for new technology products.

  10. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW......The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...

  11. Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    The technical performance and energy requirements for production and transportation of a stand alone photovoltaic (PV)-battery system at different operating conditions are presented. Eight battery technologies are evaluated: lithium-ion (Li-ion), sodium-sulphur (NaS), nickel-cadmium (NiCd), nickel-metal hydride (NiMH), lead-acid (PbA), vanadium-redox (VRB), zinc-bromine (ZnBr) and polysulfide-bromide (PSB). In the reference case, the energy requirements for production and transport of PV-battery systems that use the different battery technologies differ by up to a factor of three. Production and transport of batteries contribute 24-70% to the energy requirements, and the PV array contributes 26-68%. The contribution from other system components is less than 10%. The contribution of transport to energy requirements is 1-9% for transportation by truck, but may be up to 73% for air transportation. The energy requirement for battery production and transport is dominant for systems based on NiCd, NiMH and PbA batteries. The energy requirements for these systems are, therefore, sensitive to changes in battery service life and gravimetric energy density. For systems with batteries with relatively low energy requirement for production and transportation (Li-ion, NaS, VRB, ZnBr, PSB), the battery charge-discharge efficiency has a larger impact. In Part II, the data presented here are used to calculate energy payback times and overall battery efficiencies of the PV-battery systems

  12. The Energy Required to Produce Materials: Constraints on Energy Intensity Improvements, Parameters of Demand

    NARCIS (Netherlands)

    Gutowski, T.G.; Sahni, S.; Allwood, J.M.; Ashby, M.F.; Worrell, E.|info:eu-repo/dai/nl/106856715

    2013-01-01

    In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material

  13. Physical Habitat and Energy Inputs Determine Freshwater Invertebrate Communities in Reference and Cranberry Farm Impacted Northeastern Coastal Zone Streams

    Science.gov (United States)

    Lander, D. M. P.; McCanty, S. T.; Dimino, T. F.; Christian, A. D.

    2016-02-01

    The River Continuum Concept (RCC) predicts stream biological communities based on dominant physical structures and energy inputs into streams and predicts how these features and corresponding communities change along the stream continuum. Verifying RCC expectations is important for creating valid points of comparison during stream ecosystem evaluation. These reference expectations are critical for restoration projects, such as the restoration of decommissioned cranberry bogs. Our research compares the physical habitat and freshwater invertebrate functional feeding groups (FWIFFG) of reference, active cranberry farming, and cranberry farm passive restoration sites in Northeastern Coastal Zone streams of Massachusetts to the specific RCC FWIFFG predictions. We characterized stream physical habitat using a semi-quantitative habitat characterization protocol and sampled freshwater invertebrates using the U.S. EPA standard 20-jab multi-habitat protocol. We expected that stream habitat would be most homogeneous at active farming stations, intermediate at restoration stations, and most heterogeneous at reference stations. Furthermore, we expected reference stream FWIFFG would be accurately predicted by the RCC and distributions at restoration and active sites would vary significantly. Habitat data was analyzed using a principle component analysis and results confirmed our predictions showing more homogeneous habitat for the active and reference stations, while showing a more heterogeneous habitat at the reference stations. The FWIFFG chi-squared analysis showed significant deviation from our specific RCC FWIFFG predictions. Because published FWIFFG distributions did not match our empirical values for a least disturbed Northeastern Coastal Zone headwater stream, using our data as a community structure template for current and future restoration projects is not recommend without further considerations.

  14. Short communication Prediction of energy requirements of Murciano ...

    African Journals Online (AJOL)

    p2492989

    Short communication. Prediction of energy requirements of Murciano-Granadina preruminant female kids using the National Research Council. A.L. Martínez Marín#, M. Pérez Hernández, L.M. Pérez Alba, D. Carrión Pardo. & A.G. Gómez Castro. University of ..... (in Spanish, English abstract). Bezabih, M. & Pfeffer, E., 2003.

  15. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  16. Effect of heat-insulating wall on input energy of a photovoltaic/solar/air-heat system for a residence; Jutaku no kodannetsuka ni yoru taiyoko netsu/taiki netsu system no donyu energy sakugen koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan)

    1996-10-27

    A proposal was made to introduce a photovoltaic/solar/air-heat system which positively utilizes natural energy in order to curtail consumption of fossil energy, corroborating that the system has greatly reduced energy input in the primary energy level in a house. This paper examines the effect of curtailment of energy input in the case of reducing the load of air conditioning through the high heat insulation of a house. The energy input was evaluated by calculating additional equipment energy needed newly for the high heat insulation. The system performance and the energy load varied greatly depending on weather conditions. The subject system consisted of solar cells, inverter, heat concentrator, heat storage tank, heat pump and gas hot-water supply device. The thickening of the insulation sharply reduced heating load in the house, thereby decreasing fuel energy substantially. An insulation material of 100mm thick was capable of reducing energy input by 16-23% compared with that of 50mm thick. 5 refs., 5 figs, 3 tabs.

  17. China’s Input-Output Efficiency of Water-Energy-Food Nexus Based on the Data Envelopment Analysis (DEA Model

    Directory of Open Access Journals (Sweden)

    Guijun Li

    2016-09-01

    Full Text Available An explanation and quantification of the water-energy-food nexus (WEF-Nexus is important to advance our understanding of regional resource management, which is presently in its infant stage. Evaluation of the current states, interconnections, and trends of WEF-Nexus, in cities, has largely been ignored due to quantification hurdles and the lack of available data. Based on the interaction of WEF-Nexus with population system, economic system, and environmental system, this paper builds the input output index system at the city level. Using the input output index system, we evaluate the WEF-Nexus input-output efficiency with the data envelopment analysis (DEA model. We regard the decision making unit as a “black box”, to explore the states and trends of WEF-Nexus. In the empirical study based on data from China, we compare the input-output efficiency of WEF-Nexus in 30 provinces across China, from 2005 to 2014, to better understand their statues and trends of the input-output efficiency holistically. Together with the Malmquist index, factors leading to regional differences in the fluctuation of input-output efficiency are explored. Finally, we conclude that the DEA model indicates the regional consumption of WEF resources in the horizontal dimension and the trends in vertical dimension, together with the Malmquist index, to explain the variations for proposing specific implications.

  18. Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord

    Directory of Open Access Journals (Sweden)

    Gharib Shahla

    2006-08-01

    Full Text Available Abstract Background The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. Results Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. Conclusion Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We

  19. Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord.

    Science.gov (United States)

    Schindelman, Gary; Whittaker, Allyson J; Thum, Jian Yuan; Gharib, Shahla; Sternberg, Paul W

    2006-08-15

    The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS)-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM) family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We have shown both a neuronal and non-neuronal requirement for

  20. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2017-02-01

    Full Text Available Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM, an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  1. Minimum energy dissipation required for a logically irreversible operation

    Science.gov (United States)

    Takeuchi, Naoki; Yoshikawa, Nobuyuki

    2018-01-01

    According to Landauer's principle, the minimum heat emission required for computing is linked to logical entropy, or logical reversibility. The validity of Landauer's principle has been investigated for several decades and was finally demonstrated in recent experiments by showing that the minimum heat emission is associated with the reduction in logical entropy during a logically irreversible operation. Although the relationship between minimum heat emission and logical reversibility is being revealed, it is not clear how much free energy is required to be dissipated for a logically irreversible operation. In the present study, in order to reveal the connection between logical reversibility and free energy dissipation, we numerically demonstrated logically irreversible protocols using adiabatic superconductor logic. The calculation results of work during the protocol showed that, while the minimum heat emission conforms to Landauer's principle, the free energy dissipation can be arbitrarily reduced by performing the protocol quasistatically. The above results show that logical reversibility is not associated with thermodynamic reversibility, and that heat is not only emitted from logic devices but also absorbed by logic devices. We also formulated the heat emission from adiabatic superconductor logic during a logically irreversible operation at a finite operation speed.

  2. Changing perspectives on aging and energy requirements: aging and energy intakes in humans, dogs and cats.

    Science.gov (United States)

    Harper, E J

    1998-12-01

    A series of cross-sectional and longitudinal studies conducted in humans has shown that aging is associated with a gradual decline in the maintenance energy requirement. Generally, this is equivalent to a total decrement of 20% of young adult maintenance energy requirements and is a result of a decrease in both physical activity and basal metabolic rate. Relatively few such studies have been conducted in dogs, but the results have been consistent. It appears that maintenance energy requirements decline by approximately 20%, and it is assumed that the causal factors are the same as those for humans. The situation appears to be somewhat different in cats, with evidence to date indicating that maintenance energy requirements remain constant throughout adult life. Why cats should be different from other species is not clear, but it is hypothesized that relative inactivity is typical of most cats' behavior, such that there is no obvious age-related change. In terms of feeding regimens for senior cats and dogs, it is appropriate to decrease energy provision for senior dogs by approximately 20%, whereas the energy provision for senior cats should not be decreased.

  3. GAROS input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Vollan, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    This report describes the input for the programs GAROS1 and GAROS2, version 5.8 and later, February 1988. The GAROS system, developed by Arne Vollan, Omega GmbH, is used for the analysis of the mechanical and aeroelastic properties for general rotating systems. It has been specially designed to meet the requirements of aeroelastic stability and dynamic response of horizontal axis wind energy converters. Some of the special characteristics are: * The rotor may have one or more blades. * The blades may be rigidly attached to the hub, or they may be fully articulated. * The full elastic properties of the blades, the hub, the machine house and the tower are taken into account. * With the same basic model, a number of different analyses can be performed: Snap-shot analysis, Floquet method, transient response analysis, frequency response analysis etc.

  4. Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team

    Science.gov (United States)

    Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.; hide

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.

  5. Energy requirements of the U. S. pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, C.M.

    1979-01-01

    According to the American Paper Institute, the paper industry is the fifth largest consumer of purchased energy in the U.S. and the largest consumer of fuel oil. Almost one-half of its total energy consumption comes from the industry's own process wasts: spent pulping liquors, bark, and hogged wood. In 1976 non-fossil fuels provided 44.6% of the total Btu consumption, up from 41.1% in 1972 and 42.6% in 1975. (Self-generated hydro power and other electricity produced from fossil fuel supplied another 1.5% of total needs in 1972 and 2.1% in 1975.) The industry has established a mechanism for self-policing by submitting periodic reports on its energy consumption to the API. The target set by the industry is a 20% saving of purchased energy by 1980. So far a reduction of about 15% has been achieved, making adjustments for add-ons required because of environmental regulations and other changes vs the base year of 1972.

  6. Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: Input energy, interface, and strength

    International Nuclear Information System (INIS)

    Liu, Bert; Vivek, Anupam; Daehn, Glenn S.

    2017-01-01

    Dissimilar joining of sheet aluminum AA6061-T4 to cast magnesium AM60B was achieved by vaporizing foil actuator welding (VFAW). Three input energy levels were used (6, 8, and 10 kJ), and as a trend, higher input energies resulted in progressively higher flyer velocities, more pronounced interfacial wavy features, larger weld zones, higher peel strengths, and higher peel energies. In all cases, weld cross section revealed a soundly bonded interface characterized by well-developed wavy features and lack of voids and continuous layers of intermetallic compounds (IMCs). At 10 kJ input energy, flyer speed of 820 m/s, peel strength of 22.4 N/mm, and peel energy of 5.2 J were obtained. In lap-shear, failure occurred in AA6061- T4 flyer at 97% of the base material’s peak tensile load. Peel samples failed along the weld interface, and the AM60B-side of the fracture surface showed thin, evenly-spaced lines of Al residuals which had been torn out of the base AA6061-T4 in a ductile fashion and transferred over to the AM60B side, indicating very strong AA6061-T4/AM60B bond in these areas. Furthermore, this work demonstrates VFAW’s capability in joining dissimilar lightweight metals such as Al/Mg, which is expected to be a great enabler in the ongoing push for vehicle weight reduction.

  7. Contribution of wind energy to future electricity requirements of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaili, M. A.; Memon, M.

    2007-01-01

    Pakistan is an energy deficit country. About half of the country's population has no access to electricity and per capita supply is only 520 kWh. About 67% of the conventional electricity is generated from fossil fuels with 51% and 16% share of gas and oil respectively. It has been projected that electricity demand in Pakistan would increase at an average annual growth rate of 5% to 12% under different scenarios. The indigenous reserves of oil and gas are limited and the country heavily depends on imported oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payment situation. Pakistan is becoming increasingly more dependent on a few sources of supply and its energy security often hangs on the fragile threat of imported oil that is subject to supply disruptions and price volatility. The production and consumption of fossil fuels also adversely affects the quality of the environment due to indiscriminate release of toxic substances. Pakistan spends huge amount on the degradation of the environment. This shows that Pakistan must develop alternate, indigenous and environment friendly energy resources such as wind energy to meet its future electricity requirements. This paper presents an overview of wind power generation potential and assessment of its contribution to future electricity requirements of Pakistan under different policy scenarios. The country has about 1050 km long coastline. The technical potential of centralized grid connected wind power and wind home systems in the coastal area of the country has been estimated as about 484 TWh and 0.135 TWh per year respectively. The study concludes that wind power could meet about 20% to 50% of the electricity demand in Pakistan by the year 2030. The development and utilization of wind power would reduce the pressure on oil imports, protect the environment from pollution and improve the socio-economic conditions of the people

  8. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-11-01

    The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3  Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2  m -3  order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Estimation of the net energy requirement for maintenance in broilers

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Objective The net energy requirement for the maintenance (NEm of broilers was determined using regression models by the indirect calorimetry method (ICM or the comparative slaughter method (CSM. Methods A 2×4 factorial arrangement of treatments including the evaluation method (ICM or CSM and feed intake (25%, 50%, 75%, or 100% of ad libitum recommended was employed in this experiment. In the ICM, 96 male Arbor Acres (AA birds aged d 15 were used with 4 birds per replicate and 6 replicates in each treatment. In the CSM, 116 male AA birds aged d 15 were used. Among these 116 birds, 20 were selected as for initial data and 96 were assigned to 4 treatments with 6 replicate cages and 4 birds each. The linear regression between retained energy (RE and metabolizable energy intake (MEI or the logarithmic regression between heat production (HP and MEI were used to calculate the metabolizable or net energy requirement for maintenance (MEm or NEm, respectively. Results The evaluation method did not detect any differences in the metabolizable energy (ME, net energy (NE, and NE:ME of diet, and in the MEI, HP, and RE of broilers. The MEI, HP, and RE of broilers decreased (p<0.01 as the feed intake decreased. No evaluation method× feed intake interaction was observed on these parameters. The MEm and NEm estimated from the linear relationship were 594 and 386 kJ/kg of body weight (BW0.75/d in the ICM, and 618 and 404 kJ/kg of BW0.75/d in the CSM, respectively. The MEm and NEm estimated by logarithmic regression were 607 and 448 kJ/kg of BW0.75/d in the ICM, and were 619 and 462 kJ/kg of BW0.75/d in the CSM, respectively. Conclusion The NEm values obtained in this study provide references for estimating the NE values of broiler diets.

  10. A safeguards program for implementing Department of Energy requirements

    International Nuclear Information System (INIS)

    Erkkila, B.H.

    1989-01-01

    The U.S. Department of Energy (DOE) issued a new materials control and accountability (MC ampersand A) order 5633.3 in February of 1988. This order contains all of the requirements for an effective MC ampersand A (safeguards) program for facilities that control and account for nuclear materials in their operations. All contractors were expected to come into compliance with the order by April 30, 1989, or obtain approval for exceptions and/or extensions. The order also contains various performance requirements that are not in effect until the DOE issues the guidelines to the performance requirements. After evaluations were completed in February 1989, it was determined there were several deficiencies in the Los Alamos National Laboratory's (LANL's) safeguards program. Documentation of policy and procedures needed correction before LANL could be in compliance with the new MC ampersand A order. Differences between the old and new orders were addressed. After this determination, action teams were established to corrected LANL's safeguards program. Compliance with the DOE requirements was the goal of this activity. The accomplishments of the action teams are the subject of this paper

  11. The trouble with chemical energy: why understanding bond energies requires an interdisciplinary systems approach.

    Science.gov (United States)

    Cooper, Melanie M; Klymkowsky, Michael W

    2013-06-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K-12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems.

  12. Large Scale Computing and Storage Requirements for High Energy Physics

    International Nuclear Information System (INIS)

    Gerber, Richard A.; Wasserman, Harvey

    2010-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  13. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  14. Input characterization of a shock test strructure.

    Energy Technology Data Exchange (ETDEWEB)

    Hylok, J. E. (Jeffrey E.); Groethe, M. A.; Maupin, R. D. (Ryan D.)

    2004-01-01

    Often in experimental work, measuring input forces and pressures is a difficult and sometimes impossible task. For one particular shock test article, its input sensitivity required a detailed measurement of the pressure input. This paper discusses the use of a surrogate mass mock test article to measure spatial and temporal variations of the shock input within and between experiments. Also discussed will be the challenges and solutions in making some of the high speed transient measurements. The current input characterization work appears as part of the second phase in an extensive model validation project. During the first phase, the system under analysis displayed sensitivities to the shock input's qualitative and quantitative (magnitude) characteristics. However, multiple shortcomings existed in the characterization of the input. First, the experimental measurements of the input were made on a significantly simplified structure only, and the spatial fidelity of the measurements was minimal. Second, the sensors used for the pressure measurement contained known errors that could not be fully quantified. Finally, the measurements examined only one input pressure path (from contact with the energetic material). Airblast levels from the energetic materials were unknown. The result was a large discrepancy between the energy content in the analysis and experiments.

  15. Employment impacts of energy conservation schemes in the residential sector. Calculation of direct and indirect employment effects using a dedicated input/output simulation approach

    International Nuclear Information System (INIS)

    Jeeninga, H.; Weber, C.; Maeenpaeae, I.; Rivero Garcia, F.; Wiltshire, V.; Wade, J.

    1999-10-01

    The relationship between investments in energy efficiency and employment is investigated. The employment effects of several energy conservation schemes implemented in the residential sector are determined by means of a dedicated input/output simulation approach. The employment effects of energy conservation schemes were determined for France, Germany, the Netherlands, Spain and the United Kingdom. Within the time frame of the project, it was not feasible to perform a comparable analysis for Greece, Ireland and Austria. For Finland, the employment effects of energy auditing schemes were investigated by means of a macro economic simulation model. The main driving force behind the positive employment effect of investment in energy efficiency in the residential sector is the fact that the energy sector has a rather low labour intensity. The resulting shift of expenditures from the energy sector to other sectors with higher labour intensity leads to increased employment. The main mechanisms that determine the net shift in employment resulting from investments in energy conservation are: 1. The employment effect related to the initial investment in energy efficiency; 2. The energy saving effect. Due to lower energy bill, a shift in expenditure pattern will occur from the labour extensive energy sector towards sectors with higher labour intensity, thus inducing a net positive effect on employment; 3. The effects of money transfers between sectors. For example, when the investment is subsidised by the government, money is transferred from the governmental sector to the residential sector; 4. Changes in the total government budget as a result of changes in total tax revenue and expenditures on unemployment benefits. Different financing methods for the investment in energy efficiency are analysed. The initial investment can be financed from the general household consumption budget, by means of a loan, using a subsidy or using private savings. The following input parameters

  16. Voltage Gain Derivation Based on Energy-Balanced Criterion for a Novel Hybrid-Input PV-Wind Power Conversion System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-01-01

    Full Text Available This paper applies energy-balanced criterion to a novel hybrid-input PV-wind power conversion system (HPWPCS for voltage gain derivation. With the energy-balanced concept, complicated mathematical problems related to voltage gain derivation can be readily resolved. Based on the derived results, it is proven that the proposed HPWPCS is able to process two different kinds of renewable energy resources simultaneously. Even though the HPWPCS includes seven capacitors and three magnetic components, its voltage gain still can be found by the mathematical analysis. In the theoretical derivation, only the energy status of output inductor is dealt with such that complicated derivation procedure is avoided. This analysis method can also be applied to other hybrid green-energy conversion systems. In this paper, a 200 W 50 kHz prototype of HPWPCS is built and examined to verify the mathematical results.

  17. Discussion paper : offshore wind facilities renewable energy approval requirements

    International Nuclear Information System (INIS)

    2010-06-01

    This paper discussed a proposed shoreline exclusion zone for offshore wind projects in Ontario. Considerations relevant to offshore wind projects and the protection of human health, cultural heritage, and the environment were also discussed. The paper was prepared in order to provide greater clarity to renewable energy developers and to Ontario residents about the offshore wind policy that is currently being considered by the Ontario Government. Feedback received from the discussion paper will be used to propose policy and associated regulatory amendments. A 5 km shoreline exclusion zone for all offshore wind facilities was proposed. Some projects may be required to be located beyond the proposed exclusion zone. Proposed developments within the exclusion zone must meet all applicable requirements, including those related to cultural and natural heritage. The zone will establish a distance between drinking water intakes, and ensure that sediment dredging and other construction-related activities do not impact drinking water quality, and ensure that potential noise levels are within acceptable levels. The zone will establish a distance between near-shore activities and wind facilities, and also help to maintain the ecological health of inland waters. Guidelines and technical requirements for wind facility operators were also included.

  18. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Dennis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frame, Caitlin [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Gill, Carrie [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Hanson, Howard [Florida Atlantic Univ., Boca Raton, FL (United States); Moriarty, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Powell, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Shaw, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilczak, Jim [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Wynne, Jason [Energetics, Columbia, MD (United States)

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  19. Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input-output life cycle assessment database with a global system boundary.

    Science.gov (United States)

    Nansai, Keisuke; Kondo, Yasushi; Kagawa, Shigemi; Suh, Sangwon; Nakajima, Kenichi; Inaba, Rokuta; Tohno, Susumu

    2012-08-21

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input-output LCA method with a global link input-output model that defines a global system boundary grounded in a simplified multiregional input-output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input-output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains.

  20. Interprovincial transfer of embodied energy between the Jing-Jin-Ji area and other provinces in China: A quantification using interprovincial input-output model.

