WorldWideScience

Sample records for energy induced decoloration

  1. Kinetics of γ-rays induced decoloration of textile dye aqueous solutions

    International Nuclear Information System (INIS)

    Perkowski, J.; Ledakowicz, S.; Nowicki, L.

    1987-01-01

    The γ-rays induced decoloration of aqueous solutions of commercial dyes has been studied. Four chemical classes of dyes were applied. The initial dye concentration and the irradiation dose rate ranged from 0.025 to 0.250 g/dm 3 and 0.014 to 2.0 Gy/s respectively. On the base of obtained experimental data the kinetic paramaters in the proposed rate equation were calculated. 8 refs., 8 figs., 2 tabs. (author)

  2. Radiation-induced decomposition and decoloration of reactive dyes in the presence of H2O2

    International Nuclear Information System (INIS)

    Wang Min; Yang Ruiyuan; Wang Wenfeng; Shen Zhongqun; Bian Shaowei; Zhu Zhiyuan

    2006-01-01

    The dyeing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. In this study, electron beam irradiation-induced decoloration and decomposition of reactive dyes in aqueous solution were investigated. Two different reactive dyes (reactive red KE-3B and reactive blue XBR) solutions were irradiated with electron beam at different doses in the absence and presence of H 2 O 2 . The changes of absorption spectra and pH value were described and analyzed as well as the degree of decoloration and COD removal. The influences of absorbed doses, H 2 O 2 additions and initial dye concentrations are discussed. The experimental results show that reactive dyes in aqueous solutions can be effectively degraded by electron beam irradiation, especially in the presence of hydrogen peroxide

  3. Radiation-induced darkening of ionic liquid [C4mim][NTf2] and its decoloration

    International Nuclear Information System (INIS)

    Yuan Liyong; Peng Jing; Xu Ling; Zhai Maolin; Li Jiuqiang; Wei Genshuan

    2009-01-01

    The radiation effect on a hydrophobic room-temperature ionic liquid (RTIL), 1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide ([C 4 mim][NTf 2 ]), was studied by γ-irradiation under nitrogen atmosphere. Accompanied by color darkening and increase of light absorbance in a wide wavelength range, a distinct absorption peak at around 290 nm for irradiated [C 4 mim][NTf 2 ] appeared when acetonitrile was used as solvent, and the intensity of the peak enhanced with increasing dose. The spectrophotometric study on the irradiated RTILs containing 1,3-dialkylimidazolium cations associated with different inorganic anions revealed that the peak is ascribed to the radiolysis products of the [C 4 mim] + . And the wavelength of the peak was affected by alkyl chain length on imidazolium cation, while the intensity of the peak was influenced by anions. With incorporating a little amounts of oxidants, such as KMnO 4 and HNO 3 into irradiated [C 4 mim][NTf 2 ], the intensity of the peak at 290 nm decreased obviously and the decoloration of [C 4 mim][NTf 2 ] occurred, suggesting that the peak at 290 nm is assigned to the colored species and the species can be oxidized.

  4. The effects of halide ions on the radiation-induced decoloration of azo and anthraquinone dyes in N2O-saturated aqueous solutions

    International Nuclear Information System (INIS)

    Suzuki, Nobutake; Tokunaga, Okihiro; Washino, Masamitsu

    1978-01-01

    The radiation-induced decoloration of azo and anthraquinone dyes was studied in N 2 O-saturated aqueous solutions containing halide ions. In the N 2 O-saturated solutions, the decoloration yield, G(-Dye), increased markedly upon the addition of Br - and I - , which are efficient scavengers of the OH radical. In the nitrogen-saturated solutions, however, the G(-Dye) decreased upon the addition of Br - and I - . Such an increase in the G(-Dye) upon the addition of Br - and I - in the N 2 O-saturated solutions is mainly attributable to the attacks of the halide radical anions, Br 2 - and I 2 - , on the ring structure of the dyes. On the other hand, the G(-Dye) was not changed upon the addition of Cl - in the N 2 O-saturated solution. This may be attributable to the very slow rate of the formation of Cl 2 - in a neutral solution. (auth.)

  5. Ultrasound enhanced activation of peroxydisulfate by activated carbon fiber for decolorization of azo dye.

    Science.gov (United States)

    Huang, Tianyin; Zhang, Ke; Qian, Yajie; Fang, Cong; Chen, Jiabin

    2018-02-20

    Activated carbon fiber (ACF) has become an emerging activator for peroxydisulfate (PDS) to generate sulfate radical (SO 4 •- ). However, the relative low activation efficiency and poor contaminant mineralization limited its widespread application. Herein, ultrasound (US) was introduced to the ACF activated PDS system, and the synergistic effect of US and ACF in PDS activation and the enhancement of contaminant mineralization were investigated. The synergistic effect of US and ACF was observed in the PDS activation to decolorize orange G (OG). The decolorization efficiency increased with increasing ACF loading and US power, and PDS/OG ratio from 1 to 40. The activation energy was determined to be 24.065 kJ/mol. The radical-induced decolorization of OG took place on the surface of ACF, and both SO 4 •- and hydroxyl radical ( • OH) contributed to OG decolorization. The azo bond and naphthalene ring on OG were destructed to other aromatic intermediates and finally mineralized to CO 2 and H 2 O. The introduction of US in the ACF/PDS system significantly enhanced the mineralization of OG. The combination of US and PDS was highly efficient to activate PDS to decolorize azo dyes. Moreover, the introduction of US remarkably improved the contaminant mineralization.

  6. The effect of NCS- on the radiation-induced decoloration of azo and anthraquinone dyes in N2O-saturated aqueous solutions

    International Nuclear Information System (INIS)

    Suzuki, Nobutake; Hotta, Hiroshi

    1977-01-01

    The radiation-induced decoloration of azo and anthraquinone dyes was studied in N 2 O-saturated aqueous solutions containing NCS - . In the N 2 O-saturated solutions, the decoloration yield, G(-Dye), increased markedly upon the addition of NCS - , which is an efficient scavenger of the OH radical-that is, from 1.46 up to 2.10 for Acid Red 265 and from 0.51 up to 1.51 for Acid Blue 40 upon the addition of 1 mM NCS - . In the nitrogen-saturated solutions, however, the G(-Dye) decreased upon the addition of NCS - . It is concluded that the increase in the G(-Dye) upon the addition of NCS - in the N 2 O-saturated solutions is mainly attributable to the attack of the radical anion (NCS) 2 - on the ring structure of the dyes. This radical anion is formed through the following path: NCS - +OH → NCS+OH - and NCS+NCS - reversible (NCS) 2 - . At low NCS - concentrations, the G(-Dye) decreased for Acid Red 265 and increased for Acid Blue 40. This may be attributable to the larger reactivity of (NCS) 2 - on Acid Blue 40 than on Acid Red 265. (auth.)

  7. Decolorization of methylene blue in aqueous suspensions of gold nanoparticles using parallel nanosecond pulsed laser.

    Science.gov (United States)

    Zong, Yan P; Liu, Xian H; Du, Xi W; Lu, Yi R; Wang, Mei Y; Wang, Guang Y

    2013-01-01

    Using 532 nm parallel nanosecond pulsed laser, the decolorization of methylene blue (MB) in aqueous suspensions of gold nanoparticles (GNPs) was studied. The effects of various experimental parameters, such as irradiation time, laser energy, and initial MB concentration on the decolorization rate were investigated. Experiments using real samples of textile dyeing wastewater were also carried out to examine the effectiveness of the method in more complex samples. From the results, the following conclusions may be drawn: (i) Under the optimum conditions (pH 7.19, 135 mJ laser energy, 4 mg/L MB concentration, and 11.6 mg/L GNP concentration), the rate of MB decolorization could reach 94% in 15 min. The decolorization follows pseudo-first-order kinetics; (ii) The amount of MB decreased rapidly during the decolorization. No intermediates of the decolorization could be detected by high-performance liquid chromatography. These observations indicate that MB was decolorized through a very rapid degradation mechanism; (iii) The rate of MB decolorization increased with the increase in laser energy (at laser energies of 0 to 135 mJ); and, (iv) The efficient decolorization of MB in real samples of textile dyeing wastewater was achieved at a decolorization rate of about 85% in 15 min.

  8. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    International Nuclear Information System (INIS)

    Case, F.N.; Ketchen, E.E.

    1975-01-01

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid

  9. Thermokinetic comparison of trypan blue decolorization by free laccase and fungal biomass.

    Science.gov (United States)

    Razak, N N A; Annuar, M S M

    2014-03-01

    Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k1', value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ∼ 22 kJ mol(-1), while energy for laccase inactivation was 18 kJ mol(-1). Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT = 40 K) as opposed to fungal biomass (ΔT = 15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.

  10. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains.

    Science.gov (United States)

    Yu, J; Wang, X; Yue, P L

    2001-10-01

    Pseudomonas spp were isolated from an anaerobic-aerobic dyeing house wastewater treatment facility as the most active azo-dye degraders. Decolorization of azo dyes and non-azo dyes including anthraquinone, metal complex and indigo was compared with individual strains and a bacterial consortium consisting of the individual strain and municipal sludge (50 50wt). The consortium showed a significant improvement on decolorization of two recalcitrant non-azo dyes, but little effect on the dyes that the individual strains could degrade to a great or moderate extent. Decolorization of Acid violet 7 (monoazo) by a Pseudomonas strain GM3 was studied in detail under various conditions. The optimum decolorization activity was observed in a narrow pH range (7-8), a narrow temperature range (35-40 degrees C), and at the presence of organic and ammonium nitrogen. Nitrate had a severe inhibitory effect on azo dye decolorization: 10 mg/L led to 50% drop in decolorization activity and 1000 mg/L to complete activity depression. A kinetic model is established giving the dependence of decolorization rate on cell mass concentration (first-order) and dye concentration (half order). The rate increased with temperature from 10 to 35 C, which can be predicted by Arrhenius equation with the activation energy of 16.87 kcal/mol and the frequency factor of 1.49 x 10(11) (mg L)1/2/g DCM min.

  11. Decomposition and decoloration of a direct dye by electron beam radiation

    International Nuclear Information System (INIS)

    Vahdat, Ali; Bahrami, S.H.; Arami, M.; Motahari, A.

    2010-01-01

    The wastewaters released by textile industries to the environment contain hazardous compounds like toxic refractory dye stuff at high concentration. In this study, electron beam irradiation-induced decoloration and decomposition of C.I. Direct Black 22 aqueous solutions were investigated. The influences of absorbed doses and initial dye concentration on the percent of decoloration, COD and pH of the solutions are described. The results show that the direct dye solutions can be effectively degraded by electron beam irradiation.

  12. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  13. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Biljana P. [Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, 11000 Belgrade (Serbia); Roglic, Goran M. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia); Obradovic, Bratislav M., E-mail: obrat@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kuraica, Milorad M. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kostic, Mirjana M. [Faculty of Technology and Metallurgy, Department of Textile Engineering, Karnegijeva 4, 11000 Belgrade (Serbia); Nesic, Jelena; Manojlovic, Dragan D. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia)

    2011-08-30

    Highlights: {yields} Decolorization of four reactive textile dyes using non-thermal plasma reactor. {yields} Influence of applied energy on decolorization. {yields} Effects of initial pH and addition of homogeneous catalysts. {yields} Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H{sub 2}O{sub 2}, Fe{sup 2+} and Cu{sup 2+}) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H{sub 2}O{sub 2} in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  14. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dojcinovic, Biljana P.; Roglic, Goran M.; Obradovic, Bratislav M.; Kuraica, Milorad M.; Kostic, Mirjana M.; Nesic, Jelena; Manojlovic, Dragan D.

    2011-01-01

    Highlights: → Decolorization of four reactive textile dyes using non-thermal plasma reactor. → Influence of applied energy on decolorization. → Effects of initial pH and addition of homogeneous catalysts. → Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H 2 O 2 , Fe 2+ and Cu 2+ ) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H 2 O 2 in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  15. Decolorization of reactive black 5 using dielectric barrier discharge in the presence of inorganic salts

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2012-01-01

    Full Text Available Inorganic salts improve the coloration of textiles, which increase pollution load on dyehouse effluent in general. Decolorization of reactive textile dye C.I. Reactive Black 5 was studied using Advanced Oxidation Processes (AOPs in a non-thermal plasma reactor, based on coaxial water falling film Dielectric Barrier Discharge (DBD. Initial dye concentration in the solution was 40.0 mg L-1. The effects of addition of inorganic salt different high concentrations (NaCl, Na2SO4 and Na2CO3 on the degree of decolorization were studied. Recirculation of dye solution through the DBD reactor with applied energy density 45-315 kJ L-1 was used. The influence of residence time was investigated after 5 minutes and 24 hours of plasma treatment. Decolorization of the dyes was monitored by spectrophotometric measurement. Changes of pH values and the conductivity of dye solution after each recirculation were tested. The most effective decolorization of over 90% was obtained with the addition of NaCl (50 g L-1, applied energy density of 135 kJ L-1 and after residence time of 24 hours of plasma treatment. Decolorization of solutions containing inorganic salts Na2SO4 and Na2CO3 were lower than for the solution without salt.

  16. Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process.

    Science.gov (United States)

    Cai, Meiqiang; Su, Jie; Zhu, Yizu; Wei, Xiaoqing; Jin, Micong; Zhang, Haojie; Dong, Chunying; Wei, Zongsu

    2016-01-01

    The present work demonstrates the application of the combination of hydrodynamic cavitation (HC) and the heterogeneous Fenton process (HF, Fe(0)/H2O2) for the decolorization of azo dye Orange G (OG). The effects of main affecting operation conditions such as the inlet fluid pressure, initial concentration of OG, H2O2 and zero valent iron (ZVI), the fixed position of ZVI, and medium pH on decolorization efficiency were discussed with guidelines for selection of optimum parameters. The results revealed that the acidic conditions are preferred for OG decolorizaiton. The decolorization rate increased with increasing H2O2 and ZVI concentration and decreased with increasing OG initial concentration. Besides, the decolorization rate was strongly dependent on the fixed position of ZVI. The analysis results of degradation products using liquid chromatography-ESI-TOF mass spectrometry revealed that the degradation mechanism of OG proceeds mainly via reductive cleavage of the azo linkage due to the attack of hydroxyl radical. The present work has conclusively established that the combination of HC and HF can be more energy efficient and gives higher decolorization rate of OG as compared with HC and HF alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DECOLORIZATION OF DENIM DYESTUFF BY LACCASE ENZYME

    Directory of Open Access Journals (Sweden)

    Serap GEDİKLİ

    2011-02-01

    Full Text Available Large quantities of dyes used in the textile industry are discharged to recipient environment during manufacture. This situation is beginning of a process which is difficult to recovery and relevant toenvironment and human health. Therefore, pollution of dyestuff produced textile industry will be reduced by cleaning of polluted area and integrating biological approaches with technologies havingpolluting potential. In scope of this study, commercial denim dye was decolorized by using high laccase activity culture supernatant of Trametes versicolor ATCC 200801 pellets grown in potato dextrose broth including wheat bran and determined optimum conditions. In the result of experiments done, pH, initial dye concentration, temperature and incubation time were selected 4.0, 75 mg/l, 55 oCand 120 minutes, respectively. 68.02 % of decolorization was obtained at the determined optimum conditions. Furthermore, adding different metal ions to find in textile wastewater and supplementarychemical materials used fabric dyeing process to reaction medium, potential of decolorization copied with improvement was investigated effects of these. When the obtained data were examined, pollutantswhich tested at optimum conditions were observed not affected negatively decolorization. Even in the presence of Tween 80 detected the maximum inhibitor effect, 54.68 % of decolorization was obtained.

  18. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  19. Decolorization of Diazo Dye Ponceau S by Fenton Process

    Directory of Open Access Journals (Sweden)

    Muhammad Muslim

    2013-12-01

    Full Text Available An attempt has been taken to decolorize and mineralize Ponceau S (PS, a diazo dye, in aqueous solution by Fenton process. Effects of solution pH, concentrations of H2O2, Fe(II and PS on the decolorization of PS have also been studied through batch experiments. About 90% decolorization was found under the optimal conditions [PS]: [H2O2]: [Fe(II] = 1:12:2 and [H2O2]/[Fe(II] = 6 at pH 2.85 in 40 minutes. The overall results revealed that mineralization was rather slower as compared with the decolorization.

  20. 27 CFR 24.241 - Decolorizing juice or wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Decolorizing juice or wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.241 Decolorizing juice or wine. (a) Conditions and limitations. If the proprietor wishes to use activated carbon or other...

  1. Experimental study of a solar-driven photo-electrochemical hybrid system for the decolorization of Acid Red 26

    International Nuclear Information System (INIS)

    Wang, Yiping; Chen, Miao; Huang, Qunwu; Cui, Yong; Jin, Yanchao; Cui, Lingyun; Wen, Chen

    2017-01-01

    Highlights: • A solar-driven photo-electrochemical system (S/EC/PS) was first constructed. • Solar spectrum was fully used for the dye decolorization, power supply and thermal. • The electricity needed for EC was offered by the hybrid system. • In comparison with S/PS, decolorization time of S/EC/PS shorten 50%. • PV panels has lower working temperature due to the water cooling. - Abstract: This study presents a new solar-driven hybrid system that integrated a photo-electrochemical reactor with a photovoltaics (PV) panel for azo dyes’ decolorization and electricity generation. Full spectrum of sunlight is utilized to optimize the color removal of Acid Red 26 (AR26) in this hybrid system. Persulfate (PS, S 2 O 4 2− ) was selected as the photochemical oxidant and Ti/IrO 2 -Ta 2 O 5 electrode was used as the anode. Experiments were made to evaluate the efficiency of decolorization and the performance of PV panels in different reaction conditions outdoors. The results showed that the synergistic effect of two processes was observed for the AR26 decolorization. Comparing with the solar/persulfate process or the electrochemical process alone, the complete color removal time by the hybrid system decreased up to 50% and 44.4% respectively. In this system, the water layer in the flow channel cooled PV panels by absorbing the far infrared spectrum of sunlight, and the increased temperature of wastewater from 7 °C to 16 °C enhanced the decolorization efficiency of AR26. Moreover, the generated electricity by PV panels could satisfy the energy demand of electrochemical oxidation.

  2. Decolorization of direct dyes using peroxidase from raphanus sativus (F04 SL)

    International Nuclear Information System (INIS)

    Bhatti, H.N.; Kalsoom, U.; Habib, A.

    2012-01-01

    An acidic peroxidase was isolated and partially purified from Raphanus sativus. The purified enzyme was characterized in terms of kinetics and thermodynamic aspects. Finally the enzyme was assessed to see its potential for decolorization of direct dyes. The specific activity of Raphanus sativus peroxidase increased from 44.77 to 65.20 U/mg of protein using 80 % ammonium sulphate precipitation. The optimum pH and temperature of the enzyme was 4 and 55 deg. C respectively. The activation energy of Raphanus sativus peroxidase was 25.44 kJ/mol and average value of Km was 0.25 mM. The activation energy of thermal denaturation of Raphanus sativus peroxidase was 17.79 kJ/mol. It was observed that with an increase in temperature, there was decrease in a half life and enthalpy, which showed that the enzyme was unstable at higher temperature. A maximum decolorization of 97 and 77 % was observed for Solar Blue A and Solar Flavine 5G at pH 4 and temperature 50 deg. C respectively. It was observed that % decolorization of both the dyes increased with an increase in enzyme units and incubation time. H/sub 2/O/sub 2/ dose of 0.8 mM for Solar Blue A and 0.7 mM for Solar Flavine 5G was sufficient for the maximum dye degradation. (author)

  3. Ozonation-based decolorization of food dyes for recovery of fruit leather wastes.

    Science.gov (United States)

    Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Brehm-Stecher, Byron F; Ozsoy, H Duygu; van Leeuwen, J Hans

    2013-08-28

    Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal. To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Removal of Yellow 5, Red 40 and Blue 1 of about 65%, 80%, and 90%, respectively, was accomplished with 70 g of ozone applied per 1 kg of redissolved and resuspended FL. Carbonyl compounds were identified as major byproducts from ozone-induced decomposition of the food colorants. A conservative risk assessment based on quantification results and published toxicity information of potentially toxic byproducts, determined that ozone-based decolorization of FL before recycling is acceptable from a safety standpoint. A preliminary cost estimate based on recycling of 1000 tons of FL annually suggests a potential of $275,000 annual profit from this practice at one production facility alone.

  4. Gravitational Zero Point Energy induces Physical Observables

    OpenAIRE

    Garattini, Remo

    2010-01-01

    We consider the contribution of Zero Point Energy on the induced Cosmological Constant and on the induced Electric/Magnetic charge in absence of matter fields. The method is applicable to every spherically symmetric background. Extensions to a generic $f(R) $ theory are also allowed. Only the graviton appears to be fundamental to the determination of Zero Point Energy.

  5. Decolorization of Diazo Dye Ponceau S by Fenton Process

    International Nuclear Information System (INIS)

    Muslim, M.; Habib, M.A.; Islam, T.S.A.; Mahmood, A.J.; Ismail, I.M.I.

    2013-01-01

    An attempt has been taken to decolorize and mineralize Ponceau S (PS), a diazo dye, in aqueous solution by Fenton process. Effects of solution pH, concentrations of H/sub 2/O/sub 2/, Fe(II) and PS on the decolorization of PS have also been studied through batch experiments. About 90percentage decolorization was found under the optimal conditions (PS): (H/sub 2/O/sub 2/): (Fe(II)) = 1:12:2 and (H/sub 2/O/sub 2/)/(Fe(II)) = 6 at pH 2.85 in 40 minutes. The overall results revealed that mineralization was rather slower as compared with the decolorization. (author)

  6. Screening of freshwater fungi for decolorizing multiple synthetic dyes.

    Science.gov (United States)

    Yang, Panpan; Shi, Wenxiao; Wang, Hongkai; Liu, Hongmei

    The biodegradation of synthetic dyes by fungi is emerging as an effective and promising approach. In the present study, freshwater fungal strains isolated from submerged woods were screened for the decolorization of 7 synthetic dyes. Subsequently, 13 isolates with high decolorization capability were assessed in a liquid system; they belonged to 9 different fungal species. Several strains exhibited a highly effective decolorization of multiple types of dyes. New absorbance peaks appeared after the treatment with 3 fungal strains, which suggests that a biotransformation process occurred through fungal biodegradation. These results showed the unexploited and valuable capability of freshwater fungi for the treatment of dye-containing effluents. The ability of certain fungi to decolorize dyes is reported here for the first time. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum

    Science.gov (United States)

    Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan

    2017-12-01

    Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.

  8. RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger.

    Science.gov (United States)

    Gomaa, Ola M; Selim, Nabila S; Wee, Josephine; Linz, John E

    2017-08-01

    Aspergillus niger was previously demonstrated to decolorize the commercial dye malachite green (MG) and this process was enhanced under calcium chloride (CaCl 2 ) treatment. Previous data also suggested that the decolorization process is related to mitochondrial cytochrome c. In the current work, we analyzed in depth the specific relationship between CaCl 2 treatment and MG decolorization. Gene expression analysis (RNA Seq) using Next Generation Sequencing (NGS) revealed up-regulation of 28 genes that are directly or indirectly associated with stress response functions as early as 30min of CaCl 2 treatment; these data further strengthen our previous findings that CaCl 2 treatment induces a stress response in A. niger which enhances the ability to decolorize MG. A significant increase in fluorescence observed by MitoTracker dye suggests that CaCl 2 treatment also increased mitochondrial membrane potential. Isolated mitochondrial membrane protein fractions obtained from A. niger grown under standard growth conditions decolorized MG in the presence of NADH and decolorization was enhanced in samples isolated from CaCl 2 -treated A. niger cultures. Treatment of whole mitochondrial fraction with KCN which inhibits electron transport by cytochrome c oxidase and Triton-X 100 which disrupts mitochondrial membrane integrity suggests that cyanide sensitive cytochrome c oxidase activity is a key biochemical step in MG decolorization. This suggestion was confirmed by the addition of palladium α-lipoic acid complex (PLAC) which resulted in an initial increase in decolorization. Although the role of cytochrome c and cytochrome c oxidase was confirmed at the biochemical level, changes in levels of transcripts encoding these enzymes after CaCl 2 treatment were not found to be statistically significant in RNA Seq analysis. These data suggest that the regulation of cytochrome c enzymes occur predominantly at the post-transcriptional level under CaCl 2 stress. Thus, using global

  9. Significance of perceptually relevant image decolorization for scene classification

    Science.gov (United States)

    Viswanathan, Sowmya; Divakaran, Govind; Soman, Kutti Padanyl

    2017-11-01

    Color images contain luminance and chrominance components representing the intensity and color information, respectively. The objective of this paper is to show the significance of incorporating chrominance information to the task of scene classification. An improved color-to-grayscale image conversion algorithm that effectively incorporates chrominance information is proposed using the color-to-gray structure similarity index and singular value decomposition to improve the perceptual quality of the converted grayscale images. The experimental results based on an image quality assessment for image decolorization and its success rate (using the Cadik and COLOR250 datasets) show that the proposed image decolorization technique performs better than eight existing benchmark algorithms for image decolorization. In the second part of the paper, the effectiveness of incorporating the chrominance component for scene classification tasks is demonstrated using a deep belief network-based image classification system developed using dense scale-invariant feature transforms. The amount of chrominance information incorporated into the proposed image decolorization technique is confirmed with the improvement to the overall scene classification accuracy. Moreover, the overall scene classification performance improved by combining the models obtained using the proposed method and conventional decolorization methods.

  10. Inducement and responsibility in the energy turnaround

    International Nuclear Information System (INIS)

    Loewer, Wolfgang

    2013-01-01

    The book includes several contributions concerning the Bonn discussion on energy legislation (volume 7): inducement and responsibility -in terms of constitutional law; between Europe and re-regulation - what is the regulation framework? Continuity requirement as legislative action directive; the future of the nuclear fuel tax after the nuclear phaseout - problems of the constitutional finance and the European tax legislation, strategy and energy markets; regulatory challenges in the realization of the energy turnaround policy.

  11. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    OpenAIRE

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite...

  12. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase.

    Science.gov (United States)

    Liu, Youxun; Huang, Juan; Zhang, Xiaoyu

    2009-12-01

    The dye-decolorizing potential of bilirubin oxidase (BOX) was demonstrated for an anthraquinone dye, remazol brilliant blue R (RBBR). The dye was decolorized 40% within 4 h by the BOX alone, whereas it was more efficient in the presence of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), showing 91.5% decolorization within 25 min. The effects of operational parameters on decolorization were examined. The results showed that the decolorization efficiency decreased with increasing RBBR concentration, and a marked inhibition effect was exhibited when the dye concentrations were above 100 mg l(-1). The optimum temperature for enzymatic decolorization was 40 degrees C. BOX showed efficient decolorization of the dye with a wide pH range of 5-8.5. The maximum decolorization activity occurred at pH 8 with ABTS and at pH 5 without ABTS. Analysis of RBBR ultraviolet and visible (UV-VIS) spectra after BOX treatment indicated that the decolorization of RBBR was due to biodegradation. Our results suggested that ABTS can serve as an electron mediator to facilitate the oxidation of RBBR, and the BOX-ABTS mediator-involved dye decolorization mechanism was similar to that of laccase. Operation over a wide range of pH and efficient decolorization suggested that the BOX can be used to decolorize synthetic dyes from effluents, especially for anthraquinonic dyes.

  13. Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Diwaniyan, S.; Kharb, D.; Raghukumar, C.; Kuhad, R.C.

    of their ability to degrade xenobiotic compounds. Owing to extra- cellular non-specific free-radical-based ligninolytic system of WRF, they can completely eliminate a variety of xenobiotics, including synthetic dyes, giving rise to non-toxic compounds (Kuhad et al... and decolorization and ligninolytic enzymes activity was determined in the cell-free supernatant (CS). 2.5 Decolorization Assays The fungal biomass from each 250-ml Erlenmeyer flask was taken after respective incubation period. It was crushed into a paste...

  14. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  15. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    International Nuclear Information System (INIS)

    Iqbal, M; Wang, W H

    2014-01-01

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg 70 Zn 25 Ca 5 Mg 68 Zn 27 Ca 5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg 70 Zn 25 Ca 5 Mg 68 Zn 27 Ca 5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes

  16. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  17. Decolorization efficiency of Funalia trogii under static condition ...

    African Journals Online (AJOL)

    PO4, starch-urea, sucrose-NH4H2PO4 and sucrose-urea containing media. Maximum decolorization was found as 9.61 and 7.77 mg dye/g dry mycelium weight in media containing no extra carbon and nitrogen sources. Kinetic studies were also ...