    Science.gov (United States)

    Chen, Weiming; Wu, Sanmang; Lei, Yalin; Li, Shantong

    2017-04-15

    Commodity trade between regions implies a large amount of energy transfer. As an important economic growth pole of China, the Jing-Jin-Ji area (Beijing-Tianjin-Hebei) is also one of the areas with the largest energy consumption in China. Moreover, the primary energy consumer goods in this area are fossil fuels, such as coal. This has led to serious air pollution in the area. Therefore, the reduction of energy consumption under the premise of maintaining sustained economic growth is an important task of the Jing-Jin-Ji area. In this study, an interprovincial input-output model was applied to quantitatively estimate the embodied energy transfer between Jing-Jin-Ji area and other provinces in China. The results indicated that the Metal and nonmetal mineral processing industry and the Electrical, gas and water industry in the Jing-Jin-Ji area exported a large amount of embodied energy to the Yangtze River Delta and the Pearl River Delta. However, the embodied energy export of the Jing-Jin-Ji area mainly exported by Hebei province. Beijing and Tianjin even have some net import of embodied energy. The embodied energy transfer between Tianjin, Hebei and other provinces was mainly driven by investment, while the main media of embodied energy transfer between Beijing and other provinces was consumption. Therefore, we suggest that the Jing-Jin-Ji area should further increase the degree of dependence on other provinces' energy-intensive products and reduce the export of energy-intensive products. In addition, there should be difference in the energy and industrial policies among Beijing, Tianjin and Hebei, and the problems of high energy consumption and high proportion of heavy industry in Hebei should be first resolved. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Energy inputs and outputs in organic and conventional corn production systems; Balanco de energia em sistemas organico e convencional de producao de milho

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Alessandro Torres; Greco, Marcelo [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia do Oeste do Parana], e-mail: atcampos3@yahoo.com.br; Zonin, Wilson J.; Silva, Nardel L.S.; Gouvea, Alfredo [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias

    2004-07-01

    corn production systems. The experimental delineating was in casual blocks with arrangement in subdivided parcels, with the production systems as main parcels and the cultivate crops as sub parcels. The seeding was accomplished directly in oat and azevem straws. In the chemical system the vegetable covering was wiped with glyphosate (2 L/ha), while in the organic system it was used roll machinery to handle the straw. All the inputs, in products or operations form, and the outputs, in grain form, were transformed in energy to estimate the energy balance. The energy coefficients were obtained in research travails. The employed energy was divided in three categories, according to its origin, as biological, fossil and industrial. In the category of biological energy the items human work, seeds, bio fertilizer and humus were inserted. The oil products and by-products, such as chemical fertilizer, pesticides, diesel were grouped in fossil energy category. Industrial energy was considered one that was used in the manufacture of machinery used in the products process. Are included in this categories: tractor and tools. The energy consumption in the organic corn production system was of 2,047.42 MJ ha{sup -1} and the energy conversion was of 78,235.33 MJ ha{sup -1}, and the biological energy was the energy form more consumed, 65,77% of total consumed, while in the conventional system the consumption was of 3,764.66 MJ ha{sup -1} and the energy conversion of 82,653.29 MJ ha{sup -1}, and the fossil was energy form more consumed, representing 79.57% of the energy consumed in this production system. The organic production system presented an efficiency of 38.21 significantly larger than the chemical system with 21.95. (author)

  2. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy.

    Science.gov (United States)

    Klatt, Judith M; Meyer, Steffi; Häusler, Stefan; Macalady, Jennifer L; de Beer, Dirk; Polerecky, Lubos

    2016-04-01

    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (>45 μM) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater.

  3. Input/output Buffer based Vedic Multiplier Design for Thermal Aware Energy Efficient Digital Signal Processing on 28nm FPGA

    DEFF Research Database (Denmark)

    Goswami, Kavita; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2016-01-01

    Programmable Gate Array (FPGA) in order to reduce the development cost. The development cost for Application Specific Integrated Circuits (ASICs) are high in compare to FPGA. Selection of the most energy efficient IO standards in place of signal gating is the main design methodology for design of energy...

  4. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  5. ANALISIS ENERGI MASUKAN-KELUARAN PADA PROSES PRODUKSI KELAPA SAWIT (Elaesis guineensis jacq. Input-Output Energy Analyisis in Oil Palm Production

    Directory of Open Access Journals (Sweden)

    Agus Haryanto

    2012-03-01

    Penelitian ini bertujuan untuk menganalisis energi masukan-keluaran dan mengidentifikasi kemungkinan penghematan energi pada proses budidaya kelapa sawit. Penelitian dilakukan di PTPN VII Unit Usaha Rejosari, Lampung Selatan dengan mengamati semua energi yang digunakan dan dihasilkan. Energi masukan terdiri dari tenaga manusia, bahan bakar, energi tidak langsung dari pupuk, pestisida, dan alat-mesin pertanian. Energi keluaran berasal dari tandan buah segar (TBS dengan komponen minyak sawit, minyak inti sawit, serat, cangkang, dan tandan kosong, serta pelepah. Hasil penelitian menunjukkan bahwa budidaya kelapa sawit memerlukan energi masukan sebesar 57,63 GJ.ha-1  dan menghasilkan energi 339,14 GJ.ha-1. Sebagian besar energi masukan adalah penggunaan pupuk yang mencapai 31,22 GJ.ha-1  (54,18 % dari total energi masukan. Berdasarkan tahapan budidaya, maka pemeliharaan tanaman produktif memerlukan energi yang paling besar yaitu 33,06 GJ.ha-1  (57,37 %. Budidaya kelapa sawit menghasilkan energi neto 281,51 GJ.ha-1 dengan rasio energi 5,88, produktivitas energi 0,258 kg TBS/MJ, dan intensitas energi 3,87 MJ/kg TBS.   Kata kunci: Analisis energi, energi masukan, energi keluaran, indikator energi

  6. Analyzing the Effects of the Iranian Energy Subsidy Reform Plan on Short- Run Marginal Generation Cost of Electricity Using Extended Input-Output Price Model

    Directory of Open Access Journals (Sweden)

    Zohreh Salimian

    2012-01-01

    Full Text Available Subsidizing energy in Iran has imposed high costs on country's economy. Thus revising energy prices, on the basis of a subsidy reform plan, is a vital remedy to boost up the economy. While the direct consequence of cutting subsidies on electricity generation costs can be determined in a simple way, identifying indirect effects, which reflect higher costs for input factors such as labor, is a challenging problem. In this paper, variables such as compensation of employees and private consumption are endogenized by using extended Input-Output (I-O price model to evaluate direct and indirect effects of electricity and fuel prices increase on economic subsectors. The determination of the short-run marginal generation cost of electricity using I-O technique with taken into account the Iranian targeted subsidy plan's influences is the main goal of this paper. Marginal cost of electricity, in various scenarios of price adjustment of energy, is estimated for three conventional categories of thermal power plants. Our results show that the raising the price of energy leads to an increase in the electricity production costs. Accordingly, the production costs will be higher than 1000 Rials per kWh until 2014 as predicted in the beginning of the reform plan by electricity suppliers.

  7. EU environmental requirements for energy sectors and their implications on promotion of renewable

    International Nuclear Information System (INIS)

    Streimikiene, D.; Bubeliene, J.

    2004-01-01

    The article deals with the main EU (European Union) environmental requirements to energy sector introduced by EU directives. Promotion of use of renewable energy sources are among priorities of EU energy policy because use of renewable energy source has positive impact on energy security, climate change mitigation and energy efficiency increase

  8. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results

    Directory of Open Access Journals (Sweden)

    Connor Hyunju Kim

    2016-01-01

    Full Text Available The magnetosphere is a major source of energy for the Earth’s ionosphere and thermosphere (IT system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM coupled with the Coupled Thermosphere Ionosphere Model (CTIM. OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe. CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at ~ 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset

  9. An Input and Output Analysis of the Quaternity-Dominating Energy Engineering Model from China’s Countryside

    Science.gov (United States)

    Xie, Xing Long; Xian Xue, Wei

    2017-12-01

    The aim of this study is to qualitatively and quantitatively explore an energy engineering model termed quaternity-dominating pattern emerging in North China’s countryside. This study finds methane produced in this model serves household activities such as cooking, inducing reduction of coal or biomass spending, which otherwise would provoke air pollution, water loss and land erosion, and ultimately leading to ecological environment betterment. Additionally, this project generates byproducts, biogas liquids and residuals, which can, as a category of fertilizer, can promote straightening of fertility preservation capacity and improvement in the chemical and physical quality of land as well as increasing crop output and quality. This study also finds this engineering could encourage social stability via efficiently allocating bucolic surplus labor during winter and successful running this engineering project would trigger an increase of scientific and technological qualifications for rural citizens. Moreover, cost-profit analysis indicates this pattern can allow one rural home to obtain access to a hygienic energy resource of biogas in the yearly volume of 375m3, generate annual net earnings of US3458.82 and make investment return in about 2.73 years. Especially for poverty-stricken areas, this energy engineering project enjoys high values and great significance, which can lift these impoverished areas from poverty both in economics and energy. The paper concludes with pointing out practical proposals on launching and operating this energy engineering project.

  10. Estimation of the energy storage requirement of a future 100% renewable energy system in Japan

    International Nuclear Information System (INIS)

    Esteban, Miguel; Zhang, Qi; Utama, Agya

    2012-01-01

    Renewable energy systems are often criticized because of their intermittency and need for substantial amount of backup in terms of other energy sources or storage. The present paper proposes a method to estimate the required amount of storage backup for a mostly solar and wind system that uses also biomass and hydroenergy as minor components of the electricity mix. An hourly simulation was carried out to determine the amount of electricity that could be produced based on the meteorological conditions of year 2001 in Japan, and this was compared with the maximum electricity demands imposed in the system for each month of the year. The system thus proposed has 100% chance of meeting around 40% of the electricity demand between 11:00 and 18:00, and the optimum scenario obtained (a 2:1 mix of solar to wind energy) required around 40 TW of storage to balance the extra electricity demand that occurs during the summer in Japan. It appears unlikely that the batteries in EV in vehicles will be able to meet this storage requirement in the future, though the system is able to adequately meet the electricity demand during the majority of the year, and hence showcases the viability of renewable energy. - Highlights: ► A PV-wind-hydro-biomass energy system in Japan could supply electricity for the whole country by 2100. ► Due to smoothening the system has an almost 100% chance of meeting around 40% of the electricity demand between 11:00 and 18:00. ► The system proposed is generally very stable during the winter, spring and autumn periods in Japan, with very small amounts of battery storage being able to successfully meet the electricity demand during these periods. ► It appears unlikely that the batteries in EV will be able to provide enough storage (as the total expected storage by 2100 is likely to be 20 times smaller than the required to balance the system during the summer months.

  11. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    Science.gov (United States)

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  12. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  13. Private capital requirements for international biomass energy projects

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author)

  14. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  15. Model of an aquaponic system for minimised water, energy and nitrogen requirements.

    Science.gov (United States)

    Reyes Lastiri, D; Slinkert, T; Cappon, H J; Baganz, D; Staaks, G; Keesman, K J

    2016-01-01

    Water and nutrient savings can be established by coupling water streams between interacting processes. Wastewater from production processes contains nutrients like nitrogen (N), which can and should be recycled in order to meet future regulatory discharge demands. Optimisation of interacting water systems is a complex task. An effective way of understanding, analysing and optimising such systems is by applying mathematical models. The present modelling work aims at supporting the design of a nearly emission-free aquaculture and hydroponic system (aquaponics), thus contributing to sustainable production and to food security for the 21st century. Based on the model, a system that couples 40 m(3) fish tanks and a hydroponic system of 1,000 m(2) can produce 5 tons of tilapia and 75 tons of tomato yearly. The system requires energy to condense and recover evaporated water, for lighting and heating, adding up to 1.3 GJ/m(2) every year. In the suggested configuration, the fish can provide about 26% of the N required in a plant cycle. A coupling strategy that sends water from the fish to the plants in amounts proportional to the fish feed input, reduces the standard deviation of the NO3(-) level in the fish cycle by 35%.

  16. Managing Campus Energy: Compromising between Rapid Needs and Environmental Requirement

    Science.gov (United States)

    Ambariyanto, Ambariyanto; Utama, Yos J.; Purwanto

    2018-02-01

    The utilization of energy, especially electricity at Diponegoro University campus continues to increase in line with the development of the university. This increase has a direct impact on the increased costs to be paid by the university. Some of the causes of increased utilization of electrical energy is the construction of new buildings to meet the needs, increased learning activities and education, research activities in the laboratory, and various other activities. On the other hand, the increase of energy utilization is considered not good from the environment point of view, especially the utilization of electrical energy coming from non sustainable resources. Efforts to compromise on both are to develop policies in developing environmentally friendly buildings, efficiency in utilization of electrical energy, and development of sustainable energy sources.

  17. Phase change materials in energy sector - applications and material requirements

    Science.gov (United States)

    Kuta, Marta; Wójcik, Tadeusz M.

    2015-05-01

    Phase change materials (PCMs) have been applying in many areas. One of them is energy field. PCMs are interesting for the energy sector because their use enables thermal stabilization and storage of large amount of heat. It is major issue for safety of electronic devices, thermal control of buildings and vehicles, solar power and many others energy domains. This paper contains preliminary results of research on solid-solid phase change materials designed for thermal stabilisation of electronic devices.

  18. A Holistic Analysis of the Effects of Discrete Precipitation Events and Temporal Atmospheric Energy Inputs on the Spatio-Temporal Patterns of Temperature in a Streambed

    Science.gov (United States)

    Brookfield, A. E.; Sudicky, E. A.; Park, Y.

    2009-05-01

    In recent years, there has been an increase in field-based research directed towards characterizing surface water/groundwater interactions using temperature as a tracer. In spite of this effort, relatively little computational work has been performed to provide insight and guidance towards these field-based studies using simulations where the pertinent hydrological, meteorological and surface/variably-saturated subsurface processes are simultaneously taken into account. This paper explores the use of temperature to identify the spatio-temporal patterns of groundwater contributions to streams under transient conditions as driven by discrete precipitation events and as affected by changing atmospheric thermal inputs. To quantify the factors affecting temperature patterns occurring in a stream bed, the HydroGeoSphere numerical model was recently enhanced to include the transport of thermal energy in both the surface and subsurface flow regimes, with full accounting of atmospheric thermal inputs. HydroGeoSphere is a fully-integrated surface/variably-saturated subsurface flow and transport model that is designed to simulate water flow, evapotranspiration/evaporation processes, and advective-dispersive heat and solute transport over the 2D land surface and in the 3D subsurface. A high-resolution 3D numerical simulation of a highly-characterized stream segment in Ontario, Canada was shown to mimic the spatio-temporal thermal patterns observed in the streambed, the surface water and the groundwater. Discrete rainfall events and diurnal fluctuations of atmospheric thermal inputs were found to affect the temperatures throughout the surface and the subsurface, in addition to the thermal energy exchange fluxes between the two regimes. The groundwater exfiltration and infiltration patterns along the stream bed are shown to play a primary role in the regulation of the temperatures in the hyporheic zone and in the surface water which has important implications regarding the

  19. The Efficiency of the Pumping of the Lasers Based on Self-Terminating Atomic Transitions Operating in the Energy Input Cut-Off Mode

    Directory of Open Access Journals (Sweden)

    Burdin Alexey

    2018-01-01

    Full Text Available The analysis of the electro-physical processes in the discharge circuit of the lasers based on the self-terminating transitions of metal atoms (LSTM and the electrodes placed in the cold buffer zones of the gas discharge tube (GDT is occurred. That design of the GDT can provide the efficient lasing at the reduction of the current flowing through the switch to zero after the charging of the capacitive components of the circuit from the storage capacitor. Under the circumstances the pumping of the active medium is determined by the energy input from the peaking capacitor and, consequently, the efficiency of the pumping can be increased by an order of magnitude, if (using a managed switch the energy input into the active medium from the storage capacitor is “cut-off” after charging the capacitive components of the circuit. It was shown that the efficiency values of ∼ 9-11 % and of ∼ 5-6 % for the copper and gold vapor, lasers could be achieved.

  20. Renewable Energy Requirement Guidance for EPACT 2005 and EO 13423

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-18

    Describes what counts toward the federal goals, the definition of "new" for renewable power/renewable energy certificate (REC) purchases, and what types of on-site projects will get double credit (Section 203 (C)).

  1. International Requirements for Large Integration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Molina-Garcia, Angel; Hansen, Anca Daniela; Muljadi, Ed

    2017-01-01

    Most European countries have concerns about the integration of large amounts of renewable energy sources (RES) into electric power systems, and this is currently a topic of growing interest. In January 2008, the European Commission published the 2020 package, which proposes committing the European...... these overall objectives, and they each need to provide a detailed roadmap describing how they will meet these legally binding targets [2]. At this time, RES are an indispensable part of the global energy mix, which has been partially motivated by the continuous increases in hydropower as well as the rapid...... expansion of wind and solar photovoltaic (PV). The International Energy Agency's 2012 edition of the World Energy Outlook stated that the rapid increases in RES integration are underpinned by falling technology costs as well as rising fossilfuel prices and carbon pricing, but RES integration is also...

  2. Experience with Energy Efficiency Requirements for Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication has been produced as part of the work programme in support of the Gleneagles Plan of Action (GPOA), where the IEA was requested to 'undertake a study to review existing global appliance standards and codes'. In accordance with the G8 request, this study investigates the coverage and impact of forms of minimum energy performance standards (MEPS) and comparative energy labelling programmes; which comprise the cornerstone of most IEA countries national energy efficiency strategy. This scope also reflects governments' aspirations to achieve ambitious targets for reducing greenhouse gas emissions. As a result, this study does not address endorsement labelling and associated voluntary programmes, although these are also important policy tools for national energy efficiency strategies.

  3. Analysis of influence mechanism of energy-related carbon emissions in Guangdong: evidence from regional China based on the input-output and structural decomposition analysis.

    Science.gov (United States)

    Wang, Changjian; Wang, Fei; Zhang, Xinlin; Deng, Haijun

    2017-11-01

    It is important to analyze the influence mechanism of energy-related carbon emissions from a regional perspective to effectively achieve reductions in energy consumption and carbon emissions in China. Based on the "energy-economy-carbon emissions" hybrid input-output analysis framework, this study conducted structural decomposition analysis (SDA) on carbon emissions influencing factors in Guangdong Province. Systems-based examination of direct and indirect drivers for regional emission is presented. (1) Direct effects analysis of influencing factors indicated that the main driving factors of increasing carbon emissions were economic and population growth. Carbon emission intensity was the main contributing factor restraining carbon emissions growth. (2) Indirect effects analysis of influencing factors showed that international and interprovincial trades significantly affected the total carbon emissions. (3) Analysis of the effects of different final demands on the carbon emissions of industrial sector indicated that the increase in carbon emission arising from international and interprovincial trades is mainly concentrated in energy- and carbon-intensive industries. (4) Guangdong had to compromise a certain amount of carbon emissions during the development of its export-oriented economy because of industry transfer arising from the economic globalization, thereby pointing to the existence of the "carbon leakage" problem. At the same time, interprovincial export and import resulted in Guangdong transferring a part of its carbon emissions to other provinces, thereby leading to the occurrence of "carbon transfer."

  4. The direct and indirect energy requirement of households in the European Union

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Vringer, K.; Blok, K.

    2003-01-01

    In this article we evaluate the average energy requirement of households in 11 EU member states. By investigating both the direct (electricity, natural gas, gasoline, etc.) and the indirect energy requirement, i.e. the energy embodied in consumer goods and services, we add to research done on only

  5. High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.

    Science.gov (United States)

    Vivek, A; Hansen, S R; Daehn, Glenn S

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  6. Cumulative energy requirement for manufacturing energy stores; Kumulierter Energieaufwand zur Herstellung von Energiespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Schedl, T.

    1994-12-31

    The stores dealt with are exclusively stores for electrical supply systems. The use of stores for electrical energy should optimize the use of primary energy for electricity generation, but also the store itself. As a first step, the cumulative energy requirement for the manufacture (KEA{sub H}) of electro-chemical stores, superconducting magnetic field stores (SMES), flywheel stores and pumped stores are determined. Starting from a common balance limit, a comparison is made with regard to the ratio of discharge energy/KEA{sub H}. The actual store represents the balance limit. Only those components of all stores, which guarantee readiness for use, are considered. For the battery store this is the whole battery, including electrodes, electrolyte etc and the case. Regarding the SMES, this includes the superconductor, the vacuum tank, the cooling plant and measures to take up the mechanical forces. Regarding the flywheel store, this is the synchronous machine with the rotating mass and the vacuum tank. The pumped store is divided into building measures and the sets of machines. These consist of the turbines, snychronous machines and pumps. (orig./HW) [Deutsch] Bei den behandelten Speichern handelt es sich ausschliesslich um Speicher fuer elektrische Versorgungssysteme. Der Einsatz von Speichern fuer elektrische Energie soll den Primaerenergieeinsatz der Stromerzeugung, aber auch der Speicher selbst optimieren. Als erster Schritt wird der Kumulierte Energieaufwand zur Herstellung (KEA{sub H}) von elektrochemischen Speichern, Supraleitenden Magnetfeldspeichern (SMES), Schwungradspeichern und Pumpspeichern bestimmt. Ausgehend von einer gemeinsamen Bilanzgrenze wird hinsichtlich des Verhaeltnisses Entladeenergie/KEA{sub H} ein Quervergleich vorgenommen. Die Bilanzgrenze stellt der eigentliche Speicher dar. Es werden fuer alle Speicher nur die Komponenten betrachtet, welche die Einsatzbereitschaft gewaehrleisten. Beim Batteriespeicher ist dies die gesamte Batterie, incl

  7. Global energy - investment requirements. A presentation of the world energy investments outlook 2003 - insights

    International Nuclear Information System (INIS)

    Cattier, F.

    2003-01-01

    In order to meet the World's energy requirements for the next 30 years, 16 000 billion dollars will be necessary. Some 60% of this investment will go to the electricity sector and almost half of the total investment must be made in the developing countries. Where fossil fuels are concerned the bulk of the investments will a devoted to exploration and development activities. Transportation and distribution will account for 54 % of the investment in the electricity sector. The financing of these investments is currently the subject of various uncertainties. The conditions for access to resources will be decisive for the oil and gas sectors. The impact of liberalization in the countries of the OECD and the profitability of the investments in developing countries constitute the main challenges for the electricity sector. (authors)

  8. The EU electricity production structure requires a differentiated energy policy

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    For the electricity production of the EU there are differentiated structures which are based on different natural conditions, political decisions and investments of past decades. It has long been struggled committed to the ''one and correct'' energy policy. But precisely because of the differences in the individual countries, a unified energy and climate policy for the EU is not the right way. Diversity is a strength, which quite the EU Commission considered. Increased understanding of the specifics in other countries should just apply the German politics and the public that all too often judges from their own perspective. [de

  9. 76 FR 41240 - Agave Energy Company; Notice for Temporary Waiver of Filing and Reporting Requirements

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR11-17-000] Agave Energy Company; Notice for Temporary Waiver of Filing and Reporting Requirements Take notice that on June 24...), Agave Energy Company (AEC) requests that the Commission grant a temporary waiver of the Interstate...

  10. Energy requirements of lean and overweight women, assessed by indirect calorimetry

    NARCIS (Netherlands)

    Boer, de J.O.

    1985-01-01

    The prevalence of overweight in the developed world and the increased mortality and morbidity risk of overweight people stimulate research into the imbalance between energy intake and energy expenditure. Little information is available about the 24 hour energy expenditure and energy requirement of

  11. Dynamic facades, the smart way of meeting the energy requirements

    DEFF Research Database (Denmark)

    Johnsen, Kjeld; Winther, Frederik Vilbrad

    2015-01-01

    The paper describes an innovative dynamic façade system, developed in cooperation between two industrial companies, the Danish Building Research Institute and Aalborg University, Den¬mark. The system, named Energy Frames, is a newly developed industrially produced façade system based on the exper...

  12. Energy expenditure and food requirement of Cassin's Auklets provisioning nestlings

    NARCIS (Netherlands)

    Hodum, PJ; Sydeman, WJ; Visser, GH; Weathers, WW

    We used the doubly-labeled water technique to measure the field metabolic rate (FMR) of free-ranging adult Cassin's Auklets (Ptychoramphus aleuticus) that were provisioning half-grown nestlings. FMR averaged 3.68 +/- 0.38 mL CO(2) g(-1) hr(-1) (n = 9), which is equivalent to a daily energy

  13. Energy performance requirements using the cost-optimal methodology

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2013-01-01

    The Concerted Action EPBD (CA EPBD) has the main objective of assisting the EU Member States (MS) transpose and implement the recast Directive 2010/31/EU on the Energy Performance of Buildings (EPBD), published on 19 May 2010, as well as the continued implementation of the actions initiated with ...