  18. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  19. A horizontal plug-flow baffled bioelectrocatalyzed reactor for the reductive decolorization of Alizarin Yellow R.

    Science.gov (United States)

    Sun, Qian; Li, Zhiling; Wang, Youzhao; Cui, Dan; Liang, Bin; Thangavel, Sangeetha; Chung, Jong Shik; Wang, Aijie

    2015-11-01

    An application-oriented membrane-free, continuous plug-flow baffled bioelectrocatalyzed reactor (PFB-BER), was designed and testified for the decolorization of Alizarin Yellow R. Decolorization efficiency (DE) with an external power source of 0.5 V was higher than without electrolysis, i.e. 93.4% versus 73.6% (HRT of 24 h). Product formation efficiencies of p-phenylenediamine and 5-aminosalicylic acid were above 95% and 50%, respectively. When HRT decreased to 8 h and 4 h, DE reduced to 69.9% and 44.9%, respectively. An additional electrode assembly improved DE to 96.4% (HRT of 8 h) and 80% (HRT of 4 h), while energy consumption (HRT of 4 h) was lower than that of HRT of 12 h with single electrode assembly under comparable DE. The PFB-BER with higher removal capacity, lower internal resistance and energy consumption provides a new solution to treat the high loading azo dye-containing wastewaters. Copyright © 2015. Published by Elsevier Ltd.

  20. Degradation of a monoazo dye Alizarin Yellow GG in aqueous solutions by gamma irradiation: Decolorization and biodegradability enhancement

    International Nuclear Information System (INIS)

    Sun, Weihua; Chen, Lujun; Tian, Jinping; Wang, Jianlong; He, Shijun

    2013-01-01

    The irradiation-induced degradation of an azo dye, Alizarin Yellow GG (AY-GG), was investigated in aqueous solution under gamma irradiation using a 60 Cobalt source at a dose rate of 113 Gy/min. The decolorization percentage of AY-GG reached 65% when its initial concentration was 100 mg/l and the absorbed dose was 9 kGy. The decolorization process could be described by first-order kinetic equation. In addition, specific oxygen uptake rate (SOUR, mg O 2 (g MLVSS) −1 h −1 ) of activated sludge using the irradiated azo dye solutions was 8.1 mg O 2 (g MLVSS) −1 h −1 after 9 kGy irradiation, indicating that the biodegradability of AY-GG could be enhanced by 30%. However, toxic intermediates including heterocyclic aromatic amines and cyanides were detected during the irradiation process, which inhibited the complete biological degradation of azo dye. Fortunately, the inhibition could be eliminated by further irradiation. The azo dye solution became amenable to biodegradation and can be further treated by biological treatment process. - Highlights: ► Decolorization process by radiation conformed to first-order kinetics. ► Biodegradability of AY-GG could be enhanced 30% after 9 kGy radiation. ► Radiation can be used as a pretreatment technology for azo dye-containing wastewater. ► Combining radiation with aerobic biological treatment is a feasible strategy.

  1. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization.

    Science.gov (United States)

    Zhang, Xinying; Wang, Meiyin; Lin, Linlin; Xiao, Gao; Tang, Zhenping; Zhu, Xuefeng

    2018-07-01

    Biomimetic mineralization has emerged as a novel tool for generating excellent supports for enzyme stabilization. In this work, protamine was used to induce titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles. This biomimetic titanification process was adopted for laccase immobilization. Laccase-biotitania biocatalyst was prepared and the effect of different parameters (buffer solution, titania precursor concentration, protamine concentration, and enzyme loading) on the encapsulation efficiency and recovery of laccase were evaluated. Compared with free laccase, the thermal and pH stability of immobilized laccase were improved significantly. In addition, laccase loaded on titania was effective at enhancing its storage stability. After seven consecutive cycles, the immobilized laccase still retained 51% of its original activity. Finally, laccase-biotitania biocatalysts showed good performance on decolorization of malachite green (MG), which can be attributed to an adsorption and degradation effect. The intermediates of the MG degradation were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the most probable degradation pathway was proposed. This study provides deeper understanding of the laccase-biotitania particles as a fast biocatalyst for MG decolorization. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Induced innovation, energy prices, and the environment

    Science.gov (United States)

    Popp, David Clifford

    The process of developing new technologies is a central question for economic theory as well as for public policy in many areas. For example, the development of cleaner, more efficient energy technologies will play an important role in reducing the threat of global warming. To study how technology evolves over time, this dissertation uses patent data on energy innovations from 1970 to 1991 to examine the impact of energy prices on energy-efficient innovations. Before this can be done, however, information on supply-side factors which influence innovation is also needed. In the case of innovation, supply-side factors are the usefulness of the existing base of scientific knowledge. Patent citations are used for this purpose. Subsequent citations to patents granted each year since 1970 are used to show that the returns to research and development (R&D) fall over time for most of the technologies studied. These estimates are then combined with data on demand-side factors, such as energy prices, to estimate a model of induced innovation in energy technologies. Both energy prices and the supply of knowledge are found to have strongly significant positive effects on innovation. Next, the Yale Technology Concordance (YTC), which maps patents to the industries in which they are used, is employed to construct a stock of energy-related knowledge for 14 energy intensive industries. The effect of changes in this stock on energy consumption in these industries is estimated. On average, the present value of energy savings resulting from a new patent is eight million dollars, with the maximum savings coming about five years after the initial patent application. Finally, the results of each regression are combined to simulate the impact of a ten percent energy tax. Initially, simple factor substitution due to the price change has the largest effect. However, because of the cumulative nature of R&D, induced innovation has a much larger effect than factor substitution in the long run

  3. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  4. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  5. Methyl Red Decolorization Efficiency of a Korea Strain of Aspergillus sp. Immobilized into Different Polymeric Matrices.

    Science.gov (United States)

    Kim, Beom-Su; Blaghen, Mohamed; Lee, Kang-Min

    2017-07-01

      Intensive research studies have revealed that fungal decolorization of dye wastewater is a promising replacement for the current process of dye wastewater decolorization. The authors isolated an Aspergillus sp. from the effluent of a textile industry area in Korea and assessed the effects of a variety of operational parameters on the decolorization of methyl red (MR) by this strain of Aspergillus sp. This Aspergillus sp. was then immobilized by entrapment in several polymeric matrices and the effects of operational conditions on MR decolorization were investigated again. The optimal decolorization activity of this Aspergillus sp. was observed in 1% glucose at a temperature of 37 °C and pH of 6.0. Furthermore, stable decolorization efficiency was observed when fungal biomass was immobilized into alginate gel during repeated batch experiment. These results suggest that the Aspergillus sp. isolated in Korea could be used to treat industrial wastewaters containing MR dye.

  6. Highly efficient decolorization of Malachite Green by a novel Micrococcus sp. strain BD15.

    Science.gov (United States)

    Du, Lin-Na; Zhao, Ming; Li, Gang; Zhao, Xiao-Ping; Zhao, Yu-Hua

    2011-08-01

    Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization. Optical microscope and UV-visible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett-Burman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed. The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl(2) and MgCl(2), and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability. Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.

  7. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    Science.gov (United States)

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone. PMID:12821489

  8. Effect Of Metal Ions On Triphenylmethane Dye Decolorization By Laccase From Trametes Versicolor

    Directory of Open Access Journals (Sweden)

    Chmelová Daniela

    2015-12-01

    Full Text Available The aim of this study was investigate the influence of different metal ions on laccase activity and triphenylmethane dye decolorization by laccase from white-rot fungus Trametes versicolor. Laccase activity was inhibited by monovalent ions (Li+, Na+, K+ and Ag+ but the presence of divalent ions increased laccase activity at the concentration of 10 mmol/l. The effect of metal ions on decolorization of triphenylmethane dyes with different structures namely Bromochlorophenol Blue, Bromophenol Blue, Bromocresol Blue and Phenol Red was tested. The presence of metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Zn2+ slightly decreased triphenylmethane dye decolorization by laccase from T. versicolor except Na+ and Mg2+, which caused the increase of decolorization for all tested dyes. Decolorization of selected dyes showed that the presence of low-molecular-weight compounds is necessary for effective decolorization. Hydroxybenzotriazole (HBT is the most frequently used. Although HBT belongs to most frequently used redox mediator and generally increase decolorization efficiency, so its presence decreased decolorization percentage of Bromophenol Blue and Bromochlorophenol Blue, the influence of metal ions to dye decolorization by laccase has the similar course with or without presence of redox mediator HBT.

  9. Decolorization of brilliant green dye using immersed lamp sonophotocatalytic reactor

    Science.gov (United States)

    Gole, Vitthal L.; Priya, Astha; Danao, Sanjay P.

    2017-12-01

    The textile and dye industries require an enormous amount of water for processing and produce a large volume of wastewater. Generated wastewater had potential hazards and a threat to the aquatic biota. The present work investigates the decolorization of brilliant green dye using a combination of two advanced oxidation techniques viz sonocatalysis and photocatalysis (immersed lamp) known as sonophotocatalysis (3 L capacity). The efficiency of decolorization is further improved in the presence of various additives viz. copper oxide, zinc oxide, and sodium chloride. The maximum decolorization of brilliant green (BG) (94.8% in 120 min) obtained in the presence of zinc oxide. The total organic carbon of the treated samples was measured to monitor complete mineralization of BG. The sonophotocatalytic process (in the presence of zinc oxide) shows maximum mineralization. Synergic combination of two oxidation processes increased the production of oxidizing radicals. Continuous cleaning of catalyst surface (due to sonolysis effect) improves the activity of the catalyst for photolysis operation. The present work is highly useful for the development of a sonophotocatalytic process.

  10. Photocatalytic decolorization of methyl orange dye using nano-photocatalysts

    Directory of Open Access Journals (Sweden)

    amin ahmadpour

    2015-10-01

    Full Text Available Environmental contamination, which is growing around the world, is a serious problem can not to be neglected. Among all contaminations, water pollution is a major problem. Azo dyes are one of the largest groups of pollutants found in the drinking water, coming from, and the food and textile industries. TiO2/Fe3O4 and TiO2/Fe2O3 nanocomposites with various ratios were synthesized by an ultrasonic-assisted deposition-precipitation method and their UV-light decolorization of methyl orange (MO dye was investigated. The effect of Fe3O4/TiO2 and Fe2O3-TiO2 nanocomposites ratio on the photocatalytic activity and magnetic property of the nanocomposites was studied by comparing their decolorization curves and magnetism in the presence of magnet, respectively. The results revealed that the decolorization efficiency of 1 wt% Fe3O4/TiO2 nanocomposite reached about 40% within 60 min UV irradiation at room temperature. However, this sample showed the least magnetism. Also, the ability of synthesized nanocomposites in holding the adsorbed methyl orange dye on their surface and the effect of pH were investigated.

  11. Decoloring hemoglobin as a feedstock for second-generation bioplastics.

    Science.gov (United States)

    Low, Aaron; Lay, Mark; Verbeek, Johan; Swan, Janis

    2012-01-01

    The color of red blood cell concentrate (RBCC) limits its application in human food, but there is potential to use it for second-generation bioplastics. Several methods have been developed to remove color from RBCC, but they are expensive or may produce difficult-to-remove toxic residues. Hydrogen peroxide treatment is a cheaper alternative. The effects of RBCC concentration, pH, and reaction temperature were the most important factors influencing the decolorizing process. They were investigated with the aim of developing a method that could be scaled to commercial level for producing a bioplastic feedstock. Initial trials showed pH was an important factor for decolorization and foaming. At pH 15 there was a 96% reduction in solution color and 8.4% solids were lost due to foaming. There was a 76% reduction in solution color at pH 2 and only 2.6% solids were lost due to foaming. The optimal reaction conditions were to centrifuge 9% w/w, pH 2 aqueous RBCC solution to remove aggregates. The solution was reacted at 30°C with 7.5 g of 30% (w/w) hydrogen peroxide. These conditions achieved a 93% reduction in solution color after 3 hr and the molecular weight of the decolored protein was not significantly reduced.

  12. Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology.

    Science.gov (United States)

    Kumari, Simpal; Naraian, Ram

    2016-09-15

    Aim of the present study was to evaluate the efficiency of fungal co-culture for the decolorization of synthetic brilliant green carpet industry dye. For this purpose two lignocellulolytic fungi Pleurotus florida (PF) and Rhizoctonia solani (RS) were employed. The study includes determination of enzyme profiles (laccase and peroxidase), dye decolorization efficiency of co-culture and crude enzyme extracts. Both fungi produced laccase and Mn peroxidase and successfully decolorized solutions of different concentrations (2.0, 4.0, 6.0, & 8.0(w/v) of dye. The co-culture resulted highest 98.54% dye decolorization at 2% (w/v) of dye as compared to monocultures (82.12% with PF and 68.89% with RS) during 12 days of submerged fermentation. The lower levels of dyes were rapidly decolorized, while higher levels in slow order as 87.67% decolorization of 8% dye. The promising achievement of the study was remarkable decolorizing efficiency of co-culture over monocultures. The direct treatment of the mono and co-culture enzyme extracts to dye also influenced remarkable. The highest enzymatic decolorization was through combined (PF and RS) extracts, while lesser by monoculture extracts. Based on the observations and potentiality of co-culture technology; further it can be exploited for the bioremediation of areas contaminated with hazardous environmental pollutants including textile and other industry effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  14. Decolorization of dyes by recombinase CotA from Escherichia coli ...

    African Journals Online (AJOL)

    The CotA laccase could efficiently decolorize anthraquinone and azo dyes in 24 h. The decolourization capacity of this recombinant laccase suggested that it could be a useful biocatalyst for the treatment of dye-containing effluents. Key words: Recombinant CotA laccase, Escherichia coli, purification, dye decolorization.

  15. Decolorization of turbid sugar juice from sugar factory using waste powdered carbon

    Science.gov (United States)

    Aljohani, Hind; Ahmed, Youssef; El-Shafey, Ola; El-Shafey, Shaymaa; Fouad, Rasha; Shoueir, Kamel

    2018-03-01

    Waste management of powdered activated carbon from cyclone of some sugar factories was used for decolorization of sugar mud juice (SMJ) in this study. The presence of powdered activated carbon waste (PACW) was admitted again for their use in SMJ decolorization. The determined specific surface area are typically S BET = 613.887 m2/g and the pore distribution lies in mesoporous domain. Color removal (CR%) and decolorization capacity (DC) of the characterized PACW are similar to those of decolorants used at this time for sugar refining. The CR% with PACW reached 81.03% at pH7.0 and dosed in the amount 0.5 g/50 ml of SMJ. There are two acceptable mechanisms illustrates the attachments between phenols and carboxylate ions. In this paper, we put a simple and rapid dark liquid decolorization by controlling rejected carbon waste, which will be useful for treatment of dark liquid sugar.

  16. Use of Enzymatic Bio-Fenton as a New Approach in Decolorization of Malachite Green

    Directory of Open Access Journals (Sweden)

    Afzal Karimi

    2012-01-01

    Full Text Available An enzymatic reaction using glucose oxidase was applied for in situ production of hydrogen peroxide for use in simultaneously Fenton's reaction in decolorization of malachite green. It was found that decolorization rate increased by increasing of glucose concentration from 0.2 g/L to 1.5 g/L. Decolorization rate showed different behaviors versus temperature changes. Initial rate of decolorization process was increased by increasing of temperature; after 30 minutes, especially at temperatures above 30°C, the decolorization rate was gradually reduced. The pH value in the reaction media was decreased from natural to about pH=3 which had synergic effect on the Fenton process by stabilizing of Fe2+ ions.

  17. Use of Enzymatic Bio-Fenton as a New Approach in Decolorization of Malachite Green

    Science.gov (United States)

    Karimi, Afzal; Aghbolaghy, Mostafa; Khataee, Alireza; Shoa Bargh, Shabnam

    2012-01-01

    An enzymatic reaction using glucose oxidase was applied for in situ production of hydrogen peroxide for use in simultaneously Fenton's reaction in decolorization of malachite green. It was found that decolorization rate increased by increasing of glucose concentration from 0.2 g/L to 1.5 g/L. Decolorization rate showed different behaviors versus temperature changes. Initial rate of decolorization process was increased by increasing of temperature; after 30 minutes, especially at temperatures above 30°C, the decolorization rate was gradually reduced. The pH value in the reaction media was decreased from natural to about pH = 3 which had synergic effect on the Fenton process by stabilizing of Fe2+ ions. PMID:22649310

  18. Performance analysis of a solar photochemical photovoltaic hybrid system for decolorization of Acid Red 26 (AR 26)

    International Nuclear Information System (INIS)

    Cui, Lingyun; Zhu, Li; Huang, Qunwu; Wang, Yiping; Jin, Yanchao; Sun, Yong; Cui, Yong; Chen, Miao; Fan, Jiangyang

    2017-01-01

    To reduce the power energy consumption of wastewater treatment and make full use of the solar spectrum, a new water purification system that integrated homogeneous solar photochemical (SPC) and photovoltaics (PV) was constructed to treat wastewater and generate electricity for the first time. Hydrogen peroxide (H_2O_2) and potassium persulfate (K_2S_2O_8) were chosen as oxidants in the system and have a comparative analysis. The results show that solar/K_2S_2O_8 has a higher decolorization efficiency than solar/H_2O_2, the accumulated ultraviolet energy in solar/K_2S_2O_8, needed for complete decolorization, is far lower than in solar/H_2O_2. Also temperature has a positive effect on the dark-K_2S_2O_8 processes especially in the range of 40–60 °C, and it follows pseudo-first-order kinetic relationship. Meanwhile, to investigate the influence of flow channel on PV, the short circuit current (I_s_c) and maximum output power (P_m) were monitored. It indicates that the presence of flow channel effectively decreases the working temperature of PV modules, while the I_s_c and P_m have a different degree reduce. Luckily, the impact is not big. Additionally, P_m in experiment system, though lower than reference system, is sufficient to drive the whole system. - Highlights: • The hybrid system combing homogenous photochemical with photovoltaics was firstly performed. • Solar/K_2S_2O_8 and solar/H_2O_2 is comparative analysis in the decolorization of AR 26. • K_2S_2O_8 can be activated by heat and irradiation simultaneously in the hybrid system. • The PV panel of the hybrid system could work under lower temperature. • Solar spectrum could be made full use for power generation and water purification.

  19. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal, E-mail: erdalkusvuran@yahoo.com [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Gulnaz, Osman [Biology Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Samil, Ali [Chemistry Department, Arts and Sciences Faculty, Sutcu Imam University, 46100 Kahramanmaras (Turkey); Yildirim, Ozlem [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey)

    2011-02-15

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min{sup -1}. Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  20. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    International Nuclear Information System (INIS)

    Kusvuran, Erdal; Gulnaz, Osman; Samil, Ali; Yildirim, Ozlem

    2011-01-01

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min -1 . Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  1. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  2. A REVIEW ON EFFICACIOUS METHODS TO DECOLORIZE REACTIVE AZO DYE

    Directory of Open Access Journals (Sweden)

    Jagadeesan Vijayaraghavan

    2013-01-01

    Full Text Available This paper deals with the intensive review of reactive azo dye, Reactive Black 5. Various physicochemical methods namely photo catalysis, electrochemical, adsorption, hydrolysis and biological methods like microbial degradation, biosorption and bioaccumulation have been analyzed thoroughly along with the merits and demerits of each method. Among these various methods, biological treatment methods are found to be the best for decolorization of Reactive Black 5. With respect to dye biosorption, microbial biomass (bacteria, fungi, microalgae, etc, and outperformed macroscopic materials (seaweeds, crab shell, etc. are used for decolorization process. The use of living organisms may not be an option for the continuous treatment of highly toxic organic/inorganic contaminants. Once the toxicant concentration becomes too high or the process operated for a long time, the amount of toxicant accumulated will reach saturation. Beyond this point, an organism's metabolism may be interrupted, resulting in death of the organism. This scenario is not existed in the case of dead biomass, which is flexible to environmental conditions and toxicant concentrations. Thus, owing to its favorable characteristics, biosorption has received much attention in recent years.

  3. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge

    Directory of Open Access Journals (Sweden)

    Daizong Cui

    2016-10-01

    Full Text Available An anaerobic sludge (AS, capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N,N-dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N,N-dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes.

  4. Laccase-Catalyzed Decolorization of Malachite Green: Performance Optimization and Degradation Mechanism

    Science.gov (United States)

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL-1 LacA, 109.9 mg L-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s-1, respectively. UV–visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography–mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries. PMID:26020270

  5. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge.

    Science.gov (United States)

    Cui, Daizong; Zhang, Hao; He, Rubao; Zhao, Min

    2016-10-28

    An anaerobic sludge (AS), capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD) removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N , N -dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N , N -dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid) were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes.

  6. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Malachite green (MG was decolorized by laccase (LacA of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1 LacA, 109.9 mg L(-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1, respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries.

  7. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  8. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola

    International Nuclear Information System (INIS)

    Hsueh, C.-C.; Chen, B.-Y.

    2007-01-01

    This study is to inspect how the variation of molecular structures and functional groups present in our model azo dyes (i.e., Congo red, Eriochrome black T (EBT), methyl orange, and methyl red) affects biodecolorization capability of Pseudomonas luteola. The most viable decolorization was found at pH 7-9 and the optimal cellular age for the most effective decolorization was 7 days after static incubation in dye-free cultures. In decolorization, the maximal absorption wavelength in UV-vis spectra for the different dye-containing cultures shifted from visible light range towards the ultraviolet visible range. Methyl red was not decolorized in contrast to methyl orange, Congo red, and Eriochrome black T. The sulfonic group para to azo bond (-N=N-) in methyl orange was a strong electron-withdrawing group through resonance to cause an enhancement of color removal to be easily biodecolorized. As a charged carboxyl group on methyl red is at ortho position (i.e., in the proximity) to azo bond, this led to a complete inhibition to decolorization. However, decolorization of Congo red and EBT in the absence of charged group (e.g., hydroxy or amino group) near azo bond was not completely repressed like methyl red. Thus, the presence of electron-withdrawing groups as the substituents on azo dyes enhanced decolorization capability for biodegradability. In addition, Monod kinetic model provided better predictions to all dye decolorization at initial short periods of time due to negligible intermediate formed at initial short time duration, but significant intermediate accumulation took place at longer period of time. In contrast, the decolorization performances of methyl orange at 400 ppm and EBT at 230 ppm were significantly less than those predicted from the Monod kinetic model likely due to accumulated intermediates exceeding the threshold levels for feedback inhibition

  9. Decoloration studies of some fluorescent dye solutions

    International Nuclear Information System (INIS)

    Zafar-uz-Zaman, M.; Ditta, A.

    1997-01-01

    Rhenium-186-(Sn)-l, l hydroxy ethylene diphosphonate (/sup 186/Re-HEDP) has been used for the palliation of metastatic bone pain. /sup 186/Re- has excellent physical properties that may be useful for the formulation of radiotherapeutic agents. It has a short half-life (90.6 hrs) with moderate energy particles (E /sub max/=1.07 MeV) that penetrate over a short range of tissue and gamma ray of 137 keV which is well suited to image. A number of samples of natural rhenium (metal) power were irradiated in PARR-I research reactor at a thermal neutrons flux of the order lx10/sup 14/ n.cm /sup -2/.s/sup -1/ for various time intervals in order to optimize the production yield of /sup 186/Re. The data indicated that 60 mCi/mg of radioactivity could be obtained for an irradiation time of 24 hours. The irradiated target was converted to its ammonium salt which was used for preparation of /sup 186/Re-HEDP complex. Labeling studies of dissolution salt of HEDP with /sup 186/Re were performed by varying the amounts of rhenium, HEDP and Sn. These studies were also carried out at different pH of the solutions. The quality control of /sup 186/Re-HEDP complex was checked by radio chromatographic techniques. These investigations indicated that the complex of optimum yield (approx. 95%) could be obtained by using amounts of Re (0.15 mg), HEDP (10 mg), stannous chloride dihydrate (4mg) and pH range of 4-6. The effect of antioxidant genetic acid was studied on the stability of the complex which was found to be stable up to five days in the presence of 3 mg of genetic acid. The biodistribution studies in rats showed optimum uptake by bone after 2.5 hours. (author)

  10. Screening of micro-organisms for decolorization of melanins produced by bluestain fungi.

    Science.gov (United States)

    Rättö, M; Chatani, M; Ritschkoff, A C; Viikari, L

    2001-03-01

    A total of 17 fungi and four bacteria were screened for their ability to decolorize melanin, using isolated extracellular melanin of the bluestain fungus Aureobasidium pullulans as substrate. On agar media, decolorization was observed by four fungal strains: Bjerkandera adusta VTT-D-99746, Galactomyces geotrichum VTT-D-84228, Trametes hirsuta VTT-D-95443 and Trametes versicolor VTT-D-99747. The four fungi were more efficient on nitrogen-limited medium than on complete medium. The melanin-decolorizing activity of G. geotrichum appeared to be located on the mycelium and could be liberated into the medium enzymatically.

  11. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    Science.gov (United States)

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  12. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Diego Moldes

    2012-01-01

    Full Text Available The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  13. Decolorization of Orange Ⅱ using an anaerobic sequencing batch reactor with and without co-substrates

    Institute of Scientific and Technical Information of China (English)

    Soon-An Ong; Eiichi Toorisaka; Makoto Hirata; Tadashi Hano

    2012-01-01

    We investigated the decolorization of Orange Ⅱ with and without the addition of co-substrates and nutrients under an anaerobic sequencing batch reactor (ASBR).The increase in COD concentrations from 900 to 1750 to 3730 mg/L in the system treating 100 mg/L of Orange H-containing wastewater enhanced color removal from 27% to 81% to 89%,respectively.In the absence of co-substrates and nutrients,more than 95% of decolorization was achieved by the acclimatized anaerobic microbes in the bioreactor treating 600 mg/L of Orange Ⅱ.The decrease in mixed liquor suspended solids concentration by endogenous lysis of biomass preserved a high reducing environment in the ASBR,which was important for the reduction of the Orange Ⅱ azo bond that caused decolorization.The maximum decolorization rate in the ASBR was approximately 0.17 g/hr in the absence of co-substrates and nutrients.

  14. Using the EDTA Hole Scavenger to Accelerate Decolorization in the Immobilized Photocatalytic Process

    Directory of Open Access Journals (Sweden)

    raziye Asgari

    2015-07-01

    Full Text Available This study investigated the effect of EDTA as a hole scavenger on accelerating the photocatalytic decolorization of direct blue 71 as a non-degradable model pollutant with nano TiO2 powder immobilized on a cementitious bed. For this purpose, 75 mg/L of the dye was decolorized in 75 minutes with 0.03 M of EDTA at a pH level of 6 and under irradiation produced by a 60-W UV-C lamp. This is while decolorization under identical conditions but in the absence of EDTA had been accomplished in 225 minutes. The experiment, therefore, confirmed the accelerating effect of the scavenger on decolorization. The kinetics of the photocatalytic process with EDTA followed a first order reaction with a constant rate of 0.05 min-1, which is 2.5 times faster than the process without EDTA.

  15. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.

    Science.gov (United States)

    Luo, Deng-Hong; Zheng, Qing-Kang; Chen, Sheng; Liu, Qing-Shu; Wang, Xiu-Xing; Guan, Yu; Pu, Zong-Yao

    2010-01-01

    Dyeing process of textile consumes large quantities of water, which results in huge amounts of colored wastewater. Most of the dye wastewater treating methods focused on the treatment of wastewater after the rinsing process of dyed textile. In this paper, tetraacetylethylenediamine/hydrogen peroxide (TAED/H₂O₂) active oxidation (AO) system was developed to rinse dyed textile and decolorize the rinsing wastewater simultaneously. The results indicated that the decolorization ratio of the rinse effluent obtained by AO method were in the range of 51.72%-84.15% according to different dyes and the COD value decreased more than 30% compared with that of traditional rinsing process. The decolorization kinetics investigation showed that the decolorization of dyes during AO rinsing process followed the law of pseudo-first order kinetics. The result of UV-Vis and UPLC-MS analysis demonstrated that the dye was degraded into colorless organic molecular fragments and partly mineralized during the AO rinsing process.

  16. Preparation of Laccase Immobilized Cryogels and Usage for Decolorization

    Directory of Open Access Journals (Sweden)

    Murat Uygun

    2013-01-01

    Full Text Available Poly(methyl methacrylate-co-glycidyl methacrylate (poly(MMA-co-GMA cryogels were synthesized by radical cryopolymerization technique. Then, laccase enzyme was covalently attached to the cryogel and characterized by using swelling studies and SEM and EDX analyses. Kinetic properties and optimum conditions of the immobilized and free laccase were studied and it was found that of the immobilized laccase was lower than that of free laccase. of the immobilized laccase was increased upon immobilization. Optimum pH was found to be 4.0 for each type of laccase, while optimum temperature was shifted to the warmer region after the immobilization. It was also found that thermal stability of the immobilized laccase was higher than that of free laccase. Immobilized laccase could be used for 10 times successive reuse with no significant decrease in its activity. Also, these laccase immobilized cryogels were successfully used for the decolorization of seven different dyes.

  17. Decolorization and degradation of melanoidins in wastewater by ionizing radiation

    International Nuclear Information System (INIS)

    Sekiguchi, M.; Tanabe, T.; Sawai, T.

    1995-01-01

    Decolorization and degradation of molasses pigments (melanoidins) in wastewater from yeast factories by ionizing radiation were investigated. In the case of samples with the same value of chromaticity (4000), the reduction degree of chromaticity of dialyzed sample reached 27.5% and 75% at a dose of 4.5 kGy and 14 kGy, respectively, and was greater than that of non-dialyzed sample. Organic acids such as oxalic acid, formic acid and glycolic acid were formed with increasing dose, and the biodegradability (BOD/COD) of wastewater was increased with decrease in pH. The relationships between the value of chromaticity/TOC and molecular weight of molasses pigments, were obtained from subsequent experiments using dialyzed and non-dialyzed samples with the same value of TOC. (author)

  18. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    International Nuclear Information System (INIS)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-01-01

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N 2 adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  19. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide.

    Science.gov (United States)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hui-Pin [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Huang, Yao-Hui, E-mail: yhhuang@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Lee, Changha, E-mail: clee@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 698-805 (Korea, Republic of)

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N{sub 2} adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation ({lambda} = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  1. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  2. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment

    Directory of Open Access Journals (Sweden)

    L.R. Bergsten-Torralba

    2009-12-01

    Full Text Available The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198, Reactive Blue 214 (RB214, Reactive Blue 21 (RB21 and the mixture of the three dyes (MXD by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50. P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments.

  3. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  5. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    Science.gov (United States)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  6. Statistical Optimization of Conditions for Decolorization of Synthetic Dyes by Cordyceps militaris MTCC 3936 Using RSM

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2015-01-01

    Full Text Available In the present study, the biobleaching potential of white rot fungus Cordyceps militaris MTCC3936 was investigated. For preliminary screening, decolorization properties of C. militaris were comparatively studied using whole cells in agar-based and liquid culture systems. Preliminary investigation in liquid culture systems revealed 100% decolorization achieved within 3 days of incubation for reactive yellow 18, 6 days for reactive red 31, 7 days for reactive black 8, and 11 days for reactive green 19 and reactive red 74. RSM was further used to study the effect of three independent variables such as pH, incubation time, and concentration of dye on decolorization properties of cell free supernatant of C. militaris. RSM based statistical analysis revealed that dye decolorization by cell free supernatants of C. militaris is more efficient than whole cell based system. The optimized conditions for decolorization of synthetic dyes were identified as dye concentration of 300 ppm, incubation time of 48 h, and optimal pH value as 5.5, except for reactive red 31 (for which the model was nonsignificant. The maximum dye decolorizations achieved under optimized conditions for reactive yellow 18, reactive green 19, reactive red 74, and reactive black 8 were 73.07, 65.36, 55.37, and 68.59%, respectively.

  7. Decolorization of the anthraquinone dye Cibacron Blue 3G-A with immobilized Coprinus cinereus in fluidized bed bioreactor.

    Science.gov (United States)

    Moutaouakkil, A; Blaghen, M

    2011-01-01

    Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g(-1) h(-1) with a 50% conversion time (t1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.

  8. Decolorization of two azo dyes using marine Lysobacter sp. T312D9

    Directory of Open Access Journals (Sweden)

    Khouloud M. I. B.

    2013-01-01

    Full Text Available Aims: Novel azo dye-degrading bacterium T312D9 strain has been isolated from Abou Quir Gulf, Alexandria, Egypt. Methodology and Results: The identification of the isolate by 16S rRNA gene sequencing revealed to be Lysobacter sp. This marine ecofriendly isolate was exploited for its ability to degrade two synthetic azo dyes considered as detrimental pollutants from industrial effluents: congo red and methyl red. Using different dye concentrations showed the highest metabolic activity for complete degradation obtained from 100 to 500 mg/L within 30 h under static condition, also, sustaining higher dye loading of 1 g/L was carried out. The significant induction of enzymes NADH - 2,6-dichloroindophenol (NADH-DCIP reductase and tyrosinaseindicated their prominent role in dye degradation. The biodegradation of two azo dyes were analyzed by gas chromatographicmass spectrum analysis (GC-MS and Fourier transform infrared spectroscopy (FTIR before and after treatment. Toxicity study revealed the much less toxic nature of the metabolites produced after complete decolorization. Conclusion, significance and impact of study: Lysobacter sp T312D9 represent an inexpensive and promising marine bacteria for removal of both methyl and congo red. High sustainable metabolic activity for biodegradation under static condition. NADHDCIPreductase and tyrosinase were significantly induced during biodegradation of dyes. The obtained metabolites revealed to beless toxic in nature which offers a practical biological treatment.

  9. Analytic computation of average energy of neutrons inducing fission

    International Nuclear Information System (INIS)

    Clark, Alexander Rich

    2016-01-01

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  10. Decolorization of a recalcitrant organic compound (Melanoidin by a novel thermotolerant yeast, Candida tropicalis RG-9

    Directory of Open Access Journals (Sweden)

    Tiwari Soni

    2012-06-01

    Full Text Available Abstract Background Sugarcane distilleries use molasses for ethanol production and generate large volume of effluent containing high biological oxygen demand (BOD and chemical oxygen demand (COD along with melanoidin pigment. Melanoidin is a recalcitrant compound that causes several toxic effects on living system, therefore, may be treated before disposal. The aim of this study was to isolate a potential thermotolerant melanoidin decolorizing yeast from natural resources, and optimized different physico-chemical and nutritional parameters. Results Total 24 yeasts were isolated from the soil samples of near by distillery site, in which isolate Y-9 showed maximum decolorization and identified as Candida tropicalis by Microbial Type Culture Collection (MTCC Chandigarh, India. The decolorization yield was expressed as the decrease in the absorbance at 475 nm against initial absorbance at the same wavelength. Uninoculated medium served as control. Yeast showed maximum decolorization (75% at 45°C using 0.2%, glucose; 0.2%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-5.5 within 24 h of incubation under static condition. Decolorizing ability of yeast was also confirmed by high performance liquid chromatography (HPLC analysis. Conclusion The yeast strain efficiently decolorized melanoidin pigment of distillery effluent at higher temperature than the other earlier reported strains of yeast, therefore, this strain could also be used at industrial level for melanoidin decolorization as it tolerated a wide range of temperature and pH with very small amount of carbon and nitrogen sources.

  11. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  12. Decolorization of Methylene Blue by Persulfate Activated with FeO Magnetic Particles.

    Science.gov (United States)

    Hung, Chang-Mao; Chen, Chiu-Wen; Liu, Yi-Yuan; Dong, Cheng-Di

    2016-08-01

    In this study, the degradation of methylene blue (MB) was conducted to evaluate the feasibility of using persulfate oxidation activated with iron oxide (FeO) magnetic particles. The results demonstrated that the decolorization rate of MB increased with increasing FeO concentration, exhibiting maximum efficiency at pH0 3.0. The kinetics of MB was studied in the binary FeO catalyst and persulfate oxidation system. The surface properties of FeO before and after reaction was analyzed using cyclic voltammogram (CV), three-dimensional excitation-emission fluorescence matrix (EEFM) spectroscopy, zeta potential, particle size distribution measurements, X-ray diffraction (XRD) and environmental scanning electron microscopy-energy dispersive X-ray spectrometry (ESEM-EDS). The CV data indicated that a reversible redox reaction holds the key to explaining the significant activity of the catalyst. EEFM was used to evaluate the catalyst yield of FeO by fluorescence intensity plots with excitation/emission at 220/300 nm and 260/300 nm. The XRD and ESEM-EDS results confirmed the presence of FeO in the catalyst.

  13. Decoloration and detoxification of effluents by ionizing radiation

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; Conceição Pereira, Maria da; Higa, Marcela C.

    2016-01-01

    Three distinct textile samples were investigated for color and toxicity (S1–chemical/textile industry; S2–final textile effluent; S3 - standard textile produced effluent–untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism. - Highlights: • 2.5 kGy was enough for decoloration and detoxification of S2 and S3. • S1 effluents were very toxic and required at least 20 kGy for detoxification. • Radiation processing reduced toxicity for 100% of treated samples. • V. fischeri was the best tool for toxicity measurements.

  14. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Ossman, M.E.; Chen, Yongsheng; Crittenden, John C.

    2010-01-01

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  15. Photocatalytic Decolorization Study of Methyl Orange by TiO2–Chitosan Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imelda Fajriati

    2014-10-01

    Full Text Available The photocatalytic decolorization of methyl orange (MO by TiO2-chitosan nanocomposite has been studied. This study was started by synthesizing TiO2-chitosan nanocomposites using sol-gel method with various concentrations of Titanium(IV isopropoxide (TTIP as the TiO2 precursor. The structure, surface morphology, thermal and optical property of TiO2-chitosan nanocomposite were characterized by X-ray diffraction (XRD, fourier transform infra red (FTIR spectroscopy, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and diffuse reflectance ultra violet (DRUV spectroscopy. The photocatalytic activity of TiO2-chitosan nanocomposite was evaluated by photocatalytic decolorization of methyl orange as a model pollutant. The results indicate that the particle size of TiO2 increases with increasing ofthe concentration of TTIP, in which TiO2 with smallest particle size exhibit the highest photocatalytic activity. The highest photocatalytic decolorization was obtained at 5 h of contact time, initial concentration of MO at 20 ppm and at solution pH of 4. Using these conditions, over 90% of MO was able to be decolorized using 0.02 g of TiO2-chitosan nanocomposite under UV light irradiation. The TiO2-chitosan nanocomposite could be reused, which meant that the TiO2-chitosan nanocomposites can be developed as an effective and economical photocatalyst to decolorize or treat dye in wastewater.

  16. Decolorization of direct poly azo dye with nanophotocatalytic UV/NiO process

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2012-01-01

    Full Text Available Aims: The aim of the present study is to investigate the efficiency of ultraviolet/ nickel oxide (UV/NiO system as one form of advanced oxidation processes (AOP for decolorization of red poly azo. Materials and Methods: This study was conducted as a laboratory scale in a batch mode. Ultraviolet radiation was provided by a low pressure (11 W UV lamp. Effects of various factors including pH, different irradiation durations, different concentration of nickel oxide, and initial dye concentration were evaluated. Results: The results of the UV/NiO system′s assessment showed that UV light alone cannot remove DR 80 dye. Nickel oxide is an effective catalyst in the decolorization of dye with the nanophotocatalytic process. The decolorization efficiency increases with decreasing pH value and the optimum pH value is 4. Fainally, the highest removal efficiency achieved by UV/NiO process for DR 80 dye with concentrations of 25 mg/l and 50 mg/l was 94.3% and 82.2%, respectively. UV/NiO-based decolorization process follows pseudo-second-order reaction kinetics. Conclusions: From the findings of the present study, it can be concluded that UV/NiO process is an effective technique for decolorization of poly azo dye, DR 80, in aqueous solutions.

  17. Novel Castellaniella denitrificans SA13P as a Potent Malachite Green Decolorizing Strain

    Directory of Open Access Journals (Sweden)

    Ankita Chawla

    2014-01-01

    Full Text Available Triphenylmethane dyes represent a major group of dyes causing serious environmental hazards. Malachite Green is one of the commonly and extensively used triphenylmethane dyes although it is carcinogenic and mutagenic in nature. Various physicochemical methods have been employed for its elimination but are highly expensive, coupled with the formation of huge amount of sludge. Hence, biological methods being ecofriendly are good alternatives. In the present study, the novel bacterial isolate SA13P was isolated from UASB tank of tannery effluent treatment plant. Phylogenetic characterization of 1470 bp fragment of SA13P has revealed its similarity with Castellaniella denitrificans. This strain has been found to decolorize the dye (malachite green at a concentration of 100 mg L−1 (80.29%. Decolorization was done by living bacterial cells rather than adsorption. Growth conditions have also been optimized for the decolorization. Maximum decolorization was observed at a temperature of 37°C and pH 8.0. Also, it has been found that bacterization of seeds of Vigna radiata with Castellaniella denitrificans SA13P increases germination rate. We have reported for the first time that Castellaniella denitrificans SA13P may be used as a novel strain for dye decolorization (malachite green and biological treatment of tannery effluent.

  18. Malachite green decolorization by the filamentous fungus Myrothecium roridum--Mechanistic study and process optimization.

    Science.gov (United States)

    Jasińska, Anna; Paraszkiewicz, Katarzyna; Sip, Anna; Długoński, Jerzy

    2015-10-01

    The filamentous fungus Myrothecium roridum isolated from a dye-contaminated area was investigated in terms of its use for the treatment of Malachite green (MG). The mechanisms involved in this process were established. Peroxidases and cytochrome P-450 do not mediate MG elimination. The laccase of M. roridum IM 6482 was found to be responsible for the decolorization of 8-11% of MG. Thermostable low-molecular-weight factors (LMWF) resistant to sodium azide were found to be largely involved in dye decomposition. In addition, MG decolorization by M. roridum IM 6482 occurred in a non-toxic manner. Data from antimicrobial tests showed that MG toxicity decreased after decolorization. To optimize the MG decolorization process, the effects of operational parameters (such as the medium pH and composition, process temperature and culture agitation) were examined. The results demonstrate that M. roridum IM 6482 may be used effectively as an alternative to traditional decolorization agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31 by moderately alkaliphilic bacterial consortium

    Directory of Open Access Journals (Sweden)

    Sylvine Lalnunhlimi

    2016-03-01

    Full Text Available Abstract Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151 and Direct Red 31 (DR 31. The decolorization of azo dyes was studied at various concentrations (100–300 mg/L. The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  20. Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963.

    Science.gov (United States)

    Pan, Huiran; Xu, Xiaolin; Wen, Zhu; Kang, Yanshun; Wang, Xinhao; Ren, Youshan; Huang, Danqi

    2017-09-03

    Anthraquinone dye represents an important group of recalcitrant pollutants in dye wastewater. Aspergillus sp XJ-2 CGMCC12963 showed broad-spectrum decolorization ability, which could efficiently decolorize and degrade various anthraquinone dyes (50 mg L -1 ) under microaerophilic condition. And the decolorization rate of 93.3% was achieved at 120 h with Disperse Blue 2BLN (the target dye). Intermediates of degradation were detected by FTIR and GC-MS, which revealed the cleavage of anthraquinone chromophoric group and partial mineralization of target dye. In addition, extracellular manganese peroxidase showed the most closely related to the increasing of decolorization rate and biomass among intracellular and extracellular ligninolytic enzymes. Given these results, 2 possible degraded pathways of target dye by Aspergillus sp XJ-2 CGMCC12963 were proposed first in this work. The degradation of Disperse Blue 2BLN and broad spectrum decolorization ability provided the potential for Aspergillus sp XJ-2 CGMCC12963 in the treatment of wastewater containing anthraquinone dyes.

  1. [The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].

    Science.gov (United States)

    Liu, Z P; Yang, H F

    1989-12-01

    Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.

  2. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Shi, Shao-Hui; Lee, Yi-Fan

    2009-01-01

    In this paper, the application of Fenton oxidation process for the decolorization of an azo dye Direct Blue 15 (DB15) in aqueous solution was investigated. The effect of initial pH, dosage of H2O2, H2O2/Fe2+ and H2O2/dye ratios and the reaction temperature on the decolorization efficiency...... = 60: 1 and temperature = 30 degrees C. Under the optimal conditions, 4.7 x 10(-5) mol/L of the DB15 aqueous solution can be completely decolorized by Fenton oxidation within 50-min reaction time and the decolorization kinetic rate constant k was determined as 0.1694 min(-1). Additionally increasing...... the reaction temperature from 20 to 40 degrees C showed a positive effect on the decolorization efficiency of DB15. The present study can provide guidance to relational industry operators and planners to effectively treat the DB15 contaminated wastewater by Fenton oxidation process. (C) 2009 Elsevier B. V. All...

  3. Energy changes in massive target-nuclei, induced by high-energy hadronic projectiles

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1997-01-01

    Now it turned out that it is real to estimate by experiments the energy changes in massive target-nuclei, induced by high-energy hadronic projectiles. The subject matter in this work is to present results of the quantitative estimations of the energy changes in intranuclear matter at various stages of hadron-nucleus collision reactions. Appropriate formulas are proposed for the energy balances - as following from the experimentally based mechanism of the hadron-nucleus collision reactions

  4. 27 CFR 24.242 - Authority to use greater quantities of decolorizing material in juice or wine.

    Science.gov (United States)

    2010-04-01

    ... quantities of decolorizing material in juice or wine. 24.242 Section 24.242 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.242 Authority to use greater quantities of decolorizing material in...

  5. KINETIC BEHAVIOR OF SOME AZO DYES DECOLORIZATION BY VARIATION OF ZINC OXIDE AND TITANIUM DIOXIDE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Wallace J. C. da Silva

    Full Text Available The decolorization of three monoazo dyes (acid orange 7, direct orange 34, and methyl orange, one diazo dye (direct yellow 86 and one tetraazo dye (direct red 80 were mediated by n-type semiconductors as ZnO and TiO2 under pseudo-first order conditions at 30 ºC. The decolorization rate constants of these azo dyes were determined, varying the semiconductor concentration for the majority of them from 1.0 to 10.0 g L-1. In general, the highest rate constants were displayed for ZnO. This work elucidates that the decolorization capacity depends on the charge, structure, and adsorption of the azo dye on the semiconductor surface as well as the agglomeration of the photocatalyst particles.

  6. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  7. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Science.gov (United States)

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  8. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    Nurhidayatullaili Muhd Julkapli

    2014-01-01

    Full Text Available During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag and organic matter (C, N, Cl, and F showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.

  9. What induced China's energy intensity to fluctuate: 1997-2006?

    International Nuclear Information System (INIS)

    Liao, Hua; Fan, Ying; Wei, Yi-Ming

    2007-01-01

    China is the second largest energy consumer in the world. During 1997-2002, China's energy intensity declined by 33%. However, it rose by 10.7% over 2003-2005, and declined by 1.2% in 2006. What induced China's energy intensity to fluctuate so drastically? Industry accounts for approximately 70% of the total energy consumption in China. In this paper, we decompose China's industrial energy intensity changes between 1997 and 2002 into sectoral structural effects and efficiency effects (measured by sectoral energy intensities at two-digit level and including the shifts of product mix in the sub-sector or firm level), using Toernqvist and Sato-Vartia Index methods. The results show that in this period, efficiency effects possibly contributed to a majority of the decline, while the contribution from structural effects was less. During 2003-2005, the excessive expansion of high-energy consuming sub-sectors and the high investment ratio were foremost sources of the increasing energy intensity. Attributed to the government efforts, the energy intensity has started to decline slightly since July 2006. In future, to save more energy, in addition to technical progress, China should attach more importance to optimizing its sectoral structure, and lowering its investment ratio

  10. Use of active consortia of constructed ternary bacterial cultures via mixture design for azo-dye decolorization enhancement

    International Nuclear Information System (INIS)

    Chen, B.-Y.; Wang, M.-Y.; Lu, W.-B.; Chang, J.-S.

    2007-01-01

    This first-attempt study used constructed bacterial consortia containing Escherichia coli DH5α (a weak decolorizer) and its UV-irradiated mutants (E. coli UVT1 and UV68; strong decolorizers) via equilateral triangle diagram and mixture experimental design to assess color removal during species evolution. The results showed that although strain DH5α was not an effective decolorizer, its presence might still played a significant role in affecting optimal color removal capabilities of mixed consortia (e.g., E. coli DH5α, UVT1 and UV68) for two model azo dyes; namely, reactive red 22 (RR22) and reactive black 5 (RB5). Contour analysis of ternary systems also clearly showed that decolorization of RR22 and RB5 by DH5α-containing active mixed consortia was more effective than mono-cultures of the stronger decolorizer alone (e.g., UVT1). The optimal composition of the mixed consortium (UV68, UVT1, DH5α) achieving the highest specific decolorization rate was (13%:58%:29%) and (0%:74%:26%) for decolorization of RR22 and RB5, respectively, with initial total cell density fixed at OD 600 = 3.5 ± 0.28

  11. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology

    International Nuclear Information System (INIS)

    Zhang Zhanmei; Zheng Huaili

    2009-01-01

    Response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the operating conditions in decolorization of acid green 20 (AG 20) by ultrasonic irradiation in the presence of H 2 O 2 . The effects of three operating variables, ultrasonic power density, initial pH value of dye solution and H 2 O 2 concentration on the decolorization efficiency of AG 20 were evaluated. A quadratic model for AG 20 decolorization was proposed. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The proposed model was approximately in accordance with the experimental case with correlation coefficients R 2 and R adj 2 of 0.9995 and 0.9984, respectively. The optimum operating conditions for AG 20 decolorization were found to be 1.08 W/mL of ultrasonic power density, 4.85 of initial pH and 1.94 mM of H 2 O 2 concentration, respectively. The predicted decolorization rate under the optimum conditions determined by RSM was 96.8%. Confirmatory tests were carried out under the optimum conditions and the decolorization rate of 96.3% was observed, which closely agreed with the predicted value. The results confirmed that RSM based on Box-Behnken design was an accurate and reliable method to optimize the operating conditions of AG 20 decolorization.

  12. Quantifying induced effects of subsurface renewable energy storage

    Science.gov (United States)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  13. Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Šnajdr, Jaroslav

    2006-01-01

    Roč. 39, - (2006), s. 1023-1029 ISSN 0141-0229 R&D Projects: GA ČR GA526/05/0168 Institutional research plan: CEZ:AV0Z50200510 Keywords : synthetic dyes * decomposing fungi * decolorization Subject RIV: EE - Microbiology, Virology Impact factor: 1.897, year: 2006

  14. Decolorization of dyeing wastewater in continuous photoreactors using tio2 coated glass tube media

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn

    2014-02-01

    Full Text Available The present study deals with a decolorization development of malachite green (MG dyeing wastewater using TiO2 thin films coated glass tube media in photoreactor. The TiO2 photocatalyst was synthesized by three methods: TTIP sol-gel, TiO2 powder-modified sol, and TiO2 powder suspension coating on raschig ring glass tube media and was investigated crystallinity phase by SEM, XRD, and AFM. Degradation kinetics of the dyeing wastewater by photocatalytic was carried out under UV light irradiation. The Langmuir first-order model provided the best fit to the experimental data. The catalyst prepared by powder suspension technique and coated on glass tube had given the highest of decolorization kinetics and efficiency. Continuous photoreactor packed with the TiO2 coating media was designed and proven to be the high effectiveness for MG dyeing degradation and stable throughout the recyclability test. The light intensity, dye solution flow rate, and TiO2 loading were the most important parameters that response to decolorization efficiency. The optimum condition of photo decolorization of MG dye solution can be obtained from RSM model. Effectiveness of the synthesized TiO2 thin films using suspension technique and the continuous photoreactor design were obtained with a great potential to be proven for wastewater treatment at industrial scale.

  15. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  16. The development of CotA mediator cocktail system for dyes decolorization.

    Science.gov (United States)

    Luo, S; Xie, T; Liu, Z; Sun, F; Wang, G

    2018-05-01

    The increasing use of dyes leads to serious environmental concerns, it is significant to explore eco-friendly and economic approaches for dye decolorization. This study aimed to develop mediator cocktail (AS and ABTS) for enhancing the capability of laccase-mediator system in the removal of dyes. By mediator screening, the mediators of ABTS and AS (ABTS, 2, 2'-azino-bis-(3-ethylbenzothiazo-thiazoline-6-sulphonic acid); AS, acetosyringone) were combined for dyes decolorization. The Box-Behnken Design and response surface analysis was performed to optimize experiment conditions. Comparing the CotA-ABTS-AS cocktail system with CotA-single mediator system showed that the coupling of ABTS and AS could increase the decolorization rate 15 times higher, save a third of the cost and shorten the reaction time by 50%. In addition, our studies revealed that sequential oxidation may occur in CotA-ABTS-AS system. Compared with CotA laccase-single mediator system, the CotA-ABTS-AS cocktail system showed advantages including higher efficiency, lower cost and shorter reaction time. This was the first report on the dyes decolorization by laccase mediator cocktail system. These results paved the curb for the application of laccase mediator system in various industrial processes. © 2018 The Society for Applied Microbiology.

  17. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190

    Science.gov (United States)

    Myrothecium verrucaria 3.2190 is a nonligninolytic fungus that produces bilirubin oxidase. Both Myrothecium verrucaria and the extracellular bilirubin oxidase were tested for their ability to decolorize indigo carmine. The biosorption and biodegradation of the dye were detected during the process of...

  18. The implication of Dichomitus squalens laccase isoenzymes in dye decolorization by immobilized fungal cultures

    Czech Academy of Sciences Publication Activity Database

    Šušla, Martin; Novotný, Čeněk; Svobodová, Kateřina

    2007-01-01

    Roč. 98, - (2007), s. 2109-2115 ISSN 0960-8524 R&D Projects: GA ČR GP526/06/P102; GA AV ČR IAA6020411 Institutional research plan: CEZ:AV0Z5020903 Keywords : decolorization * dichotomitus squalens * laccase Subject RIV: EE - Microbiology, Virology Impact factor: 3.103, year: 2007

  19. ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye

    Directory of Open Access Journals (Sweden)

    Youxun Liu

    2015-01-01

    Full Text Available Efficient reuse and regeneration of spent mediators are highly desired for many of the laccases’ biotechnology applications. This investigation demonstrates that a redox mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS covalently attached to silica nanoparticles (SNPs effectively mediated dye decolorization catalyzed by laccase. Characteristics of ABTS-modified silica nanoparticles (ABTS-SNPs were researched by scanning electron microscopy and Fourier-transformed infrared spectroscopy. When ABTS and ABTS-SNPs were used as laccase mediators, the decolorization yields of 96 and 95% were, respectively, obtained for indigo carmine dye. The results suggest that ABTS immobilized on SNPs can be used as laccase mediators as they retain almost the same efficiency as the free ABTS. The oxidized ABTS-SNPs were regenerated by their reduction reaction with ascorbic acid. Decolorization efficiency of regenerated ABTS-SNPs and their initial forms were found to be almost equivalent. Six reuse cycles for spent ABTS-SNPs were run for the treatment of indigo carmine, providing decolorization yields of 96–77%. Compared with free mediator, the immobilized mediators have the advantage of being easily recovered, regenerated, and reused making the whole process environmentally friendly.

  20. OPTIMIZATION OF REACTIVE BLUE 19 DECOLORIZATION BY GANODERMA SP. USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    1M. Mohammadian Fazli, *1A. R. Mesdaghinia, 1K. Naddafi, 1S. Nasseri , 1M. Yunesian, 2M. Mazaheri Assadi, 3S. Rezaie, 4H. Hamzehei

    2010-01-01

    Full Text Available Synthetic dyes are extensively used in different industries. Dyes have adverse impacts such as visual effects, chemical oxygen demand, toxicity, mutagenicity and carcinogenicity characteristics. White rot fungi, due to extracellular enzyme system, are capable to degrade dyes and various xenobiotics. The aim of this study was to optimize decolorization of reactive blue 19 (RB19 dye using Ganoderma sp. fungus. Response Surface Methodology (RSM was used to study the effect of independent variables, namely glycerol concentration (15, 20 and 25 g/L, temperature (27, 30 and 33 oC and pH (5.5, 6.0 and 6.5 on color removal efficiency in aqueous solution. From RSM-generated model, the optimum conditions for RB19 decolorization were identified to be at temperature of 27oC, glycerol concentration of 19.14 mg/L and pH=6.3. At the optimum conditions, predicted decolorization was 95.3 percent. The confirmatory experiments were conducted and confirmed the results by 94.89% color removal. Thus, this statistical approach enabled to improve reactive blue 19 decolorization process by Ganoderma sp. up to 1.27 times higher than non-optimized conditions.