  14. Abnormalities of climate require energy-political consensus

    International Nuclear Information System (INIS)

    Lehmann, W.M.

    1990-01-01

    The speeches held on the Winter Conference 1990 of the German Atom Forum are reported on in brief summaries. The speeches deal mainly with problems connected with a necessary reactivation of nucleon energy, particularly referring to measures of additional equipment, problems of safety and waste management and recycling. (UA) [de

  15. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  16. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  17. Prediction of the metabolizable energy requirements of free-range laying hens.

    Science.gov (United States)

    Brainer, M M A; Rabello, C B V; Santos, M J B; Lopes, C C; Ludke, J V; Silva, J H V; Lima, R A

    2016-01-01

    This experiment was conducted with the aim of estimating the ME requirements of free-range laying hens for maintenance, weight gain, and egg production. These experiments were performed to develop an energy requirement prediction equation by using the comparative slaughter technique and the total excreta collection method. Regression equations were used to relate the energy intake, the energy retained in the body and eggs, and the heat production of the hens. These relationships were used to determine the daily ME requirement for maintenance, the efficiency energy utilization above the requirements for maintenance, and the NE requirement for maintenance. The requirement for weight gain was estimated from the energy content of the carcass, and the diet's efficiency energy utilization was determined from the weight gain, which was measured during weekly slaughter. The requirement for egg production was estimated by considering the energy content of the eggs and the efficiency of energy deposition in the eggs. The requirement and efficiency energy utilization for maintenance were 121.8 kcal ME/(kg∙d)and 0.68, respectively. Similarly, the NE requirement for maintenance was 82.4 kcal ME/(kg∙d), and the efficiency energy utilization above maintenance was 0.61. Because the carcass body weight and energy did not increase during the trial, the weight gain could not be estimated. The requirements for egg production requirement and efficiency energy utilization for egg production were 2.48 kcal/g and 0.61, respectively. The following energy prediction equation for free-range laying hens (without weight gain) was developed: ME /(hen ∙ d) = 121.8 × W + 2.48 × EM, in which W = body weight (kg) and EM = egg mass (g/[hen ∙ d]).

  18. The gas turbine - a bundle of energy - requires tender care

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, J.; Uronen, J.; Leisio, C. [ed.

    1997-11-01

    The ability of a power plant to generate energy economically depends to a great extent on the functioning of the turbine. These days, an increasingly large number of these power plant `motors` are gas turbines. IVO`s expertise in the operation, maintenance and repair of gas turbines is based on long practical experience and the company`s own research. And IVO is also no stranger to the design and construction of new gas turbine plants

  19. Energy and protein requirements for growth of the local domestic ...

    African Journals Online (AJOL)

    In the chick starter phase, energy and protein combinations included: diet 1, 2,700kcal ME / Kg and 18% CP; diet 2, 2700kcal ME / Kg and 20% CP; diet 3, 2,700kcal ME / Kg and 22% CP; diet 4, 3,000kcal ME / Kg and 18% CP; diet 5, 3,000kcal ME /Kg and 20% CP and diet 6 (control), 3,000kcal ME /Kg and 22% CP.

  20. Energy requirements in top-level DanceSport athletes

    OpenAIRE

    Zanchini, Andrea; Malaguti, Marco

    2014-01-01

    Dancesport is a sport of recent history: recognition by the IOC as Olimpic discipline came in 1997. Scientific literature on this new sport is almost nonexistent. The purpose of this study is for define the energy expenditure and the intensity of the two main dancesport disciplines (latinamerican and standard dances) in top-level athletes and verify characteristics and differences of these two dance genres. Twenty dancers, 10 male and 10 female (10 couples,), aged between 19 and 31 years, hav...

  1. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    Directory of Open Access Journals (Sweden)

    Leo O. Fiems

    2015-02-01

    Full Text Available Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB cows were used to estimate the energy required to maintain body weight (BW. They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW0.75/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10. Parity affected maintenance energy requirements (p < 0.001, although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature.

  2. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer.

    Science.gov (United States)

    Chen, Xiaoliang; Xu, Yanyan; Duan, Jianghui; Li, Chuandong; Sun, Hongliang; Wang, Wu

    2017-07-01

    To investigate the potential relationship between perfusion parameters from first-pass dual-input perfusion computed tomography (DI-PCT) and iodine uptake levels estimated from dual-energy CT (DE-CT).The pre-experimental part of this study included a dynamic DE-CT protocol in 15 patients to evaluate peak arterial enhancement of lung cancer based on time-attenuation curves, and the scan time of DE-CT was determined. In the prospective part of the study, 28 lung cancer patients underwent whole-volume perfusion CT and single-source DE-CT using 320-row CT. Pulmonary flow (PF, mL/min/100 mL), aortic flow (AF, mL/min/100 mL), and a perfusion index (PI = PF/[PF + AF]) were automatically generated by in-house commercial software using the dual-input maximum slope method for DI-PCT. For the dual-energy CT data, iodine uptake was estimated by the difference (λ) and the slope (λHU). λ was defined as the difference of CT values between 40 and 70 KeV monochromatic images in lung lesions. λHU was calculated by the following equation: λHU = |λ/(70 - 40)|. The DI-PCT and DE-CT parameters were analyzed by Pearson/Spearman correlation analysis, respectively.All subjects were pathologically proved as lung cancer patients (including 16 squamous cell carcinoma, 8 adenocarcinoma, and 4 small cell lung cancer) by surgery or CT-guided biopsy. Interobserver reproducibility in DI-PCT (PF, AF, PI) and DE-CT (λ, λHU) were relatively good to excellent (intraclass correlation coefficient [ICC]Inter = 0.8726-0.9255, ICCInter = 0.8179-0.8842; ICCInter = 0.8881-0.9177, ICCInter = 0.9820-0.9970, ICCInter = 0.9780-0.9971, respectively). Correlation coefficient between λ and AF, and PF were as follows: 0.589 (P input CT perfusion analysis method can be applied to assess blood supply of lung cancer patients. Preliminary results demonstrated that the iodine uptake relevant parameters derived from DE-CT significantly correlated with perfusion

  3. Attaining the Photometric Precision Required by Future Dark Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Christopher [Harvard Univ., Cambridge, MA (United States)

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  4. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands

    NARCIS (Netherlands)

    Mosier, A.; Kroeze, C.

    2000-01-01

    In most soils, biogenic formation of N2O is enhanced by an increase in available mineral N through increased nitrification and denitrification. N-fertilization, therefore, directly results in additional N2O formation. In addition, these inputs may lead to indirect formation of N2O after N leaching

  5. Visual input that matches the content of vist of visual working memory requires less (not faster) evidence sampling to reach conscious access

    NARCIS (Netherlands)

    Gayet, S.; van Maanen, L.; Heilbron, M.; Paffen, C.L.E.; Van Der Stigchel, S.

    2016-01-01

    The content of visual working memory (VWM) affects the processing of concurrent visual input. Recently, it has been demonstrated that stimuli are released from interocular suppression faster when they match rather than mismatch a color that is memorized for subsequent recall. In order to investigate

  6. The direct and indirect energy requirement of households in the European Union

    International Nuclear Information System (INIS)

    Reinders, A.H.M.E.; Vringer, K.; Blok, K.

    2003-01-01

    In this article we evaluate the average energy requirement of households in 11 EU member states. By investigating both the direct (electricity, natural gas, gasoline, etc.) and the indirect energy requirement, i.e. the energy embodied in consumer goods and services, we add to research done on only the direct household energy requirement. Our analysis is mainly based on data of expenditures of households and the associated energy intensities of consumer goods. We found that differences between countries in the total energy requirement of households are mainly due to differences in total household expenditure. In particular, the indirect energy requirement is linearly related to the total household expenditure. The share of direct energy to the total energy requirement in different countries varies from 34% up to 64%. Differences in climate do not fully account for this variation. Corrected for total household expenditure, indirect energy requirement may vary significantly per country in the consumption classes 'food, beverages and tobacco', 'recreation and culture', 'housing', and 'hotels, cafes and restaurants'

  7. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs.

    Science.gov (United States)

    Mullis, Rebecca A; Witzel, Angela L; Price, Joshua

    2015-01-01

    Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was [Formula: see text] or two times the calculated resting energy requirement ([Formula: see text]). No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854) was seen between the number of searches a dog performs and their energy requirement. Based on this study's population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council's (NRC) maintenance energy requirement of [Formula: see text] (National Research Council (NRC), 1974) and the [Formula: see text] reported for young laboratory beagles (Rainbird & Kienzle, 1990). Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc.) have similar energy requirements.

  8. Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    2003-01-01

    Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by

  9. 10 CFR 905.17 - What are the requirements for the energy efficiency and/or renewable energy report (EE/RE report...

    Science.gov (United States)

    2010-01-01

    ... renewable energy report (EE/RE report) alternative? 905.17 Section 905.17 Energy DEPARTMENT OF ENERGY ENERGY... energy efficiency and/or renewable energy report (EE/RE report) alternative? (a) Requests to submit an EE..., including any requirements for documenting customer energy efficiency and renewable energy activities. (b...

  10. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices

    International Nuclear Information System (INIS)

    Motevali, Ali; Minaei, Saeid; Khoshtaghaza, Mohammad Hadi; Amirnejat, Hamed

    2011-01-01

    Energy consumption for drying of mushroom slices was evaluated using various drying methods including hot air, microwave, vacuum, infrared, microwave-vacuum and hot air-infrared. Results of data analysis showed that the lowest and highest energy consumption levels in drying mushroom slices were associated with microwave and vacuum dryers, respectively. The use of vacuum in conjunction with microwave drying increased energy consumption relative to microwave drying alone. Energy consumption in the hot air dryer showed a downward trend with increasing temperature and an upward trend with increasing air velocity. In drying mushroom using infrared radiation, it was observed that increased air velocity increases drying time and consequently the amount of consumed energy. Using a combination of hot air and infrared drying decreased energy consumption relative to infrared drying alone and increased it relative to hot air drying. In the combined microwave-vacuum dryer, drying time and consequently energy consumption decreased in comparison to the vacuum dryer. Hot air-infrared drying of mushroom slices proved to have the lowest energy consumption. -- Highlights: ► In this study we comparing the amount of energy used and specific energy consumption in different drying methods. ► Six drying methods including Hot air, Infrared, Hot air-infrared, Microwave, Vacuum and microwave-vacuum were used. ► The maximum and minimum energy consumption was obtained in vacuum and microwave dryer, respectively. ► The best drying method in terms of energy consumption and specific energy consumption is the microwave dryer.

  11. Intermediate inputs and economic productivity.

    Science.gov (United States)

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  12. Local Content Requirements in Renewable Energy Schemes - Government Procurement or a Violation of International Obligations?

    NARCIS (Netherlands)

    Verburg, Cornelis

    2017-01-01

    Numerous States have adopted renewable energy schemes aimed at incentivising investments in renewable energy generation capacity that contain local content requirements as an eligibility criterion to obtain support, such as a feed-in tariff. However, these requirements may violate the international

  13. Case study of the Brownell low energy requirement house

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R F; Krajewski, R F; Dennehy, G

    1979-05-01

    An evaluation is made of the design and thermal performance of an innovative house built in 1977 in the Adirondacks area of New York State. The house has a very tight and well-insulated envelope, with the rigid insulation board applied to the outside of the frame. Passive solar gain through south-facing glass, along with internal free sources of heat, are shown to provide a substantial part of the building's heating requirements. Effective integral thermal storage, provided by the exposed interior structure, serves to keep interior temperature excursions within acceptable limits. Additional remote storage is provided in the form of a large thermal storage sand bed, with air ducts, located below the basement floor. Calculations and measured performance data show that the house's space heating needs are only about 40% of those of a similar size house built to HUD minimum property standards, and less than 25% of those of a typical inventory house in the Northeast United States.

  14. Analysis of the electrical energy requirements of the GSI facility

    CERN Document Server

    Ripp, Christopher

    2013-01-01

    Die Veränderung auf dem deutschen Energiemarkt durch die Energiewende bringt eine Viel-zahl von Problemen mit sich. Der stetig ansteigende Ausbau von erneuerbaren Energien und die daraus resultierende starke Schwankung der eingespeisten Energiemengen zwingen die Netzbetreiber zum Ausbau der Stromnetze [1]. Die dadurch verursachten Kosten lassen die Netznutzungsgebühren steigen, welche an die Endkunden weitergegeben werden. Ebenfalls stieg die EEG-Umlage (Erneuerbare-Energie-Gesetz) von 3,6ct/kWh im Jahr 2012 über 5,3ct/kWh im Jahr 2013 auf 6,3ct/kWh für das Jahr 2014 [2], [3], [4]. Die extrem schnell steigenden Energiekosten zwingen die Verbraucher zur Erhöhung ihrer Energieeffizienz, um die laufenden Kosten so niedrig wie möglich zu halten [3]. Dies verlangt nach innovativen Ansätzen und Lösungen im unternehmenseigenen Energiemanagement. Besonders For-schungseinrichtungen mit großem Energiebedarf müssen eine höhere Energieeffizienz reali-sieren, um bei knappen Budgets ihrem Forschungsauftrag gerec...

  15. ENERGY-REQUIREMENTS FOR MOLT IN THE KESTREL FALCO-TINNUNCULUS

    NARCIS (Netherlands)

    DIETZ, MW; DAAN, S; MASMAN, D

    1992-01-01

    We estimated energy requirements for plumage replacement in the kestrel (Falco tinnunculus) by comparing O2 consumption Vo2 and metabolizable energy intake during molt and nonmolt. The energy expenditure for feather synthesis (S) as derived from the regression of basal metabolic rate (BMR) on molt

  16. Analysis of requirements for accelerating the development of geothermal energy resources in California

    Science.gov (United States)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  17. Energy-efficient Ship Operation – Training Requirements and Challenges

    Directory of Open Access Journals (Sweden)

    Michael Baldauf

    2013-06-01

    Full Text Available The International Maritime Organization (IMO, through its Maritime Environmental Protection Committee (MEPC, has been carrying out substantive work on the reduction and limitation of greenhouse gas emissions from international shipping since 1997, following the adoption of the Kyoto Protocol and the 1997 MARPOL Conference. While to date no mandatory GHG instrument for international shipping has been adopted, IMO has given significant consideration of the matter and has been working in accordance with an ambitious work plan with a view to adopting a package of technical provisions. Beside the efforts undertaken by IMO, it is assumed that e.g. optimized manoeuvring regimes have potential to contribute to a reduction of GHG emissions. Such procedures and supporting technologies can decrease the negative effects to the environment and also may reduce fuel consumption. However, related training has to be developed and to be integrated into existing course schemes accordingly. IMO intends to develop a Model Course aiming at promoting the energy-efficient operation of ships. This Course will contribute to the IMO’s environmental protection goals as set out in resolutions A.947(23 and A.998(25 by promulgating industry “best practices”, which reduce greenhouse gas emissions and the negative impact of global shipping on climate change. In this paper the outline of the research work will be introduced and the fundamental ideas and concepts are described. A concept for the overall structure and the development of suggested detailed content of the draft Model course will be exemplarily explained. Also, a developed draft module for the model course with samples of the suggested integrated practical exercises will be introduced and discussed. The materials and data in this publication have been obtained partly through capacity building research project of IAMU kindly supported by the International Association of Maritime Universities (IAMU and The Nippon

  18. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  19. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs

    Directory of Open Access Journals (Sweden)

    Rebecca A. Mullis

    2015-02-01

    Full Text Available Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was $136\\pm 38~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$136±38kcal⋅BWkg0.75 or two times the calculated resting energy requirement ($\\mathrm{RER}=70~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$RER=70kcal⋅BWkg0.75. No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854 was seen between the number of searches a dog performs and their energy requirement. Based on this study’s population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council’s (NRC maintenance energy requirement of $132~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$132kcal⋅BWkg0.75 (National Research Council (NRC, 1974 and the $139\\pm 42~\\mathrm{kcal}\\cdot {\\mathrm{BW}}_{\\mathrm{kg}}^{0.75}$139±42kcal⋅BWkg0.75 reported for young laboratory beagles (Rainbird & Kienzle, 1990. Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc. have similar energy requirements.

  20. Resource requirements, impacts, and potential constraints associated with various energy futures. Annual report. [Energy Supply Planning Model

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J.M.; Barany, R.; Paskert, P.F.; Zimmerman, R.G.J.

    1977-03-01

    This is the first annual report describing an effort by Bechtel Corporation to adapt and apply the Energy Supply Planning Model (ESPM) to the support of the systems analysis activities of the United States Energy Research and Development Administration. Office of the Assistant Administrator for Planning Analysis and Evaluation (ERDA/APAE). The primary emphasis of this program is the identification of resource requirements and the associated impacts and potential constraints associated with various future energy options for this country. Accomplishments in 1976 include model application and analysis of energy scenarios derived from the 1976 update of the ERDA National Plan and the ''1976 National Energy Outlook'' of the Federal Energy Administration; analysis of the availability of engineers, manual manpower, and selected materials and equipment commodities; addition of aluminum, carbon steel, and alloy steel materials requirements to the model data base; the addition of several kinds of energy facilities to the modeling system; and refinement of the various aspects of the model and data base. This program shows the need for a clear statement of national energy policy.

  1. Minimum Performance Requirements for Microbial Fuel Cells to Achieve Energy-Neutral Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zachary A. Stoll

    2018-02-01

    Full Text Available Microbial fuel cells (MFCs have recently achieved energy-positive wastewater treatment at pilot scale. Despite these achievements, there is still a limited understanding as to whether all wastewaters contain sufficient amounts of energy and, if so, whether MFCs can capture a sufficient amount of energy to offset electrical energy requirements in the wastewater treatment process. Currently, there are no tools or methods available that can determine whether an MFC can be energy-neutral a priori. To address this, we derived a simple relationship by setting the electrical energy requirements of a wastewater treatment facility equal to the net energy output of the MFC, such that the resulting expression describes the minimum chemical oxygen demand (COD removal needed to achieve energy-neutral treatment. The resulting equation is simply a function of electrical energy requirements, Coulombic Efficiency, and cell voltage. This work provides the first ever quantitative method for determining if the MFCs are feasible to achieve energy-neutral treatment for a given wastewater and what level of performance is needed.

  2. Compliance of SLAC's Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    International Nuclear Information System (INIS)

    Woods, M.

    2009-01-01

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance

  3. Requirements for supercomputing in energy research: The transition to massively parallel computing

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This report discusses: The emergence of a practical path to TeraFlop computing and beyond; requirements of energy research programs at DOE; implementation: supercomputer production computing environment on massively parallel computers; and implementation: user transition to massively parallel computing.

  4. Energy management system for power distribution. Interfaces and data communication requirements

    International Nuclear Information System (INIS)

    Koponen, P.; Lemstroem, B.; Ikonen, J.

    1995-01-01

    The opening of the electricity market for competition in Finland creates new requirements for the information systems and data communication in distribution utilities. Energy management systems for distribution utilities are needed with interfaces that make it possible to separate the network business from the energy trade business. However, these interfaces should also support optimization of the whole energy supply system of the country. In this report the interfaces and data communication requirements of the energy management system of the electricity trade business are analyzed. To support this subfunctions of the energy management have been analyzed. It was realized that the amount of necessary data transfer and optimization of the national power system both depend strongly on the general rules of the energy markets. (author)

  5. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Michael; /SLAC

    2012-02-15

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

  6. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  7. The role and importance of nuclear energy in the realisation of energy requirements

    International Nuclear Information System (INIS)

    Giraud, A.

    1976-01-01

    The competitiveness of nuclear energy in relation to fuel oil is now fully established for electricity generation, not merely for base production but also for much lower load factors. Likewise, in the field of steam generation nuclear energy has a high competitivity margin in comparison with fuel oil. At the outlet of the boiler the cost of the nuclear steam B.T.U. is much lower than the cost of the nuclear electricity B.T.U., but this advantage could be evened out, partially or totally, by the ease of transportation and the flexibility of utilization of electricity. The availability of high temperatures may in the future open new markets (hydrogen production, industrial processes ..). Thus, through its various vectors, nuclear energy may occupy an important place in the energy balance of a country. An evaluation has been made, on certain assumptions, until the year 2030, of the place that nuclear energy will take. The evaluation shows clearly that uranium supply will be next to impossible if nuclear energy is supplied by light water reactors, associated or not with other thermal reactors. It will be necessary to resort urgently to fast breeder reactors. The acceleration of the fast breeder reactors breakthrough resulting from the insertion of natural uranium converters does not fundamentally change the supply problem, nor does the insertion of HTRs intended to break into the high temperature market. On the other hand, improvement of the performance of fast breeder reactors, particularly an increase in the breeding ratio and a shortening of the cycle, might have a decisive effect and might ensure the definite mastering of the uranium needs. (author)

  8. Software safety analysis on the model specified by NuSCR and SMV input language at requirements phase of software development life cycle using SMV

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2005-01-01

    Safety-critical software process is composed of development process, verification and validation (V and V) process and safety analysis process. Safety analysis process has been often treated as an additional process and not found in a conventional software process. But software safety analysis (SSA) is required if software is applied to a safety system, and the SSA shall be performed independently for the safety software through software development life cycle (SDLC). Of all the phases in software development, requirements engineering is generally considered to play the most critical role in determining the overall software quality. NASA data demonstrate that nearly 75% of failures found in operational software were caused by errors in the requirements. The verification process in requirements phase checks the correctness of software requirements specification, and the safety analysis process analyzes the safety-related properties in detail. In this paper, the method for safety analysis at requirements phase of software development life cycle using symbolic model verifier (SMV) is proposed. Hazard is discovered by hazard analysis and in other to use SMV for the safety analysis, the safety-related properties are expressed by computation tree logic (CTL)

  9. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    International Nuclear Information System (INIS)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O.

    2011-01-01

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10 -9 m 2 /s for untreated pumpkin samples dried at 40 o C to a maximum value of 4.27 x 10 -9 m 2 /s for steam blanched samples dried at 80 o C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 o C to 80 o C with a drying air velocity of 1.5 m/s respectively.

  10. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    Energy Technology Data Exchange (ETDEWEB)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O. [Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State (Nigeria)

    2011-02-15

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10{sup -9} m{sup 2}/s for untreated pumpkin samples dried at 40 C to a maximum value of 4.27 x 10{sup -9} m{sup 2}/s for steam blanched samples dried at 80 C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 C to 80 C with a drying air velocity of 1.5 m/s respectively. (author)

  11. Critical and precious materials consumption and requirement in wind energy system in the EU 27

    International Nuclear Information System (INIS)

    Kim, Junbeum; Guillaume, Bertrand; Chung, Jinwook; Hwang, Yongwoo

    2015-01-01

    Graphical abstract: Critical and precious materials requirement in the wind energy system in the EU 27 by 2020. - Highlights: • The critical and precious materials consumption were calculated in wind energy system in the EU 27. • The future requirement of critical and precious materials was estimated in the EU 27 by 2020. • Fluorspar, silver, magnesium, indium, gold and tantalum are the mainly used and required materials. • This research approach could be applied to other industrial sectors as well as other renewable technology. - Abstract: Critical materials as well as rare earth elements and precious metals such as platinum, gold and silver are used significantly for computer hard disk drives, mobile phones, hybrid electric vehicles, batteries, renewable energy system and many other applications. It is therefore important to quantify and estimate both current stocks and flows of such materials, as well as future requirement for industries and economies. In this study, which is focused on wind energy system in the European Union (EU) 27, the current consumption and future requirement of critical and precious materials were calculated and estimated using the wind power production dataset from ecoinvent and data from National Renewable Energy Action Plan (NREAP). It is shown that fluorspar has been the most consumed material to date, and will probably be the most required material in the future. Among other critical and valuable materials, the main materials used for current wind energy system are silver, magnesium, indium, gold and tantalum. These materials will also be required significantly by 2020 for the wind energy system in the EU 27. It is argued that these results should be connected to the future energy and material policy and management

  12. Decentralized control with input saturation

    NARCIS (Netherlands)

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    In decentralized control it is known that the system can be stabilized only if the so-called fixed modes are all stable. If we have input constraints then (semi-)global stability requires all poles to be in the closed left half plane. This paper establishes that these two requirements are necessary

  13. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  14. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    International Nuclear Information System (INIS)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  15. Estimates of the energy deficit required to reverse the trend in childhood obesity in Australian schoolchildren.

    Science.gov (United States)

    Cochrane, Thomas; Davey, Rachel; de Castella, F Robert

    2016-02-01

    To estimate: 1) daily energy deficit required to reduce the weight of overweight children to within normal range; 2) time required to reach normal weight for a proposed achievable (small) target energy deficit of 0.42 MJ/day; 3) impact that such an effect may have on prevalence of childhood overweight. Body mass index and fitness were measured in 31,424 Australian school children aged between 4.5 and 15 years. The daily energy deficit required to reduce weight to within normal range for the 7,747 (24.7%) overweight children was estimated. Further, for a proposed achievable target energy deficit of 0.42 MJ/day, the time required to reach normal weight was estimated. About 18% of children were overweight and 6.6% obese; 69% were either sedentary or light active. If an energy deficit of 0.42 MJ/day could be achieved, 60% of overweight children would reach normal weight and the current prevalence of overweight of 24.7% (24.2%-25.1%) would be reduced to 9.2% (8.9%-9.6%) within about 15 months. The prevalence of overweight in Australian school children could be reduced significantly within one year if even a small daily energy deficit could be achieved by children currently classified as overweight or obese. © 2015 The Authors.

  16. Energy Storage Requirements for PV Power Ramp Rate Control in Northern Europe

    Directory of Open Access Journals (Sweden)

    Julius Schnabel

    2016-01-01

    Full Text Available Photovoltaic (PV generators suffer from fluctuating output power due to the highly fluctuating primary energy source. With significant PV penetration, these fluctuations can lead to power system instability and power quality problems. The use of energy storage systems as fluctuation compensators has been proposed as means to mitigate these problems. In this paper, the behavior of PV power fluctuations in Northern European climatic conditions and requirements for sizing the energy storage systems to compensate them have been investigated and compared to similar studies done in Southern European climate. These investigations have been performed through simulations that utilize measurements from the Tampere University of Technology solar PV power station research plant in Finland. An enhanced energy storage charging control strategy has been developed and tested. Energy storage capacity, power, and cycling requirements have been derived for different PV generator sizes and power ramp rate requirements. The developed control strategy leads to lesser performance requirements for the energy storage systems compared to the methods presented earlier. Further, some differences on the operation of PV generators in Northern and Southern European climates have been detected.

  17. Input by insight. Implementation of renewable energy in 2050 taking into account macro-economical aspects and fitting-in options in sectors

    International Nuclear Information System (INIS)

    Van de Reepe, D.

    2001-11-01

    In the determination of the potential of renewable energy two factors are important: (1) macro-economical consequences for the Netherlands because of the use of renewable energy sources, and (2) the possibilities of renewable energy to fulfil the energy demands of the several sectors. The main question to be answered in this report is: What is the maximum quantity of renewable energy that can be realized in 2050? The answer will be expressed in the percentage of renewable energy in relation to the total secondary energy demand (excluding non-energetic use of energy carriers). The aim is, that 50% of the energy supply is produced by renewable energy sources. The quantity is eventually determined by the influence of these renewable energy options on the macro-economical position of the Netherlands and the extent to which renewable energy supply meets the energy demands of the several sectors. The macro-economical consequences are determined on the basis of the cost and sensitivities of the several renewable energy options in 2050. Subquestions to answer the main question concern energy demand, renewable energy options, multi-criteria analysis and contemplation. The energy demand in 2050 and the energy profiles of the sectoral energy demand of secondary energy carriers are determined. The renewable energy options, wind energy (onshore and offshore), bioenergy, photovoltaic energy and thermal solar energy, heat pumps and import of green electricity and biomass, are investigated on several factors: Maximal realizable potential; Cost (Cost reduction until 2050, Investment cost, O and M-cost and fuel cost, Total cost, Out of pocket cost); Need for energy storage and cost for fitting in the energy grid; Integration with other renewable energy sources; Availability in sectors; Sensitivity analysis. These data are used in a multi-criteria analysis with four quantitative criteria. The results of this multi-criteria analysis are combined with qualitative criteria with regard

  18. Design of a Conceptual Bumper Energy Absorber Coupling Pedestrian Safety and Low-Speed Impact Requirements

    Science.gov (United States)

    Mo, Fuhao; Zhao, Siqi; Yu, Chuanhui; Duan, Shuyong

    2018-01-01

    The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the structural parameters of the X-shaped energy-absorbing structure including thickness (t u), side arc radius (R), and clamping boost beam thickness (t b) are analyzed using a full factorial method, and a multiobjective optimization is implemented regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels. PMID:29581728

  19. Design of a Conceptual Bumper Energy Absorber Coupling Pedestrian Safety and Low-Speed Impact Requirements

    Directory of Open Access Journals (Sweden)

    Fuhao Mo

    2018-01-01

    Full Text Available The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the structural parameters of the X-shaped energy-absorbing structure including thickness (tu, side arc radius (R, and clamping boost beam thickness (tb are analyzed using a full factorial method, and a multiobjective optimization is implemented regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels.

  20. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  1. Energy Requirements of Hydrogen-Utilizing Microbes: Boundary Condition for Subsurface Life

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    For planetary bodies with surface conditions that are too harsh to permit continuous occupation by life, the deep subsurface offers a potentially stable and habitable niche. For organisms occupying this niche, the spectrum of possible metabolisms must be limited to those which do not include sunlight as an energy source or oxygen as a chemical reagent - generally, low-energy anaerobic oxidation-reduction processes. The quantity of energy released in such processes is critical, because currently understood mechanisms of biological energy conservation indicate that energy is only 'useful' to an organism when it is available at a certain minimum level - the 'biological energy quantum'. The mere existence of a BEQ implies that a significant fraction of the chemical energy present in the environment cannot be exploited by life; similarly, the absolute magnitude of the BEQ must be a key variable in determining the potential viability and distribution of subsurface microbial communities. Laboratory culture studies suggest that organisms require an energy of about -20 kJ/mol to grow. However, we find that hydrogen-utilizing microorganisms in an energy-limited natural ecosystem are active with energy yields as low as -10 kJ/mol. A lower BEQ would mean a significantly expanded range of energetically viable subsurface habitat for life.

  2. The natural gas for electric energy production and other industrial inputs by using cogeneration; O gas natural na producao de energia eletrica e outros insumos industriais atraves da cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail: cam@fec.unicamp.br

    2002-07-01

    This paper discusses the benefits of using natural gas in the cogeneration plants for electric power generation, and others inputs used in the different industrial sectors. Afterwards the end of the state monopoly on electrical energy generation, the cogeneration systems have been stimulated. The construction of the Brazil-Bolivia gas pipeline gives the real possibility of utilization of natural gas as an effective energy alternative what can help to minimize the industrial energy blackout, mainly in the pipeline neighbourhood. This work also presents both the economic and technical advantages of using natural gas at existing industrial plants in the region of Jundiai city at the State of Sao Paulo. (author)

  3. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    International Nuclear Information System (INIS)

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  4. Comparison of robust input shapers

    Science.gov (United States)

    Vaughan, Joshua; Yano, Aika; Singhose, William

    2008-09-01

    The rapid movement of machines is a challenging control problem because it often results in high levels of vibration. As a result, flexible machines are typically moved relatively slowly. Input shaping is a control method that allows much higher speeds of motion by limiting vibration induced by the reference command. To design an input-shaping controller, estimates of the system natural frequency and damping ratio are required. However, real world systems cannot be modeled exactly, making the robustness to modeling errors an important consideration. Many robust input shapers have been developed, but robust shapers typically have longer durations that slow the system response. This creates a compromise between shaper robustness and rise time. This paper analyzes the compromise between rapidity of motion and shaper robustness for several input-shaping methods. Experimental results from a portable bridge crane verify the theoretical predictions.

  5. 100% energy supply coverage with renewable energy. Requirements for its implementation at the global, national and municipal level

    International Nuclear Information System (INIS)

    Rogall, Holger

    2014-01-01

    This book presents itself as a systematic, easily understandable introduction into the requirements for an energy supply based 100% on renewable energy. Its main focus is on the strategic paths that must be followed for this purpose in the realms of business, technology and governmental policy. It highlights the opportunities and impediments on the way, analysing in the process the roles of political, economic and civil society players from the global down to the municipal level. Starting out from the present state of discussion on the German energy transition it investigates the strengths and weak points of efficiency technologies and renewable energies available today and elaborates a strategic path for developing the necessary infrastructure. In awareness of the fact that 100% coverage will not come about from market mechanisms alone it explores the ecological crash barriers that need to be set up in addition. This is followed by chapters on the roles, interests and means of those players who can exert influence on the framing of the relevant political and legal instruments as well as their means of pursuing their interests. The book thus contributes to clarifying the possibilities of and impediments to achieving an energy supply system based 100% on renewable energy.

  6. Energy requirements and physical activity level of active elderly people in rural areas of Cuba

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.H.; Sanchez, V.; Basabe-Tuero, B.; Gonzalez-Calderin, S.; Diaz, M.E.; Aleman-Mateo, H.; Valencia-Julleirat, M.; Salazar, G.

    2002-01-01

    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 % of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1.77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The total energy expenditure: The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11 % and 30% lower than the values obtained by the DLW-method. The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated

  7. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    Science.gov (United States)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However

  8. Minimizing the energy requirement of dewatering scenedesmus sp. by microfiltration: performance, costs, and feasibility.

    Science.gov (United States)

    Gerardo, Michael L; Oatley-Radcliffe, Darren L; Lovitt, Robert W

    2014-01-01

    The harvesting of the microalgae Scenedesmus species using a 200 L pilot-scale microfiltration system was investigated and critically assessed. The energy requirement was determined and correlated to the different operating parameters, such as transmembrane pressure (ΔP), membrane area, temperature, and initial biomass concentration. A filtration model was developed and showed a strong correlation with experimental data up to 20.0 g of dry cell weight (DCW)/L. The non-optimized filtration system had an energy requirement of 2.23 kWh/m(3) with an associated cost of $0.282/kg of microalgae. The investigation into the influence of the operating parameters and scale-up effects showed that the energy requirement could be substantially reduced to 0.90 kWh/m(3) and $0.058/kg of microalgae harvested. Maintenance costs associated with cleaning were estimated to be 0.23 kWh or $0.029/batch of microalgae processed. Dependent upon the operating conditions, harvesting may represent 6-45% of the energy embedded in the microalgae with a carbon footprint of 0.74-1.67 kg of CO2/kg of microalgae. Microfiltration was demonstrated to be a feasible microalgae harvesting technology allowing for more than 99% volume reduction. The energy requirement and associated carbon footprint of microalgae harvesting reported here do not forfeit the need for an industrial-scale study; however, the information provided presents a more realistic approximation than the literature reported to date.

  9. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  10. Prediction of the cooling energy requirement in buildings using the degree-days method

    International Nuclear Information System (INIS)

    Samo, S.R.; Mari, H.B.; Saand, A.

    2000-01-01

    A method (which is supposed to be used first time in Pakistan) Degree-Days for the prediction of seasonal energy requirements for cooling is briefly discussed. This method requires the simulation of the pattern of external temperature variations in buildings, over seasons, in response, to exposure to the weather conditions. The cooling degree-days of capital cities of four provinces and the capital of Pakistan, Karachi, Lahore, Peshawar, Quetta, and Islamabad from 1987-1996, are calculated from the available meteorological data by using a computer program. The seasonal cooling energy requirement of a sample dwelling in different regions of Pakistan is also compared. This study shows that the average cooling degree-days in Lahore are about seven times more than the degree-days in Quetta. In Pakistan cooling requirement starts from April to October. (author)

  11. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach

    DEFF Research Database (Denmark)

    Feyera, Takele; Theil, Peter Kappel

    2017-01-01

    This study aimed to quantify daily requirements for metabolizable energy (ME) and standard ileal digestible (SID) lysine in late gestating and lactating sows using a factorial approach. Metabolizable energy and SID lysine required for fetal and mammary growth, colostrum and milk production, uterine...... components (including uterus wall, placenta and membrane fluids) and maintenance were estimated. It was estimated that maintenance, additional heat loss, colostrum production, fetal growth, mammary growth and uterine components accounted for 66.8%, 19.3%, 7.2%, 5.0%, 1.3% and 0.5% of total ME requirements......, respectively, in the last 12 days of gestation. Oxidation/transamination, fetal growth, mammary growth, colostrum production, maintenance and uterine components were estimated to account for 29.5%, 22.7%, 16.8%, 16.1%, 10.4% and 4.5% of total SID lysine requirements, respectively, in the last 12 days...

  12. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  13. Improved national calculation procedures to assess energy requirements, nitrogen and VS excretions of dairy cows in the German emission model GAS-EM

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Haenel, Hans-Dieter; Rösemann, Claus

    2009-01-01

    The calculation module for the assessment of feed intake and excretion rates of dairy cows in the German agricultural emission model GAS-EM is described in detail. The module includes the description of methane emissions from enteric fermentation as well as the assessment of volatile solids...... and (renal and faecal) nitrogen excretions responsible for carbon and nitrogen species emissions from manure management. Input parameters are milk yield and composition, weight and weight gain as well as feed properties. The model is based on the derivation of energy requirements and the limitation on dry...... for policy advice....

  14. Colloquy and workshops: regional implications of the engineering manpower requirements of the National Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Segool, H. D. [ed.

    1979-05-01

    The crucial interrelationships of engineering manpower, technological innovation, productivity and capital re-formaton were keynoted. Near-term, a study has indicated a much larger New England energy demand-reduction/economic/market potential, with a probably larger engineering manpower requirement, for energy-conservation measures characterized by technological innovation and cost-effective capital services than for alternative energy-supply measures. Federal, regional, and state energy program responsibilities described a wide-ranging panorama of activities among many possible energy options which conveyed much endeavor without identifiable engineering manpower demand coefficients. Similarly, engineering manpower assessment data was described as uneven and unfocused to the energy program at the national level, disaggregated data as non-existent at the regional/state levels, although some qualitative inferences were drawn. A separate abstract was prepared for each of the 16 individual presentations for the DOE Energy Data Base (EDB); 14 of these were selected for Energy Abstracts for Policy Analysis (EAPA) and 2 for Energy Research Abstracts (ERA).

  15. Changing perspectives on aging and energy requirements: aging and digestive function in humans, dogs and cats.

    Science.gov (United States)

    Harper, E J

    1998-12-01

    When considering the question of energy balance, it is important to take into account energy provision and the ability of aging animals to digest macronutrients and thus obtain their maintenance energy requirement. A large number of studies have been conducted in humans in an effort to establish whether aging of the gastrointestinal tract has a significant effect on availability of dietary energy. The results of these studies have been conflicting, with indications that some aspects of gut functionality do decline with age, but little evidence overall to suggest that aging humans are at risk of energy deficit due to compromised digestive efficiency. A number of digestibility studies carried out with dogs confirm that there is no evidence of an age-related decline in digestive efficiency. This knowledge makes the determination of energy provision to senior dogs relatively straightforward to calculate. Many senior cats appear to exhibit quite a marked reduction in their ability to digest macronutrients, particularly fat, efficiently. Because this reduces the overall capacity to obtain energy from the diet, it is recommended that old cats should not routinely be offered reduced energy diets. For senior cats, the feeding regimen in later life should be to offer highly digestible diets that provide as much energy as adult maintenance rations.

  16. 5uW-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm

    NARCIS (Netherlands)

    Qiu, Y.; Van Liempd, C.; Op het Veld, J.H.G.; Blanken, P.G.; Van Hoof, C.

    2010-01-01

    A fully autonomous inductive boost converter for indoor photovoltaic harvesting with maximum power point tracking circuit is implemented in a commercial 0.25um CMOS process. The converter can handle input power from 5uW up to 10mW and charge a battery or a super-capacitor up to 5V. Its control

  17. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    OpenAIRE

    Yufei Jiang; Xiao Liu; Fangxiao Liu; Dinghao Wu; Chimay J. Anumba

    2016-01-01

    Energy Efficient Building (EEB) design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful) Building Information Modeling (BIM) web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The req...

  18. Capital requirements for the transportation of energy materials: 1979 arc estimates

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

  19. New formal approaches to the determination of energy and amino acid requirements of chicks.

    Science.gov (United States)

    Hurwitz, S; Sklan, D; Bartov, I

    1978-01-01

    Body weight and the intake of metabolizable energy of chicks as function of age, were resolved into a linear equation from which the energy requirements for maintenance and growth were extracted. The metabolizable energy requirement for maintenance was calculated to be 1.91 and 1.62 Cal./g. 2/3, and that for weight gain was 2.05 and 2.19 Cal./g. for male White Rock and female 2--8-week old Leghorn chicks, respectively. The amino acid requirements of growing broiler chicks were calculated from the maintenance requirements, body weight gain and body weight, the proportions of feather protein in total body protein, and the amino acid composition of carcass and feathers. The requirements thus calculated, correlated well with various values in the literature. Diets formulated on the basis of the present model, were lower in protein and amino acid contents than those formulated on the basis of NRC allowances. These differences were pronounced in diets designed for 6--8 week old chicks. The weight gains obtained were similar for both types of diets. Feed conversion were slightly poorer and abdominal fat higher in chicks fed the model diets. It is concluded that the present model can serve, at least as an initial approach, to calculate the protein and amino acid requirements.

  20. Energy requirements and physical activity level of active elderly people in rural areas of China

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.; Aleman Mateo, H.; Valencia Julleirat, M.

    2002-01-01

    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1. 77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11% and 30% lower than the values obtained by the DLW-method The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated. (author)

  1. Reducing the energy requirements of quench protection heaters for SSC dipoles -- Test results

    International Nuclear Information System (INIS)

    Haddock, C.; Kuzminski, J.; Orris, D.; Mazur, P.

    1993-04-01

    Design considerations and first test results of quench protection heaters for Superconducting Collider (SSC) collider dipole magnets have been presented in earlier papers. The heaters have been shown to fully protect the magnet against excessive peak temperature which would represent damage to the superconducting coil. Installation and operation of the heaters does not place the magnet at any increased risk of failure, since the energy densities applied are relatively low (∼1J/cm 2 ) and the construction technique was made as simple as possible. The energy required by the heaters in order to protect the magnet is considerably larger than that amount estimated during the planning of the collider ring protection scheme. Therefore, three tong magnets following the Accelerator Systems Sizing Test (ASST) construction series at Fermi National Accelerator Laboratory were made available for quench protection heater ''R ampersand D'' studies. All of the ASST series magnets deliberately kept the high energy requirement heaters for the purpose of commonality for the string test. This paper describes the results of the ''R ampersand D'' heater tests and the amount of energy reduction achieved. It is shown that it has been possible to reduce the heater energy requirement to a value below therefore potentially save collider cost

  2. Comparing the energy required for fine grinding torrefied and fast heat treated pine

    International Nuclear Information System (INIS)

    Kokko, Lauri; Tolvanen, Henrik; Hämäläinen, Kai; Raiko, Risto

    2012-01-01

    The purpose of the study was to compare torrefaction to partial pyrolysis conducted with a fast heat treatment process. Both torrefaction and the fast heat treatment tests were performed in a bubbling fluidized bed reactor. The study investigated the anhydrous weight losses, the fine grinding energy requirements, and the lower heating values of the samples produced with the two methods i.e. torrefaction and the fast heat treatment. The effect of particle size to these quantities was also investigated. The measurements demonstrated that the fine grinding energy requirement decreased rapidly as a function of anhydrous weight loss. The overall energy content remaining in the solid product decreased linearly as a function of anhydrous weight loss. The study shows that there is only little difference in the final products of the two processes when using particle sizes less than 4 mm. This means that it is possible to get similar products from the fast heat treatment process that takes only seconds compared to the slower torrefaction process that takes minutes. -- Highlights: ► Fine grinding energy requirement is dependent on anhydrous weight loss. ► A fast heat treatment process of only 10 s is possible for pine wood. ► A particle size of less than 4 mm is required for the fast process.

  3. Utilization of respiratory energy in higher plants : requirements for 'maintenance' and transport processes

    NARCIS (Netherlands)

    Bouma, T.J.

    1995-01-01

    Quantitative knowledge of both photosynthesis and respiration is required to understand plant growth and resulting crop yield. However, especially the nature of the energy demanding processes that are dependent on dark respiration in full-grown tissues is largely unknown. The main objective

  4. Training Community College faculty in the techniques and skills required for Solar Energy System installation

    Energy Technology Data Exchange (ETDEWEB)

    Leo, R.J.

    1980-05-01

    A project to train a specified number of community college, vocational/technical faculty in the techniques and skills required to install solar energy systems is described. The planning that led to the contract, the development and conduct of the training workshops, and the outcomes are detailed. An overall evaluation of the project and recommendations for the future are included. (MHR)

  5. Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves

    NARCIS (Netherlands)

    Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Filho, S.C.V.; Castro, M.M.D.; Dijkstra, J.

    2017-01-01

    The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five

  6. The energy requirements of Eurasian perch (Perca fluviatilis L.) in intensive culture

    DEFF Research Database (Denmark)

    Strand, A.; Overton, Julia Lynne; Alanara, A.

    2011-01-01

    Fish feed constitutes one of the largest costs in aquaculture, therefore inefficient feed management will have a negative impact on fish farm economics. Eurasian perch (Perca fluviatilis L.) is a relatively new candidate for freshwater aquaculture, however little is known about the energy require...

  7. Assessment of energy requirements in proven and new copper processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, C.H.; Wadsworth, M.E.

    1980-12-31

    Energy requirements are presented for thirteen pyrometallurgical and eight hydrometallurgical processes for the production of copper. Front end processing, mining, mineral processing, gas cleaning, and acid plant as well as mass balances are included. Conventional reverberatory smelting is used as a basis for comparison. Recommendations for needed process research in copper production are presented.

  8. China's economic reform and industry sector energy requirement: A forecast to 2015

    International Nuclear Information System (INIS)

    Gu, A.Y.