  1. Decolorization and detoxification of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus

    Czech Academy of Sciences Publication Activity Database

    Caiseri, L.; Varese, G.C.; Anastasi, A.; Prigione, V.; Svobodová, Kateřina; Marchisio, V.F.; Novotný, Čeněk

    2008-01-01

    Roč. 53, č. 1 (2008), s. 44-52 ISSN 0015-5632 R&D Projects: GA AV ČR IAA6020411 Institutional research plan: CEZ:AV0Z50200510 Keywords : decolorization * detoxification * trametes pubescens Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  2. Decolorization of Remazol Black-B azo dye in soil by fungi

    Directory of Open Access Journals (Sweden)

    Azeem Khalid*, Sadia Batool, Muhammad Tariq Siddique, Zilli Huma Nazli, Riffat Bibi, Shahid Mahmood and Muhammad Arshad

    2011-04-01

    Full Text Available Textile industry is known to release huge amount of dyes in the water and soil environments during the dyeingprocess. The present study was planned with the aim to remove azo dye toxicants from the soil using fungal strains.The fungi were isolated by using Remazol Black-B azo dye as the sole source of C and N. Ten isolates were initiallyselected for testing their decolorization potential in the liquid medium. Three most effective strains were used tostudy the decolorization of Remazol Black-B in soil. The strain S4 was found to be very effective in removing thedye Remazol Black-B from liquid medium as well as in soil suspension. More than 95% decolorization by the strainS4 was observed in soil under optimal incubation conditions. Overall, the dye decolorization was maximum at 100mg dye kg-1 soil at pH 7-8 under static conditions. Glucose, moisture and aeration also affected the decolorizationefficacy of the fungal strain in soil. This study implies that fungi could be used for bioremediation of dyecontaminatedsites.

  3. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  4. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.

    Science.gov (United States)

    Daneshvar, N; Oladegaragoze, A; Djafarzadeh, N

    2006-02-28

    Electrocoagulation (EC) is one of the most effective techniques to remove color and organic pollutants from wastewater, which reduces the sludge generation. In this paper, electrocoagulation has been used for the removal of color from solutions containing C. I. Basic Red 46 (BR46) and C. I. Basic Blue 3 (BB3). These dyes are used in the wool and blanket factories for fiber dyeing. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration and solution conductivity were studied in an attempt to reach higher removal efficiency. The findings in this study shows that an increase in the current density up to 60-80 A m(-2) enhanced the color removal efficiency, the electrolysis time was 5 min and the range of pH was determined between 5.5 and 8.5 for two mentioned dye solutions. It was found that for, the initial concentration of dye in solutions should not be higher than 80 mg l(-1) in order to achieve a high color removal percentage. The optimum conductivity was found to be 8 mS cm(-1), which was adjusted using proper amount of NaCl with the dye concentration of 50 mg l(-1). Electrical energy consumption in the above conditions for the decolorization of the dye solutions containing BR46 and BB3 were 4.70 kWh(kgdye removed)(-1) and 7.57 kWh(kgdye removed)(-1), respectively. Also, during the EC process under the optimized conditions, the COD decreased by more than 75% and 99% in dye solutions containing BB3 and BR46, respectively.

  5. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  6. A facility for low energy charged particle induced reaction studies

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Yu, L.D.; Intarasiri, S.; Tippawan, U.

    2000-01-01

    In Chiang Mai, a highly stable low energy ion accelerator (0 - 350 kV) facility is being established. A subnano-second pulsing system will be incorporated into the beam transport line. The detecting system will consist of a time-of-flight charged particle spectrometer and a high resolution gamma-ray system. The new facility will be used in the studies of low energy heavy ion backscattering and charged particle induced cross section measurement in the interests of material characterization and nucleosynthesis. (author)

  7. Productivity effects of technology diffusion induced by an energy tax

    International Nuclear Information System (INIS)

    Walz, R.

    1999-01-01

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  8. Reactions induced by low energy electrons in cryogenic films

    International Nuclear Information System (INIS)

    Bass, A.D.; Sanche, L.

    2003-01-01

    We review recent research on reactions (including dissociation) initiated by low-energy electron bombardment of monolayer and multilayer molecular solids at cryogenic temperatures. With incident electrons of energies below 20 eV, dissociation is observed by the electron stimulated desorption (ESD) of anions from target films and is attributed to the processes of dissociative electron attachment (DEA) and to dipolar dissociation. It is shown that DEA to condensed molecules is sensitive to environmental factors such as the identity of co-adsorbed species and film morphology. The effects of image-charge induced polarization on cross-sections for DEA to CH3Cl are also discussed. Taking as examples, the electron-induced production of CO within multilayer films of methanol and acetone, it is shown that the detection of electronic excited states by high resolution electron energy loss spectroscopy can be used to monitor electron beam damage. In particular, the incident energy dependence of the CO indicates that below 19 eV, dissociation proceeds via the decay of transient negative ions (TNI) into electronically excited dissociative states. The electron induced dissociation of biomolecular targets is also considered, taking as examples the ribose analog tetrahydrofuran and DNA bases adenine and thymine, cytosine and guanine. The ESD of anions from such films also show dissociation via the formation of TNI. In multilayer molecular solids, fragment species resulting from dissociation, may react with neighboring molecules, as is demonstrated in anion ESD measurements from films containing O 2 and various hydrocarbon molecules. X-ray photoelectron spectroscopy measurements reported for electron irradiated monolayers of H 2 O and CF 4 on a Si - H passivated surface further show that DEA is an important initial step in the electron-induced chemisorption of fragment species

  9. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  10. Safety consequences of the release of radiation induced stored energy

    International Nuclear Information System (INIS)

    Prij, J.

    1994-08-01

    Due to the disposal of HLW in a salt formation gamma energy will be deposited in the rock salt. Most of this energy will be converted into heat, whilst a small part will create defects in the salt crystals. Energy is stored in the damaged crystals. Due to uncertainties in the models and differences in the disposal concepts the estimated values for the stored energy range from 10 to 1000 J/g in the most heavily damaged crystals close to the waste containers. The amount of radiation damage decays exponentially with increasing distance from the containers and at distances larger than 0.2 m the stored energy can be neglected. Given the uncertainties in the model predictions and in the possible release mechanism an instantaneous release of stored energy cannot be excluded completely. Therefore the thermo-mechanical consequences of a postulated instantaneous release of an extremely high amount of radiation induced stored energy have been estimated. These estimations are based on the quasi-static solutions for line and point sources. To account for the dynamic effects and the occurrence of fractures an amplification factor has been derived from mining experience with explosives. A validation of this amplification factor has been given using post experimental observations of two nuclear explosions in a salt formation. For some typical disposal concepts in rock salt the extent of the fractured zone has been estimated. It appeared that the radial extent of the fractured zone is limited to 5 m. Given the much larger distance between the individual boreholes and the distance between the boreholes and the boundary of the salt formation (more than 100 m), the probability of a release of radiation induced stored energy creating a pathway for the nuclides from the containers to the groundwater, is extremely low. The radiological consequences of a groundwater intrusion scenario induced by this very unprobable pathway are bounded by the 'standard' groundwater intrusion

  11. Decolorization of humic acids and alkaline lignin derivative by an anamorphic Bjerkandera adusta E59 strain isolated from soil

    Energy Technology Data Exchange (ETDEWEB)

    Kornillowicz-Kowalska, T.; Ginalska, G.; Belcarz, A.; Iglik, H. [University of Life Sciences, Lublin (Poland). Dept. of Microbiology

    2008-07-01

    An anamorphic Bjerkandera adusta R59 strain, isolated from soil, was found to decolorize post-industrial lignin alkaline fraction, humic acids isolated from two kinds of soil and from brown coal. The drop of methoxyphenolic compound levels in liquid B. adusta cultures containing lignin or humic acids was correlated with decolorization of studied biopolymers, which suggests their partial biodegradation. It was shown that this process was Coupled with the induction of secondary metabolism (idiophase), and highest peroxidase activity in culture medium and appearance of aerial mycelium. Decolorization of lignin and humic acids from lessive soil and brown coal depended on glucose presence (cometabolism). Decolorization of humic acid from chernozem was related partially to adsorption by fungal mycelium.

  12. Decolorization of molasses spent wash by the white-rot fungus Flavodon flavus, isolated from a marine habitat

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Rivonkar, G.

    Flavodon flavus (Klotzsch) Ryvarden, a basidiomycete (NIOCC strain 312) isolated from decomposing leaves of a sea grass, decolorized pigments in molasses spent wash (MSW) by 80% after 8 days of incubation, when used at concentrations of 10% and 50...

  13. Piezoelectric energy harvesting from flow-induced vibration

    International Nuclear Information System (INIS)

    Wang, D-A; Ko, H-H

    2010-01-01

    A new piezoelectric energy harvester for harnessing energy from flow-induced vibration is developed. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. A finite element model is developed in order to estimate the generated voltage of the piezoelectric laminate subjected to a distributed load. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 2.2 V pp and an instantaneous output power of 0.2 µW are generated when the excitation pressure oscillates with an amplitude of 1.196 kPa and a frequency of about 26 Hz. The solution of the generated voltage based on the finite element model agrees well with the experiments. Based on the finite element model, the effects of the piezoelectric film dimensions, the fluid pressure applied to the harvester and types of piezoelectric layer on the output voltage of the harvester can be investigated.

  14. Potential of Basidiomycetous Fungi Isolated from Gunung Barus Forest North Sumatera in Decolorization of Wastewater of Textile Industry

    Science.gov (United States)

    Munir, E.; Priyani, N.; Suryanto, D.; Naimah, Z.

    2017-03-01

    A study of basidiomycetous fungi in decolorization of wastewater of textile industry has been started in our laboratory. The objective of this study was to obtain potential isolates and to examine their decolorization acitity. The fungi were isolated from local forest, Gunung Barus Forest, in North Sumatera and screened their ligninolytic activity qualitatively by bavendam method and the waste was obtained from local textile industry in Medan. Nineteen fungal isolates grew on plate agar medium containing 100% of waste supplemented with 2% glucose, and 6 of those exhibited good growth when glucose in the media was reduced to 1%. Surprisingly, these six potential isolates grew, although relatively at lower rate, when glucose was not included in the media. Meanwhile, there was no substantial decolorization of media could be observed on all plates cultures. Analyses of decolorization on liquid condition containing 25% of wastewater and no glucose showed that fungal grew at the bottom culture flask. All 6 isolates exhibited decolorization activity. Interestingly, mass of mycelia growth at the bottom absorbed dyes and dissolved suspended solid which was seemingly separated from very clean solution medium surrounding. These results indicated that the cultures utilized carbon source from waste and the extracellular matrixes produced by fungal isolates might involve in decolorization of textile wastewater.

  15. DECOLORIZATION OF TEXTILE DYES BY NEWLY ISOLATED TRAMETES VERSICOLOR STRAIN Sevil PİLATİN, Buket KUNDUHOĞLU

    Directory of Open Access Journals (Sweden)

    Buket KUNDUHOĞLU

    2011-08-01

    Full Text Available In this century, the amount of industrial produces and their consumption has increased tremendously. Along with this increase, accumulation of industrial waste and its effect on nature has causedserious problems. Because of including various chemicals and especially dye, textile waste water is one of the most hazardous industrial wastes. Color is the most important pollutant in waste water and it should be decolorized. Decolorization is more important than degradation of organic substances from waste water. Even a small amount of dye found changes the color of rivers, lakes and other waterresources, and reduces the penetration of light and solubility of gases. White rot fungus are used as a biological system in degradation and decolorizing of textile dyes.In this study, parameters for decolorization of several textile dyes (Blue 49, Orange 12, Orange 13, Red 31, Black 5, RBBR by newly isolated Trametes versicolor M96was studied.It has been determined that pH, amount of inoculum, shaking speed (rpm, dye concentration and temperature are important factors in decolorization of the studied dyes. The maximum decolorization was found pH 4.5, amount of inoculums 50 ml, shaking speed 200 rpm, dye concentration 50 mg/l and heat 30 °C.

  16. Radiation induced degradation of dyes-An overview

    International Nuclear Information System (INIS)

    Rauf, M.A.; Ashraf, S. Salman

    2009-01-01

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as ·H, ·OH and e aq - are taken into account as reported by various researchers. Literature citations in this area show that e aq - is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by ·OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  17. Correlation-induced spectral changes and energy conservation

    International Nuclear Information System (INIS)

    Agarwal, G.S.; Wolf, E.

    1996-01-01

    An energy conservation law is derived for fields generated by random, statistically stationary, scalar sources of any state of coherence. It is shown that correlation-induced spectral changes are in strict agreement with this law and that, basic to the understanding of such changes, is a distinction that must be made between the spectrum of a source and the spectrum of the field that the source generates. This distinction, which is obviously relevant for spectroscopy, does not appear to have been previously recognized. copyright 1996 The American Physical Society

  18. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  19. Mass distributions in nucleon-induced fission at intermediate energies

    CERN Document Server

    Duijvestijn, M C; Hambsch, F J

    2001-01-01

    Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).

  20. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  1. Synthesis and Characterization Of CaMgO2 Nanoparticles Photocatalyst For the Decolorization Of Orange G Dye

    Directory of Open Access Journals (Sweden)

    Atheel Alwash

    2016-11-01

    Full Text Available A series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD, particle size analyzer, morphology by atomic force microscope (AFM and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was reduced from 4.1 to 3.6 eV for the CaMgO2 catalyst calcined at 400 and 600 °C respectively compared to pure oxide catalysts. The higher decolorization efficiency was 100% after 60 min of photocatalytic reaction for CaMgO2 calcined at 600 °C compared to CaO and MgO with catalytic activity of 58% and 27% respectively.

  2. Decolorization and chemical regeneration of granular activated carbon used in citric acid refining

    Directory of Open Access Journals (Sweden)

    Kang Sun

    2009-04-01

    Full Text Available Citric acid fermentation (CAF liquor decolorization by granular activated carbon (GAC was studied and an improved chemical regeneration method of the exhausted GAC by the color of CAF liquor was investigated. The effects of the GAC dosage, time and temperature on the decoloring efficiency (DE % were studied. The DE % of the original GAC was 91 %. The regeneration efficiency (RE % using chemical regents was 104 % of the original GAC. Hot water as cheap reagent was found to be much helpful to the regeneration efficiency. Using oxidant and surfactant in addition to just using NaOH solution can recover 10 % more adsorption capacity of renewed GAC. The adding dosage of oxidant is good at 3 % of exhausted GAC weight; that of surfactant is good at 0.1 %. Comparing with steam regeneration method, high regeneration yield (> 95 % of chemical method was an attractive economic factor. The results of this investigation can be as helpful reference for citric acid manufacturer expanding profits.

  3. Effects of glucose on the Reactive Black 5 (RB5 decolorization by two white rot basidiomycetes

    Directory of Open Access Journals (Sweden)

    Tony Hadibarata

    2011-11-01

    Full Text Available The capacities of glucose in the decolorization process of an azo dye, Reactive Black 5 (RB5, by two white rot basidiomycetes, Pleurotus sp. F019 and Trametes sp. F054 were investigated. The results indicated that the dye degradation by the two fungi was extremely correlated with the presence of glucose in the culture and the process of fungi growth. Decolorization of 200 mg dye/l was increased from 62% and 69% to 100% within 20–25 h with the increase of glucose from 5 to 15 g/l, and the activity of manganese dependent peroxidase (MnP increased by 2–9 fold in this case. Hydrogen peroxide of 0.55 mg/l and 0.43 mg/l were detected in 10 h in Pleurotus sp. F019 and Trametes sp. F054 cultures.

  4. Energy demand, economic growth, and energy efficiency - the Bakun dam-induced sustainable energy policy revisited

    International Nuclear Information System (INIS)

    Keong, C.Y.

    2005-01-01

    In embarking on a dynamic course of economic development and industrial modernism, Malaysia sees the need to increase its electricity generation capacity through the development of a mega-dam project - the Bakun dam. Although hydroelectricity generation offers one of the benign options in accommodating the increasing energy consumption per capita in Malaysia, it is argued that the construction of Bakun's dam which involves a complete and irreversible destruction of 69,640 ha of old forest ecosystem remains a difficult and uncertain endeavour. It is further argued that apart from mega-dam technology, there are also other means to orchestrate a sustainable energy system in Malaysia. These include the implementation of demand and supply initiatives, such as the deployment of energy saving technology or influencing behavioral change towards a sustainable energy consumption pattern

  5. Decolorization of dyes with copper(II)/organic acid/hydrogen peroxide systems

    Czech Academy of Sciences Publication Activity Database

    Shah, Vishal; Verma, P.; Stopka, Pavel; Gabriel, Jiří; Baldrian, Petr; Nerud, František

    2003-01-01

    Roč. 46, - (2003), s. 287-292 ISSN 0926-3373 R&D Projects: GA ČR GA526/01/0915; GA ČR GA203/01/0944 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z5020903 Keywords : copper * decolorization * free radicals Subject RIV: EE - Microbiology, Virology Impact factor: 3.476, year: 2003

  6. Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-qian, E-mail: shiqianli04@tom.com [College of Resource and Environmental Science, Wuhan University, Hubei Key Laboratory of Biomass-resource Chemical and Environment Bio-technology, Wuhan 430079 (China); Department of Biology and Chemical Engineering, FuQing Branch of Fujian Normal University, Fuqing 350300 (China); Zhou, Pei-jiang; Zhang, Wan-shun [College of Resource and Environmental Science, Wuhan University, Hubei Key Laboratory of Biomass-resource Chemical and Environment Bio-technology, Wuhan 430079 (China); Chen, Sheng [Department of Biology and Chemical Engineering, FuQing Branch of Fujian Normal University, Fuqing 350300 (China); Peng, Hong [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Hubei, Wuhan 430072 (China)

    2014-12-15

    Highlights: • Preparation of ZnO inserted in rectorite as photocatalyst in methylene blue photodegradation. • The ZnO/rectorite can be used as adsorbents and photocatalysts. • The ZnO/rectorite system was easy to be gathered and recycled. • Inferred ZnO/rectorite the photocatalytic degradation methylene blue of aqueous micro mechanism. - Abstract: Preparation of a nanometer zinc oxide/rectorite (ZnO/REC) composites photocatalyst based on natural rectorite was conducted using a hydrothermal intercalation method. The structure, thermal property, and surface morphology of ZnO/REC were characterized by X-ray diffractor (XRD), thermogravimetric analysis (TGA), high-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) techniques. The photocatalytic activity of ZnO/REC was evaluated by photocatalytic decolorization of methylene blue (MB) in aqueous solution as a model pollutant under simulated sunlight irradiation. The HRTEM results revealed that well-dispersed and uniform ZnO/REC nanocomposites with diameters of 10 nm were embedded in rectorite. The ZnO/REC nanocomposite exhibited high photocatalytic activity under simulated solar irradiation. After 2 h of irradiation by simulated solar light, over 99% of methylene blue solution (15 mg/L) was decolorized with 0.9 g/L of the photocatalyst. The ZnO/REC was reusable, which meant that the adsorption photocatalytic decolorization process could be operated at a relatively low cost. Since this process does not require the addition of hydrogen peroxide but uses sunlight, it can be developed as an economically feasible and environmentally friendly method to decolorize or treat dye wastewater using solar.

  7. Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    International Nuclear Information System (INIS)

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-01-01

    Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 °C for 2 h and also possesses high total pore volumes (0.41 cm³ g −1 ) and high specific BET surface area (161 m 2 g −1 ), which is nine times larger than that of the pristine (19 m 2 g −1 ). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic–inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: ► A two-step synthesis method was used to prepare the CTAB-Al-MO. ► The CTAB-Al-MO has the large basal spacing and high specific BET surface area. ► The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. ► The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  8. Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters

    Directory of Open Access Journals (Sweden)

    D. Marmanis

    2016-04-01

    Full Text Available The purpose of this paper is the investigation of the capability of electrochemical methods, such as electrocoagulation, electrooxidation and electro-Fenton for decolorization and degradation of synthetic aqueous solutions and actual dye house effluents containing nylanthrene red reactive dye. All electrochemical experiments with the synthetic dye solutions were conducted in electrochemical cell of volume 500 ml containing 200 mL of dye solution at concentration 50 mg/L and interelectrode distance of 1 cm. The three different electrochemical processes were analyzed, and their removal efficiencies were measured and evaluated. In addition, a flow diagram is designed for a continuously operated electrochemical process for remediation of synthetic and actual dye house effluents laden with nylanthrene dye. In the electrocoagulation process with aluminum electrodes, the colored aqueous dye solution was treated at the applied current densities of 5, 10 and 15 mA/cm2 and was quantitatively decolorized in 11, 9 and less than 6 minutes of electroprocessing time respectively. The electrooxidation process conducted with Ti/Pt and boron doped diamond (BDD electrodes, at the applied current density of 10 mA/cm2 led to the quantitative decolorization and destruction of the dye in 25 and 15 min respectively. In the electro-Fenton process with iron electrodes, supply of added hydrogen peroxide and applied current density of 10 mA/cm2, complete decolorization and degradation of the nylanthrene red dye occurred in 6 min. The actual polyamide textile dyeing effluent of same volume 200 mL with initial turbidity of 114 NTU and COD of 1755 mg/L was treated by electrocoagulation at the same applied current density of 10 mA/cm2. The turbidity was quantitatively eliminated in only 10 min, while COD was reduced by 74.5 % in 40 minutes of electrolysis time.

  9. Decolorization of synthetic dyes using a copper complex with glucaric acid

    Czech Academy of Sciences Publication Activity Database

    Verma, Pradeep; Shah, Vishal; Baldrian, Petr; Gabriel, Jiří; Stopka, Pavel; Trnka, T.; Nerud, František

    2004-01-01

    Roč. 54, - (2004), s. 291-295 ISSN 0045-6535 R&D Projects: GA ČR GA526/01/0915; GA ČR GA203/01/0944 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z5020903 Keywords : advanced oxidation processes * copper * decolorization Subject RIV: EE - Microbiology, Virology Impact factor: 2.359, year: 2004

  10. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  11. Panus tigrinus as a potential biomass source for Reactive Blue decolorization: Isotherm and kinetic study

    Directory of Open Access Journals (Sweden)

    Monawar Munjid Mustafa

    2017-03-01

    Conclusion: The biosorption process provided vital information on the process parameters required to obtain the optimum level of dye removal. The isotherm study indicated the homogeneous distribution of active sites on the biomass surface, and the kinetic study suggested that chemisorption is the rate-limiting step that controlled the biosorption process. According to the obtained results, P. tigrinus biomass can be used effectively to decolorize textile dyes and tackle the pollution problems in the environment.

  12. Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2016-01-01

    Full Text Available A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV and wake-induced vibrations (WIV by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.

  13. Islet transplantation in diabetic rats normalizes basal and exercise-induced energy metabolism

    NARCIS (Netherlands)

    Houwing, Harmina; Benthem, L.; Suylichem, P.T.R. van; Leest, J. van der; Strubbe, J.H.; Steffens, A.B.

    Transplantation of islets of Langerhans in diabetic rats normalizes resting glucose and insulin levels, but it remains unclear whether islet transplantation restores resting and exercise-induced energy metabolism. Therefore, we compared energy metabolism in islet transplanted rats with energy

  14. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  15. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    Science.gov (United States)

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  16. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  17. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  18. Anodic fabrication of advanced titania nanotubes photocatalysts for photoelectrocatalysis decolorization of Orange G dye.

    Science.gov (United States)

    Juang, Yaju; Liu, Yijin; Nurhayati, Ervin; Thuy, Nguyen Thi; Huang, Chihpin; Hu, Chi-Chang

    2016-02-01

    Titania nanotubes (TNTs) were fabricated on Ti mesh substrates by the anodizing technique. The effects of preparation variables, such as anodizing voltage, time and calcination temperature on the textural characteristics and photocatalytic activity of TNTs were investigated. The surface morphology, crystalline phase, and chemical composition were analyzed using field emission-scanning electron microscopy and X-ray diffraction. The photo-electrochemical properties of TNTs were examined by voltammetry. The TNTs were tested as a photoanode for advanced oxidation processes, such as photocatalytic, electrocatalytic, and photoelectrocatalytic decolorization of Orange G dye. The well-arranged TNTs electrode prepared in this work showed a high photocurrent density of 101 µA cm(-2) at an optimum length-to-diameter aspect ratio of 31.2. In dye decolorization tests, the electrochemical photocatalytic system using TNTs as the photoanode achieved total decolorization and 64% mineralization under extended reaction time. These results show that TNTs prepared by this method is greatly stable in prolonged use and suitable as a photoanode in the photocatalytic/photoelectrocatalytic treatments of dye wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  20. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Bor-Yann, E-mail: bychen@niu.edu.tw [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Yen, Chia-Yi [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China)

    2009-08-15

    This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes - Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141) and non-naphthol type azo dyes - Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO{sub 2}(CH{sub 2}){sub 2}SO{sub 4}{sup -} in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para > ortho > meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of

  1. Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: A surfactant free laser ablation approach

    Science.gov (United States)

    Sai Siddhardha, R. S.; Lakshman Kumar, V.; Kaniyoor, Adarsh; Sai Muthukumar, V.; Ramaprabhu, S.; Podila, Ramakrishna; Rao, A. M.; Ramamurthy, Sai Sathish

    2014-12-01

    A facile surfactant free laser ablation mediated synthesis (LAMS) of gold-graphene composite is reported here. The material was characterized using transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powdered X-ray diffraction, Raman spectroscopy, Zeta potential measurements and UV-Visible spectroscopic techniques. The as-synthesized gold-graphene composite was effectively utilized as catalyst for decolorization of 4 important textile and laser dyes. The integration of gold nanoparticles (AuNPs) with high surface area graphene has enhanced the catalytic activity of AuNPs. This enhanced activity is attributed to the synergistic interplay of pristine gold's electronic relay and π-π stacking of graphene with the dyes. This is evident when the Rhodamine B (RB) reduction rate of the composite is nearly twice faster than that of commercial citrate capped AuNPs of similar size. In case of Methylene blue (MB) the rate of reduction is 17,000 times faster than uncatalyzed reaction. This synthetic method opens door to laser ablation based fabrication of metal catalysts on graphene for improved performance without the aid of linkers and surfactants.

  2. Facile Preparation of Phosphotungstic Acid-Impregnated Yeast Hybrid Microspheres and Their Photocatalytic Performance for Decolorization of Azo Dye

    Directory of Open Access Journals (Sweden)

    Lan Chen

    2013-01-01

    Full Text Available Phosphotungstic acid (HPW-impregnated yeast hybrid microspheres were prepared by impregnation-adsorption technique through tuning pH of the aqueous yeast suspensions. The obtained products were characterized by field emission scanning electron microscopy (FE-SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, thermogravimetry-differential scanning calorimetry (TG-DSC, and ultraviolet-visible spectrophotometry (UV-Vis, respectively. FE-SEM and EDS ascertain that the HPW has been effectively introduced onto the surface of yeast, and the resulting samples retain ellipsoid shape, with the uniform size (length 4.5 ± 0.2 μm, width 3.0 ± 0.3 μm and good monodispersion. XRD pattern indicates that the main crystal structure of as-synthesized HPW@yeast microsphere is Keggin structure. TG-DTA states that the HPW in composites has better thermal stability than pure HPW. Fourier transform infrared spectroscopy (FT-IR elucidates that the functional groups or chemical bonds inherited from the pristine yeast cell were critical to the assembling of the composites. UV-Vis shows that the obtained samples have a good responding to UV light. The settling ability indicates that the hybrid microspheres possess an excellent suspension performance. In the test of catalytic activity, the HPW@yeast microsphere exhibits a high photocatalytic activity for the decoloration of Methylene blue and Congo red dye aqueous solutions, and there are a few activity losses after four cycles of uses.

  3. High energy hadron-induced errors in memory chips

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R.J. [University of Colorado, Boulder, CO (United States)

    2001-09-01

    We have measured probabilities for proton, neutron and pion beams from accelerators to induce temporary or soft errors in a wide range of modern 16 Mb and 64 Mb dRAM memory chips, typical of those used in aircraft electronics. Relations among the cross sections for these particles are deduced, and failure rates for aircraft avionics due to cosmic rays are evaluated. Measurement of alpha pha particle yields from pions on aluminum, as a surrogate for silicon, indicate that these reaction products are the proximate cause of the charge deposition resulting in errors. Heavy ions can cause damage to solar panels and other components in satellites above the atmosphere, by the heavy ionization trails they leave. However, at the earth's surface or at aircraft altitude it is known that cosmic rays, other than heavy ions, can cause soft errors in memory circuit components. Soft errors are those confusions between ones and zeroes that cause wrong contents to be stored in the memory, but without causing permanent damage to the circuit. As modern aircraft rely increasingly upon computerized and automated systems, these soft errors are important threats to safety. Protons, neutrons and pions resulting from high energy cosmic ray bombardment of the atmosphere pervade our environment. These particles do not induce damage directly by their ionization loss, but rather by reactions in the materials of the microcircuits. We have measured many cross sections for soft error upsets (SEU) in a broad range of commercial 16 Mb and 64 Mb dRAMs with accelerator beams. Here we define {sigma} SEU = induced errors/number of sample bits x particles/cm{sup 2}. We compare {sigma} SEU to find relations among results for these beams, and relations to reaction cross sections in order to systematize effects. We have modelled cosmic ray effects upon the components we have studied. (Author)

  4. High energy hadron-induced errors in memory chips

    International Nuclear Information System (INIS)

    Peterson, R.J.

    2001-01-01

    We have measured probabilities for proton, neutron and pion beams from accelerators to induce temporary or soft errors in a wide range of modern 16 Mb and 64 Mb dRAM memory chips, typical of those used in aircraft electronics. Relations among the cross sections for these particles are deduced, and failure rates for aircraft avionics due to cosmic rays are evaluated. Measurement of alpha pha particle yields from pions on aluminum, as a surrogate for silicon, indicate that these reaction products are the proximate cause of the charge deposition resulting in errors. Heavy ions can cause damage to solar panels and other components in satellites above the atmosphere, by the heavy ionization trails they leave. However, at the earth's surface or at aircraft altitude it is known that cosmic rays, other than heavy ions, can cause soft errors in memory circuit components. Soft errors are those confusions between ones and zeroes that cause wrong contents to be stored in the memory, but without causing permanent damage to the circuit. As modern aircraft rely increasingly upon computerized and automated systems, these soft errors are important threats to safety. Protons, neutrons and pions resulting from high energy cosmic ray bombardment of the atmosphere pervade our environment. These particles do not induce damage directly by their ionization loss, but rather by reactions in the materials of the microcircuits. We have measured many cross sections for soft error upsets (SEU) in a broad range of commercial 16 Mb and 64 Mb dRAMs with accelerator beams. Here we define σ SEU = induced errors/number of sample bits x particles/cm 2 . We compare σ SEU to find relations among results for these beams, and relations to reaction cross sections in order to systematize effects. We have modelled cosmic ray effects upon the components we have studied. (Author)

  5. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor.

    Science.gov (United States)

    Zhang, Ruobing; Zhang, Chi; Cheng, XingXin; Wang, Liming; Wu, Yan; Guan, Zhicheng

    2007-04-02

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m(3)/h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 microS/cm. The decolorization reaction has a high rate constant (k=0.0269 min(-1)) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k(min)=0.01603 min(-1)), then increases to 0.02105 min(-1) when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment.

  6. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor

    International Nuclear Information System (INIS)

    Zhang Ruobing; Zhang Chi; Cheng Xingxin; Wang Liming; Wu Yan; Guan Zhicheng

    2007-01-01

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m 3 /h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 μS/cm. The decolorization reaction has a high rate constant (k = 0.0269 min -1 ) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k min = 0.01603 min -1 ), then increases to 0.02105 min -1 when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment

  7. Decolorization of Reactive Blue 19 Dye from Textile Wastewater by the UV/H2O2 Process

    Science.gov (United States)

    Rezaee, Abbas; Taghi Ghaneian, Mohammad; Jamalodin Hashemian, Sayed; Moussavi, Gholamreza; Khavanin, Ali; Ghanizadeh, Ghader

    Photo-oxidation of dyes is a new concern among researchers since it offers an attractive method for decoloration of dyes and breaks them into simple mineral forms. An advanced oxidation process, UV/H2O2, was investigated in a laboratory scale photoreactor for decolorization of the Reactive blue 19 (RB19) dye from synthetic textile wastewater. The effects of operating parameters such as hydrogen peroxide dosage, pH, initial dye concentration and UV dosage, on decolorization have been evaluated. The RB19 solution was completely decolorized under optimal hydrogen peroxide dosage of 2.5 mmol L-1 and low-pressure mercury UV-C lamps (55 w) in less than 30 min. The decolorization rate followed pseudo-first order kinetics with respect to the dye concentration. The rate increased linearly with volumetric UV dosage and nonlinearly with increasing initial hydrogen peroxide concentration. It has been found that the degradation rate increased until an optimum of hydrogen peroxide dosage, beyond which the reagent exerted an inhibitory effect. From the experimental results, the UV/H2O2 process was an effective technology for RB19 dye treatment in wastewater.

  8. Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst

    International Nuclear Information System (INIS)

    Chatterjee, Debabrata; Patnam, Vidya Rupini; Sikdar, Anindita; Joshi, Priyanka; Misra, Rohit; Rao, Nageswara N.

    2008-01-01

    Photocatalytic decoloration kinetics of triazine (Reactive Red 11, Reactive Red 2, and Reactive Orange 84) and vinylsulfone type (Reactive Orange 16 and Reactive Black 5) of reactive dyes have been studied spectrophotometrically by following the decrease in dye concentration with time. At ambient conditions, over 90-95% decoloration of above dyes have been observed upon prolonged illumination (15 h) of the reacting system with a 150 W xenon lamp. It was found that the decoloration reaction followed first-order kinetics. The values of observed rate constants were found to be dependent of the structure of dyes at low dye concentration, but independent at higher concentration. It also reports for the first time the decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst. Rate of decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst is governed by the adsorptivity of the particular dye onto the surface of the TiO 2 photocatalyst

  9. Reduced toxicity of malachite green decolorized by laccase produced from Ganoderma sp. rckk-02 under solid-state fermentation.

    Science.gov (United States)

    Sharma, Abha; Shrivastava, Bhuvnesh; Kuhad, Ramesh Chander

    2015-10-01

    Statistical designs were applied for optimizing laccase production from a white-rot fungus, Ganoderma sp. rckk-02 under solid-state fermentation (SSF). Compared to unoptimized conditions [2,154 U/gds (Unit per gram of dry substrate)], the optimization process resulted in a 17.3-fold increase in laccase production (37,423 U/gds). The laccase produced was evaluated for its potential to decolorize a recalcitrant synthetic dye, malachite green. Laccase at dosage of 30 U/ml in presence of 1 mM of 1-hydroxybenzotriazole (HBT) almost completely decolorized 100 and 200 mg/l of malachite green in 16 and 20 h, respectively, at 30 °C, pH 5.5 and 150 rpm. While, higher dyes concentrations of 300, 400 and 500 mg/l were decolorized to 72, 62 and 55 % in 24, 28 and 32 h, respectively, under similar conditions. Furthermore, it was observed that the decolorized malachite green was less toxic towards the growth of five white-rot fungi tested viz. Crinipellis sp. RCK-1, Ganoderma sp. rckk-02, Coriolopsis Caperata RCK 2011, Phanerochaete chrysosporium K3 and Pycnoporous cinnabarinus PB. The present study demonstrates the potential of Ganoderma sp. rckk-02 to produce high titres of laccase under SSF, which can be exploited in conjunction with redox mediator for the decolorization of high concentrations of malachite green from water bodies.

  10. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    Science.gov (United States)

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  11. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Science.gov (United States)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  12. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  13. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  14. [Decolorization of the azo dye reactive red X-3B by an Al-Cu bimetallic system].

    Science.gov (United States)

    Fan, Jin-hong; Ma, Lu-ming; Wang, Hong-wu; Wu, De-li

    2008-06-01

    The decoloration mechanism and kinetics of the azo dye reactive red X-3B by an Al-Cu bimetallic system were investigated by measuring the dye removal, the TOC removal and the aniline concentration, and by adding EDTA as control experiments. The results showed the colority removal rate of X-3B reached 83% in the near neutral pH medium for 30 min and 96.4% for 120 min, in which, about 34% was due to the X-3B reduced to aniline, and about 20% and 30% was due to the flocculating of aluminum ions and surface adsorption of aluminum-fillings respectively. The decolorization of dyeing wastewater is a gradual reaction process, which first adsorbs a large number of dyeing ingredients and then carries out inner electrolysis reduction, improved effectively by the flocculating action of aluminum ions. The decolorization reaction appears to be a pseudo first-order reaction and increases with rising temperature.

  15. Chemometric formulation of bacterial consortium-AVS for improved decolorization of resonance-stabilized and heteropolyaromatic dyes.

    Science.gov (United States)

    Kumar, Madhava Anil; Kumar, Vaidyanathan Vinoth; Premkumar, Manickam Periyaraman; Baskaralingam, Palanichamy; Thiruvengadaravi, Kadathur Varathachary; Dhanasekaran, Anuradha; Sivanesan, Subramanian

    2012-11-01

    A bacterial consortium-AVS, consisting of Pseudomonas desmolyticum NCIM 2112, Kocuria rosea MTCC 1532 and Micrococcus glutamicus NCIM 2168 was formulated chemometrically, using the mixture design matrix based on the design of experiments methodology. The formulated consortium-AVS decolorized acid blue 15 and methylene blue with a higher average decolorization rate, which is more rapid than that of the pure cultures. The UV-vis spectrophotometric, Fourier transform infra red spectrophotometric and high performance liquid chromatographic analysis confirm that the decolorization was due to biodegradation by oxido-reductive enzymes, produced by the consortium-AVS. The toxicological assessment of plant growth parameters and the chlorophyll pigment concentrations of Phaseolus mungo and Triticum aestivum seedlings revealed the reduced toxic nature of the biodegraded products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Porcine placenta mitigates protein-energy malnutrition-induced fatigue.

    Science.gov (United States)

    Han, Na-Ra; Kim, Kyu-Yeop; Kim, Myong-Jo; Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2013-01-01

    Fatigue can be caused by a deficiency of nutrition or immune function. The goal of this study was to identify the effects of porcine placenta extract (PPE) and its constituents, amino acids (glutamic acid, glycine, arginine, and proline), on protein-energy malnutrition (PEM)-induced fatigue. Mice were administered a PEM diet and came to immunodeficient status. Simultaneously, the mice were administered PPE or amino acids and a forced swimming test (FST) was performed. We analyzed the levels of fatigue-related factors in serum, splenocytes, and muscles. In the FST, PPE or amino acids significantly decreased immobility times compared with the PEM diet. PPE or amino acids also significantly decreased the serum levels of fatigue-related factors after the FST. Additionally, PPE significantly decreased the levels of fatigue-related muscle parameters after the FST. In this in vitro study, PPE increased the mRNA and protein expression of Ki-67 and promoted the proliferation of splenocytes. PPE or amino acids significantly increased the levels of intracellular calcium and the translocation into the nucleus of nuclear factor of activated T-cells cytoplasmic in stimulated splenocytes. PPE or amino acids significantly decreased the production of fatigue-related inflammatory cytokines in the stimulated splenocytes. Additionally, the translocated levels of nuclear factor-κB in the nucleus and the degradation of the inhibitory protein, IκBα, in the cytosol were inhibited by PPE or amino acids. These results demonstrate that PPE and its constituents regulate PEM-induced fatigue through improving levels of immunity and decreasing fatigue-related factors. PPE may be a potential agent for a recovery from fatigue. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    Directory of Open Access Journals (Sweden)

    Nataša Ž. Šekuljica

    2015-01-01

    Full Text Available Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C. The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes.

  18. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  19. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    Science.gov (United States)

    Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  20. Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions.

    Science.gov (United States)

    Ntampegliotis, K; Riga, A; Karayannis, V; Bontozoglou, V; Papapolymerou, G

    2006-08-10

    The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H(2)O(2) and Fe(3+) and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl(-), CO(3)(2-) or HCO(3)(-) on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe(3+) and H(2)O(2) at molar ratios of H(2)O(2)/Fe(3+) from about 100 to 10. The addition of CO(3)(2-) and HCO(3)(-) substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl(-). At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.

  1. Decolorization of methylene blue in layered manganese oxide suspension with H2O2

    International Nuclear Information System (INIS)

    Zhang Lili; Nie Yulun; Hu Chun; Hu Xuexiang

    2011-01-01

    Highlights: → Layered birnessite-type manganese oxides exhibited a well-crystallized octahedral layer (OL) structure with β-MnOOH, α-MnOOH and γ-Mn 3 O 4 . → The catalyst was highly effective for the decolorization and degradation of methylene blue in the presence of H 2 O 2 at neutral pH. → The 1 O 2 and O 2 · - were the main reactive oxygen species in the reaction. - Abstract: Layered birnessite-type manganese oxides (Na-OL-1) were prepared via a redox reaction involving MnO 4 - and Mn 2+ under markedly alkaline conditions. According to the XRD analysis, the resulting material exhibited a well-crystallized octahedral layer (OL) structure with several different phases, including β-MnOOH, α-MnOOH and γ-Mn 3 O 4 . The catalyst was highly effective for the decolorization and degradation of methylene blue (MB) in the presence of H 2 O 2 at neutral pH. The tested MB was completely decolorized in Na-OL-1 suspension by the fraction dosing of H 2 O 2 (556.5 mM at the beginning and then 183.8 mM at 40 min). Based on the studies of electron spin resonance and the effect of radical scavengers, the 1 O 2 and O 2 · - were the main reactive oxygen species (ROS) in the reaction. It was found that both oxygen and ROS were generated from the decomposition of H 2 O 2 in Na-OL-1 suspension, wherein the decomposition pathways were proposed. The generation of H 2 O 2 in Na-OL-1 suspension at air atmosphere indicated that the existence of multivalent manganese oxides greatly enhanced the interfacial electron transfer, leading to the high activity of Na-OL-1.

  2. The effects of chemical coagulants on the decolorization of dyes by electrocoagulation using response surface methodology (RSM)

    Science.gov (United States)

    Butler, Erick B.; Hung, Yung-Tse; Mulamba, Oliver

    2017-09-01

    This study assessed the efficiency of electrocoagulation (ECF) coupled with an addition of chemical coagulant to decolorize textile dye. Tests were conducted using Box Behnken methodology to vary six parameters: dye type, weight, coagulant type, dose, initial pH and current density. The combination of electrocoagulation and chemical coagulation was able to decolorize dye up to 99.42 % in 30 min of treatment time which is remarkably shorter in comparison with using conventional chemical coagulation. High color removal was found to be contingent upon the dye type and current density, along with the interactions between the current density and the coagulant dose. The addition of chemical coagulants did enhanced treatment efficiency.

  3. Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Majcherczyk, A.; Novotný, Čeněk; Kuees, U.

    2007-01-01

    Roč. 99, - (2007), s. 463-471 ISSN 0960-8524 R&D Projects: GA AV ČR IAA6020411 Grant - others:XE(XE) Marie Curie Fellowship HPMT-CT-2001-00259; DE(DE) Deutsche Bundesstiftung Umwelt Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK ; O - operačné programy Keywords : irpex lacteus * dye decolorization * laccase Subject RIV: EE - Microbiology, Virology Impact factor: 3.103, year: 2007

  4. A topological extension of GR: Black holes induce dark energy

    International Nuclear Information System (INIS)

    Spaans, M

    2013-01-01

    A topological extension of general relativity is presented. The superposition principle of quantum mechanics, as formulated by the Feynman path integral, is taken as a starting point. It is argued that the trajectories that enter this path integral are distinct and thus that space-time topology is multiply connected. Specifically, space-time at the Planck scale consists of a lattice of three-tori that facilitates many distinct paths for particles to travel along. To add gravity, mini black holes are attached to this lattice. These mini black holes represent Wheeler's quantum foam and result from the fact that GR is not conformally invariant. The number of such mini black holes in any time-slice through four-space is found to be equal to the number of macroscopic (so long-lived) black holes in the entire universe. This connection, by which macroscopic black holes induce mini black holes, is a topological expression of Mach's principle. The proposed topological extension of GR can be tested because, if correct, the dark energy density of the universe should be proportional the total number of macroscopic black holes in the universe at any time. This prediction, although strange, agrees with current astrophysical observations.

  5. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

    Science.gov (United States)

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    2014-01-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127

  6. Energy balance in MeV neutron induced fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Deeliger, D.

    1992-01-01

    In this paper, general trends of energy balance changes with increasing incidence energy are described in the framework of a simple scission point model including semi-empirical temperature-dependent shell correction energies. In particular, the different behavior of the total kinetic energy (TKE) dependence for several fissioning nuclei (Th, U, Pu) is explained

  7. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue.

    Science.gov (United States)

    Chicatto, J A; Rainert, K T; Gonçalves, M J; Helm, C V; Altmajer-Vaz, D; Tavares, L B B

    2018-02-15

    In this work we have assessed the decolorization of textile effluents throughout their treatment in a solid-state fermentation (SSF) system. SSF assays were conducted with peach-palm (Bactris gasipaes) residue using the white rot fungus Ganoderma lucidum EF 31. The influence of the dye concentration and of the amounts of peach-palm residue and liquid phase on both the discoloration efficiency and enzyme production was studied. According to our results, independently of experimental conditions employed, laccase was the main ligninolytic enzyme produced by G. lucidum. The highest laccase activity was obtained at very low effluent concentrations, suggesting the existence of an inhibitory effect of higher concentrations on fungal metabolism. The highest percentage of color removal was reached when 10 grams of peach palm residue was moistened with 60 mL of the final effluent. In control tests carried out with the synthetic dye Remazol Brilliant Blue R (RBBR) decolorization efficiencies about 20% higher than that achieved with the industrial effluent were achieved. The adsorption of RBBR on peach-palm residue was also investigated. Equilibrium tests showed that the adsorption of this dye followed both Langmuir and Freundlich isotherms. Hence, our experimental results indicate that peach-palm residue is suitable substrate for both laccase production and color removal in industrial effluents.

  8. Decolorization Treatment of Copper Phthalocyanine Textile Dye Wastewater by Electrochemical Methods

    Directory of Open Access Journals (Sweden)

    K. Dermentzis

    2013-01-01

    Full Text Available Electrochemical decolorization and degradation treatment of aqueous copper phthalocyanine reactive dye solutions was comparatively studied by electrocoagulation, electrooxidation and electro-Fenton processes. In the electrocoagulation process with aluminum electrodes the colored aqueous solutions of initial pH 6.4 containing 50 mg L-1 copper phthalocyanine and 6 g L-1 NaCl were treated at applied current densities of 2.5 and 5 mA cm-2. Fast and 100% decolorization was achieved in 4 and 2 minutes of electroprocessing respectively. The indirect electrooxidation process was conducted in acidic electrolyte solutions containing 50 mg L-1 copper phthalocyanine and 6 g L-1 NaCl with Ti/Pt and graphite plate electrodes at the applied current density of 10 mA cm-2. Even after 90 minutes of electrolysis time the dye remained by 23 and 18.8 % respectively undegradable. By the direct and indirect electrooxidation with the same amount of Na2SO4 electrolyte and added H2O2 respectively and using the same electrodes, the copper phthalocyanine dye was not or was only barely degraded respectively. In the electro-Fenton process with Fe electrodes and added amounts of H2O2 at pH 3 and an applied current density of 5 mA/cm2 complete degradation of copper phthalocyanine occurred in 15 minutes.

  9. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes residue

    Directory of Open Access Journals (Sweden)

    J. A. Chicatto

    2018-02-01

    Full Text Available Abstract In this work we have assessed the decolorization of textile effluents throughout their treatment in a solid-state fermentation (SSF system. SSF assays were conducted with peach-palm (Bactris gasipaes residue using the white rot fungus Ganoderma lucidum EF 31. The influence of the dye concentration and of the amounts of peach-palm residue and liquid phase on both the discoloration efficiency and enzyme production was studied. According to our results, independently of experimental conditions employed, laccase was the main ligninolytic enzyme produced by G. lucidum. The highest laccase activity was obtained at very low effluent concentrations, suggesting the existence of an inhibitory effect of higher concentrations on fungal metabolism. The highest percentage of color removal was reached when 10 grams of peach palm residue was moistened with 60 mL of the final effluent. In control tests carried out with the synthetic dye Remazol Brilliant Blue R (RBBR decolorization efficiencies about 20% higher than that achieved with the industrial effluent were achieved. The adsorption of RBBR on peach-palm residue was also investigated. Equilibrium tests showed that the adsorption of this dye followed both Langmuir and Freundlich isotherms. Hence, our experimental results indicate that peach-palm residue is suitable substrate for both laccase production and color removal in industrial effluents.

  10. Fungal Waste-Biomasses as Potential Low-Cost Biosorbents for Decolorization of Textile Wastewaters

    Directory of Open Access Journals (Sweden)

    Antonella Anastasi

    2012-10-01

    Full Text Available The biosorption potential of three fungal waste-biomasses (Acremonium strictum, Acremonium sp. and Penicillium sp. from pharmaceutical companies was compared with that of a selected biomass (Cunninghamella elegans, already proven to be very effective in dye biosorption. Among the waste-biomasses, A. strictum was the most efficient (decolorization percentage up to 90% within 30 min with regard to three simulated dye baths; nevertheless it was less active than C. elegans which was able to produce a quick and substantial decolorization of all the simulated dye baths (up to 97% within 30 min. The biomasses of A. strictum and C. elegans were then tested for the treatment of nine real exhausted dye baths. A. strictum was effective at acidic or neutral pH, whereas C. elegans confirmed its high efficiency and versatility towards exhausted dye baths characterised by different classes of dyes (acid, disperse, vat, reactive and variation in pH and ionic strength. Finally, the effect of pH on the biosorption process was evaluated to provide a realistic estimation of the validity of the laboratory results in an industrial setting. The C. elegans biomass was highly effective from pH 3 to pH 11 (for amounts of adsorbed dye up to 1054 and 667 mg of dye g−1 biomass dry weight, respectively; thus, this biomass can be considered an excellent and exceptionally versatile biosorbent material.

  11. Electrochemical characteriztion of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell

    International Nuclear Information System (INIS)

    Sun Jian; Hu Yongyou; Hou Bin

    2011-01-01

    To achieve high power output based on simultaneously azo dye decolorization using microbial fuel cell (MFC), the bioanode responses during decolorization of a representative azo dye, Congo red, were investigated in an air-cathode single chambered MFC using representative electrochemical techniques. It has been found that the maximum stable voltage output was delayed due to slowly developed anode potential during Congo red decolorization, indicating that the electrons recovered from co-substrate are preferentially transferred to Congo red rather than the bioanode of the MFC and Congo red decolorization is prior to electricity generation. Addition of Congo red had a negligible effect on the Ohmic resistance (R ohm ) of the bioanode, but the charge-transfer resistance (R c ) and the diffusion resistance (R d ) were significantly influenced. The R c and R d firstly decreased then increased with increase of Congo red concentration, probably due to the fact that the Congo red and its decolorization products can act as electron shuttle for conveniently electrons transfer from bacteria to the anode at low concentration, but result in accelerated consumption of electrons at high concentration. Cyclic voltammetry results suggested that Congo red was a more favorable electron acceptor than the bioanode of the MFC. Congo red decolorization did not result in a noticeable decrease in peak catalytic current until Congo red concentration up to 900 mg l -1 . Long-term decolorization of Congo red resulted in change in catalytic active site of anode biofilm.

  12. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.

    Science.gov (United States)

    Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang

    2016-03-01

    The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.

  13. Immobilization of horseradish peroxidase onto kaolin by glutaraldehyde method and its application in decolorization of anthraquinone dye

    Directory of Open Access Journals (Sweden)

    Šekuljica Nataša Ž.

    2016-01-01

    Full Text Available The problem of environmental pollution day by day becomes more worrisome, primarily due to the large amounts of wastewater contaminated with various harmful organic compounds, discharged into the environment untreated or partially clean. Feasibility of use of horseradish peroxidase (Amoracia rusticana in the synthetic dyes decolorization was approved by many researchers. Among a number of supports used for the immobilization, it was found that natural clay, kaolin has excellent features which are a precondition for obtaining biocatalysts with the excellent performances. For this reason, a horseradish peroxidase was immobilized onto kaolin using glutaraldehyde as a cross-linking agent. Obtained biocatalyst was applied in the decolorization of anthraquinone dye C. I. Acid Violet 109. Under determined optimal conditions (pH 4.0, hydrogen peroxide concentration 0.6 mM, dye concentration 30 mg L-1, temperature 24ºC around 76 % of dye decolorization was achieved. Reusability study showed that resulting biocatalyst was possible to apply four times in the desired reaction with relatively high decolorization percentage. [Projekat Ministarstva nauke Republike Srbije, br. III-46010 i br. 172013

  14. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    Directory of Open Access Journals (Sweden)

    Sidra Ilyas

    2013-01-01

    Full Text Available In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synazol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synazol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synazol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50[degree sign]C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synazol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes.

  15. Decolorization of organic dyes by Irpex lacteus in a laboratory trickle-bed biofilter using various mycelium supports

    Czech Academy of Sciences Publication Activity Database

    Pocedič, J.; Hasal, P.; Novotný, Čeněk

    2009-01-01

    Roč. 84, č. 7 (2009), s. 1031-1042 ISSN 0268-2575 R&D Projects: GA MŠk LC06066; GA AV ČR IAA6020411 Institutional research plan: CEZ:AV0Z50200510 Keywords : dye decolorization * white rot fungi * ligninolytic enzymes Subject RIV: EE - Microbiology, Virology Impact factor: 2.045, year: 2009

  16. DECOLORIZATION OF AZO DYES AND MINERALIZATION OF PHENANTHRENE BY TRAMETES SP. AS03 ISOLATED FROM INDONESIAN MANGROVE FOREST

    Directory of Open Access Journals (Sweden)

    Asep Hidayat

    2014-04-01

    Full Text Available Textile industry contributes the most disposals of synthetic dyes, and about 40% of textile dyes has been generating high amount of colored wastewater. Polycyclic aromatic hydrocarbons (PAHs, such as phenanthrene, is a group of organic compounds, that structurally comprised of two or more benzene rings, which persist in air, water, and soil. The organic pollutants of dyes and PAHs have adversely effects the food chain and are potentially toxic, mutagenic, and carcinogenic to the environment. The objective of this research is to screen and investigate the potential fungus from mangrove forest to degrade azo dyes and phenanthrene.  In this study, fungi were collected from mangrove forest in Riau Province – Sumatra – Indonesia. Previously, Trametes sp. AS03 is one of the fungi isolated from mangrove forest in Riau Province, that was able to decolorize Remazol Brilliant Blue R (RBBR. The capability of Trametes sp. AS03 to decolorize four azo dyes, Remazol B. Violet (V5, Levafix Orange E3GA (Or64, Levafix B. Red E-6BA (R159, and Sumifix S. Scarlet 2GF (R222, were further evaluated. The result shows that Trametes sp. AS03 decolorized 91, 60, 48, and 31 of V5, R222, R159, and Or64, respectively. By showing its capability to decolorize some of the dyes, Trametes sp. AS03 was used to break down phenanthrene. AS03 degraded more than 70% of phenanthrene in 15 days.

  17. High overexpression of dye decolorizing peroxidase TfuDyP leads to the incorporation of heme precursor protoporphyrin IX

    NARCIS (Netherlands)

    Colpa, Dana I.; Fraaije, Marco W.

    2016-01-01

    Highlights • Dye decolorizing peroxidase TfuDyP binds heme and protoporphyrin IX in vivo. • The activity of TfuDyP is dependent on the expression level in E. coli. • Expression of fully functional DyPs can be tuned by the type of expression host and expression conditions. The heterologous

  18. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    Science.gov (United States)

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  19. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase.

    Science.gov (United States)

    Wan, Juan; Sun, Xiaowen; Liu, Cheng; Tang, Mengjun; Li, Lin; Ni, Hong

    2017-06-01

    A triplicate volcanic rock matrix-Bacillus thuringiensis-laccase WlacD (VRMs-Bt-WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn) 2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn) 2 -WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9 (3 4 )-orthogonal test, Plackett-Burman test, steepest ascent method, and Box-Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L -1 , which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs-Bt-WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs-Bt-WlacD toward an initial concentration of 500 mg L -1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g-100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs-Bt-WlacD and have the potential for large-scale or continuous operations.

  20. Enhanced bio-decolorization of azo dyes by co-immobilized quinone-reducing consortium and anthraquinone

    DEFF Research Database (Denmark)

    Su, YY; Zhang, Yifeng; Wang, J

    2009-01-01

    In the present study, the accelerating effect of co-immobilized anthraquinone and quinone-reducing consortium was investigated in the bio-decolorization process. The anthraquinone and quinone-reducing consortium were co-immobilized by entrapment in calcium alginate. The co-immobilized beads...

  1. Spectrophotometric determination of aluminium in presence of iron with eriochrome cyanine R. Essays with a decolorated reagent

    International Nuclear Information System (INIS)

    Barrachina Gomez, M.; Gasco Sanchez, L.; Fernandez Cellini, R.