    1997-01-01

    With its GDP growing at an average rate of 9.8% for the last seventeen years, China has the world's fastest growing economy. This rapid pace of growth and industrialization has caused economic strain because fuel production cannot keep pace with demand, If China allows this situation to continue, significant oil imports will be necessary. In 1993, the industrial sector contributed 56% to China's GDP and consumed 61% of the total final energy. The industrial sector will remain the largest energy consumer in China well into the next century. According to China's Ninth Five-Year Plan (1996--2000), China will strengthen its ability to develop new products and will use technological advancement to promote industrial development. The Plan calls for special attention in four major areas: microelectronics technology, digital technology, software technology, and network technology. Given China's emphasis on developing light industries and on improving industrial sector energy efficiency, it is important to study the future energy demand of the industrial sector. Two scenarios for future energy requirements are studied through the year 2015: a Business As Usual (BASU) scenario and an Energy Efficient (EE) scenario. The study evaluates China's current economic reform policies and energy efficiency policies. The results of this evaluation are used to assign appropriate growth rates to industrial GDP and the industrial energy intensity for both scenarios. Results from the two scenarios are compared and analyzed

  9. A 2nd generation static model of greenhouse energy requirements (horticern) : a comparison with dynamic models

    CERN Document Server

    Jolliet, O; Munday, G L

    1989-01-01

    Optimisation of a greenhouse and its components requires a suitable model permitting precise determination of its energy requirements. Existing static models are simple but lack precision; dynamic models though more precise, are unsuitable for use over long periods and difficult to handle in practice. A theoretical study and measurements from the CERN trial greenhouse have allowed the development of new static model named "HORTICERN", precise and easy to use for predicting energy consumption and which takes into account effects of solar energy, wind and radiative loss to the sky. This paper compares the HORTICERN model with the dynamic models of Bot, Takakura, Van Bavel and Gembloux, and demonstrates that its precision is comparable; differences on average being less than 5%, it is independent of type of greenhouse (e.g. single or double glazing, Hortiplus, etc.) and climate. The HORTICERN method has been developed for PC use and is proving to be a powerful tool for greenhouse optimisation by research work...

  10. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    Science.gov (United States)

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  11. Strategic study on energy-protein requirements for local sheep: 5. Ewes during lactation phase

    Directory of Open Access Journals (Sweden)

    I-W Mathius

    2004-03-01

    Full Text Available Thirty-six Javanese thin-tail ewes in the end of late pregnancy phase were set out to study the energy and crude protein requirements during the first eight-week of lactation phase. The ewes were penned individually in doors and randomly assigned to a 3 x 3 factorial arrangement, consisting of three levels of energy (low, medium and high and three levels of crude protein (low, medium and high diets with four ewes per treatment. The diets were pelleted and offered four times daily in approximately equal amount. Feed intake, nutrient digestibility, body weight and milk production were recorded. Results showed that, total lamb birth weights was not affected, but protein content on the ration treatments significantly altered (P0.05, while crude protein content on the ration highly significantly affected (P<0.01. Based on data recorded, the energy and protein requirements for ewes during lactation phase are highly significantly depended on ewes’ live weight, milk production and the ratio of energy metabolism and crude protein of the ration. It was concluded that in order to fulfil the crude protein and energy needs of the ewes during lactation phase, the ration given should contain crude protein and energy as much as 16% (based on dry matter and 13.4 MJ/kg dry matter respectively.

  12. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  13. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications

    International Nuclear Information System (INIS)

    Wiedenhofer, Dominik; Lenzen, Manfred; Steinberger, Julia K.

    2013-01-01

    Household consumption requires energy to be used at all stages of the economic process, thereby directly and indirectly leading to environmental impacts across the entire production chain. The levels, structure and determinants of energy requirements of household consumption therefore constitute an important avenue of research. Incorporating the full upstream requirements into the analysis helps to avoid simplistic conclusions which would actually only imply shifts between consumption categories without taking the economy wide effects into account. This paper presents the investigation of the direct and indirect primary energy requirements of Australian households, contrasting urban, suburban and rural consumption patterns as well as inter- and intra-regional levels of inequality in energy requirements. Furthermore the spatial and socio-economic drivers of energy consumption for different categories of energy requirements are identified and quantified. Conclusions regarding the relationships between energy requirements, household characteristics, urban form and urbanization processes are drawn and the respective policy implications are explored. - Highlights: • We statistically analyze the energy requirements of consumption in Australia. • Contrasting urban/suburban/rural consumption patterns and spatial inequality. • Energy requirements are influenced by urban form, income and demographics. • Urban households require less direct energy, but their total consumption is higher. • Significant rebound effects can be expected when direct energy use is decreased

  14. Automation of Geometry Input for Building Code Compliance Check

    DEFF Research Database (Denmark)

    Petrova, Ekaterina Aleksandrova; Johansen, Peter Lind; Jensen, Rasmus Lund

    2017-01-01

    . That has left the industry in constant pursuit of possibilities for integration of the tool within the Building Information Modelling environment so that the potential provided by the latter can be harvested and the processed can be optimized. This paper presents a solution for automated data extraction......Documentation of compliance with the energy performance regulations at the end of the detailed design phase is mandatory for building owners in Denmark. Therefore, besides multidisciplinary input, the building design process requires various iterative analyses, so that the optimal solutions can...... from building geometry created in Autodesk Revit and its translation to input for compliance check analysis....

  15. Aerated lagooning of agro-industrial wastewater: depuration performance and energy requirements

    Directory of Open Access Journals (Sweden)

    Serafina Andiloro

    2013-09-01

    Full Text Available Intensive depuration plants have often shown low reliability and economic sustainability, when utilised for agro-industrial wastewater treatment, due to the particular wastewater properties: high organic load and essential oil concentrations, acidity, nutrient scarcity and qualitative-quantitative variability of effluents. Aerated lagooning systems represent a suitable alternative, because they are able to assure good reliability and low energy requirements, avoiding the drawbacks shown by the intensive depuration plants. In order to optimize performance of the lagooning systems, particularly in terms of energy requirements, depuration processes of aerobic-anaerobic aerated lagoons were investigated, both at full- and laboratory-scale. Citrus processing wastewater were subject to bubble aeration with low flow rates and limited time; the removal rate of organic load was evaluated and energy requirements of different depuration schemes were compared. The experimental investigations in full-scale aerated lagoons showed a low energy supply (0.21-0.59 kWh per kg of COD (Chemical Oxygen Demand removed with an average value of 0.45 kWh kgCOD –1, an adequate equalisation capability and constantly good depurative performance also with high concentrations of essential oil (500-1000 ppm. The experimental investigations in lab-scale aerated tanks under controlled conditions indicated the possibility of decreasing energy requirements (down to 0.16 kWh kgCOD –1 by reducing aeration power (down to 0.6 W m–3 and limiting aeration time to night 12 hours only, when energy price is lower. In spite of the low aeration, the COD removal rates were on the average six-fold higher compared to the anaerobic tank. Other outcomes indicated an ability of the spontaneous microflora to adapt to high concentrations of essential oils, which however did not provide an increase of the removal rate of the organic load in the experimented scheme.

  16. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  17. [Genetic influence on energy requirements. III. Multifactorial inheritance modified by gender].

    Science.gov (United States)

    Armendares, S; Cravioto, J; Frías, M; Galván, F

    1995-01-01

    A conversion index (CI) which measures the efficiency of utilization of dietary energy was found to be normally distributed in Wistar rats. The CI used was a ratio of the amount of food ingested to achieve an increment of one gram of body weight during the period of 32 days starting on day 21 after weaning. We have previously reported that male rats are more efficient energy converters than females. As a way to explore the hypothesis that the inheritance of the regulation of energy requirements is multifactorial, we mated F1 rats with high CI (poor energy converters) and studied the CI of their F2 offspring. The males behaved in agreement with the hypothesis as the F2 males had higher CI than the F1 males, but the behavior in females was different, i.e. the F2 were better converters than the F1. We have no explanation for this gender discrepancy.

  18. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  19. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  20. Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.; Belzer, David B.; Winiarski, David W.

    2005-09-15

    The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

  1. Antimatter Requirements and Energy Costs for Near-Term Propulsion Applications

    Science.gov (United States)

    Schmidt, G. R.; Gerrish, H. P.; Martin, J. J.; Smith, G. A.; Meyer, K. J.

    1999-01-01

    The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.

  2. Energy requirements for maintenance and growth of male saanen goat kids.

    Science.gov (United States)

    Medeiros, A N; Resende, K T; Teixeira, I A M A; Araújo, M J; Yáñez, E A; Ferreira, A C D

    2014-09-01

    The aim of study was to determine the energy requirements for maintenance and growth of forty-one Saanen, intact male kids with initial body weight (BW) of 5.12±0.19 kg. The baseline (BL) group consisted of eight kids averaging 5.46±0.18 kg BW. An intermediate group consisted of six kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of 12.9±0.29 kg. The remaining kids (n = 27) were randomly allocated into nine slaughter groups (blocks) of three animals distributed among three amounts of dry matter intake (DMI; ad libitum and restricted to 70% or 40% of ad libitum intake). Animals in a group were slaughtered when the ad libitum-treatment kid in the group reached 20 kg BW. In a digestibility trial, 21 kids (same animals of the comparative slaughter) were housed in metabolic cages and used in a completely randomized design to evaluate the energetic value of the diet at different feed intake levels. The net energy for maintenance (NEm) was 417 kJ/kg(0.75) of empty BW (EBW)/d, while the metabolizable energy for maintenance (MEm) was 657 kJ/kg(0.75) of EBW/d. The efficiency of ME use for NE maintenance (km) was 0.64. Body fat content varied from 59.91 to 92.02 g/kg of EBW while body energy content varied from 6.37 to 7.76 MJ/kg of EBW, respectively, for 5 and 20 kg of EBW. The net energy for growth (NEg) ranged from 7.4 to 9.0 MJ/kg of empty weight gain by day at 5 and 20 kg BW, respectively. This study indicated that the energy requirements in goats were lower than previously published requirements for growing dairy goats.

  3. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  4. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    Science.gov (United States)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  5. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    International Nuclear Information System (INIS)

    Pachauri, Shonali

    2004-01-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements

  6. Technical support document for proposed revision of the model energy code thermal envelope requirements

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C.C.; Lucas, R.G.

    1993-02-01

    This report documents the development of the proposed revision of the council of American Building Officials' (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U[sub o]-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for group R'' residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

  7. Technical support document for proposed revision of the model energy code thermal envelope requirements

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C.C.; Lucas, R.G.

    1993-02-01

    This report documents the development of the proposed revision of the council of American Building Officials` (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U{sub o}-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for ``group R`` residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

  8. Energy requirements of a multi-sensor based demand control ventilation system in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chul Seong, Nam; Min Hong, Sung; Won Yoon, Dong [Kyoungwon University, Seoul (Korea, Republic of); Jun Moon, Hyeun [Dankook University, Yongin (Korea, Republic of); Augenbroe, Godfried [Georgia Institute of Technology, Atlanta (United States)

    2010-07-01

    Nowadays, people spend most of their time indoors. Therefore indoor air quality is of high importance and the building regulation in Korea was revised to apply 0.7 air change rate in residential apartment housing. However residents do not often operate mechanical ventilation systems mainly due to their utility cost. The aim of this paper is to present a demand control ventilation (DCV) system which implements ventilation strategies to meet the ventilation requirements. An evaluation was conducted on both conventional ventilation and sensor based DCV systems to compare their energy requirements. The study showed that the use of the DCV system results in a better indoor air quality and a lower energy consumption than conventional ventilation. This paper highlighted that the Korean ventilation regulation is not enough to control the CO2 concentration and that the use of the sensor-based DCV would result in a healthier and more comfortable indoor environment.

  9. Energy requirements of outdoor basins for aquaculture using power plant waste heat

    International Nuclear Information System (INIS)

    Davis, L.R.; Shew, J.A.; Boersma, L.

    1973-01-01

    The energy requirements for open basins used for single cell protein production and fish farming, and the possibility of supplying this energy from waste heat, are discussed. Heating requirements for open aquaculture basins were determined for three types of climatic conditions found in Oregon. All potential means of heat loss from the basins were evaluated. The main mechanism of heat loss was the combined effects of evaporation and convection at the surface of the basin. For a 4 foot deep basin the thermal inertia would be great enough to allow the use of daily average weather data for the computation of energy requirements. For a costal site, with once through cooling, the heated condenser discharge water was not warm enough to maintain a basin at 85 0 F at any time of the year. The water was warm enough to heat the 75 0 F basin from mid-May through October. The design heating rates for the 75 0 F and 85 0 F basins are 6,300 and 9,200 Btu/ft 2 -day respectively. It was concluded that raceways in which fish are grown in the condenser cooling water would be the most economical arrangement for this area. For a Willamette Valley site, using a wet cooling tower, it was found that the heated condenser discharge water was warm enough to meet the heating requirements for both the 75 0 F and 85 0 F basins throughout the year. These basins could be beneficially used to grow fish or algae with no other source of energy needed. (U.S.)

  10. Remote systems requirements of the high-yield lithium injection fusion energy converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-01-01

    Remote systems will be required in the high-yield lithium injection fusion energy converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings, and welds must be done remotely. Ideas for remote maintenance of laser-beam blast baffles, optics, and target material traps are described. Radioisotope sources, their distributions, and exposure rates at various points in the reactor vicinity are presented

  11. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    Science.gov (United States)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  12. Considerations on the need for electricity storage requirements: Power versus energy

    International Nuclear Information System (INIS)

    Belderbos, Andreas; Virag, Ana; D’haeseleer, William; Delarue, Erik

    2017-01-01

    Highlights: • General storage principles are analyzed. • Storage units have different limitations (power versus energy). • Storage power and energy are required, dependent on residual profile. • Relationship between residual profile and optimal storage portfolio is derived. • Broadly applicable rules regarding optimal storage investments are presented. - Abstract: Different storage technologies enable an increasing share of variable renewable generation in the electricity system by reducing the temporal mismatch between generation and demand. Two storage ratings are essential to time-shift delivery of electricity to loads: electric power, or instantaneous electricity flow [W], and electric energy, or power integrated over time [Wh]. An optimal storage portfolio is likely composed of multiple technologies, each having specific power and energy ratings. This paper derives and explains the link between the shape of the time-varying demand and generation profiles and the amount of desirably installed storage capacity, both energy and power. An analysis is performed for individual storage technologies first, showing a link between the necessary power and energy capacity and the demand and generation profile. Then combinations of storage technologies are analyzed to reveal their mutual interaction in a storage portfolio. Results show an increase in desirability for storage technologies with low cost power ratings when the mismatch between generation and demand occurs in daily to weekly cycles. Storage technologies with low cost energy ratings are preferred when this mismatch occurs in monthly to seasonal cycles. The findings of this work can help energy system planners and policy makers to explain results from generation expansion planning studies and to isolate the storage benefits accountable to temporal arbitrage in broader electricity storage studies.

  13. Variable Input Power Supply.

    Science.gov (United States)

    An electronic power supply using pulse width modulated (PWM) voltage regulation provides a regulated output for a wide range of input voltages. Thus...switch to change the level of voltage regulation and the turns ratio of the primary winding of the power supply output transformer, thereby obtaining increased tolerance to input voltage change. (Author)

  14. SSYST-2 input description

    International Nuclear Information System (INIS)

    Meyder, R.

    1980-11-01

    The codes system SSYST-2 is designed to analyse the thermal and mechanical behaviour of a fuel rod during a LOCA. The report contains a short introduction into the SSYST structure, a complete input-list for all modules and several tested input-list for a LOCA-analysis. (orig.) [de

  15. MDS MIC Catalog Inputs

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  16. Energy requirements and physical activity level of active elderly people in rural areas of cuba

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.; Porrata Maury, C.; Jimenez Acosta, S.; Gonzalez Perez, T.; Diaz, M.E.; Martin, I.; Sanchez, V.; Monterrey, P.

    1999-01-01

    Obesity and non-insulin dependent diabetes mellitus (NIDDM) are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. Previous studies done in Havana showed values of physical activity level (PAL) which are lower than the reported for elderly subjects. Elderly people living in rural areas use to have physical activity levels which differ from the observed in urban areas. With the purpose of estimating the energy requirements, a group of 40 apparently healthy people older than 60 years of age living in a rural mountain community will be submitted to a medical, epidemiological, dietary, anthropometric and insulin resistance study. Physical activity will be determined by questionnaire and by the calculation of the PAL from the basal metabolic rate (BMR) and total energy expenditure (TEE) measured with the doubly-labelled water method (DLW). Associations with the prevalence of insulin resistance and obesity will be assessed. (author)

  17. Methods for calculating energy and current requirements for industrial electron beam processing

    International Nuclear Information System (INIS)

    Cleland, M.R.; Farrell, J.P.

    1976-01-01

    The practical problems of determining electron beam parameters for industrial irradiation processes are discussed. To assist the radiation engineer in this task, the physical aspects of electron beam absorption are briefly described. Formulas are derived for calculating the surface dose in the treated material using the electron energy, beam current and the area thruput rate of the conveyor. For thick absorbers electron transport results are used to obtain the depth-dose distributions. From these the average dose in the material, anti D, and the beam power utilization efficiency, F/sub p/, can be found by integration over the distributions. These concepts can be used to relate the electron beam power to the mass thruput rate. Qualitatively, the thickness of the material determines the beam energy, the area thruput rate and surface dose determine the beam current while the mass thruput rate and average depth-dose determine the beam power requirements. Graphs are presented showing these relationships as a function of electron energy from 0.2 to 4.0 MeV for polystyrene. With this information, the determination of electron energy and current requirements is a relatively simple procedure

  18. Validation Study of Energy Requirements in Critically Ill, Obese Cancer Patients.

    Science.gov (United States)

    Tajchman, Sharla K; Tucker, Anne M; Cardenas-Turanzas, Marylou; Nates, Joseph L

    2016-08-01

    Current guidelines from the American Society for Parenteral and Enteral Nutrition and the Society of Critical Care Medicine (ASPEN/SCCM) regarding caloric requirements and the provision of nutrition support in critically ill, obese adults may not be suitable for similar patients with cancer. We sought to determine whether the current guidelines accurately estimate the energy requirements, as measured by indirect calorimetry (IC), of critically ill, obese cancer patients. This was a retrospective validation study of critically ill, obese cancer patients from March 1, 2007, to July 31, 2010. All patients ≥18 years of age with a body mass index (BMI) ≥30 kg/m(2) who underwent IC were included. We compared the measured energy expenditure (MEE) against the upper limit of the recommended guideline (25 kcal/kg of ideal body weight [IBW]) and MEE between medical and surgical patients in the intensive care unit. Thirty-three patients were included in this study. Mean MEE (28.7 ± 5.2 kcal/kg IBW) was significantly higher than 25 kcal/kg IBW (P nutrition requirements greater than the current guideline recommendations. No significant differences in MEE between medical and surgical patients in the ICU were observed. Critically ill, obese cancer patients require more calories than the current guidelines recommend, likely due to malignancy-associated metabolic variations. Our results demonstrate the need for IC studies to determine the energy requirements in these patients and for reassessment of the current recommendations. © 2015 American Society for Parenteral and Enteral Nutrition.

  19. The advanced LIGO input optics.

    Science.gov (United States)

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  20. The advanced LIGO input optics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Chris L., E-mail: cmueller@phys.ufl.edu; Arain, Muzammil A.; Ciani, Giacomo; Feldbaum, David; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Martin, Rodica M.; Reitze, David H.; Tanner, David B.; Williams, Luke F.; Mueller, Guido [University of Florida, Gainesville, Florida 32611 (United States); DeRosa, Ryan T.; Effler, Anamaria; Kokeyama, Keiko [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Frolov, Valery V.; Mullavey, Adam [LIGO Livingston Observatory, Livingston, Louisiana 70754 (United States); Kawabe, Keita; Vorvick, Cheryl [LIGO Hanford Observatory, Richland, Washington 99352 (United States); King, Eleanor J. [University of Adelaide, Adelaide, SA 5005 (Australia); and others

    2016-01-15

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  1. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  2. Evidence of significant energy input in the late phase of a solar flare from NuSTAR x-ray observations

    DEFF Research Database (Denmark)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.

    2017-01-01

    STAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.......We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium......-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused...

  3. PLEXOS Input Data Generator

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-01

    The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.

  4. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scale Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are 'right sized' for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral

  5. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  6. Sex effects on net protein and energy requirements for growth of Saanen goats.

    Science.gov (United States)

    Souza, A P; St-Pierre, N R; Fernandes, M H R M; Almeida, A K; Vargas, J A C; Resende, K T; Teixeira, I A M A

    2017-06-01

    Requirements for growth in the different sexes remain poorly quantified in goats. The objective of this study was to develop equations for estimating net protein (NP G ) and net energy (NE G ) for growth in Saanen goats of different sexes from 5 to 45 kg of body weight (BW). A data set from 7 comparative slaughter studies (238 individual records) of Saanen goats was used. Allometric equations were developed to determine body protein and energy contents in the empty BW (EBW) as dependent variables and EBW as the allometric predictor. Parameter estimates were obtained using a linearized (log-transformation) expression of the allometric equations using the MIXED procedure in SAS software (SAS Institute Inc., Cary, NC). The model included the random effect of the study and the fixed effects of sex (intact male, castrated male, and female; n = 94, 73, and 71, respectively), EBW, and their interactions. Net requirements for growth were estimated as the first partial derivative of the allometric equations with respect to EBW. Additionally, net requirements for growth were evaluated based on the degree of maturity. Monte Carlo techniques were used to estimate the uncertainty of the calculated net requirement values. Sex affected allometric relationships for protein and energy in Saanen goats. The allometric equation for protein content in the EBW of intact and castrated males was log 10 protein (g) = 2.221 (±0.0224) + 1.015 (±0.0165) × log 10 EBW (kg). For females, the relationship was log 10 protein (g) = 2.277 (±0.0288) + 0.958 (±0.0218) × log 10 EBW (kg). Therefore, NP G for males was greater than for females. The allometric equation for the energy content in the EBW of intact males was log 10 energy (kcal) = 2.988 (±0.0323) + 1.240 (±0.0238) × log 10 EBW (kg); of castrated males, log 10 energy (kcal) = 2.873 (±0.0377) + 1.359 (±0.0283) × log 10 EBW (kg); and of females, log 10 energy (kcal) = 2.820 (±0.0377) + 1.442 (±0.0281) × log 10 EBW (kg). The NE G

  7. Physical activity, energy requirements, and adequacy of dietary intakes of older persons in a rural Filipino community

    Directory of Open Access Journals (Sweden)

    Cabalda Aegina B

    2009-05-01

    Full Text Available Abstract Background Aging is a process associated with physiological changes such as in body composition, energy expenditure and physical activity. Data on energy and nutrient intake adequacy among elderly is important for disease prevention, health maintenance and program development. Methods This descriptive cross-sectional study was designed to determine the energy requirements and adequacy of energy and nutrient intakes of older persons living in private households in a rural Filipino community. Study participants were generally-healthy, ambulatory, and community living elderly aged 60–100 y (n = 98, 88 of whom provided dietary information in three nonconsecutive 24-hour food-recall interviews. Results There was a decrease in both physical activity and food intake with increasing years. Based on total energy expenditure and controlling for age, gender and socio-economic status, the average energy requirement for near-old (≥ 60 to 2 (p = 0.003 for every 1% decrease in total caloric intake as percentage of the total energy expenditure requirements. Conclusion These community living elderly suffer from lack of both macronutrient intake as compared with energy requirements, and micronutrient intake as compared with the standard dietary recommendations. Their energy intakes are ~65% of the amounts required based on their total energy expenditure. Though their intakes decrease with increasing age, so do their energy expenditure, making their relative insufficiency of food intake stable with age.