    1962-01-01

    The behaviour of the extinction coefficient of aqueous solutions of Eriochrome Cyanine R is studied. It is found that at pH 5-6 the diluted acid solutions decolorate rapidly according to an exponential law (538 mμ). The fact that the decoloree solutions go on still reacting with the aluminium has. (Author) 12 refs

  2. Modeling the radar scatter off of high-energy neutrino-induced particle cascades in ice

    NARCIS (Netherlands)

    de Vries, Krijn D.; van Eijndhoven, Nick; O'Murchadha, Aongus; Toscano, Simona; Scholten, Olaf

    2017-01-01

    We discuss the radar detection method as a probe for high-energy neutrino induced particle cascades in ice. In a previous work we showed that the radar detection techniqe is a promising method to probe the high-energy cosmic neutrino flux above PeV energies. This was done by considering a simplified

  3. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  4. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric, E-mail: brillas@ub.edu

    2015-06-15

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H{sub 2}O{sub 2} < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media. • In Cl{sup −} medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH{sub 4}{sup +}, NO{sub 3}{sup −} and SO{sub 4}{sup 2−} ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L{sup −1} of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H{sub 2}O{sub 2} (EO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H{sub 2}O{sub 2}. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H{sub 2}O{sub 2} and added Fe{sup 2+}. The oxidation ability increased in the sequence EO-H{sub 2}O{sub 2} < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media, whereas in Cl{sup −} medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO{sub 4}{sup 2−} medium and three chloroaromatics in Cl{sup −} solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH{sub 4

  5. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    International Nuclear Information System (INIS)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric

    2015-01-01

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H 2 O 2 < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO 4 2− , ClO 4 − and NO 3 − media. • In Cl − medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH 4 + , NO 3 − and SO 4 2− ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L −1 of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H 2 O 2 . The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H 2 O 2 and added Fe 2+ . The oxidation ability increased in the sequence EO-H 2 O 2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO 4 2− , ClO 4 − and NO 3 − media, whereas in Cl − medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO 4 2− medium and three chloroaromatics in Cl − solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH 4 + , NO 3 − and SO 4 2− ions were released during the mineralization

  6. Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ntampegliotis, K. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece); Riga, A. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece); Karayannis, V. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece); Bontozoglou, V. [Department of Mechanical and Industrial Engineering, University of Thessaly, Pedion Areos, T.K 383 34 Volos (Greece); Papapolymerou, G. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece)]. E-mail: papapoly@teilar.gr

    2006-08-10

    The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H{sub 2}O{sub 2} and Fe{sup 3+} and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl{sup -}, CO{sub 3} {sup 2-} or HCO{sub 3} {sup -} on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe{sup 3+} and H{sub 2}O{sub 2} at molar ratios of H{sub 2}O{sub 2}/Fe{sup 3+} from about 100 to 10. The addition of CO{sub 3} {sup 2-} and HCO{sub 3} {sup -} substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl{sup -}. At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.

  7. Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes.

    Science.gov (United States)

    Li, Qi; Ge, Lin; Cai, Junli; Pei, Jianjun; Xie, Jingcong; Zhao, Linguo

    2014-04-01

    It has been previously demonstrated that laccases exhibit great potential for use in several industrial and environmental applications. In this paper, two laccase isoenzyme genes, lccB and lccC, were cloned and expressed in Pichia pastoris GS115. The sequence analysis indicated that the lccB and lccC genes consisted of 1,563 and 1,584 bp, and their open reading frames encoded 520 and 527 amino acids, respectively. They had 72.7% degree of identity in nucleotides and 86.7% in amino acids. The expression levels of LccB and LccC were up to 32,479 and 34,231 U/l, respectively. The recombinant laccases were purified by ultrafiltration and (NH4)2SO4 precipitation, showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimal pH and temperature for LccB were 2.0 and 55°C with 2,2'-azino-bis-[3-ethylbenzthiazolinesulfonic acid (ABTS) as a substrate, whereas LccC exhibited optimal pH and temperature at 3.0 and 60°C. The apparent kinetic parameters of LccB were 0.43 mM for ABTS with a Vmax value of 51.28 U/mg, and the Km and Vmax values for LccC were 0.29 mM and 62.89 U/mg. The recombinant laccases were able to decolorize five types of dyes. Acid Violet 43 (100 g/ml) was completely decolorized by LccB or LccC (2 U/ml), and the decolorization of Reactive Blue KN-R (100 g/ml) was 91.6% by LccC (2 U/ml). Thus, the study characterizes useful laccase isoenzymes from T. versicolor that have the capability of being incorporated into the treatment of similar azo and anthraquinone dyes from dyeing industries.

  8. Influence of pH on the growth, laccase activity and RBBR decolorization by tropical basidiomycetes

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Moreira Neto

    2009-10-01

    Full Text Available The basidiomycete fungi Lentinus crinitus and Psilocybe castanella are being evaluated in a bioremediation process of soils contaminated with organochlorine industrial residues in the Baixada Santista, São Paulo. The aim of the present study was to determine the influence of pH on the fungal growth, in vitro decolorization of anthraquinonic dye Remazol Brilliant Blue R (RBBR and laccase activity. The pH of the culture medium influenced the growth of L. crinitus and P. castanella, which presented less growth at pH 5.9 and pH 2.7, respectively. The fungi were able to modify the pH of the culture medium, adjusting it to the optimum pH for growth which was close to 4.5. Decolorization of the RBBR was maximal at a pH of 2.5 to 3.5. Higher laccase activity was observed at pH 3.5 and pH 4.5 for L. crinitus and P. castanella, respectively. pH was found to be an important parameter for both the growth of these fungi and the enzymatic system involved in RBBR decolorization.Os fungos basidiomicetos Lentinus crinitus e Psilocybe castanella estão sendo avaliados em processo de biorremediação de solos contaminados com resíduos industriais organoclorados, na Baixada Santista, SP. O presente estudo avaliou a influência do pH no crescimento, na descoloração in vitro do corante Azul Brilhante de Remazol R (RBBR e na atividade de lacase durante cultivo destes fungos, de forma a subsidiar a otimização do processo. O pH do meio influenciou o crescimento de L. crinitus e de P. castanella, com menor biomassa em pH 5,9 e pH 2,7, respectivamente. Os fungos foram capazes de modificar o pH inicial do meio de cultura, de modo a ajustá-lo ao valor ótimo de crescimento, próximo a 4,5. Descoloração in vitro do RBBR foi máxima em pH 2,5 e 3,5. Maiores atividades de lacase foram obtidas em pH 3,5 e em pH 4,5 para L. crinitus e P. castanella, respectivamente. Evidenciou-se que o pH é um parâmetro importante para o crescimento destes fungos, atividade de lacase

  9. Public perceptions and acceptance of induced earthquakes related to energy development

    International Nuclear Information System (INIS)

    McComas, Katherine A.; Lu, Hang; Keranen, Katie M.; Furtney, Maria A.; Song, Hwansuck

    2016-01-01

    Growing awareness of the potential for some energy-related activities to induce earthquakes has created a need to understand how the public evaluates the risks of induced earthquakes versus the benefits of energy development. To address this need, this study presents a web survey that used a between-subjects factorial experimental design to explore the views of 325 U.S. adults, who were asked about their experiences with earthquakes; risk perceptions related to different causes of earthquakes (e.g., natural versus induced); and acceptability of earthquakes depending on the benefits, beneficiaries, and decision making process. The results found that participants had more negative feelings toward induced versus naturally occurring earthquakes. Although they judged no earthquake as “acceptable,” participants rated induced earthquakes significantly less acceptable than naturally occurring ones. Attributing the benefits to the provision of renewable energy or climate change mitigation did not increase induced earthquake acceptability, and no particular beneficiary made earthquakes more acceptable, although private companies as beneficiaries made earthquakes less acceptable. Finally, induced earthquake acceptability was significantly higher when people believed that people like them had a voice in the decision to implement the technology that caused the earthquake, underscoring the importance of public engagement in the development of energy technologies. - Highlights: • Human induced earthquakes were perceived as more negative than natural earthquakes. • Attributing benefits to renewable energy did not increase earthquake acceptability. • Acceptability was highest after a procedurally fair decision making process. • Acceptability was lowest following an expert-driven decision.

  10. Photocatalytic decolorization of methylene blue over Zn1-xCoxO under visible light irradiation

    International Nuclear Information System (INIS)

    Xiao Qi; Zhang Jiang; Xiao Chong; Tan Xiaoke

    2007-01-01

    Co-doped ZnO photocatalysts were prepared by hydrothermal method. The obtained Co-doped ZnO powders were characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectra. The prepared Co-doped ZnO photocatalysts showed high photocatalytic activities for methylene blue decolorization at pH 10.5 under visible light irradiation. It was found that there were certain relationships between PL spectra and photocatalytic activity, namely, the stronger the PL intensity, the larger the content of oxygen vacancies and defects, the higher the photocatalytic activity. Therefore, in this study 3.0 mol% was the most suitable content of Co 2+ in ZnO, at which the recombination of photoinduced electrons and holes could be effectively inhibited and thereby the highest photocatalytic activity was formed

  11. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  12. Efficacy of fungal decolorization of a mixture of dyes belonging to different classes

    Directory of Open Access Journals (Sweden)

    Wioletta Przystas

    2015-06-01

    Full Text Available Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w - by Pleurotus ostreatus (BWPH and MB, Gloeophyllum odoratum (DCa, RWP17 (Polyporus picipes and Fusarium oxysporum (G1 was studied. Zootoxicity (Daphnia magna and phytotoxicity (Lemna minor changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH, which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the

  13. Energy, target, projectile and multiplicity dependences of intermittency behaviour in high energy O(Si,S) induced interactions

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Chernyavski, M.M.; Gerassimov, S.G.; Kharlamov, S.P.; Larionova, V.G.; Maslennikova, N.V.; Orlova, G.I.; Peresadko, N.G.; Salmanova, N.A.; Tretyakova, M.I.; Ameeva, Z.U.; Andreeva, N.P.; Anzon, Z.V.; Bubnov, V.I.; Chasnikov, I.Y.; Eligbaeva, G.Z.; Eremenko, G.Z.; Gaitinov, A.S.; Kalyachkina, G.S.; Kanygina, E.K.; Skakhova, C.I.; Bhalla, K.B.; Kumar, V.; Lal, P.; Lokanathan, S.; Mookerjee, S.; Raniwala, R.; Raniwala, S.; Burnett, T.H.; Grote, J.; Koss, T.; Lord, J.; Skelding, D.; Strausz, S.C.; Wilkes, R.J.; Cai, X.; Huang, H.; Liu, L.S.; Qian, W.Y.; Wang, H.Q.; Zhou, D.C.; Zhou, J.C.; Chernova, L.P.; Gadzhieva, S.I.; Gulamov, K.G.; Kadyrov, F.G.; Lukicheva, N.S.; Navotny, V.S.; Svechnikova, L.N.; Friedlander, E.M.; Heckman, H.H.; Lindstrom, P.J.; Garpman, S.; Jakobsson, B.; Otterlund, I.; Persson, S.; Soederstroem, K.; Stenlund, E.; Judek, B.; Nasyrov, S.H.; Petrov, N.V.; Xu, G.F.; Zheng, P.Y.

    1991-01-01

    Fluctuations of charged particles in high energy oxygen, silicon and sulphur induced interactions are investigated with the method of scaled factorial moments. It is found that for decreasing bin size down to δη∝0.1 the EMU01 data exhibits intermittent behaviour. The intermittency indexes are found to decrease with increasing incident energy and multiplicity and to increase with increasing target mass. It seems also to increase as the projectile mass increases. (orig.)

  14. Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain

    OpenAIRE

    Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Martínez, María Jesús; Nasri, M.; Mechichi, Tahar

    2013-01-01

    This study concerns the decolorization and detoxification of the azo dye Acid Orange 51 (AO51) by crude laccase from Trametes trogii produced in solid culture using sawdust as support media. A three-level Box?Behnken factorial design with four factors (enzyme concentration, 1-hydroxybenzotriazole (HBT) concentration, dye concentration and reaction time) combined with response surface methodology was applied to optimize AO51 decolorization. A mathematical model was developed showing the effect...

  15. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  16. Decolorization of Acid Orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: Optimization of operational parameters.

    Science.gov (United States)

    Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong

    2015-09-01

    In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    Science.gov (United States)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  18. Pairing-induced kinetic energy lowering in doped antiferromagnets

    International Nuclear Information System (INIS)

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  19. Gamma rays induced decoloration and degradation of astrazon type cationic textile dyes

    International Nuclear Information System (INIS)

    Kantoglu, O.

    2012-01-01

    Full text: In many parts of the world, rapid development of agriculture and industry, together with the growth of large population centers, have led to the problems in the areas of management and purification of industrial and municipal wastes. In recent years, both the public and government all over the world are encouraging the implementation of new technologies in this respect. Textile industry, which is one of most pollutant contributer to the environment produces high volume of effluent containing several organic based chemicals which are generally harmful, toxic and non-biodegradable. Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. Textile wastewater generally contains various pollutants, which can cause problems during treatment. Radiation technology is applied to enhance the biodegradability of textile wastewater. In this study, biodegradability and decolororation of cationic textile dyes of Astrazon Black FDL, Red FBL and Blue FGRL have been examined. The biodegradability (BOD/COD) increased at a 2, 1, 2 kGy for Astrazon FBL, Astrazon FGRL, Astrazon FDL in all irradiation environments, respectively. The biorefractory organic compounds were converted into more easily biodegradable compounds having lower molecular weights. In optimum dose and pH determination assays, 5 kGy pH 9 at air, 5 kGy pH 11 at supersaturated with oxygen, 7 kGy pH 11 at 2.6 mM hydrogen peroxide for Astrazon Red FBL, 3 kGy pH 8 at air, 7 kGy pH 5 at supersaturated with oxygen, 7 kGy pH 5 at 2.6 mM hydrogen peroxide for Astrazon Blue FGRL, 5 kGy pH 12 at air, 7 kGy pH 3 at supersaturated with oxygen, 9 kGy pH 3 at 2.6 mM hydrogen peroxide for Astrazon Black FDL were found as the optimum irradiation conditions. (author)

  20. Low-energy deuteron-induced reactions on Nb-93

    Czech Academy of Sciences Publication Activity Database

    Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Honusek, Milan; Koning, A.J.; Mrázek, Jaromír; Šimečková, Eva; Štefánik, Milan; Závorka, Lukáš

    2013-01-01

    Roč. 88, č. 1 (2013), 014612 ISSN 0556-2813 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced reactions * cross sections * breakup mechanism Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.881, year: 2013 http://prc.aps.org/pdf/PRC/v88/i1/e014612

  1. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  2. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    International Nuclear Information System (INIS)

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-01-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits

  3. Cluster induced ignition - A new approach to inertial fusion energy

    International Nuclear Information System (INIS)

    Desai, T.; Mendonca, J.T.; Batani, D.; Bernardinello, A.

    2001-01-01

    An ultra intense laser interaction with clusters produce energetic ions and electrons in MeV range due to cluster explosion. Here we discuss the possibility of harnessing these particle energies to heat a part of the pre compressed DT fuel to ignition condition. In this article we are striving to present the principle concept and the preliminary results are discussed. (author)

  4. A primer for electroweak induced low-energy nuclear reactions

    Indian Academy of Sciences (India)

    paper is devoted to delineating the unifying features and to an overall synthesis of .... reaction e− + p → n + νe for electrons and protons of very low kinetic energy ..... of Z protons and N = (A − Z) neutrons where A is the total number of nucleons.

  5. A nonlinear flow-induced energy harvester by considering effects of fictitious springs

    Science.gov (United States)

    Zhang, Guangcheng; Lin, Yueh-Jaw

    2018-01-01

    In this paper, a newly proposed energy harvesting approach involving nonlinear coupling effects is demonstrated by utilizing a pair of inducing bluff bodies that are put on both sides of the flag-shaped cantilever beam, and placed in a side-by-side configuration to harvest the energy of the flow. One patch of macro fiber composite is attached to the fixed end of the cantilever beam to facilitate converting the kinetic energy into electric power. It is the first time in recent literature that two fluid dynamic phenomena (i.e. the vortex shedding and the Bernoulli effect) are considered simultaneously in the flow-induced energy harvesting field. The fictitious springs are introduced to explain the nonlinear characteristics of the proposed structure. With the effect of the fictitious springs, the speed range of the flow-induced energy harvester is extended. The proposed structure not only improves the output of the induced-based energy harvester compared to one that has just one cylinder, but can also be utilized in an actual hostile ambient environment. The experimental results for the energy harvester prototype are also investigated. The output power of the energy harvester with two cylinders (D = 25 mm) is measured to be 1.12 μW when the flow speed is 0.325 m s-1 and the center-to-center transverse spacing is 45 mm. This research also delves into the geometric variations of the proposed structure and its optimization.

  6. Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2008-09-01

    Full Text Available In this paper, a comparative study of the treatment of raw and biotreated (upflow anaerobic sludge blanket, UASB textile dye bath effluent using advanced oxidation processes (AOPs is presented. The AOPs applied on raw and biotreated textile dye bath effluent, after characterization in terms of COD, colour, BOD and pH, were ozone, UV, UV/H2O2 and photo-Fenton. The decolorization of raw dye bath effluent was 58% in the case of ozonation. However it was 98% in the case of biotreated dye bath effluent when exposed to UV/H2O2. It is, therefore, suggested that a combination of biotreatment and AOPs be adopted to decolorize dye bath effluent in order to make the process more viable and effective. Biodegradability was also improved by applying AOPs after biotreatment of dye bath effluent.

  7. Synergistic effect of manganese dioxide and diatomite for fast decolorization and high removal capacity of methyl orange.

    Science.gov (United States)

    Peng, Hui Hua; Chen, Jie; Jiang, De Yi; Li, Min; Feng, Li; Losic, Dusan; Dong, Fan; Zhang, Yu Xin

    2016-12-15

    MnO 2 nanostructures with two different morphologies (nanowires and nanosheets) were uniformly deposited on diatomite via a one-pot hydrothermal method. The fast decolorization and high removal capacity for anionic dye-MO over synthesized composites had been clarified. The results revealed that the equilibrium time was shortened to as low as 10-30min, and the maximum adsorption capacities were 325mgg -1 and 420mgg -1 for nanowires and nanosheets composites, respectively, under the condition of initial pH 3 and ambient temperature. Indeed, the proposed decolorization mechanism was considered to be simultaneous multi-processes during the dye removal, including physical, physicochemical and chemical process. In principle, well-controlled cost-effective composites have promising ability to remove anionic dye pollutants for environmental remediation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Preliminary screening of Ni(II metal tolerance and dye-decolorizing by Nocardiopsis sp. SD8

    Directory of Open Access Journals (Sweden)

    Ramasamy Thangaraj

    2016-04-01

    Full Text Available Objective: To reveal the screening of metal tolerance and dye-decolorizing of Nocardiopsis sp. Methods: NiSO4 and Congo red dye were used for evaluating the metal tolerance and dyedecolorizing of the randomly selected actinobacterial isolates. Results: Nocardiopsis sp. SD8 showed a better efficiency in Ni(II tolerance, though a longer lag phase was observed for this microorganism grown for 7 days in integrated mismatch negativity. Interestingly, we also found that Nocardiopsis sp. SD8 had dye-decolorizing, hemolytic, lipase and protease activity. Conclusions: The present results revealed the bioremediation of metal resistant and diverse properties of Nocardiopsis sp. SD8 and further investigations are needed to extract and identify the potent molecule.

  9. Comparison in decoloration efficiency among radiation, ultraviolet ray and Fenton oxidation treatment for aqueous solution of dyes

    International Nuclear Information System (INIS)

    Shimokawa, Toshishige; Sawai, Takeshi

    1984-01-01

    To establish the methods of oxidation and decomposition treatment for dyeing waste water, the processes by radiation, ultraviolet ray and Fenton oxidation were examined comparatively for the decoloration efficiency. The dyes tested were commercially available reactive dyes, RBO-3R, DBR-BB, MBY-6GS and RBB-R. In the radiation process, the dye solution was irradiated with gamma ray of cobalt-60 while blowing air through it. Radiation process and Fenton oxidation were excellent for decoloration. Ultraviolet ray was low in the treatment efficiency, so it is not practical. In the radiation process, the addition of a reagent and the adjustment of pH are not required unlike the case of the Fenton oxidation process. Its continuous operation is also possible, so it is a highly practical means. (Mori, K.)

  10. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  11. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  12. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  13. Inducement and responsibility in the energy turnaround; Veranlassung und Verantwortung bei der Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Loewer, Wolfgang (ed.)

    2013-07-01

    The book includes several contributions concerning the Bonn discussion on energy legislation (volume 7): inducement and responsibility -in terms of constitutional law; between Europe and re-regulation - what is the regulation framework? Continuity requirement as legislative action directive; the future of the nuclear fuel tax after the nuclear phaseout - problems of the constitutional finance and the European tax legislation, strategy and energy markets; regulatory challenges in the realization of the energy turnaround policy.

  14. Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase

    Czech Academy of Sciences Publication Activity Database

    Šušla, Martin; Novotný, Čeněk; Erbanová, Pavla; Svobodová, Kateřina

    2008-01-01

    Roč. 53, č. 6 (2008), s. 479-485 ISSN 0015-5632 R&D Projects: GA ČR GP526/06/P102; GA AV ČR IAA6020411 Grant - others:CZ(CZ) FRVŠ G4 359/2007 Institutional research plan: CEZ:AV0Z50200510 Keywords : decolorization * white-rot fungi * dichotomitus squalens Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  15. Evaluation of three reagent dosing strategies in a photo-Fenton process for the decolorization of azo dye mixtures

    International Nuclear Information System (INIS)

    Prato-Garcia, D.; Buitrón, Germán

    2012-01-01

    Highlights: ► Dosing strategies for a photo-Fenton process were evaluated. ► The dosing strategy had no effect of on the decolorization. ► The type of strategy influenced SUVA index, toxicity reduction and biodegradability. ► A continuous reagents supply was found to be the most adequate strategy. ► Decolorization as well as a less toxic and biodegradable effluent was produced. - Abstract: Three reagent dosing strategies used in the solar photo-assisted decolorization of a mixture of sulfonated dyes consisting of acid blue 113, acid orange 7 and acid red 151 were evaluated. Results demonstrated that the dosing strategy influenced both reagent consumption and the biodegradability and toxicity of the effluent. In one strategy (E 1 ), the Fenton's reactants were dosed in a punctual mode, while in the other two strategies (E 2 an E 3 ), the reactants were dosed continuously. In the E 2 strategy the reactants were dosed by varying the duration of the injection time. In the E 3 strategy, the reactants were dosed during 60 min at a constant rate, but with different concentrations. All cases showed that feeding the reactor between 40% and 60% of the maximal dose was sufficient to decolorize more than 90% of the mixture of azo dyes. The E 1 strategy was less effective for aromatic content reduction. Conversely, the continuous addition of the reagents (E 2 and E 3 strategies) improved the aromatic content removal. E 3 strategy was substantially more appropriate than E 1 strategy due to improved the effluent quality in two key areas: toxicity and biodegradability.

  16. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC).

    Science.gov (United States)

    Pasukphun, N; Vinitnantharat, S; Gheewala, S

    2010-04-01

    The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.

  17. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lili [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yan, E-mail: wangy_msn@hit.edu.cn [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, Min [College of Life Science, Northeast Forestry University, Harbin 150040 (China); Song, Jinzhu [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wang, Jueyu; Jin, Zijing [College of Life Science, Northeast Forestry University, Harbin 150040 (China)

    2016-08-05

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe{sub 3}O{sub 4} nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe{sub 3}O{sub 4} nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe{sub 3}O{sub 4} nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  18. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    International Nuclear Information System (INIS)

    Fan, Lili; Wang, Yan; Zhao, Min; Song, Jinzhu; Wang, Jueyu; Jin, Zijing

    2016-01-01

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe_3O_4 nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe_3O_4 nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe_3O_4 nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  19. Charged particle induced energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Johansson, S.A.E.

    1979-01-01

    This review article deals with the X-ray emission induced by heavy, charged particles and the use of this process as an analytical method (PIXE). The physical processes involved, X-ray emission and the various reactions contributing to the background, are described in some detail. The sensitivity is calculated theoretically and the results compared with practical experience. A discussion is given on how the sensitivity can be optimized. The experimental arrangements are described and the various technical problems discussed. The analytical procedure, especially the sample preparation, is described in considerable detail. A number of typical practical applications are discussed. (author)

  20. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets.

    Science.gov (United States)

    Basiri Parsa, Jalal; Ebrahimzadeh Zonouzian, Seyyed Alireza

    2013-11-01

    A low pressure pilot scale hydrodynamic cavitation (HC) reactor with 30 L volume, using fixed scrap iron sheets, as the heterogeneous catalyst, with no external source of H2O2 was devised to investigate the effects of operating parameters of the HC reactor performance. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The reactor optimization was done based upon the extent of decolorization (ED) of aqueous solution of Rhodamine B (RhB). To have a perfect study on the pertinent parameters of the heterogeneous catalyzed HC reactor, the following cases as, the effects of scrap iron sheets, inlet pressure (2.4-5.8 bar), the distance between orifice plates and catalyst sheets (submerged and inline located orifice plates), back-pressure (2-6 bar), orifice plates type (4 various orifice plates), pH (2-10) and initial RhB concentration (2-14 mg L(-1)) have been investigated. The results showed that the highest cavitational yield can be obtained at pH 3 and initial dye concentration of 10 mg L(-1). Also, an increase in the inlet pressure would lead to an increase in the ED. In addition, it was found that using the deeper holes (thicker orifice plates) would lead to lower ED, and holes with larger diameter would lead to the higher ED in the same cross-sectional area, but in the same holes' diameters, higher cross-sectional area leads to the lower ED. The submerged operation mode showed a greater cavitational effects rather than the inline mode. Also, for the inline mode, the optimum value of 3 bar was obtained for the back-pressure condition in the system. Moreover, according to the analysis of changes in the UV-Vis spectra of RhB, both degradation of RhB chromophore structure and N-deethylation were occurred during the catalyzed HC process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nucleus fragmentation induced by a high-energy hadron

    International Nuclear Information System (INIS)

    Zielinski, P.

    1982-10-01

    The author presents a review about the spallation in hadron reactions. Especially he considers proton-proton correlations at low relative momentum, angular distributions of 30-100 MeV protons, emission of fast deuterons, the vanishing of the Coulomb barrier, fission-like processes, the rise of the heavy fragment yield with energy transfer, proton-deuteron breakup reactions, and the backward emission of fast protons. (HSI)

  2. High energy instanton induced processes in electroweak theory

    International Nuclear Information System (INIS)

    McLerran, L.

    1992-01-01

    It is well known that in electroweak theory, baryon plus lepton number is conserved by the classical equations of motion. This is of course consistent with the lack of experimental observation of such processes. It is a little less well known that when quantum corrections are included in electroweak theory, baryon plus lepton number is not conserved. This was first discovered as a consequence of the Adler-Bardeen-Bell-Jackiw triangle anomaly. It is perhaps most easily understood as a consequence of vacuum degeneracy, fermion energy level crossing and filling of the negative energy Dirac sea upon second quantization. To understand how baryon plus lepton number is not conserved upon second quantization, consider the situation shown in the energy of the system is shown as a function of a parameter which characterizes the gauge fields, the Chern-Simons charge. The Chern-Simons charge is a function only of the gauge fields, and the B + L change is equal to the change in Chern-Simons charge, ΔQ B+L = ΔQ CS

  3. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  4. Nucleation mechanisms in high energy ion beam induced dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Michael; Garmatter, Daniel; Ferhati, Redi; Amirthapandian, Sankarakumar; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany)

    2011-07-01

    Solid coatings, when heated above their melting points, often break up by forming small round holes, which then grow, coalesce and finally turn the initially contiguous film into a pattern of isolated droplets. Such dewetting has been intensively studied using thin polymer films on Si. Three different hole nucleation mechanisms were discovered: homogeneous (spontaneous) nucleation, heterogeneous nucleation at defects, and spinodal dewetting by self-amplifying capillary waves. We have recently found that swift heavy ion (SHI) irradiation of thin oxide films on Si results in similar dewetting patterns, even though the films were kept far below their melting points. Using our new in-situ SEM at the UNILAC accelerator of GSI, we were now able to identify the mechanisms behind this SHI induced dewetting phenomenon. By varying the film thickness and introducing defects at the interface, we can directly address the hole nucleation processes. Besides homogeneous and heterogeneous nucleation, we also found a process, which very much resembles the spinodal mechanism found for liquid polymers, although in the present case the instable wavy surface is not generated by capillary waves, but by ion beam induced stresses.

  5. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment.