  8. Influence of energy input in friction stir welding on structure evolution and mechanical behaviour of precipitation-hardening in aluminium alloys (AA2024-T351, AA6013-T6 and Al-Mg-Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Weis Olea, Cesar Afonso [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2008-12-04

    Aluminium alloys AA2024 T351, AA6013 T6 and the recently developed Al-Mg-Sc for aircraft industry applications, which are usually considered difficult to weld by conventional fusion welding processes, demonstrate outstanding performance when joined by friction stir welding (FSW). The main feature of the process is to produce solid-state welds, where the maximum temperatures attained during the process are about 80 % that of the melting temperature of the base material. The process generates substantial plastic deformation, due to the solid-state stirring, and consequently creates a high dislocation density, which is a precursor to dynamic recrystallization, a metallurgical feature that characterizes the stir zone (weld centre). A relevant aspect considered, regarding precipitation-hardening aluminium alloys, is the deterioration of the mechanical properties in the weld zones, which are fundamentally attributed to changes in the characteristics of strengthening precipitates. Among the strengthening mechanisms acting in these aluminium alloys, the most important is basically dependent on the morphology, size and population of the precipitates. The thermal cycle and deformation generated during the FSW process alter the precipitation characteristics previously present in the base material. FSW input energy regulates the magnitude of the thermal cycle and the intensity of deformation taking place during the process, and it can be controlled by the welding parameters, affecting the precipitates evolution and consequently the mechanical properties of the joint. Nevertheless, there remains a lack of knowledge about the substructural evolution of these alloys during FSW, and its correlation with weld energy input and their respective mechanical properties, particularly for the Al-Mg-Sc alloy. The main objective of this work is to explain the micro and substructural evolution (emphasizing precipitates evolution) of AA2024- T351, AA6013-T6 and Al-Mg-Sc alloys in similar

  9. Energy requirements for gestation and lactation in a delayed implanter, the American badger.

    Science.gov (United States)

    Harlow, H J; Miller, B; Ryder, T; Ryder, L

    1985-01-01

    1. Two adult female badgers were water-deprived and/or fasted during the last one-half to two-thirds of pregnancy while a third pregnant female received water ad libitum and was fed meat and dog food. 2. The litter size, birth weights, post partum energy consumption, growth rate, development of homeothermy, tooth eruption and date of weaning, as well as other developmental characteristics, were not significantly different between cubs born to the fed or fasted mothers. 3. The energy demands for gestation are apparently small and are accommodated by fat reserves during periods of food deprivation. However, the calculated energy for lactation is 16 times that of gestation, which is quadruple the expenditure for most mammals. 4. As a result of delayed implantation, the length of gestation and litter weights of badgers are considerably below those predicted from allometric equations. 5. The period of lactation is therefore extremely critical to the survival of both the cubs and lactating adults which require heavy fat stores and possibly torpor to ensure sufficient energy availability during prolonged winter food shortage.

  10. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    Science.gov (United States)

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-02

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.

  11. Serial Input Output

    Energy Technology Data Exchange (ETDEWEB)

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  12. Energy and pressure requirements for compression of swine solid fraction compost

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2013-09-01

    Full Text Available The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE. Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kgm–3. This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa and pressure application time (5-120 s on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJkg–1 were significantly lower than the specific energy required to manufacture pellets from

  13. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Hannah, Iain G.; Wright, Paul J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota—Twin Cities, Minneapolis, MN 55455 (United States); Saint-Hilaire, Pascal; Hudson, Hugh S.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Grefenstette, Brian W.; Harrison, Fiona A. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque, NM (United States); Smith, David M.; Marsh, Andrew J. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-20

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  14. Distributed Control and Management of Renewable Electric Energy Resources for Future Grid Requirements

    DEFF Research Database (Denmark)

    Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Nourbakhsh, Ghavameddin

    2016-01-01

    It is anticipated that both medium- and low-voltage distribution networks will include high level of distributed renewable energy resources, in the future. The high penetration of these resources inevitably can introduce various power quality issues, including; overvoltage and overloading...... strategy is a promising approach to manage and utilise the resources in future distribution networks to effectively deal with grid electric quality issues and requirements. Jointly, utility and customers the owners of the resources in the network are considered as part of a practical coordination strategy...

  15. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF

  16. Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China

    International Nuclear Information System (INIS)

    Ouyang, Xiaoling; Lin, Boqiang

    2014-01-01

    The development and utilization of renewable energy (RE), a strategic choice for energy structural adjustment, is an important measure of carbon emissions reduction in China. High cost is a main restriction element for large-scale development of RE, and accurate cost estimation of renewable power generation is urgently necessary. This is the first systemic study on the levelized cost of electricity (LCOE) of RE in China. Results indicate that feed-in-tariff (FIT) of RE should be improved and dynamically adjusted based on the LCOE to provide a better support of the development of RE. The current FIT in China can only cover the LCOE of wind (onshore) and solar photovoltaic energy (PV) at a discount rate of 5%. Subsidies to renewables-based electricity generation, except biomass energy, still need to be increased at higher discount rates. Main conclusions are drawn as follows: (1) Government policy should focus on solving the financing problem of RE projects because fixed capital investment exerts considerable influence over the LCOE; and (2) the problem of high cost could be solved by providing subsidies in the short term and more importantly, by reforming electricity price in the mid-and long-term to make the RE competitive. - Highlights: • Levelized cost of electricity (LCOE) of renewable energies is systemically studied. • Renewable power generation costs are estimated based on data of 17 power plants. • Required subsidies for renewable power generation are calculated. • Electricity price reform is the long-term strategy for solving problem of high cost

  17. Opportunities and requirements for experimentation at high energy e+e/sup /minus// collider

    International Nuclear Information System (INIS)

    Ahn, C.; Baltay, C.; Barklow, T.L.

    1988-05-01

    Over the past fifteen years of high-energy physics, electron-positron annihilation has been the most productive of all reactions probing the fundamental interactions. The e + e/sup /minus// annihilation process is unique in offering at the same time copious production of novel particles, low backgrounds from more conventional physics, and the most efficient use of the energy which an accelerator provides. These features have allowed the detailed characterization of the charm and bottom quark-antiquark systems and the unambiguous discovery of gluon jets---the crucial ingredients in the establishment of Quantum Chromodynamics as the correct theory of the strong interactions---as well as the discovery of the tau lepton and confirmation of the weak and electromagnetic properties of all the quarks and leptons at high energy. Over the past few years, experiments will begin at SLC and LEP, and we anticipate new discoveries from the detailed study of the Z 0 resonance. It is time, then to begin to think out how one might continue this mode experimentation to still higher energies. This document is the report of a committee convened by the Director of SLAC, Burton Richter, to set out the major physics goals of an e + e/sup /minus// collider in the energy range 600 GeV-1 TeV, corresponding to the next feasible step in accelerator technology. The committee was charged with the task of outlining the main experiments that such a collider might carry out and the requirements which those experiments place on the accelerator design. 106 refs., 105 figs., 13 tabs

  18. Economic analysis of energy supply and national economy on the basis of general equilibrium models. Applications of the input-output decomposition analysis and the Computable General Equilibrium models shown by the example of Korea

    International Nuclear Information System (INIS)

    Ko, Jong-Hwan.

    1993-01-01

    Firstly, this study investigaties the causes of sectoral growth and structural changes in the Korean economy. Secondly, it develops the borders of a consistent economic model in order to investigate simultaneously the different impacts of changes in energy and in the domestic economy. This is done any both the Input-Output-Decomposition analysis and a Computable General Equilibrium model (CGE Model). The CGE Model eliminates the disadvantages of the IO Model and allows the investigation of the interdegenerative of the various energy sectors with the economy. The Social Accounting Matrix serves as the data basis of the GCE Model. Simulated experiments have been comet out with the help of the GCE Model, indicating the likely impact of an oil price shock in the economy-sectorally and generally. (orig.) [de

  19. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    Science.gov (United States)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs

  20. Predicting the water-drop energy required to breakdown dry soil aggregates

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.

    1995-04-01

    The raindrop energy required to breakdown dry soil aggregates is an index of structural stability which has been found very useful in modelling soil erosion process and in evaluating the suitability of tillage implements for different soils. The aim of this research was to develop and validate a model for predicting the specific water-drop energy required to breakdown aggregates (D) as influenced by soil properties. Air-dry aggregates (2-4 mm in diameter), collected from 15 surface (0-20 cm) soils in north central Italy were used for this study. The actual and natural log-transformed D values were regressed on the soil properties. Clay content, wilting point moisture content (WP) and percent water-stable aggregates (WSA) > 2.0 mm were good predictors of D. Empirical models developed from either clay content or WP predicted D in 70% of the test soils whereas the model developed from WSA > 2.0 mm predicted D in 90% of the test soils. The correlation coefficients (r) between measured and predicted D were 0.961, 0.963 and 0.997 respectively, for models developed from clay, WP and WSA > 2.0 mm. The validity of these models need to be tested on other soils with a wider variation in properties than those used to developed the models. (author). 42 refs, 5 tabs

  1. Jet energy measurements at ILC. Calorimeter DAQ requirements and application in Higgs boson mass measurements

    International Nuclear Information System (INIS)

    Ebrahimi, Aliakbar

    2017-11-01

    The idea of spontaneous symmetry breaking as the mechanism through which elementary particles gain mass has been confirmed by the discovery of the Higgs boson at the CERN Large Hadron Collider. Studying the Higgs boson properties are of great importance to verify the Standard Model predictions. Any deviation from these predictions could uncover physics beyond the Standard Model. The mass of the Higgs boson is one of the important parameters of the Standard Model. The precise determination of the Higgs boson mass is of interest in its own right and also for other Higgs physics studies since it enters as parametric uncertainty into the extraction of the partial width from branching ratio measurements. The International Linear Collider (ILC) is a future polarised e + e - collider designed for precision physics studies. The Higgs boson decay to a pair of bottom quarks H→b anti b has the largest branching ratio of all Higgs decays, providing a large dataset for physics analyses. The possibility of measuring the Higgs boson mass in the e + e - →ZH→q anti qb anti b channel is investigated in this thesis for centre-of-mass energies of 350 GeV and 500 GeV. Since the Higgs boson mass is reconstructed from two b jets, the jet energy resolution hasa high impact on the measurement. A new method to estimate the jet energy resolution for each jet individually is developed in this thesis. The jet-specific energy resolution is then used in the analysis for the Higgs boson mass measurements. Various strategies for the Higgs boson mass measurement are investigated. For an integrated luminosity of 1000 fb -1 and a beam polarisation of (-0.8,+0.3), statistical uncertainties of 42 MeV and 89 MeV are achieved for the centre-of-mass energies of 350 GeV and 500 GeV, respectively. Various sources of systematic uncertainties are also discussed. These results are obtained using a full GEANT4-based simulation of the International Large Detector (ILD) concept. The jet energy resolution

  2. Jet energy measurements at ILC. Calorimeter DAQ requirements and application in Higgs boson mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Aliakbar

    2017-11-15

    jet energy resolution required for the Higgs boson mass measurement can only be achieved using the particle flow approach to reconstruction. The particle flow approach requires highly-granular calorimeters and a highly efficient tracking system. The CALICE collaboration is developing highly-granular calorimeters for such applications. One of the challenges in the development of such calorimeters with millions of read-out channels is their Data Acquisition System (DAQ) system. The second part of this thesis involves contributions to development of a new DAQ system for the CALICE scintillator calorimeters. The new DAQ system fulfills the requirements for the prototypes tests while being scalable to larger systems. The requirements and general architecture of the DAQ system is outlined in this thesis. The new DAQ system has been commissioned and tested with particle beams at the CERN Proton Synchrotron test beam facility in 2014,results of which are presented here.

  3. The Creb1 coactivator Crtc1 is required for energy balance and fertility.

    Science.gov (United States)

    Altarejos, Judith Y; Goebel, Naomi; Conkright, Michael D; Inoue, Hiroshi; Xie, Jianxin; Arias, Carlos M; Sawchenko, Paul E; Montminy, Marc

    2008-10-01

    The adipocyte-derived hormone leptin maintains energy balance by acting on hypothalamic leptin receptors (Leprs) that act on the signal transducer and activator of transcription 3 (Stat3). Although disruption of Lepr-Stat3 signaling promotes obesity in mice, other features of Lepr function, such as fertility, seem normal, pointing to the involvement of additional regulators. Here we show that the cyclic AMP responsive element-binding protein-1 (Creb1)-regulated transcription coactivator-1 (Crtc1) is required for energy balance and reproduction-Crtc1(-/-) mice are hyperphagic, obese and infertile. Hypothalamic Crtc1 was phosphorylated and inactive in leptin-deficient ob/ob mice, while leptin administration increased amounts of dephosphorylated nuclear Crtc1. Dephosphorylated Crtc1 stimulated expression of the Cartpt and Kiss1 genes, which encode hypothalamic neuropeptides that mediate leptin's effects on satiety and fertility. Crtc1 overexpression in hypothalamic cells increased Cartpt and Kiss1 gene expression, whereas Crtc1 depletion decreased it. Indeed, leptin enhanced Crtc1 activity over the Cartpt and Kiss1 promoters in cells overexpressing Lepr, and these effects were disrupted by expression of a dominant-negative Creb1 polypeptide. As leptin administration increased recruitment of hypothalamic Crtc1 to Cartpt and Kiss1 promoters, our results indicate that the Creb1-Crtc1 pathway mediates the central effects of hormones and nutrients on energy balance and fertility.

  4. The contribution of nuclear energy to the meeting of Italy's electric power requirements

    International Nuclear Information System (INIS)

    Angelini, A.M.

    1977-01-01

    The paper discusses ENEL's policy in the development of nuclear energy, which assigns to this source the role of meeting almost all of Italy's additional future power requirements. This is a position taken some time ago and already outlined on the occasion of the Geneva Conference of 1971. The policy is based on a number of factors, reviewed in the paper, which differentiate, at least in quantitative terms, Italy's situation from that of most industrialized countries. Among these factors stand out the scarcity of natural resources, including energy sources available in Italy. An extensive recourse to nuclear energy is the best way to achieve that diversification of energy supplies vital to the Italian economy which, because of the very lack of natural resources, is predominantly based on processing. While the Caorso Nuclear Power Plant (840 MW) is due to go into service soon, ENEL's nuclear plan, recently approved by the Government, calls for the construction of the four 1,000-MW units already on order and of 16 additional units, of the same size, divided into two 8-units blocks, to be decided on respectively in the very near future and before the end of 1977. The necessary flexibility of the plan concerning the nuclear units that will go into service by the 1986 is ensured by the subdivision into blocks, with provision for the postponement of the second, 8-units block in the country's economy development requires a revision in electric power forecasts. The paper then considers in particular the integration between the nuclear plan and ENEL's extensive plan for pumped-storage hydro-electric power plants and the related technical and economic advantages which also extend to an international scope. The paper concludes the review of Italy's nuclear plan by stressing two essential problems: financing and the availability of sites for nuclear power plants. Upon their timely and satisfactory solution depends the actual construction of the plants by the scheduled dates

  5. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  6. The CREB Coactivator TORC1 is Required for Energy Balance and Fertility

    Science.gov (United States)

    Altarejos, Judith Y.; Goebel, Naomi; Conkright, Michael D.; Inoue, Hiroshi; Xie, Xianjin; Arias, Carlos M.; Sawchenko, Paul E.; Montminy, Marc

    2009-01-01

    Obesity is a major risk factor in the development of insulin resistance and Type 2 diabetes. Under lean conditions, the adipocyte-derived hormone leptin maintains energy balance by acting on hypothalamic leptin receptors (LRbs) that trigger activation of the JAK2/STAT3 pathway 1–4. Although disruption of LRb-STAT3 signaling promotes obesity in mice, other neuroendocrine features of LRb function such as fertility appear normal, pointing to a requirement for additional regulators in this setting. Here we show that the cAMP and calcium-responsive CREB coactivator TORC1 is required for energy balance and reproduction; TORC1 −/− mice are hyperphagic, obese, and infertile. Indeed, TORC1−/− females are anovulatory, and they have abnormal uterine morphology along with low circulating concentrations of pituitary luteinizing hormone. Hypothalamic TORC1 was highly phosphorylated and inactive in leptin deficient ob/ob mice; and administration of leptin increased amounts of dephosphorylated, nuclear TORC1. Dephosphorylated, active TORC1, in turn, stimulated the expression of CART and KISS1 genes, which encode hypothalamic neuropeptides that mediate leptin effects on satiety and fertility, respectively 5–7. TORC1 over-expression in cultured hypothalamic cells increased CART and KISS1 gene expression, while depletion of TORC1, by RNAi mediated knockdown in vitro or by targeted gene disruption in vivo, decreased it. Leptin potentiated effects of cAMP and calcium activators on TORC1 transcriptional activity over the CART and KISS1 promoters in cells over-expressing LRb; these effects were disrupted by expression of the dominant negative CREB polypeptide A-CREB. As leptin administration also increased recruitment of hypothalamic TORC1 to CART and KISS1 promoters in vivo, our results indicate that the CREB:TORC1 pathway mediates central effects of hormone and nutrient signals on energy balance and fertility. PMID:18758446

  7. 3.4 Environmental impacts: energy industry

    International Nuclear Information System (INIS)

    2004-01-01

    The subchapter 3.4 'Environmental impact of the energy industry' of the 7th state of the environment report analyzes the current situation in Austria and briefly describes the following aspects: environmental policy targets, uniform taxation of energy, use of renewable energy sources, efficient use of energy, energy input, electricity supply and input, energy input into space heating and air conditioning systems, and renewable energy. In 2002, the input of final energy was risen by about 5 % in comparison to 1998. During this period, the largest increments in final energy inputs were recorded in the mobility sector with + 9.4 %, and in the private households sector with + 8.3 % . The goods production sector showed a slight decrease of about 1.3 % between 1998 and 2002. The 'goods production', 'mobility' and 'private households' sectors combined require about 87 % of the total final energy input. The final energy input for space heating and hot water in 2001 was 5.7 % above the input in 1998. Energy supply from renewable energy sources rose by about 13.8 % in 2002 compared to 1998. Domestic electricity consumption (excluding consumption for pumped-storage systems) in 2002 was about 10.5 % above consumption in 1998. Physical imports and physical exports in 2002 increased about 32 % and 8.6 % correspondingly compared to 1999. (nevyjel)

  8. 75 FR 4474 - Energy Conservation Program: Certification, Compliance, and Enforcement Requirements for Certain...

    Science.gov (United States)

    2010-01-28

    ... CONTACT: Michael McCabe, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...-9155. E-mail: Michael.McCabe@ee.doe.gov . Michael Kido, U.S. Department of Energy, Office of the...

  9. 75 FR 652 - Energy Conservation Program: Certification, Compliance, and Enforcement Requirements for Certain...

    Science.gov (United States)

    2010-01-05

    ... CONTACT: Michael McCabe, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...-9155. E-mail: Michael.McCabe@ee.doe.gov . Michael Kido, U.S. Department of Energy, Office of the...

  10. ColloInputGenerator

    DEFF Research Database (Denmark)

    2013-01-01

    you to input a text file with a raw list of lexemes that appear in the construction under investigation. This is converted into an a frequency with the format described above. Open this file in a spreadsheet and fill in the corpus-wide word frequencies and save the file as a text file. You can now use...

  11. Diffusion of energy-saving innovations in industry and the built environment: Dutch studies as inputs for a more integrated analytical framework

    International Nuclear Information System (INIS)

    Dieperink, C.; Brand, I.; Vermeulen, W.

    2004-01-01

    The need to improve eco-efficiency is indisputable, and the way forward is through widespread application of environmental innovations. Yet research into the dissemination of such innovations in the Netherlands has been limited in scope. Most studies tend to focus on the feasibility of a particular technology. Few try to explain how technology spreads throughout society. The explanatory factors discerned in these studies are often not related to each other. In this contribution the authors try to integrate different partial explanations for the diffusion of energy-saving technologies in industry and the built environment into one conceptual framework. This integration is based on a secondary analysis of relatively well-elaborated studies dealing with the diffusion of heat pumps, combined heat and power and condensing boilers in industry and the built environment. Core of the framework is the decision-making process of the potentially adapting actor. Characteristics of the actor and the networks in which the actor participates (government, market, society) could have impact on this decision-making process. Technological and economic characteristics of the innovation and more general context factors are also relevant as factors that influence the considerations made in the decision-making process. This conceptual framework can be used both in more elaborate research projects and in brainstorming projects to improve policymaking

  12. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  13. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  14. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2008-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites.

    Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity.

    A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model

  15. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2007-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites. Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity. A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model, these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance

  16. Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07

    International Nuclear Information System (INIS)

    Das, Aparna; Paul, Saikat Kumar

    2013-01-01

    A substantial amount of primary and secondary energy is consumed by the residential sector. Residential energy consumption includes energy required for construction activity and household consumption. Hence there is a need to quantify energy consumption, its significance and causes. Calculating energy intensity of goods and services is the first step towards quantifying the causes. This research is based on the 115 sector classification input–output tables for India, for 1993–94, 1998–99 and 130 sector classification input–output tables for 2003–04 and 2006–07. Energy intensity of sectors related to household consumption has been calculated to analyze the trend between 1993–94 and 2006–07. Indirect energy requirements of Indian households have been assessed in this study from calculations of total primary energy intensity along with private final consumption expenditure. Results indicate that energy consumption has increased for all categories except “medical care and hygiene”. Percentage increase in indirect primary energy consumed by households is maximum for “house building” and “recreation” categories. Finally a complete decomposition analysis of indirect primary energy consumed by households has been carried out based on changing structural composition of the private final consumption expenditure, energy intensity patterns, per capita expenditures on energy and population. - Highlight: ► Energy intensity trend of goods and services between 1993–94 and 2006–07 presented. ► Analysis of energy consumption by sectors constituting residential use highlighted. ► Per capita and residential indirect energy consumption for main categories presented. ► Decomposition of changes into structure, intensity, activity and population done. ► Percentage increase of embodied energy maximum for house building and recreation.

  17. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  18. Renewable energy burden sharing. REBUS. Requirements and expectations of utilities and consumer organisations in the European energy sector

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.; Skytte, K.; Leonardi, M.; Whiteley, M.H.

    2001-05-01

    Creation of an internal market for renewable electricity will involve a political negotiation process, similar to previous EU greenhouse gas negotiations. The Energy Ministers in the EU have agreed on an overall target of 21.7% of electricity supply from Renewable Energy Sources (RES-E) and a distribution of targets over the individual Member States. The REBUS project aimed at providing insights in the effects of implementing targets for renewable electricity generation at EU Member State level and the impact of introducing burden sharing systems within the EU, such as a Tradable Green Certificate (TGC) system. Member States can participate in such burden sharing systems to reduce the costs of achieving targets for electricity from renewable sources (RES-E), compared to strictly national implementation measures. The project concentrated on the development of the REBUS model, which quantifies the impact of trade (in green certificates, quotas or targets) and the implementation of different rules to setting targets at individual Member State level. In addition, the project has paid special attention to the participation of stakeholders such as utilities, traders, and consumers of electricity. What is their opinion on the target setting, on the design of a trading system and its practical implementation and monitoring aspects? Utilities and consumer organisations in Denmark, Italy, The Netherlands and the United Kingdom have been asked to comment on these issues. This report is a result of a series of interviews with these stakeholders on their reaction to different burden sharing proposals, and on the socio-economic and financial impacts they foresee. The utilities take a critical view of their position in the renewable energy market and possible future international trading scheme. The main conclusions from the interviews are: Generally, target setting and burden sharing are regarded political questions, on which governments should decide; Stakeholders emphasise

  19. Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Michael; /SLAC

    2009-01-15

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.