    Science.gov (United States)

    Elmorsi, Taha M; Riyad, Yasser M; Mohamed, Zeinhom H; Abd El Bary, Hassan M H

    2010-02-15

    Decolorization of the Mordant red 73 (MR73) azo dye in water was investigated in laboratory-scale experiments using UV/H(2)O(2) and photo-Fenton treatments. Photodegradation experiments were carried out in a stirred batch photoreactor equipped with a low-pressure mercury lamp as UV source at 254 nm. The effect of operating parameters such as pH, [H(2)O(2)](,) [dye] and the presence of inorganic salts (NaNO(3), NaCl and Na(2)CO(3)) were also investigated. The results indicated that complete dye decolorization was obtained in less than 60 min under optimum conditions. Furthermore, results showed that dye degradation was dependent upon pH, [H(2)O(2)] and initial dye concentration. The presence of chloride ion led to large decreases in the photodegradation rate of MR73 while both nitrate and carbonate ions have a slight effect. The photo-Fenton treatment, in the presence of Fe powder as a source of Fe(2+) ions, was highly efficient and resulted in 99% decolorization of the dye in 15 min. Mineralization of MR73 dye was investigated by determining chemical oxygen demand (COD). In a 3h photoperiod "65%" of the dye was mineralized by the H(2)O(2)/UV process, while the photo-Fenton treatment was more efficient producing 85% mineralization over the same 3-h period.

  6. Enzymatic in-situ generation of H2O2 for decolorization of Acid Blue 113 by fenton process

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available Decolorization of Acid Blue 113 in an aqueous medium by bio-Fenton process has been investigated in this research. Enzymatic oxidation of glucose was performed to in-situ generation of H2O2 which was employed to react with Fe2+ for producing hydroxyl radicals. The effect of various parameters include concentrations of 113, glucose, and FeSO4, activity of glucose oxidase (GOx and the effect of pH were assessed. The highest decolorization of AB 113 were achieved at Fe2+ concentration of 0.2 mmol/L, pH =4.0, glucose concentration of 0.018 mol/L, and glucose oxidase activity of 2500 U/L in the constant temperature (23 ±0.1ºC and constant shaking rate (160 r/min, while the concentration of 113 was 40 mg/L. In these conditions, 113 decolorization efficiency after 60 min was obtained about 95%.

  7. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization.

    Science.gov (United States)

    Singh, Rajender; Ahlawat, O P; Rajor, Anita

    2012-12-01

    The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    Science.gov (United States)

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes.

    Science.gov (United States)

    Liu, Cong; You, Yanting; Zhao, Ruofei; Sun, Di; Zhang, Peng; Jiang, Jihong; Zhu, Aihua; Liu, Weijie

    2017-11-01

    Dye dispersion and the interaction efficiency between azoreductases and dye molecules are rate-limiting steps for the decolorization of azo dyes. In this study, a biosurfactant-producing strain, Pseudomonas taiwanensis L1011, was isolated from crude oil. To increase the yield of the biosurfactant BS-L1011 from P. taiwanensis L1011, culture conditions were optimized including temperature, initial pH, carbon source, nitrogen source and C/N ratio. A maximum yield of 1.12g/L of BS-L1011 was obtained using D-mannitol as carbon source and yeast extract/urea as compound nitrogen source with C/N ratio of 10/4, pH 7.0 and 28°C. BS-L1011 exhibited a low critical micelle concentration (CMC) of 10.5mg/L and was able to reduce the surface tension of water to 25.8±0.1 mN/m. BS-L1011 was stable over a wide range of temperatures, pH values and salt concentrations. The biosurfactant is reported for the first time to accelerate chemical decolorization of Congo red by sodium hypochlorite, and biological decolorization of Amaranth by Bacillus circulans BWL1061, thus showing a potential in the treatment of dyeing wastewater. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria

    International Nuclear Information System (INIS)

    Georgiou, D.; Aivasidis, A.

    2006-01-01

    Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran'' (registered)) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace elements, served both as a pH-regulator and as an external substrate for the growth of methanogenic bacteria. The above technique was firstly applied on synthetic wastewater (an aqueous solution of a mixture of different azo-reactive dyes). Hydraulic residence time was gradually decreased from 24 to 6 h over a period of 3 months. Full decoloration of the wastewater could be achieved even at such a low hydraulic residence time (6 h), while methane-rich biogas was also produced. The same technique was then applied on real textile wastewater with excellent results (full decoloration at a hydraulic residence time of 6 h). Furthermore, the effluent proved to be highly biodegradable by aerobic microbes (activated-sludge). Thus, the above-described anaerobic/aerobic biological technique seems to be a very attractive method for treating textile wastewater since it is cost-effective and environment-friendly

  11. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products.

    Science.gov (United States)

    Chandra, Ram; Abhishek, Amar; Sankhwar, Monica

    2011-06-01

    This study deals with the decolorization of black liquor (BL) by isolated potential bacterial consortium comprising Serratia marcescens (GU193982), Citrobacter sp. (HQ873619) and Klebsiella pneumoniae (GU193983). The decolorization of BL was studied by using the different nutritional as well as environmental parameters. In this study, result revealed that the ligninolytic activities were found to be growth associated and the developed bacterial consortium was efficient for the reduction of COD, BOD and color up to 83%, 74% and 85%, respectively. The HPLC analysis of degraded samples of BL has shown the reduction in peak area compared to control. Further, the GC-MS analysis showed that, most of the compounds detected in control were diminished after bacterial treatment while, formic acid hydrazide, 4-cyclohexane-1,2-dicarboxylic acid, carbamic acid, 1,2-benzenedicarboxylic acid and erythropentanoic acid were found as new metabolites. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized BL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Transformation between divacancy defects induced by an energy pulse in graphene.

    Science.gov (United States)

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  13. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  14. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules.

    Science.gov (United States)

    Michalski, G; Jost, R; Sugny, D; Joyeux, M; Thiemens, M

    2004-10-15

    We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.

  15. Peripheral collisions of heavy ions induced by 40Ar at intermediate energies: giant resonance high energy structures and projectile fragmentation

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    1987-09-01

    The results obtained in similar studies at low incident energies are first of all reviewed. The time of flight spectrometer built for the experiments is then described. A study of the properties of the projectile-like fragments shows numerous deviations from the relativistic energy fragmentation model. Evidence for a strong surface transfer reaction component is given and the persistence of mean field effects at intermediate energies is stressed. A calculation of the contribution of the transfer evaporation mechanism to the inelastic spectra shows that this mechanism is responible for the major part of the background measured at high excitation energy and can in some cases induce narrow structures in the spectra. The inelastic spectra shows a strong excitation of the giant quadrupole resonance. In the region between 20 and 80 MeV excitation energy narrow structures are present for all the studied systems. Statistical and Fourier analysises allow to quantify the probabilities of existence, the widths and the excitation energies of these structures. A transfer evaporation hypothesis cannot consistently reproduce all the observed structures. The excitation energies of the structures can be well described by phenomenological laws where the energies are proportional to the -1/3 power of the target mass. Complete calculations of the excitation probabilities of giant resonances and multiphonon states are performed within a model where the nuclear excitation are calculated microscopically in the Random Phase Approximation. It is shown that a possible interpretation of the structures is the excitation of multiphonon states built with 2 + giant resonances [fr

  16. Ion induced fragmentation of biomolecular systems at low collision energies

    International Nuclear Information System (INIS)

    Bernigaud, V; Adoui, L; Chesnel, J Y; Rangama, J; Huber, B A; Manil, B; Alvarado, F; Bari, S; Hoekstra, R; Postma, J; Schlathoelter, T

    2009-01-01

    In this paper, we present results of different collision experiments between multiply charged ions at low collision energies (in the keV-region) and biomolecular systems. This kind of interaction allows to remove electrons form the biomolecule without transferring a large amount of vibrational excitation energy. Nevertheless, following the ionization of the target, fragmentation of biomolecular species may occur. It is the main objective of this work to study the physical processes involved in the dissociation of highly electronically excited systems. In order to elucidate the intrinsic properties of certain biomolecules (porphyrins and amino acids) we have performed experiments in the gas phase with isolated systems. The obtained results demonstrate the high stability of porphyrins after electron removal. Furthermore, a dependence of the fragmentation pattern produced by multiply charged ions on the isomeric structure of the alanine molecule has been shown. By considering the presence of other surrounding biomolecules (clusters of nucleobases), a strong influence of the environment of the biomolecule on the fragmentation channels and their modification, has been clearly proven. This result is explained, in the thymine and uracil case, by the formation of hydrogen bonds between O and H atoms, which is known to favor planar cluster geometries.

  17. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  18. Chemical modification of polypropylene induced by high energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.; Chakraborty, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-06-01

    Polypropylene was irradiated with {sup 12}C{sup +} ions of 3.6 and 5.4 MeV energy using 3 MV Pelletron. The spectral changes owing to ion bombardment were investigated by UV-VIS and Fourier-transform infrared (FTIR) spectroscopy. A gradual increase in absorbance was observed around visible and near visible region with increase in fluence of bombarding ions. The difference absorption spectra show formation of chromophoric groups with wavelength maximum near 380 nm at lower fluence, but at high fluence a shift in peak is observed. The chromophoric groups are likely to be the extended conjugated polyene system and the red shift in peak position at high fluence may be attributed to the greater degree of conjugation. The formation of unsaturated linkage is confirmed by the FTIR spectra with observed stretching band around 1650 cm{sup -1} and its intensity was found to increase with increase in ion fluence studied. The gases (in the range 2-80 amu) which were evolved due to interaction of polypropylene with {sup 12}C{sup +} ions were measured with Residual Gas Analyzer (RGA). A large number of gaseous components were detected. This shows that polymer chains break into some smaller fragments which concomitantly leads to extended conjugation.

  19. New concept for energy storage: Microwave-induced carbon gasification with CO2

    International Nuclear Information System (INIS)

    Bermúdez, J.M.; Ruisánchez, E.; Arenillas, A.; Moreno, A.H.; Menéndez, J.A.

    2014-01-01

    Highlights: • A new system for energy storage based in microwave-induced gasification is proposed. • From the carbonaceous materials tested, charcoal yielded the best results. • The systems achieved energy efficiencies of about 45% without any optimization. • The system is competitive in terms of efficiency with some conventional systems. - Abstract: Energy storage is a topic of great importance for the development of renewable energy, since it appears to be the only solution to the problem of intermittency of production, inherent to such technologies. In this paper, a new technology for energy storage, based on microwave-induced CO 2 gasification of carbon materials is proposed. The tests carried out in this study on different carbon materials showed that charcoal consumes the least amount of energy. Two microwave heating mechanisms, a single-mode oven and a multimode device, were evaluated with the latter proving itself to be the more efficient in terms of energy consumption and recovery. The initial results obtained showed that this technology is able to achieve energy efficiencies of 45% at laboratory scale with every indication that these results can be improved upon to make this approach highly competitive against other energy storage technologies

  20. High-energy limit of collision-induced false vacuum decay

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Sergei; Levkov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences,60-th October Anniversary Prospect 7a, Moscow, 117312 (Russian Federation)

    2015-06-17

    We develop a consistent semiclassical description of field-theoretic collision-induced tunneling at arbitrary high collision energies. As a playground we consider a (1+1)-dimensional false vacuum decay initiated by a collision of N particles at energy E, paying special attention to the realistic case of N=2 particles. We demonstrate that the cross section of this process is exponentially suppressed at all energies. Moreover, the respective suppressesion exponent F{sub N}(E) exhibits a specific behavior which is significant for our semiclassical method and assumed to be general: it decreases with energy, reaches absolute minimum F=F{sub min}(N) at a certain threshold energy E=E{sub rt}(N), and stays constant at higher energies. We show that the minimal suppression F{sub min}(N) and threshold energy can be evaluated using a special class of semiclassical solutions which describe exponentially suppressed transitions but nevertheless evolve in real time. Importantly, we argue that the cross section at energies above E{sub rt}(N) is computed perturbatively in the background of the latter solutions, and the terms of this perturbative expansion stay bounded in the infinite-energy limit. Transitions in the high-energy regime proceed via emission of many soft quanta with total energy E{sub rt}; the energy excess E−E{sub rt} remains in the colliding particles till the end of the process.

  1. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  2. The nanostructure formation on muscovite mica surface induced by intermediate-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Zhang, HQ., E-mail: zhanghq@lzu.edu.cn; Zhang, Q.; Liu, Z.; Guan, S.; Wang, G.; Zhou, C.; Jia, J.; Lv, X.; Shao, J.; Cui, Y.; Chen, L.; Chen, X., E-mail: chenxm@lzu.edu.cn

    2013-07-15

    Muscovite mica sheets were bombarded by lithium, carbon and oxygen ions in the energy range from several hundred keV to several MeV. The induced surface structures were measured in the air with atomic force microscopy (AFM) in the tapping mode. The hillock-like structure on the mica surface was observed. The height of the hillock increases linearly when the energy loss is above 1.2 keV/nm. The induced structures are similar with the similar electronic stopping powers but different projectiles for muscovite mica.

  3. Decolorization of Ionic Dyes from Synthesized Textile Wastewater by Nanofiltration Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mehrdad Farhadian

    2015-07-01

    Full Text Available Decolorization of aqueous solutions containing ionic dyes (Reactive Blue 19 and Acid Black 172 by a TFC commercial polyamide nanofilter (NF in a spiral wound configuration was studied. The effect of operating parameters including feed concentration (60-180 mg/l, pressure (0.5-1.1 MPa and pH (6-10 on dye removal efficiency was evaluated. The response surface method (RSM was utilized for the experimental design and statistical analysis to identify the impact of each factor. The results showed that an increase in the dye concentration and pH can significantly enhance the removal efficiency from 88% and 87% up to 95% and 93% for Reactive and Acid dye, respectively. The effect of pressure on the removal efficiency showed different behavior such that by the raise of pressure from 0.5 to 0.8 MPa, the removal efficiency increased to its maximum, then reduction in removal efficiency was observed by further increases in pressure above the optimum range. The maximum dye removal efficiencies which were predicted at the optimum conditions by Design Expert software were 97 % and 94 % for Reactive Blue 19 and Acid Black 172, respectively. According to the results of this study, NF processes can be used at a significantly lower pressure and fouling issue for reuse applications as an alternative to the widely used RO process.

  4. Decolorization and degradation of daunomycin by bjerkandera adusta R59 strain

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N.S.; Belearz, A.; Ginalska, G.; Kornillowicz, K.; Cho, H.Y.; Ohga, S. [Kyushu University, Fukuoka (Japan)

    2009-02-15

    The ability of Bjerkandera adusta R59 strain to degrade anthraquinonic antibiotic (daunomycin) points on its possible aptitudes for decomposing of other anthraquinonic derivatives, e.g. lignocellulose subunits or metabolically related lipids, present in wood. This study was performed to investigate the possibility of B. adusta, R59 to synthesize enzymes participating in decay of wood compounds (including lignin, celluloses, hemicelluloses and lipids). Geotrichum-like strain, anamorphic stadium of B. adusta, white-rot. fungus, was isolated from soil. It was found to completely decolorize and degrade 10% daunomycin post-production effluent during 10 days of incubation at 26{sup o}C. R59 strain produces only small activities of lignolytic enzymes when grown on wheat straw or beech sawdust-containing media but in the presence of humic acids derived from brown coal synthesizes significant activities of laccase and lipase. This phenomenon was coupled with entering the idiophase by this fungus and appearance of aerial mycelium. The ability of B. adusta R59 strain to degrade humic acids from brown coal could be useful in constructing of new generation of biologically active filters for purification of humic acids-contaminated comestible waters.

  5. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    Science.gov (United States)

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  6. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  7. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    International Nuclear Information System (INIS)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing; Liu Guangfei

    2009-01-01

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10 6 cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one

  8. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    Energy Technology Data Exchange (ETDEWEB)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China); Liu Guangfei [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China)], E-mail: guangfeiliu@yahoo.com.cn

    2009-04-30

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10{sup 6} cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one.

  9. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  10. Nutritional compensation to exercise- vs. diet-induced acute energy deficit in adolescents with obesity.

    Science.gov (United States)

    Thivel, David; Doucet, Eric; Julian, Valérie; Cardenoux, Charlotte; Boirie, Yves; Duclos, Martine

    2017-07-01

    To compare the energy and macronutrient intake responses to equivalent energy deficits induced by diet (food restriction) and exercise in adolescents with obesity. Fourteen 12-15years old obese adolescents completed three experimental conditions (08:00am to 07:30pm) in a randomized crossover design: i) control session (CON); ii) diet-induced 25% energy depletion (Def-EI), iii) and an exercise-induced 25% energy depletion (Def-EX). The sessions order was either CON/Def-EI/Def-EX or CON/Def-EX/Def-EI as the deficit corresponded to 25% of the energy ingested at lunch on the control day (CON) and was imposed either by exercise (Def-EX) or diet (Def-EI). Ad libitum EI and macronutrients preferences were assessed at dinner and appetite sensations assessed using visual analogue scales. Mean BMI was 36.6±5.0kg/m 2 (z-BMI: 2.40±0.29). The individually calibrated 25% energy deficit represented 254±92kcal. Ad libitum EI was significantly higher during both Def-EX (971±225kcal) and Def-EI (949±246kcal) compared with CON (742±297) (pexercise and the control session (EI Def-EX - EI CON) (r=-0,643 pexercise- or diet-induced energy deficits could lead to similar EI compensation in obese adolescents but this EI compensation might be influenced by the magnitude of the deficit. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  12. Utilizing the energy from induced wind produce by highway vehicle motion

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Tong, C.W.

    2000-01-01

    A research work has been conducted at the Faculty of mechanical Engineering, Universiti Teknologi Malaysia to utilize energy from airflow induced by moving vehicles along the highway for advertising and signboard lighting. Series of data collections have been made at Km 20 Johor Bahru - Kuala Lumpur Plus Highway. Wind anemometer equipped with data recorder has been placed at the highway divider to measure the wind speed induced by the vehicles moving from Johor Bahru to Kuala Lumpur and vice versa. From the data analysis it has been found that the to and from Kuala Lumpur motion of the vehicles induced a stable and continuous source of airflow (wind) ranges from 2 to 4 m/s. The energy in this induced wind has been estimated and has the potential to be used for the above said purpose. Five design models have been tested in the Faculty of mechanical Engineering Low Speed Wind Tunnel and the twisted vertical blades with circular end covers has proven to be the most efficient and suitable. The optimum sizing of the vertical axis wind turbine has also been determined. The details of the collection of wind induced data and analysis, estimation of energy content, the vertical axis wind turbine models testing and results are presented in this paper. (Author)

  13. Beam energy spread in FERMI(at)elettra gun and linac induced by intrabeam scattering

    International Nuclear Information System (INIS)

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.; Penco, Giuseppe

    2008-01-01

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI(at)elettra electron gun

  14. Nucleus fragmentation induced by a high-energy hadron. Pt. 2

    International Nuclear Information System (INIS)

    Zielinski, P.

    1981-09-01

    The author compares some experimental results concerning the emission of 8 Li nuclei in hadron induced reactions from nuclear emulsions. Especially he considers the vanishing of the Coulomb barrier, fission-like processes, and the rise of the heavy fragment yield with energy-transfer. (HSI) [de

  15. An Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations

    DEFF Research Database (Denmark)

    Krenk, S.; Nielsen, Søren R. K.

    A model consisting of two couple oscillators is developed for the representation of vortex-induced oscillations of structural elements. The mutual forcing terms are different from previous models and based on exact transfer of energy from the fluid to the structural oscillator. This leads...

  16. Vacuum energy induced by an external magnetic field in a curved space

    International Nuclear Information System (INIS)

    Sitenko, Yu.A.; Rakityansky, D.G.

    1998-01-01

    The asymptotic expansion of the product of an operator raised to an arbitrary power and an exponential function of this operator is obtained. With the aid of this expansion, the density of vacuum energy induced by a static external magnetic field of an Abelian or a non-Abelian nature is expressed in terms of the DeWitt-Seeley-Gilkey coefficients

  17. Hollow optical fiber induced solar cells with optical energy storage and conversion.

    Science.gov (United States)

    Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; Duan, Yanyan; Tang, Qunwei

    2017-11-09

    Hollow optical fiber induced dye-sensitized solar cells are made by twisting Ti wire/N719-TiO 2 nanotube photoanodes and Ti wire/Pt (CoSe, Pt 3 Ni) counter electrodes, yielding a maximized efficiency of 0.7% and good stability. Arising from optical energy storage ability, the solar cells can generate electricity without laser illumination.

  18. A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings

    International Nuclear Information System (INIS)

    Gerlagh, Reyer

    2008-01-01

    We develop an endogenous growth model with capital, labor and carbon-energy as production factors and three technology variables that measure accumulated innovations for carbon-energy production, carbon-energy savings, and neutral growth. All markets are complete and perfect, except for research, for which we assume that the marginal social benefits exceed the marginal private benefits by factor four. The model constants are calibrated so that the model reproduces the relevant global trends over the 1970-2000 period. The model contains a simple climate module, and is used to assess the impact of Induced Technological Change (ITC) for a policy that aims at a maximum level of atmospheric CO 2 concentration (450 ppmv). ITC is shown to reduce the required carbon tax by more than a factor 2, and to reduce costs of such a policy by half. When we do not constrain aggregate R and D expenditures to benchmark levels, costs are further reduced. Numerical simulations show that knowledge accumulation shifts from energy production to energy saving technology. We discuss reasons for differences between our results and earlier results reported in the literature. (author)

  19. Adaptation to climate-induced regional water constraints in the Spanish energy sector: An integrated assessment

    International Nuclear Information System (INIS)

    Khan, Zarrar; Linares, Pedro; García-González, Javier

    2016-01-01

    The energy sector depends on water in all phases of its life-cycle, including raw material extraction, power plant cooling, irrigation of biofuel crops and directly in hydropower generation. In the coming decades, several regions of the world are expected to experience a decrease in water resource availability, in part due to climate change. The dependence of the energy sector on water resources calls for an active effort to adapt to the possible scenarios. This paper presents a novel model that addresses the direct impacts of regional and temporal water shortages on energy operation and investment decisions. The paper investigates the costs and benefits of adapting the energy sector to climate-induced water scarcity. The results show that the increase in costs for an energy plan that considers future water stress is relatively small as compared to one which ignores it. A plan which ignores water constraints, however, may lead to significant economic damages when actually exposed to water shortages. The results also highlight the value of the availability of water for the energy sector, which is significantly higher than existing prices. The paper concludes that the potential benefits to be gained by integrating energy and water models can be considerable. - Highlights: • Spatial and temporal water constraints are added to an energy planning model. • Integrated water-energy planning can lead to significant savings in future water-stressed scenarios. • Actual value of water for the energy sector may be much higher than existing prices.

  20. Low-energy neutron-induced single-event upsets in static random access memory

    International Nuclear Information System (INIS)

    Guo Xiaoqiang; Guo Hongxia; Wang Guizhen; Ling Dongsheng; Chen Wei; Bai Xiaoyan; Yang Shanchao; Liu Yan

    2009-01-01

    The visual analysis method of data process was provided for neutron-induced single-event upset(SEU) in static random access memory(SRAM). The SEU effects of six CMOS SRAMs with different feature size(from 0.13 μm to 1.50 μm) were studied. The SEU experiments were performed using the neutron radiation environment at Xi'an pulsed reactor. And the dependence of low-energy neutron-induced SEU cross section on SRAM's feature size was given. The results indicate that the decreased critical charge is the dominant factor for the increase of single event effect sensitivity of SRAM devices with decreased feature size. Small-sized SRAM devices are more sensitive than large-sized ones to single event effect induced by low-energy neutrons. (authors)

  1. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    Science.gov (United States)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  2. Investigation of nucleon-induced reactions in the Fermi energy domain within the microscopic DYWAN model

    Energy Technology Data Exchange (ETDEWEB)

    Sebille, F.; Bonilla, C. [SUBATECH, Universite de Nantes, CNRS/IN2P3, 44 - Nantes (France); Blideanu, V.; Lecolley, J.F. [Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen, IN2P3-CNRS, 14 - Caen (France)

    2004-06-01

    A microscopic investigation of nucleon-induced reactions is addressed within the DYWAN model, which is based on the projection methods of out of equilibrium statistical physics and on the mathematical theory of wavelets. Due to a strongly compressed representation of the fermionic wave-functions, the numerical simulations of the nucleon transport in target are therefore able to preserve the quantum nature of the colliding system, as well as a least biased many-body information needed to keep track of the cluster formation. A special attention is devoted to the fingerprints of the phase space topology induced by the fluctuations of the self-consistent mean-field. Comparisons be ween theoretical results and experimental data point out that ETDHF type approaches are well suited to describe reaction mechanisms in the Fermi energy domain. The observed sensitivity to physical effects shows that the nucleon-induced reactions provide a valuable probe of the nuclear interaction in this range of energy. (authors)

  3. Pre-equilibrium emission of nucleons from reactions induced by medium-energy heavy ions

    International Nuclear Information System (INIS)

    Korolija, M.; Holuh, E.; Cindro, N.; Hilscher, D.

    1984-01-01

    Recent data on fast-nucleon emission in heavy-ion-induced reactions are analysed successfully in terms of pre-equilibrium models; it is shown that the relevant parameters of those models preserve the physical meaning they have in light-ion-induced reactions. The initial exciton number obtained from a Griffin-plot analysis and the initial number of degrees of freedom, which is the relevant parameter of the modified HMB model, appear to be approximately equal for a given reaction at a given energy. It is inferred that, for heavy-ion reactions, the determination of such a parameter is substantially dominated by the centre-of-mass energy per nucleon above the Coulomb barrier, in contrast with the results of nucleon-induced reactions

  4. Measurement of the energy dependence of X-ray-induced decomposition of potassium chlorate.

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-03-21

    We report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments. A systematic increase in the decomposition rate as the energy was decreased was observed, which agrees with the 1/E(3) trend for the photoelectric process, except at the lowest energy studied. A second experiment was performed to access lower energies (10 and 12 keV) using a beryllium gasket; suggesting an apparent resonance near 15 keV or 0.83 Ǻ maximizing the chemical decomposition rate. A third experiment was performed using KIO3 to ascertain the anionic dependence of the decomposition rate, which was observed to be far slower than in KClO3, suggesting that the O-O distance is the critical factor in chemical reactions. These results will be important for more efficiently initiating chemical decomposition in materials using selected X-ray wavelengths that maximize decomposition to aid useful hard X-ray-induced chemistry and contribute understanding of the mechanism of X-ray-induced decomposition of the chlorates.

  5. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  6. Peripheral heavy-ion induced reactions at intermediate energies 20MeV

    International Nuclear Information System (INIS)

    Barrette, J.; Berthier, B.; Chavez, E.

    1984-03-01

    Inclusive energy spectra and angular distributions of projectile like fragments in reactions induced by a 44 MeV/nucleon 40 Ar beam bombarding 27 Al and sup(nat)Ti targets show many of the features of high energy fragmentation. However, several aspects such as energy dissipation and production of fragments heavier than the projectile are reminiscent of a low energy behaviour

  7. Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate

    International Nuclear Information System (INIS)

    Haspulat, Bircan; Gülce, Ahmet; Gülce, Handan

    2013-01-01

    Highlights: • The PANI/Fe film as photocatalyst was used for the first time. • It was possible to modify the surface roughness and wettability of the PANI films. • The photocatalytic decolorization of four dyes has been investigated. • The photocatalytical activity of the PANI matrix was increased by adding Fe ions. -- Abstract: In this study, the photocatalytic decolorization of four commercial textile dyes with different structures has been investigated using electrochemically synthesized polyaniline and Fe ions doped polyaniline on ITO coated glass substrate as photocatalyst in aqueous solution under UV irradiation for the first time. Scanning electron microscopy, atomic force microscopy, FT-IR spectra, UV–vis spectroscopy measurements were used to characterize the electrochemically synthesized polymer film photocatalyst. Film hydrophilicity was assessed from contact angle measurements. The results show that both of the polymer films exhibit good photocatalytic performance. Surprisingly, it was determined that by using Fe(II) ions during polymerization, it is possible to modify the surface roughness and wettability of the produced polyaniline films which favors their photocatalytic activity in water-based solutions. All four of the used dyes (methylene blue, malachite green, methyl orange and methyl red) were completely decolorizated in 90 min of irradiation under UV light by using Fe ions doped polyaniline at the dye concentration of 1.5 × 10 −5 M, while the decolorization of those dyes were between 43% and 83% by using polyaniline as photocatalyst. Hence, it may be a viable technique for the safe disposal of textile wastewater into waste streams

  8. Chemical modifications of polymer films induced by high energy heavy ions

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-01-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40 Ar, 25 MeV/u 84 Kr, 15.1 MeV/u 136 Xe and 11.4 MeV/u 238 U to fluences ranging from 9x10 9 to 5.5x10 12 ions/cm 2 . The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer

  9. Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis

    Digital Repository Service at National Institute of Oceanography (India)

    SatheeshBabu, S.; Mohandass, C.; VijayRaj, A.S.; Rajasabapathy, R.; Dhale, M.A.

    stream_size 41279 stream_content_type text/plain stream_name Water_Air_Soil_Pollut_224_1500a.pdf.txt stream_source_info Water_Air_Soil_Pollut_224_1500a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8...     1    Author version: Water Air Soil Pollut., vol.224(4); 2013; 1500 Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis S. Satheesh Babu, C.Mohandass*, A.S.Vijay Raj, R...