  20. A new model for evaluating maintenance energy requirements in dogs: allometric equation from 319 pet dogs.

    Science.gov (United States)

    Divol, Guilhem; Priymenko, Nathalie

    2017-01-01

    Reports concerning maintenance energy requirements (MER) in dogs are common but most of the data cover laboratory or utility dogs. This study establishes those of healthy adult pet dogs and the factors which cause these energy requirements to vary. Within the framework of a nutrition teaching exercise, each student followed a pet from his entourage and gathered accurate records of its feeding habits. Data have been restricted to healthy adult dogs with an ideal body weight (BW) which did not vary more than 5 % during the study period. A total of 319 eligible records were analysed using multiple linear regression. Variation factors such as ownership, breed, sex and neutered status, bedding location, temperament and feeding habits were then analysed individually using a non-parametric model. Two models result from this study, one excluding age ( r 2 0·813) and a more accurate one which takes into consideration the age in years ( r 2 0·816). The second model was assessed with the main variation factors and shows that: MER (kcal) = k 1 × k 2 × k 3 × k 4 × k 5 × 128 × BW 0·740 × age -0·050 /d ( r 2 0·836), with k 1 the effect of the breed, k 2 the effect of sex and neutered status, k 3 the effect of bedding location, k 4 the effect of temperament and k 5 the effect of the type of feed. The resulting model is very similar to the recommendations made by the National Research Council (2006) but a greater accuracy was obtained using age raised to a negative power, as demonstrated in human nutrition.

  1. Quantum dynamics study of energy requirement on reactivity for the HBr + OH reaction with a negative-energy barrier

    Science.gov (United States)

    Wang, Yuping; Li, Yida; Wang, Dunyou

    2017-01-01

    A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results.

  2. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.

    Science.gov (United States)

    Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H

    2018-04-24

    The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.

  3. Exigências nutricionais de zebuínos: energia Nutritional requirements of zebu cattle: energy

    Directory of Open Access Journals (Sweden)

    Pedro Veiga Rodrigues Paulino

    2004-06-01

    Full Text Available Com o objetivo de determinar as exigências de energia e as eficiências de utilização da energia metabolizável para ganho de peso e mantença de zebuínos, foi desenvolvido um experimento envolvendo 19 novilhos anelorados, com peso vivo médio inicial de 270 kg. Quatro animais foram abatidos ao início do experimento, para servirem de referência para estudos posteriores, três foram alimentados ao nível de mantença e os 12 restantes foram alocados em delineamento inteiramente casualizado, com três tratamentos: 5, 35 e 65% de concentrado na base da matéria seca total. O volumoso foi constituído de pré-secado de capim-braquiária (Brachiaria brizantha e de capim-tifton 85 (Cynodon sp.. As dietas foram isonitrogenadas e os animais foram alimentados ad libitum. A exigência líquida de energia para mantença (ELm foi estimada como o anti-log do intercepto da equação obtida pela regressão linear entre o logaritmo da produção de calor (PC e o consumo de energia metabolizável (CEM, bem como pelo coeficiente "a" da equação de regressão exponencial entre a PC e o CEM dos animais do tratamento com 35% de concentrado e os do grupo mantença. As quantidades de energia e gordura no ganho elevaram-se com o aumento do peso vivo (PV dos animais. O teste de identidade dos modelos de regressão demonstrou não haver diferenças entre os tratamentos. O requisito energético diário para mantença foi de 68,60 kcal/PV0,75. A k m estimada foi de 0,66 e as k g calculadas foram de 0,26; 0,41 e 0,46, respectivamente, para concentrações de EM de 2,31; 2,47 e 2,62 Mcal/kg de MS, correspondentes aos teores de 5, 35 e 65% de concentrado na dieta. Os requisitos diários de EM e NDT para mantença de um animal de 400 kg de PV foram de 9,30 Mcal e 2,57 kg, respectivamente.A trial involving nineteen zebu steers with initial live weight of 270 kg were conducted with the objective of determining their energy requirements and the efficiency of utilization of

  4. Prediction Equations Overestimate the Energy Requirements More for Obesity-Susceptible Individuals.

    Science.gov (United States)

    McLay-Cooke, Rebecca T; Gray, Andrew R; Jones, Lynnette M; Taylor, Rachael W; Skidmore, Paula M L; Brown, Rachel C

    2017-09-13

    Predictive equations to estimate resting metabolic rate (RMR) are often used in dietary counseling and by online apps to set energy intake goals for weight loss. It is critical to know whether such equations are appropriate for those susceptible to obesity. We measured RMR by indirect calorimetry after an overnight fast in 26 obesity susceptible (OSI) and 30 obesity resistant (ORI) individuals, identified using a simple 6-item screening tool. Predicted RMR was calculated using the FAO/WHO/UNU (Food and Agricultural Organisation/World Health Organisation/United Nations University), Oxford and Miflin-St Jeor equations. Absolute measured RMR did not differ significantly between OSI versus ORI (6339 vs. 5893 kJ·d -1 , p = 0.313). All three prediction equations over-estimated RMR for both OSI and ORI when measured RMR was ≤5000 kJ·d -1 . For measured RMR ≤7000 kJ·d -1 there was statistically significant evidence that the equations overestimate RMR to a greater extent for those classified as obesity susceptible with biases ranging between around 10% to nearly 30% depending on the equation. The use of prediction equations may overestimate RMR and energy requirements particularly in those who self-identify as being susceptible to obesity, which has implications for effective weight management.

  5. Input parameters to codes which analyze LMFBR wire wrapped bundles. Revision 1

    International Nuclear Information System (INIS)

    Wang, S.F.; Todreas, N.E.

    1979-05-01

    This report provides a current summary of recommended values of key input parameters required for ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  6. Energy Requirement Assessment in Japanese Table Tennis Players Using the Doubly Labeled Water Method.

    Science.gov (United States)

    Sagayama, Hiroyuki; Hamaguchi, Genki; Toguchi, Makiko; Ichikawa, Mamiko; Yamada, Yosuke; Ebine, Naoyuki; Higaki, Yasuki; Tanaka, Hiroaki

    2017-10-01

    Total daily energy expenditure (TEE) and physical activity level (PAL) are important for adequate nutritional management in athletes. The PAL of table tennis has been estimated to about 2.0: it is categorized as a moderateactivity sport (4.0 metabolic equivalents [METs]) in the Compendium of Physical Activities. However, modern table tennis makes high physiological demands. The aims of the current study were to examine (1) TEE and PAL of competitive table tennis players and (2) the physiological demands of various types of table tennis practice. In Experiment 1, we measured TEE and PAL in 10 Japanese college competitive table tennis players (aged 19.9 ± 1.1 years) using the doubly labeled water (DLW) method during training and with an exercise training log and self-reported energy intake. TEE was 15.5 ± 1.9 MJ·day -1 (3695 ± 449 kcal·day -1 ); PAL was 2.53 ± 0.25; and the average training duration was 181 ± 38 min·day -1 . In Experiment 2, we measured METs of five different practices in seven college competition players (20.6 ± 1.2 years). Three practices without footwork were 4.5-5.2 METs, and two practices with footwork were 9.5-11.5 METs. Table tennis practices averaged 7.1 ± 3.2 METS demonstrating similarities with other vigorous racket sports. In conclusion the current Compendium of Physical Activities underestimates the physiological demands of table tennis practice for competition; the estimated energy requirement should be based on DLW method data.

  7. Energy requirements and physical activity of older free-living African-Americans: a doubly labeled water study.

    Science.gov (United States)

    Starling, R D; Toth, M J; Matthews, D E; Poehlman, E T

    1998-05-01

    We examined daily energy requirements and determinants of physical activity in older, free-living African-American women (n = 37; age, 64 +/- 8 yr) and men (n = 28; age, 64 +/- 7 yr). Total daily energy expenditure and its components [i.e. resting metabolic rate (RMR) and physical activity energy expenditure] were determined using doubly labeled water and indirect calorimetry. Body composition from dual energy x-ray absorptiometry, maximal oxygen consumption from a graded treadmill test, and leisure time physical activity from a structured interview were determined. Total daily energy expenditure adjusted for body composition was lower (P energy expenditure (548 +/- 559 vs. 794 +/- 603 kcal/d; P = 0.19), respectively. The physical activity level ratio (i.e. total daily energy expenditure/RMR) was not different from Food and Agriculture Organization/World Health Organization/United Nations University recommendations (i.e. 1.51) for women (1.51 +/- 0.25), but was higher for men (1.71 +/- 0.32). The strongest correlates with physical activity energy expenditure were age for women (r = -0.44; P consumption for men (r = 0.39; P energy requirements are significantly lower in African-American women compared to men, primarily due to lower levels of physical activity energy expenditure. Furthermore, lower levels of cardiovascular fitness in men and advancing age in women are associated with lower physical activity energy expenditure.

  8. Why EU renewable energy figures are misleading: Europe requires 150% renewable energy to become fossil-free

    NARCIS (Netherlands)

    Martien Visser

    2016-01-01

    The EU is confident it will reach its target of 20% renewable energy by 2020. But according to Martien Visser, professor at the Hanze University of Applied Sciences in Groningen (The Netherlands), this 20% is in reality more like 14%. This is because a large part of our energy consumption is simply

  9. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  10. Energy from agricultural residues and consequences for land requirements for food production

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    Using biomass as an energy source is often mentioned as an option to mitigate the enhancing greenhouse effect. Biomass for energy purposes can be obtained from dedicated energy crops and/or from agricultural residues. The available amount of residues is large and suggests a significant energy

  11. ZP123 reduces energy required for defibrillation by preventing connexin43 remodeling during prolonged ventricular fibrillation in swine.

    Science.gov (United States)

    Yi, Shao-lei; Zhong, Jing-quan; Zhang, Jing; Su, Guo-ying; Li, Jing-sha; Liu, Hong-zhen; Zhang, Yun

    2012-01-01

    In ventricular fibrillation, the uncoupling of gap junctions slows conduction velocity and increases action-potential dispersion, which slows and diminishes defibrillation. We studied how the peptide ZP123, a gap-junction enhancer, might lower defibrillation-energy requirements during ventricular fibrillation in live pigs. We randomly assigned 33 pigs into 3 groups: ZP123 (receiving a 1-µg/kg bolus and 10 µg/kg/hr of ZP123), control (receiving saline solution), and sham (undergoing a sham operation). After a 30-min administration of agents, ventricular fibrillation was induced and left untreated for 8 min. Biphasic defibrillation of 50 J was increased by 50-J increments as necessary. Defibrillation-energy requirements were defined as the lowest energy required to achieve defibrillation. Electrocardiographic values were obtained before and after the administration of agents. Western blot and immunofluorescence analyses were performed on ventricular myocardial samples. All but one pig survived. The ZP123 treatment did not alter electrocardiographic variables. In the ZP123 group, the average required defibrillation energy was lower than that in the control group (327.28±269.6 vs 610±192.64 J; P=0.015), and the cumulative percentage of successful defibrillation at upper energy levels was higher (Pdefibrillation-energy requirements by preventing connexin43 remodeling during prolonged ventricular fibrillation.

  12. Foraging plasticity of breeding Northern Rockhopper Penguins, Eudyptes moseleyi, in response to changing energy requirements

    KAUST Repository

    Booth, Jenny Marie

    2018-04-02

    During the breeding season, seabirds must balance the changing demands of self- and off-spring provisioning with the constraints imposed by central-place foraging. Recently, it was shown that Northern Rockhopper Penguins at Tristan da Cunha in the South Atlantic Ocean switch diet from lower to higher trophic level prey throughout their breeding cycle. Here, we investigated if this switch is reflected in their foraging behaviour, using time-depth recorders to study the diving behaviour of 27 guard and 10 crèche birds during the breeding season 2010 at Tristan da Cunha and obtaining complementary stomach contents of 20 birds. While no significant effects of breeding stage were detected on any foraging trip or dive parameters, stage/prey had a significant effect on feeding dive parameters, with dive duration, bottom time, and maximum depth explaining the majority of the dissimilarity amongst categories. We verified the previously shown dietary shift from zooplankton and cephalopods during the guard stage to a higher-energy fish-based diet during the crèche stage, which was reflected in a change in dive behaviour from shorter, shallower to longer, deeper dives. This prey switching behaviour may reflect preferential selection to account for the increased physiological needs of chicks or simply mirror changes in local prey abundance. Nonetheless, we show that Northern Rockhopper Penguins demonstrate behavioural plasticity as a response to their changing energy requirements, which is a critical trait when living in a spatio-temporally heterogeneous environment. This ability is likely to be particularly important under extrinsic constraints such as long-term environmental change.

  13. Energy nutritional requirements for females of Nellore, Nellore × Angus and Nellore × Simmental fed on two forage: concentrate ratios

    Directory of Open Access Journals (Sweden)

    Evaristo Jorge Oliveira de Souza

    2012-03-01

    Full Text Available The objective of this study was to determine the energy nutritional requirements for females of Nellore, Nellore × Angus and Nellore × Simmental fed on two levels of concentrate. Sixty heifers from three genetic groups were used: 20 Nellore, 20 Nellore × Angus and 20 Nellore × Simmental. Twelve belonged to the reference group (four of each genetic group and were slaughtered at the beginning of the experiment. Another 12 heifers (four of each genetic group were fed on the maintenance level and 36 heifers (12 animals of each genetic group were kept in feeding system ad libitum with 30 (six in each group or 50% (six of each group dry matter concentrate. Animals were randomly assigned to six treatments in a 3 × 2 factorial arrangement (three genetic groups and two diets with six replicates per treatment. Nine more heifers were used in a parallel experiment to estimate the apparent digestibility coefficients (three from each genetic group. Net energy requirements were estimated by the equation of retained energy as a function of metabolic empty body weight (EBW0.75 and empty body weight gain (EBWg. Requirements of metabolizable and net energy were estimated for maintenance by the equation of heat production as a function of metabolizable energy intake. Using the combined equation RE (retained energy; Mcal/day = 0.0703 × EBW.75 × EBWg1.128 to predict net energy requirements for weight gain is recommended. The requirement of metabolizable and net energy for maintenance of all groups is 70.55 and 106.53 kcal/kgEBW0.75/day, respectively. Use efficiencies of metabolizable energy for gain and maintenance are 36.41 and 66.23%, for the three genetic groups respectively.

  14. Energy and protein requirements of crossbred Holstein x Zebu steers fed different levels of calcium and phosphorus in the diet

    Directory of Open Access Journals (Sweden)

    Diego Zanetti

    2016-09-01

    Full Text Available The aim of this study was to determine the energy and protein requirements of crossbred Holstein x Zebu steers fed with or without the supplementation of dicalcium phosphate in the diet. Thirty-two steers with an average initial body weight of 377.5 ± 49.4 kg were used, of which four were initially slaughtered to estimate the empty body weight (EBW of the animals. Twenty-four steers were fed ad libitum and were distributed in a completely randomized design with two levels of concentrate (30 and 60 %, and diets with or without dicalcium phosphate and four steers were fed at maintenance level, so that the body weight gain was equal to zero. After 84 days the animals were slaughtered. The animal tissues were sampled, and composted by two samples, denominated by “carcass” (bone, muscle and fat and “non-carcass” (head, limbs, blood, hide, organs and viscera for determination of the body composition. The net energy requirements (NEm and metabolizable energy for maintenance (MEm were obtained while relating heat production (HP and metabolizable energy intake (MEI; meanwhile, the net energy requirements for gain (NEg and the net protein requirements for gain (NPg were obtained as a function of empty body weight (EBW, empty body gain (EBG and retained energy (RE in EBW. The daily net and metabolizable energy requirements for maintenance were 76.90 and 119.36 kcal/EBW0.75, respectively. The net energy requirements for gain can be obtained by the following equation: NEg = 0.0568±0.0025 × EBW0.75 × EBG1.095. The efficiencies of use of metabolizable energy for maintenance and gain are 64.4 and 29.68 %, respectively. The metabolizable protein requirements for maintenance are 4.14 g/BW0.75. The net protein requirements for gain can be obtained through the following equation: NPg = 236.36±30.06 × EBG - 19.84±6.14 × RE. We recommend the use of the equations obtained in this experiment to calculate the energy and protein requirements of crossbred

  15. Cardiovascular and Energy Requirements of Parents Watching Their Child Compete: A Pilot Mixed-Methods Investigation

    Directory of Open Access Journals (Sweden)

    Marc Lochbaum

    2017-11-01

    Full Text Available Purpose: Researchers have extensively documented the cardiovascular and metabolic demands for sports participation. To date, researchers have ignored the same requirements of competitor’s parents. Hence, our purpose was to document parent cardiovascular and metabolic responses to watching their child compete while also paying particular attention to their thoughts before and after the competition. Achievement Goal Theory (AGT drove interpretation of parent thoughts. Materials: Parents wore a device, made by Firstbeat Technologies, which continuously monitored heart rate. The parents wore the device the night before the competition to be acclimated to the technology and during the event until later in the day. Parents also completed two open-ended questions, one before the tournament and one after the contest. Results: Before the contest, the dad expected that his son won the event (Croatian National Championships for juniors. Conversely, the mother’s expectations centered more on her son’s enjoyment and competing to the best of his abilities. Parents had differing cardiovascular and energy requirement responses to watching their son compete. In addition, post-competition reflections differed as the father expressed disappointment whereas the mother expressed sadness. Conclusions: The data presented are unique and a first in the sports literature. The parents varied in the intensity of their cardiovascular responses and calories burned while watching their son compete. The father’s cardiovascular response over the course of watching was that of an aerobic workout. Whether this pattern is unique or universal are a critical research question. Last, AGT appears relevant when assessing the parent’s expectations.

  16. The daily hour forecasting of the electrical energy production from renewable energy sources – a required condition for the operation of the new energy market model

    International Nuclear Information System (INIS)

    Kalpachka, Gergana; Kalpachki, Georgi

    2011-01-01

    The report presented the new energy market model in Bulgaria and the main attention is directed to a daily hour forecasting of the electrical energy production from renewable energy sources. The need of development of a methodology and the development of the most precise methods for predicting is reviewed and some of the used methods at the moment are presented. An analysis of the problems related to the daily hour forecasting is done using data from the producers of electrical energy from renewable energy sources in the territory of western Bulgaria. Keywords: Renewable energy sources, daily hour forecasting, electrical energy

  17. Congressional interest and input

    International Nuclear Information System (INIS)

    Donnelly, W.H.

    1985-01-01

    While congressional interest in nonproliferation policy has been evident since the 1940s, the 1970s were propitious for efforts by Congress to exert influence in this sphere. Its suspicions of the executive branch had been stirred by controversies over Vietnam and Watergate at the beginning of the decade; by the end of the decade, Congress was able to curtail the unrestrained freedom of the executive branch to carry out the vaguely stated policies of the Atomic Energy Act of 1954. Congressional nonproliferation interests were further amplified during the decade by pressures from the expanding environmental movement, which included a strong antinuclear plank. This was to bring down the powerful Atomic Energy Commission (AEC). The Energy Reorganization Act of 1974 abolished the AEC and divided its responsibilities between the new Energy Research and Development Administration (ERDA), later to become the Department of Energy (DOE), and the new Nuclear Regulatory Commission

  18. On the energy crisis in the Io plasma torus

    Science.gov (United States)

    Smith, Robert A.; Bagenal, Fran; Cheng, Andrew F.; Strobel, Darrell

    1988-01-01

    Recent calculations of the energy balance of the Io plasma torus show that the observed UV and EUV radiation cannot be maintained solely via energy input by the ion pickup mechanism. Current theoretical models of the torus must be modified to include non-local energy input. It is argued that the required energy may be supplied by inward diffusion of energetic heavy ions with energies less than about 20 keV.

  19. Energy data visualisation requires additional approaches to continue to be relevant in a world with greater low-carbon generation.

    Directory of Open Access Journals (Sweden)

    I.A. Grant Wilson

    2016-08-01

    Full Text Available The hypothesis described in this article proposes that energy visualisation diagrams commonly used need additional changes to continue to be relevant in a world with greater low-carbon generation. The diagrams that display national energy data are influenced by the properties of the type of energy being displayed, which in most cases has historically meant fossil fuels, nuclear fuels or hydro. As many energy systems throughout the world increase their use of electricity from wind or solar based renewables, a more granular display of energy data in the time domain is required. This article also introduces the shared axes energy diagram that provides a simple and powerful way in which to compare the scale and seasonality of the demands and supplies of an energy system. This aims to complement rather than replace existing diagrams, and has an additional benefit of promoting a whole systems approach to energy systems, as differing energy vectors such as natural gas, transport fuels, and electricity can all be displayed together. This in particular, is useful to both policy makers and to industry, to build a visual foundation for a whole systems narrative, which provides a basis for discussion of the synergies and opportunities across and between different energy vectors and demands. The diagram’s ability to wrap a sense of scale around a whole energy system in a simple way is thought to explain its growing popularity.

  20. GARFEM input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.

  1. Input or intimacy

    Directory of Open Access Journals (Sweden)

    Judit Navracsics

    2014-01-01

    Full Text Available According to the critical period hypothesis, the earlier the acquisition of a second language starts, the better. Owing to the plasticity of the brain, up until a certain age a second language can be acquired successfully according to this view. Early second language learners are commonly said to have an advantage over later ones especially in phonetic/phonological acquisition. Native-like pronunciation is said to be most likely to be achieved by young learners. However, there is evidence of accentfree speech in second languages learnt after puberty as well. Occasionally, on the other hand, a nonnative accent may appear even in early second (or third language acquisition. Cross-linguistic influences are natural in multilingual development, and we would expect the dominant language to have an impact on the weaker one(s. The dominant language is usually the one that provides the largest amount of input for the child. But is it always the amount that counts? Perhaps sometimes other factors, such as emotions, ome into play? In this paper, data obtained from an EnglishPersian-Hungarian trilingual pair of siblings (under age 4 and 3 respectively is analyzed, with a special focus on cross-linguistic influences at the phonetic/phonological levels. It will be shown that beyond the amount of input there are more important factors that trigger interference in multilingual development.

  2. FLUTAN input specifications

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Baumann, W.; Willerding, G.

    1991-05-01

    FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de

  3. Automation of Geometry Input for Building Code Compliance Check

    DEFF Research Database (Denmark)

    Petrova, Ekaterina Aleksandrova; Johansen, Peter Lind; Jensen, Rasmus Lund

    2017-01-01

    Documentation of compliance with the energy performance regulations at the end of the detailed design phase is mandatory for building owners in Denmark. Therefore, besides multidisciplinary input, the building design process requires various iterative analyses, so that the optimal solutions can....... That has left the industry in constant pursuit of possibilities for integration of the tool within the Building Information Modelling environment so that the potential provided by the latter can be harvested and the processed can be optimized. This paper presents a solution for automated data extraction...

  4. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Perry, A.M.; Rotty, R.M.; Reister, D.B.

    1977-01-01

    Non-fission energy inputs to nuclear fuel cycles were calculated for four types of power reactors and for two grades of uranium ore. Inputs included all requirements for process operations, materials, and facility construction. Process stages are mining, milling, uranium conversion, enrichment, fuel fabrication, reprocessing, waste disposal, reactor construction and operation, and all transportation. Principal inputs were analyzed explicitly; small contributions and facility construction were obtained from input-output tables. For major facilities, the latter approach was based on disaggregated descriptions. Enrichment energy was that of U.S. diffusion plants, with uranium tails assay retained as a variable parameter. Supplemental electrical requirements, as a percentage of lifetime electrical output, are 5-6% for LWRs (0.3 - 0.2% tails assay) using ores with 0.2% uranium and without recycle. Recycle of uranium and plutonium reduces the electrical requirements 30%. Chattanooga Shales (0.006% U) require one-third more electricity. Thermal energy requirements are about 5% of electrical output with conventional ores; shales raise this to about 14%, with 0.2% enrichment tails and full recycle. About one-tenth of the electrical supplements and about a third of the thermal energy supplements are required prior to operation. A typical LWR will repay its energy loan within 15 months, allowing for low initial load factors. Enrichment requiring only 10% as much separative work as gaseous diffusion would reduce electrical requirements about 80%, but have little effect on thermal energy inputs. HTGRs require slightly less supplemental energy than LWRs. HWRs (with natural uranium) require about one-third as much supplemental electricity, but half again as much thermal energy, largely for heavy water production. The paper presents detailed data for several combinations of reactor type, ore grade and tails assay and compares them with conventional power plants. It also exhibits

  5. Waste treatment in physical input-output analysis

    NARCIS (Netherlands)

    Dietzenbacher, E

    2005-01-01

    When compared to monetary input-output tables (MIOTs), a distinctive feature of physical input-output tables (PIOTs) is that they include the generation of waste as part of a consistent accounting framework. As a consequence, however, physical input-output analysis thus requires that the treatment

  6. On the “cost-optimal levels” of energy performance requirements and its economic evaluation in Italy

    Directory of Open Access Journals (Sweden)

    Lamberto Tronchin

    2014-10-01

    Full Text Available The European energy policies about climate and energy package, known as the “20-20-20” targets define ambitious, but achievable, national energy objectives. As regards the Directives closely related to the 2020 targets, the EU Energy Performance of Buildings Directive (EPBD Recast- DIR 2010/31/EU is the main European legislative instrument for improving the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and cost-effectiveness. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set “with a view to achieving cost-optimal levels”. The cost optimum level shall be calculated in accordance with a comparative methodology framework, leaving the Member States to determine which of these calculations is to become the national benchmark against which national minimum energy performance requirements will be assessed. The European standards (ENs- Umbrella Document V7 (prCEN/TR 15615 are intended to support the EPBD by providing the calculation methods and associated material to obtain the overall energy performance of a building. For Italy the Energy Performance of Building Simulations EPBS must be calculated with standard UNITS 11300. The energy building behaviour is referred to standard and not to real use, nor climate or dynamic energy evaluation. Since retrofitting of existing buildings offers significant opportunities for reducing energy consumption and greenhouse gas emissions, a case study of retrofitting is described and the CostOptimal Level EU procedure in an Italian context is analysed. Following this procedure, it is shown not only that the energy cost depends on several conditions and most of them are not indexed at national level but also that the cost of improvement depends on local variables and contract tender. The case study highlights the difficulties to apply EU rules, and

  7. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    The viability of modern open science norms and practices depend on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50% more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry....

  8. Access to Research Inputs

    DEFF Research Database (Denmark)

    Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel

    2015-01-01

    The viability of modern open science norms and practices depends on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50 % more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry...

  9. Trend in world energy requirements until the year 2020. Die Entwicklung des Weltenergiebedarfs bis zum Jahre 2020

    Energy Technology Data Exchange (ETDEWEB)

    Amelung, T. (Ruhrkohle AG, Essen (Germany). Hauptabteilung Volks- und Energiewirtschaft-Kommunikation)

    1993-05-13

    The WEC study has clearly shown that despite all conceivable efforts in the field of environmental protection an increase in world energy consumption must also be anticipated in the future. The main cause of this increase is the growing energy requirement in the developing countries, which not only anticipate a high growth in population, but also rising per capita income in view of increasing prosperity in the next 30 years. Both will be reflected in an increasing energy requirement in these countries. According to the WEC study oil will still be the most important energy source ahead of coal in the year 2020, although the latter has substantially larger reserves. The background to this situation is the sharp fall in coal production and consumption in the CIS and in Central and Eastern Europe in the course of the transition from planned to market economies. 11 refs., 3 tabs.

  10. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery.

    Science.gov (United States)

    Yu, Jian; Chen, Lilian X L

    2008-09-15

    Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.

  11. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  12. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    Directory of Open Access Journals (Sweden)

    Graeme D. Coles

    2016-07-01

    Full Text Available Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  13. Radioactive inputs to the North Sea and the Channel

    International Nuclear Information System (INIS)

    1984-01-01

    The subject is covered in sections: introduction (radioactivity; radioisotopes; discharges from nuclear establishments); data sources (statutory requirements); sources of liquid radioactive waste (figure showing location of principal sources of radioactive discharges; tables listing principal discharges by activity and by nature of radioisotope); Central Electricity Generating Board nuclear power stations; research and industrial establishments; Ministy of Defence establishments; other UK inputs of radioactive waste; total inputs to the North Sea and the Channel (direct inputs; river inputs; adjacent sea areas); conclusions. (U.K.)

  14. Measuring Input Thresholds on an Existing Board

    Science.gov (United States)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  15. Oil crops: requirements and possibilities for their utilization as an energy source

    International Nuclear Information System (INIS)

    Boerner, G.; Schoenefeldt, J.; Mehring, I.

    1995-01-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author)

  16. Capital requirements of the US-energy economy up to 1990

    International Nuclear Information System (INIS)

    Posner, E.

    1976-01-01

    Efforts to give the U.S. energy market a new structure in favour of a higher proportion of domestic energy resources involve particular attention to investment problems and the possibilities of the U.S. capital market for providing capital for the planned energy projects. If the doubts lately expressed by members of government, industry and banks with respect to sufficient financing of domestic energy projects prove to be realistic, increased dependence of the U.S.A. on uncertain imported energies, particularly mineral oil, would not be avoidable. Among various studies and estimates of private organizations dealing with these problems, a study carried out by the Bankers Trust Company, which was published at the beginning of this year, is most remarkable. The bank investigated alternative energy consumption structures and calculated these alternatives in an effort to find out whether the objections as to sufficient capital are justified. (orig./UA) [de

  17. Energy Deficit Required for Rapid Weight Loss in Elite Collegiate Wrestlers.

    Science.gov (United States)

    Kondo, Emi; Sagayama, Hiroyuki; Yamada, Yosuke; Shiose, Keisuke; Osawa, Takuya; Motonaga, Keiko; Ouchi, Shiori; Kamei, Akiko; Nakajima, Kohei; Higaki, Yasuki; Tanaka, Hiroaki; Takahashi, Hideyuki; Okamura, Koji

    2018-04-26

    To determine energy density for rapid weight loss (RWL) of weight-classified sports, eight male elite wrestlers were instructed to lose 6% of body mass (BM) within 53 h. Energy deficit during the RWL was calculated by subtracting total energy expenditure (TEE) determined using the doubly labeled water method (DLW) from energy intake (EI) assessed with diet records. It was also estimated from body composition change estimated with the four-component model (4C) and other conventional methods. BM decreased significantly by 4.7 ± 0.5 kg (6.4 ± 0.5%). Total body water loss was the major component of the BM loss (71.0 ± 7.6%). TEE was 9446 ± 1422 kcal, and EI was 2366 ± 1184 kcal during the RWL of 53-h; therefore, the energy deficit was 7080 ± 1525 kcal. Thus, energy density was 1507 ± 279 kcal/kg ∆BM during the RWL, comparable with values obtained using the 4C, three-component model, dual energy X-ray absorptiometry, and stable isotope dilution. Energy density for RWL of wrestlers is lower than that commonly used (7400 or 7700 kcal/kg ΔBM). Although RWL is not recommended, we propose that commonly practiced extreme energy restriction such as 7400 or 7700 kcal/kg ΔBM during RWL appears to be meaningless.

  18. Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass☆

    Science.gov (United States)

    Mafe, Oluwakemi A.T.; Davies, Scott M.; Hancock, John; Du, Chenyu

    2015-01-01

    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly. PMID:26109752

  19. Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass.

    Science.gov (United States)

    Mafe, Oluwakemi A T; Davies, Scott M; Hancock, John; Du, Chenyu

    2015-01-01

    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly.

  20. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  1. Keeping an eye on reliability : The organizational requirements of future renewable energy systems

    NARCIS (Netherlands)

    Scholten, D.J.

    2012-01-01

    The reliable operation of energy infrastructures is more than just a technical matter. It is also dependent upon the organizational structure that enables and constrains entities in their management of operations. Yet this lesson seems forgotten in our planning of future renewable energy systems.

  2. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  3. Industrial input-output analysis: implications for industrial ecology.

    Science.gov (United States)

    Duchin, F

    1992-02-01

    Industrial ecology will need to develop fundamentally new approaches to reducing, reusing, and recycling wastes. Industrial ecology will also require an analytic framework for examining the implications for the economic system as a whole of each potential web of industrial changes. A suitable framework is furnished by structural economics, which situates the economy within the physical world. This approach is based on dynamic analysis rather than static concepts of equilibrium, and optimization assumptions are used selectively rather than as the general solution mechanism. Input-output economics, an important formal model within structural economics, can trace the stocks and flows of energy and other materials from extraction through production and consumption to recycling or disposal. An input-output computation, including wastes, is presented; it illustrates the separate but integrated analysis of physical stocks and flows and of prices and costs. This paper also describes the major advances that have been made in the last decade in the extension of input-output economics to address increasingly complex questions, notably the fully dynamic physical/price/income model and the engineering/input-output data base. Economists need to be able to assess the costs of cleaning up and to develop incentive schemes to increase the likelihood this will happen. To do this, economists need to take on the difficult "how" questions that concern industrial ecologists since the cost, and indeed the wider implications, of cleaning up depends upon how it is done. Structural economics, and modern input-output models and data bases, in particular, can help meet this challenge.

  4. Global energy transports and the influence of clouds on transport requirements - A satellite analysis

    Science.gov (United States)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    This report investigates the impact of differential net radiative heating on 2D energy transports within the atmosphere ocean system and the role of clouds on this process. The 2D mean energy transports, in answer to zonal and meridional gradients in the net radiation field, show an east-west coupled dipole structure in which the Pacific acts as the major energy source and North Africa as the major energy sink. It is demonstrated that the dipole is embedded in the secondary energy transports arising mainly from the differential heating between land and oceans in the tropics in which the tropical east-west (zonal) transports are up to 30 percent of the tropical north-south (meridional) transports.

  5. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A.; Galawish, Elsia

    2011-02-04

    This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline EM&V implementation, reduce costs and complexity, and improve comparability of results across jurisdictions; although there are benefits associated with each jurisdiction setting its own EM&V requirements based on their specific portfolio and evaluation budgets and objectives. Secondly, if energy efficiency is determined by the US Environmental Protection Agency to be a Best Available Control Technology (BACT) for avoiding criteria pollutant and/or greenhouse gas emissions, then a standard can be required for documenting the emission reductions resulting from efficiency actions. The third reason for a national

  6. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Science.gov (United States)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  7. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies....... with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude...

  8. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  9. Comparison of maintenance energy requirement and energetic efficiency between lactating Holstein-Friesian and other groups of dairy cows.

    Science.gov (United States)

    Dong, L F; Yan, T; Ferris, C P; McDowell, D A

    2015-02-01

    The objectives of the present study were to investigate the effects of cow group on energy expenditure and utilization efficiency. Data used were collated from 32 calorimetric chamber experiments undertaken from 1992 to 2010, with 823 observations from lactating Holstein-Friesian (HF) cows and 112 observations from other groups of lactating cows including Norwegian (n=50), Jersey × HF (n=46), and Norwegian × HF (n=16) cows. The metabolizable energy (ME) requirement for maintenance (MEm) for individual cows was calculated from heat production (HP) minus energy losses from inefficiencies of ME use for lactation, energy retention, and pregnancy. The efficiency of ME use for lactation (kl) was obtained from milk energy output adjusted to zero energy balance (El(0)) divided by ME available for production. The effects of cow groups were first evaluated using Norwegian cows against HF crossbred cows (F1 hybrid, Jersey × HF and Norwegian × HF). The results indicated no significant difference between the 2 groups in terms of energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ per kg of metabolic body weight, MJ/kg(0.75)), or kl. Consequently, their data were combined (categorized as non-HF cows) and used to compare with those of HF cows. Again, we detected no significant difference in energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ/kg(0.75)), or kl between non-HF and HF cows. The effects were further evaluated using linear regression to examine whether any significant differences existed between HF and non-HF cows in terms of relationships between ME intake and energetic parameters. With a common constant, no significant difference was observed between the 2 groups of cows in coefficients in each set of relationships between ME intake (MJ/kg(0.75)) and MEm (MJ/kg(0.75)), El(0) (MJ/kg(0.75)), HP (MJ/kg(0.75)), MEm:ME intake, El(0):ME intake, or HP:ME intake. However, MEm values (MJ/kg(0.75)) were positively related to ME

  10. On Early Conflict Identification by Requirements Modeling of Energy System Control Structures

    DEFF Research Database (Denmark)

    Heussen, Kai; Gehrke, Oliver; Niemann, Hans Henrik

    2015-01-01

    Control systems are purposeful systems involving goal-oriented information processing (cyber) and technical (physical) structures. Requirements modeling formalizes fundamental concepts and relations of a system architecture at a high-level design stage and can be used to identify potential design...... issues early. For requirements formulation of control structures, cyber and physical aspects need to be jointly represented to express interdependencies, check for consistency and discover potentially conflicting requirements. Early identification of potential conflicts may prevent larger problems...... modeling for early requirements checking using a suitable modeling language, and illustrates how this approach enables the identification of several classes of controller conflict....

  11. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance

    NARCIS (Netherlands)

    Kliphuis, A.M.J.; Klok, A.J.; Martens, D.E.; Lamers, P.P.; Janssen, M.G.J.; Wijffels, R.H.

    2012-01-01

    In this study, a metabolic network describing the primary metabolism of Chlamydomonas reinhardtii was constructed. By performing chemostat experiments at different growth rates, energy parameters for maintenance and biomass formation were determined. The chemostats were run at low irradiances

  12. Market analysis, energy savings potential, and future development requirements for Radiance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Department of Energy (DOE) Office of Conservation and Renewable Energy (CE), Building Equipment Division has funded the development of a sophisticated computer rendering program called Radiance at Lawrence Berkeley Laboratories (LBL). The project review study included: (1) Surveys of the lighting profession to determine how designers would use an improved, user-friendly Radiance, (2) Elucidation of features, including how Radiance could be used to save energy, which could be incorporated into Radiance to facilitate its more widespread use, (3) Outline of a development plan and determination of what costs the DOE might incur if it were to proceed with the development of an improved version, and (4) Weighing the anticipated development costs against anticipated energy-saving benefits.

  13. Application of Systems Simulation for Predicting and Optimising Energy Requirements for HDF Production

    Directory of Open Access Journals (Sweden)

    Cristina Maria Luminea

    2015-01-01

    Full Text Available Even though simulation has been used so far in manufacturing facilities for modelling supply chain management, production management, and business processes, its applications in managing the energy consumption within manufacturing companies represent a new and innovative research domain. This prompted the research undertaken for the work present in this paper. The main focus of this research is to analyse production management in a manufacturing facility and correlate it with the energy consumption. The research initially concentrates on different simulation methodologies and their application in the current manufacturing domain. Literature relating to the correlation of energy consumption with production management has also been reviewed. This review identified very few previous instances where simulation tools were used to predict the energy consumption in a manufacturing facility. This research brings a novel approach to investigating the adaptability of industrial simulation processes and tools for modelling the energy consumption with respect to a variable production output. The end result of this investigation consists of a better understanding of the production system and the energy losses that were captured by the simulation model.

  14. A cautionary approach in transitioning to 'green' energy technologies and practices is required.

    Science.gov (United States)

    Matatiele, Puleng; Gulumian, Mary

    2016-06-01

    Renewable energy technologies (wind turbines, solar cells, biofuels, etc.) are often referred to as 'clean' or 'green' energy sources, while jobs linked to the field of environmental protection and energy efficiency are referred to as 'green' jobs. The energy efficiency of clean technologies, which is likely to reduce and/or eliminate reliance on fossil fuels, is acknowledged. However, the potential contribution of green technologies and associated practices to ill health and environmental pollution resulting from consumption of energy and raw materials, generation of waste, and the negative impacts related to some life cycle phases of these technologies are discussed. Similarly, a point is made that the green jobs theme is mistakenly oversold because the employment opportunities generated by transitioning to green technologies are not necessarily safe and healthy jobs. Emphasis is put on identifying the hazards associated with these green designs, assessing the risks to the environment and worker health and safety, and either eliminating the hazards or minimizing the risks as essential elements to the design, construction, operation, and maintenance of green technologies. The perception that it is not always economically possible to consider all risk factors associated with renewable energy technologies at the beginning without hampering their implementation, especially in the poor developing countries, is dismissed. Instead, poor countries are encouraged to start implementing environmentally sound practices while transitioning to green technologies in line with their technological development and overall economic growth.

  15. Optimizing nitrogen and water inputs for greenhouse vegetable production

    NARCIS (Netherlands)

    Thompson, R.B.; Gallardo, M.; Voogt, W.

    2015-01-01

    Greenhouse vegetable production systems require high N and irrigation inputs. Commonly, these systems are associated with environmental problems caused by nitrate leaching. Given increasing societal pressure to reduce these problems, there is a requirement to optimally use N and water inputs.

  16. From the world and asian energy demand and environmental requirement to foresee the prospect of Guangdong nuclear power development

    International Nuclear Information System (INIS)

    Qiu Wenfeng

    1999-01-01

    The world economy development depends on the development of energy resource. The general energy resource which is mainly fossil fuel will bring damage to the global environment. To stop the global environment becoming worse, cleaner energy will be used in the twenty-first century. The situation which the Guangdong economic growth rate is higher than that of inland average will not change in short period. Economic development requires the suitable electric power supply. The foreground of Guangdong electric power development will be hopeful. To develop electric power is to develop coal, oil, gas, nuclear, hydroelectric and the other renewable power. As to Guangdong, because the environmental pollution is quite serious, it is impossible to develop much more coal-fired power plants. Our country is oil net importer, oil-fired power plants are also restricted. It is acceptable to import natural gas in appropriate degree to generate electricity in the near future to improve environment. To develop hydraulic power is more and more difficult in Guangdong. The hydraulic power from the southwest of China is only as the complement of the Guangdong energy resource, and it is impossible to primarily solve the energy shortage problem. Sunlight, wind, ocean power and terrestrial heat etc. are clean renewable energy, but they can't be used as the wholesale stable industry power. So to develop nuclear power is the certain selection to solve the energy shortage problem and reduce the environmental pollution in Guangdong. (author)

  17. SDR Input Power Estimation Algorithms

    Science.gov (United States)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  18. Optimization of Power Generation Rights Under the Requirements of Energy Conservation and Emission Reduction

    Science.gov (United States)

    Hu-ping, YANY; Chong-wei, ZHONG; Fei-fei, YAN; Cheng-yi, TANG

    2018-03-01

    In recent years, the energy crisis and greenhouse effect problem have caused wide public concern, if these issues cannot be resolved quickly, they will bring troubles to people’s lives.In response, many countries around the world have implemented policies to reduce energy consumption and greenhouse gas emissions. In our country, the electric power industry has made great contribution to the daily life of people and the development of industry, but it is also an industry of high consumption and high emission.In order to realize the sustainable development of society, it is necessary to make energy conservation and emission reduction in the power industry as an important part of the realization of this goal.In this context, power generation trade has become a hot topic in energy conservation and emission reduction.Through the electricity consumption of the units with different power efficiency and coal consumption rate,it can achieve the target of reducing coal consumption, reducing network loss, reducing greenhouse gas emission, and increasing social benefit,and so on. This article put forward a optimal energy model on the basis of guaranteeing safety and environmental protection.In this paper, they used the IEEE30, IEEE39, IEEE57 and IEEE118 node system as an example, and set up the control groups to prove the practicality of the presented model.The solving method of this model was interior-point method.

  19. Legal requirements for human-health based appeals of wind energy projects in ontario.

    Science.gov (United States)

    Engel, Albert M

    2014-01-01

    In 2009, the government of the province of Ontario, Canada passed new legislation to promote the development of renewable energy facilities, including wind energy facilities in the province. Throughout the legislative process, concerns were raised with respect to the effect of wind energy facilities on human health. Ultimately, the government established setbacks and sound level limits for wind energy facilities and provided Ontario residents with the right to appeal the approval of a wind energy facility on the ground that engaging in the facility in accordance with its approval will cause serious harm to human health. The first approval of a wind facility under the new legislation was issued in 2010 and since then, Ontario's Environmental Review Tribunal as well as Ontario's courts has been considering evidence proffered by appellants seeking revocation of approvals on the basis of serious harm to human health. To date, the evidence has been insufficient to support the revocation of a wind facility approval. This article reviews the legal basis for the dismissal of human-health based appeals.

  20. PERSPECTIVES ON A DOE CONSEQUENCE INPUTS FOR ACCIDENT ANALYSIS APPLICATIONS

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Thoman, D.C.; Lowrie, J.; Keller, A.

    2008-01-01

    Department of Energy (DOE) accident analysis for establishing the required control sets for nuclear facility safety applies a series of simplifying, reasonably conservative assumptions regarding inputs and methodologies for quantifying dose consequences. Most of the analytical practices are conservative, have a technical basis, and are based on regulatory precedent. However, others are judgmental and based on older understanding of phenomenology. The latter type of practices can be found in modeling hypothetical releases into the atmosphere and the subsequent exposure. Often the judgments applied are not based on current technical understanding but on work that has been superseded. The objective of this paper is to review the technical basis for the major inputs and assumptions in the quantification of consequence estimates supporting DOE accident analysis, and to identify those that could be reassessed in light of current understanding of atmospheric dispersion and radiological exposure. Inputs and assumptions of interest include: Meteorological data basis; Breathing rate; and Inhalation dose conversion factor. A simple dose calculation is provided to show the relative difference achieved by improving the technical bases

  1. Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Sri Raja Varman, K.; Arjunan, T.V.

    2011-01-01

    Recently plug-in hybrid electric vehicles (PHEVs) are emerging as one of the promising alternative to improve the sustainability of transportation energy and air quality especially in urban areas. The all-electric range in PHEV design plays a significant role in sizing of battery pack and cost. This paper presents the evaluation of battery energy and power requirements for a plug-in hybrid electric two-wheeler for different all-electric ranges. An analytical vehicle model and MATLAB simulation analysis has been discussed. The MATLAB simulation results estimate the impact of driving cycle and all-electric range on energy capacity, additi