  10. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Rios-Del Toro, E. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Celis, Lourdes B. [División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Rangel-Mendez, J. Rene, E-mail: rene@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-09-15

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO{sub 3} to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  11. Mathematical modeling of wastewater decolorization in a trickle-bed bioreactor.

    Science.gov (United States)

    Skybová, T; Přibyl, M; Pocedič, J; Hasal, P

    2012-02-20

    This work focuses on mathematical modeling of removal of organic dyes from textile industry waste waters by a white-rot fungus Irpex lacteus in a trickle-bed bioreactor. We developed a mathematical model of biomass and decolorization process dynamics. The model comprises mass balances of glucose and the dye in a fungal biofilm and a liquid film. The biofilm is modeled using a spatially two-dimensional domain. The liquid film is considered as homogeneous in the direction normal to the biofilm surface. The biomass growth, decay and the erosion of the biofilm are taken into account. Using experimental data, we identified values of key model parameters: the dye degradation rate constant, biofilm corrugation factor and liquid velocity. Considering the dye degradation rate constant 1×10⁻⁵ kg m⁻³ s⁻¹, we found optimal values of the corrugation factor 0.853 and 0.59 and values of the liquid velocity 5.23×10⁻³ m s⁻¹ and 6.2×10⁻³ m s⁻¹ at initial dye concentrations 0.09433 kg m⁻³ and 0.05284 kg m⁻³, respectively. A good agreement between the simulated and experimental data using estimated values of the model parameters was achieved. The model can be used to simulate the performance of laboratory scale trickle-bed bioreactor operated in a batch regime or to estimate values of principal parameters of the bioreactor system. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben [Department; Huang, Gaochao [Department; Meekins, David A. [Department; Geisbrecht, Brian V. [Department; Li, Ping [Department

    2017-08-18

    Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases that have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been determined for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand and two channels at diameters of ~3.0 and 8.0 Å lead to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pD 3.5 suggested that compound 0 deprotonation by the distal aspartate is rate-limiting in the formation of compound I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with compound I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in ElDyP is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for compound I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining ElDyP’s optimum acidic pH. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity.

  13. Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye.

    Science.gov (United States)

    Pandey, Priyanka; Singh, Ram Praksh; Singh, Kailash Nath; Manisankar, Paramasivam

    2013-01-01

    A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin-Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm(-1). Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye-biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.

  14. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    International Nuclear Information System (INIS)

    Emilia Rios-Del Toro, E.; Celis, Lourdes B.; Cervantes, Francisco J.; Rangel-Mendez, J. Rene

    2013-01-01

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO 3 to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents

  15. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  16. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  17. Has renewable energy induced competitive behavior in the Spanish electricity market?

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Espinosa, Maria Paz; Pizarro-Irizar, Cristina

    2017-01-01

    Recent energy policy has favored a massive introduction of Renewable Energy Sources on electricity markets, which has greatly impacted their performance. First, the electricity price has decreased as a consequence of the so-called merit-order effect. Another relevant effect is associated to the intermittent nature of Renewable Energy, which has increased the cost of ancillary services. A third and important aspect, less addressed in the literature, is the induced change in the strategic behavior of the conventional electricity producers. In principle, the entry of new generators in a concentrated market would make it more competitive and change the strategic behavior of the incumbents. We test this hypothesis for the Spanish wholesale market. While we find no significant change in behavior for Nuclear, Hydropower and Coal, a change is observed in Combined Cycle bidding strategies after the entry of renewable generators. Our analysis shows that the massive entry of Renewable Energy Sources made other generators' behavior more competitive in the short run, but the effect was not persistent. - Highlights: • The indirect effects of RES affect prices in electricity markets. • RES induced little change in Nuclear, Coal and Hydropower generation. • Combined Cycle bidding strategies have evolved to adapt to the introduction of RES. • RES made Combined Cycle's behavior more competitive in the short run. • The competitive effect induced by RES is not persistent in the long run.

  18. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  19. The synthesis of nucleotide in the aqueous solution induced by low energy ions

    International Nuclear Information System (INIS)

    Shi Huaibin; Shao Chunlin; Wang Xiangqin; Yu Zengliang

    2000-08-01

    A new apparatus was designed to induce reactions in aqueous solution by introducing low energy ions into the aqueous solution, this apparatus overcome the defaults of the old ones which demanded vacuum and made it possible to study the action among solutions, it also expanded the ion implantation biology. The role of low energy ions was introduced into the study of the origin of life, primitive earth conditions were imitated to study prior-life synthesis of nucleotide by introducing low energy ions into aqueous solution, low energy N + was implanted into adenine supersaturation solution including D-ribose and NH 4 H 2 PO 4 , it was confirmed that 5'-AMP was gained by HPLC analysis of the products. In comparison with other methods in this field, this one is simpler and nearer to the primitive earth conditions, thus it provided a new try for the studying of the origin of life

  20. An eddy current-induced magnetic plucking for piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    Do, Nam Ho; Baek, Yoon Su

    2016-01-01

    Frequency up-conversion is a very efficient method of energy harvesting in order to overcome low, non-periodic, or altered ambient vibration. In order to perform frequency up-conversion and transference of mechanical energy without contact, an eddy current-induced magnetic drag force is used. In this paper, we present a novel configuration of eddy current-induced magnetic plucking for piezoelectric energy harvesting. Our method consists of two permanent magnets, a piezoelectric beam, and a copper disk piece. We design our harvesting method to achieve loading, sudden release, and free vibration using the actuation of the piezoelectric beam through the magnetic mutual coupling between the magnet and copper disk piece. We present the principle of magnetic drag force-generation, characterize the energy harvesting performance of our harvesting method, and demonstrate our harvesting method’s capability of frequency up-conversion and transference of mechanical energy without contact under low, non-periodic, or altered ambient vibration. To that end, we describe the calculation of magnetic drag force with various geometric dimensions and material properties, model of the piezoelectric cantilever beam, comparison between estimation response and measured experiment response, and the measured voltage and power responses. (paper)

  1. Nutritional compensation to exercise- vs. diet-induced acute energy deficit in adolescents with obesity

    OpenAIRE

    Thivel , David; Doucet , Eric; Julian , Valérie; Cardenoux , Charlotte; Boirie , Yves; Duclos , Martine

    2017-01-01

    This article belongs to a special issueConference: 24th Annual Meeting of the Society-for-the-Study-of-Ingestive-Behavior (SSIB)Location: Porto, PORTUGALDate: JUL 12-16, 2016Sponsor(s):Soc Study Ingest BehavThe authors want to thank the adolescents who took part in the study as well as Miss Nais Petiot and Miss Audrey Marion for their help; BACKGROUND: To compare the energy and macronutrient intake responses to equivalent energy deficits induced by diet (food restriction) and exercise in adol...

  2. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  3. Induced gravity and the attractor dynamics of dark energy/dark matter

    International Nuclear Information System (INIS)

    Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V.

    2010-01-01

    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity

  4. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye

    International Nuclear Information System (INIS)

    Akar, Tamer; Tosun, Ilknur; Kaynak, Zerrin; Kavas, Emine; Incirkus, Gonul; Akar, Sibel Tunali

    2009-01-01

    This study focuses on the possible use of macro-fungus Agaricus bisporus to remove Acid Red 44 dye from aqueous solutions. Batch equilibrium studies were carried out as a function of pH, biomass amount, contact time and temperature to determine the decolorization efficiency of biosorbent. The highest dye removal yield was achieved at pH 2.0. Equilibrium occurred within about 30 min. Biosorption data were successfully described by Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum monolayer biosorption capacity of biosorbent material was found as 1.19 x 10 -4 mol g -1 . Thermodynamic parameters indicated that the biosorption of Acid Red 44 onto fungal biomass was spontaneous and endothermic in nature. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of possible dye-biosorbent interaction and surface structure of biosorbent, respectively. Finally the proposed biosorbent was successfully used for the decolorization of Acid Red 44 in synthetic wastewater conditions.

  5. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system.

    Science.gov (United States)

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    A continuous stirred tank reactor with built-in bioelectrochemical system (CSTR-BES) was developed for azo dye Alizarin Yellow R (AYR) containing wastewater treatment. The decolorization efficiency (DE) of the CSTR-BES was 97.04±0.06% for 7h with sludge concentration of 3000mg/L and initial AYR concentration of 100mg/L, which was superior to that of the sole CSTR mode (open circuit: 54.87±4.34%) and the sole BES mode (without sludge addition: 91.37±0.44%). The effects of sludge concentration and sodium acetate (NaAc) concentration on azo dye decolorization were investigated. The highest DE of CSTR-BES for 4h was 87.66±2.93% with sludge concentration of 12,000mg/L, NaAc concentration of 2000mg/L and initial AYR concentration of 100mg/L. The results in this study indicated that CSTR-BES could be a practical strategy for upgrading conventional anaerobic facilities against refractory wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    Science.gov (United States)

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.

  7. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2011-12-15

    Decolorization of dye wastewater before discharge is pivotal because of its immense color and toxicities. In this study, a granular activated carbon based microbial fuel cell (GACB-MFC) was used without using any expensive materials like Nafion membrane and platinum catalyst for simultaneous decolorization of real dye wastewater and bioelectricity generation. After 48 hours of GACB-MFC operation, 73% color was removed at anode and 77% color was removed at cathode. COD removal was 71% at the anode and 76% at the cathode after 48 hours. Toxicity measurements showed that cathode effluent was almost nontoxic after 24 hours. The anode effluent was threefold less toxic compared to original dye wastewater after 48 hours. The GACB-MFC produced a power density of 1.7 W/m(3) with an open circuit voltage 0.45 V. One of the advantages of the GACB-MFC system is that pH was automatically adjusted from 12.4 to 7.2 and 8.0 at the anode and cathode during 48 hours operation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    Science.gov (United States)

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  9. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  10. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  11. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  12. Effect of laser spot size on energy balance in laser induced plasmas

    International Nuclear Information System (INIS)

    Pant, H.C.; Sharma, S.; Bhawalkar, D.D.

    1980-01-01

    The effect of the laser spot size on laser light absorption in laser induced plasmas from solid targets was studied. It was found that at a constant laser intensity on the target, reduction in the laser spot size enhances the net laser energy absorption. It was also observed that the laser light reflection from the target becomes more diffused when the focal spot size is reduced

  13. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  14. Time and energy resolved runaway measurements in TFR from induced radioactivity

    International Nuclear Information System (INIS)

    1983-09-01

    A time and energy resolved measurement of the radioactivity induced by runaway electrons in proper samples has been developped in TFR. The data give an information on the confinement time of these electrons, which appears to be strongly dependent on the toroidal field, suggesting the onset of a magnetic turbulence at lower fields. Observations showing that the runaway electrons deeply penetrate into the limiter shadow are also reported

  15. Leptin: A Link Between Energy Imbalance and Exercise-Induced Amenorrhea in Female Athletes

    OpenAIRE

    Miles, Marie

    2001-01-01

    Up to a quarter of female athletes may experience exercise-induced amenorrhea, depending on the type of sport and the level of competition. This amenorrhea is a component of the Female Athlete Triad, a term used to describe three interrelated conditions commonly seen together in the elite female athlete: chronic dieting and/or disordered eating, amenorrhea, and decreased bone mass. Leptin, a hormone secreted by adipose tissue and believed to play a central role in eating behaviors and energy ...

  16. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  17. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  18. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  19. Preparation and characterization of intrinsically coloured polymers using high energy radiation induced processes

    International Nuclear Information System (INIS)

    Guthrie, J.T.

    1978-07-01

    Information on the development in research is given in the utilization of high energy radiation sources in polymerizations and on polymer characterization in the following three areas: studies on the nitrile-styrene system, studies on the radiation induced polymerization of 2-vinyl anthraquinone and the graft polymerization of vinyl monomers onto cellulose in the DMSO/HCHO/cellulose system. Within the framework of research in radiation induced polymerization, samples of 2-vinyl anthraquinone were subjected to X-ray diffraction and e.s.r. examinations and the kinetics and mechanism of γ-ray induced solution polymerization of 2-vinyl anthraquinone in methylene chloride and dimethyl sulfoxide was investigated. Methylene chloride was found to be an efficient solvent for poly(2-vinyl anthraquinone). The rate of polymerization in methylene chloride was 10 3 times greater than that obtained using dimethyl sulfoxide as solvent

  20. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  1. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  2. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  3. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  4. Visible-light photocatalytic decolorization of reactive brilliant red X-3B on Cu{sub 2}O/crosslinked-chitosan nanocomposites prepared via one step process

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunhua [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@yahoo.cn [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Liu, Li; Zhu, Huayue [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua; Gao, Lin [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2013-04-15

    Cu{sub 2}O/crosslinked-chitosan nanocomposites (Cu{sub 2}O/CS NCs) were in situ prepared via a simple one-step liquid phase precipitation–reduction process and characterized by XRD, FT-IR, SEM, TEM, BET, XPS and UV–vis/DRS. The characterization results showed that Cu{sub 2}O/CS NCs were almost similar spherical or ellipsoidal and the surface was rough and porous because Cu{sub 2}O particle was wrapped in chitosan. The chitosan layer was especially favorable for improving the adsorption ability of dye and molecular oxygen and restraining the recombination of electrons–holes pair. The visible-light photocatalytic decolorization behavior on Cu{sub 2}O/CS NCs was evaluated using reactive brilliant red X-3B (X-3B) as a model pollutant. The influences of various experimental factors on X-3B decolorization were investigated. It was found that the photocatalytic decolorization process on Cu{sub 2}O/CS NCs followed apparent pseudo-first-order kinetics model. The dye X-3B could be decolorized more efficiently in acidic media than in alkaline media. Cu{sub 2}O/CS NCs exhibited enhanced visible-light photocatalytic activity compared with other photocatalysts reported before under similar experimental conditions.

  5. Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Mohandass, C.; Kamat, S.; Shailaja, M.S.

    of toxicity of the MSW. The concentration of PAH in the MSW decreased by 68% by day 5 on treatment with the fungus. This is the first report where decolorization of MSW is accompanied by simultaneous detoxification and decrease in PAH content of the MSW. A...

  6. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  7. Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent - A comparative study

    Czech Academy of Sciences Publication Activity Database

    Antošová, Z.; Herkommerová, Klára; Pichová, Iva; Sychrová, H.

    2018-01-01

    Roč. 34, č. 1 (2018), s. 69-80 ISSN 8756-7938 R&D Projects: GA TA ČR(CZ) TA01011461; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : laccase * decolorization * gene expression * expression optimization * Saccharomyces cerevisiae Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 1.986, year: 2016

  8. Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent - A comparative study

    Czech Academy of Sciences Publication Activity Database

    Antošová, Zuzana; Herkommerová, Klára; Pichová, I.; Sychrová, Hana

    2018-01-01

    Roč. 34, č. 1 (2018), s. 69-80 ISSN 8756-7938 R&D Projects: GA TA ČR(CZ) TA01011461 Institutional support: RVO:67985823 Keywords : laccase * decolorization * gene expression * expression optimization * Saccharomyces cerevisiae Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Industrial biotechnology Impact factor: 1.986, year: 2016

  9. Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain.

    Science.gov (United States)

    Daâssi, Dalel; Zouari-Mechichi, Hela; Frikha, Fakher; Martinez, Maria Jesus; Nasri, Moncef; Mechichi, Tahar

    2013-04-01

    This study concerns the decolorization and detoxification of the azo dye Acid Orange 51 (AO51) by crude laccase from Trametes trogii produced in solid culture using sawdust as support media. A three-level Box-Behnken factorial design with four factors (enzyme concentration, 1-hydroxybenzotriazole (HBT) concentration, dye concentration and reaction time) combined with response surface methodology was applied to optimize AO51 decolorization. A mathematical model was developed showing the effect of each factor and their interactions on color removal. The model predicted that Acid Orange 51 decolorization above 87.87 ± 1.27 % could be obtained when enzyme concentration, HBT concentration, dye concentration and reaction time were set at 1 U/mL, 0.75 mM, 60 mg/L and 2 days, respectively. The experimental values were in good agreement with the predicted ones and the models were highly significant, the correlation coefficient (R 2 ) being 0.9. Then the desirability function was employed to determine the optimal decolorization condition for each dye and minimize the process cost simultaneously. In addition, germination index assay showed that laccase-treated dye was detoxified; however in the presence of HBT, the phytotoxicity of the treated dye was increased. By using cheap agro-industrial wastes, such as sawdust, a potential laccase was obtained. The low cost of laccase production may further broaden its application in textile wastewater treatment.

  10. Immobilization of horseradish peroxidase on ZnO nanowires/macroporous SiO2 composites for the complete decolorization of anthraquinone dyes.

    Science.gov (United States)

    Sun, Huaiyan; Jin, Xinyu; Jiang, Feng; Zhang, Ruifeng

    2018-03-01

    A zinc oxide (ZnO) nanowires/macroporous silicon dioxide composite was used as support to immobilize horseradish peroxidase (HRP) simply by in situ cross-linking method. As cross-linker was adsorbed on the surface of ZnO nanowires, the cross-linked HRP was quite different from the traditional cross-linking enzyme aggregates on both structure and catalytic performance. Among three epoxy compounds, diethylene glycol diglycidyl ether (DDE) was the best cross-linker, with which the loading amount of HRP with pI of 5.3 reached as high as 118.1 mg/g and specific activity was up to 14.9 U/mg-support. The mass loss of HRP cross-linked with DDE was negligible during 50-H leaching at 4 °C, and the thermal stability of the immobilized HRP was also quite good. The catalytic performance of immobilized HRP to decolorize anthraquinone dye was explored by using Reactive Blue 19 (RB 19) and Acid Violet 109 (AV 109) as model substrates. The results indicated that the immobilized HRP exhibited high decolorization efficiency and good reusability. The decolorization efficiency reached 94.3% and 95.9% for AV 109 and RB 19 within the first 30 Min, respectively. A complete decolorization of these two dyes has been realized within 2-3 H by using this new biocatalysis system. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  11. Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts.

    Science.gov (United States)

    Quadrado, Rafael F N; Fajardo, André R

    2017-12-01

    The efficiency of Fenton and Fenton-like processes can be seriously affected by the continuous loss of iron ions and by the formation of solid sludge. Here, alginate (Alg) films were synthesized to stabilize iron ions (Fe 2+ and Fe 3+ ) and to enhance their catalytic activities towards the decolorization of methyl orange via heterogeneous Fenton and Fenton-like processes. Iron ions were ionically bond to the Alg molecules resulting in a three-dimensional network with specific structural and morphological features according to the valence states of iron. Our results demonstrated that both Alg-Fe 2+ and Alg-Fe 3+ films show highlighted catalytic activity for the decolorization of MO and high decolorization rates. Reuse experiments demonstrated that both films could be employed in at least five consecutive decolorization processes without losing their catalytic efficiency or stability. Taken together, our findings reveal that the Alg-Fe 2+ and Alg-Fe 3+ films may be suitable low-cost catalysts in heterogeneous Fenton and Fenton-like processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research

  13. Forecasting of Energy Expenditure of Induced Seismicity with Use of Artificial Neural Network

    Science.gov (United States)

    Cichy, Tomasz; Banka, Piotr

    2017-12-01

    Coal mining in many Polish mines in the Upper Silesian Coal Basin is accompanied by high levels of induced seismicity. In mining plants, the methods of shock monitoring are improved, allowing for more accurate localization of the occurring phenomena and determining their seismic energy. Equally important is the development of ways of forecasting seismic hazards that may occur while implementing mine design projects. These methods, depending on the length of time for which the forecasts are made, can be divided into: longterm, medium-term, short-term and so-called alarm. Long-term forecasts are particularly useful for the design of seam exploitations. The paper presents a method of predicting changes in energy expenditure of shock using a properly trained artificial neural network. This method allows to make long-term forecasts at the stage of the mine’s exploitation design, thus enabling the mining work plans to be reviewed to minimize the potential for tremors. The information given at the input of the neural network is indicative of the specific energy changes of the elastic deformation occurring in the selected, thick, resistant rock layers (tremor-prone layers). Energy changes, taking place in one or more tremor-prone layers are considered. These indicators describe only the specific energy changes of the elastic deformation accumulating in the rock as a consequence of the mining operation, but does not determine the amount of energy released during the destruction of a given volume of rock. In this process, the potential energy of elastic strain transforms into other, non-measurable energy types, including the seismic energy of recorded tremors. In this way, potential energy changes affect the observed induced seismicity. The parameters used are characterized by increases (declines) of specific energy with separation to occur before the hypothetical destruction of the rock and after it. Additional input information is an index characterizing the rate of

  14. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  15. Analysis for mass distribution of proton-induced reactions in intermediate energy range

    CERN Document Server

    Xiao Yu Heng

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reactions needs to be studied, because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. In present work, the Many State Dynamical Model (MSDM) is based on the Cascade-Exciton Model (CEM). The authors use it to investigate the mass distribution of Nb, Au and Pb proton-induced reactions in energy range from 100 MeV to 3 GeV. The agreement between the MSDM simulations and the measured data is good in this energy range, and deviations mainly show up in the mass range of 90 - 150 for the high energy proton incident upon Au and Pb

  16. Loss of Akt1 in mice increases energy expenditure and protects against diet-induced obesity.

    Science.gov (United States)

    Wan, Min; Easton, Rachael M; Gleason, Catherine E; Monks, Bobby R; Ueki, Kohjiro; Kahn, C Ronald; Birnbaum, Morris J

    2012-01-01

    Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity.

  17. Method of measurement of cross sections of heavy nuclei fission induced by intermediate energy protons

    International Nuclear Information System (INIS)

    Kotov, Alexander; Chtchetkovski, Alexander; Fedorov, Oleg; Gavrikov, Yuri; Chestnov, Yuri; Poliakov, Vladimir; Vaishnene, Larissa; Vovchenko, Vil; Fukahori, Tokio

    2003-01-01

    The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, nat Pb, 209 Bi, 232 Th, 233 U, 235 U, 238 U, 237 Np and 239 Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for nat Pb, 209 Bi, 235 U and 238 U are reported. (author)

  18. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    International Nuclear Information System (INIS)

    Dai, H. L.; Abdelkefi, A.; Yang, Y.; Wang, L.

    2016-01-01

    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  19. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  20. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  1. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  2. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  3. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  4. Low-energy electron diffraction and induced damage in hydrated DNA

    International Nuclear Information System (INIS)

    Orlando, Thomas M.; Oh, Doogie; Chen Yanfeng; Aleksandrov, Alexandr B.

    2008-01-01

    Elastic scattering of 5-30 eV electrons within the B-DNA 5 ' -CCGGCGCCGG-3 ' and A-DNA 5 ' -CGCGAATTCGCG-3 ' DNA sequences is calculated using the separable representation of a free-space electron propagator and a curved wave multiple scattering formalism. The disorder brought about by the surrounding water and helical base stacking leads to a featureless amplitude buildup of elastically scattered electrons on the sugar and phosphate groups for all energies between 5 and 30 eV. However, some constructive interference features arising from diffraction are revealed when examining the structural waters within the major groove. These appear at 5-10, 12-18, and 22-28 eV for the B-DNA target and at 7-11, 12-18, and 18-25 eV for the A-DNA target. Although the diffraction depends on the base-pair sequence, the energy dependent elastic scattering features are primarily associated with the structural water molecules localized within 8-10 A spheres surrounding the bases and/or the sugar-phosphate backbone. The electron density buildup occurs in energy regimes associated with dissociative electron attachment resonances, direct electronic excitation, and dissociative ionization. Since diffraction intensity can be localized on structural water, compound H 2 O:DNA states may contribute to energy dependent low-energy electron induced single and double strand breaks

  5. Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.

    Science.gov (United States)

    Haugstad, T S; Valø, E T; Langmoen, I A

    1995-12-01

    The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.

  6. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  7. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  8. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease.

    Science.gov (United States)

    Chou, Shih-Jie; Yu, Wen-Chung; Chang, Yuh-Lih; Chen, Wen-Yeh; Chang, Wei-Chao; Chien, Yueh; Yen, Jiin-Cherng; Liu, Yung-Yang; Chen, Shih-Jen; Wang, Chien-Ying; Chen, Yu-Han; Niu, Dau-Ming; Lin, Shing-Jong; Chen, Jaw-Wen; Chiou, Shih-Hwa; Leu, Hsin-Bang

    2017-04-01

    Fabry disease (FD) is a lysosomal storage disease in which glycosphingolipids (GB3) accumulate in organs of the human body, leading to idiopathic hypertrophic cardiomyopathy and target organ damage. Its pathophysiology is still poorly understood. We aimed to generate patient-specific induced pluripotent stem cells (iPSC) from FD patients presenting cardiomyopathy to determine whether the model could recapitulate key features of the disease phenotype and to investigate the energy metabolism in Fabry disease. Peripheral blood mononuclear cells from a 30-year-old Chinese man with a diagnosis of Fabry disease, GLA gene (IVS4+919G>A) mutation were reprogrammed into iPSCs and differentiated into iPSC-CMs and energy metabolism was analyzed in iPSC-CMs. The FD-iPSC-CMs recapitulated numerous aspects of the FD phenotype including reduced GLA activity, cellular hypertrophy, GB3 accumulation and impaired contractility. Decreased energy metabolism with energy utilization shift to glycolysis was observed, but the decreased energy metabolism was not modified by enzyme rescue replacement (ERT) in FD-iPSCs-CMs. This model provided a promising in vitro model for the investigation of the underlying disease mechanism and development of novel therapeutic strategies for FD. This potential remedy for enhancing the energetic network and utility efficiency warrants further study to identify novel therapies for the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Radiation-induced energy migration within solid DNA: The role of misonidazole as an electron trap

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Adams, G.E.; Fielden, E.M.

    1990-01-01

    The in-pulse luminescence emission from solid DNA produced upon irradiation with electron pulses of energy below 260 keV has been investigated in vacuo at 293 K to gain an insight into the existence of radiation-induced charge/energy migration within DNA. The DNA samples contained misonidazole in the range 3 to 330 base pairs per misonidazole molecule. Under these conditions greater than 90% of the total energy is deposited in the DNA. The in-pulse radiation-induced luminescence spectrum of DNA was found to be critically dependent upon the misonidazole content of DNA. The luminescence intensity from the mixtures decreases with increasing content of misonidazole, and at the highest concentration, the intensity at 550 nm is reduced to 50% of that from DNA only. In the presence of 1 atm of oxygen, the observed emission intensity from DNA in the wavelength region 350-575 was reduced by 35-40% compared to that from DNA in vacuo. It is concluded that electron migration can occur in solid mixtures of DNA over a distance of up to about 100 base pairs

  10. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Radhika V Seimon

    Full Text Available Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change ÷ [(total energy intake of mice on CD or ID-(total average energy intake of controls]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05. There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01. Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative

  11. Thermal annealing of high dose radiation induced damage at room temperature in alkaline. Stored energy, thermoluminescence and coloration

    International Nuclear Information System (INIS)

    Delgado, L.

    1980-01-01

    The possible relation between stored energy, thermoluminescence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminescence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KC1 samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose.Capacity of alkali halides to store energy by irradiation increases as the cation size decreases. (Author) 51 refs

  12. Current-induced changes of migration energy barriers in graphene and carbon nanotubes.

    Science.gov (United States)

    Obodo, J T; Rungger, I; Sanvito, S; Schwingenschlögl, U

    2016-05-21

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.

  13. Current-induced changes of migration energy barriers in graphene and carbon nanotubes

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-04-29

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. © 2016 The Royal Society of Chemistry.

  14. Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure

    Science.gov (United States)

    Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu

    2016-08-01

    The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.

  15. Energy budgets of mining-induced earthquakes and their interactions with nearby stopes

    Science.gov (United States)

    McGarr, A.

    2000-01-01

    In the early 1960's, N.G.W. Cook, using an underground network of geophones, demonstrated that most Witwatersrand tremors are closely associated with deep level gold mining operations. He also showed that the energy released by the closure of the tabular stopes at depths of the order of 2 km was more than sufficient to account for the mining-induced earthquakes. I report here updated versions of these two results based on more modern underground data acquired in the Witwatersrand gold fields. Firstly, an extensive suite of in situ stress data indicate that the ambient state of crustal stress here is close to the failure state in the absence of mining even though the tectonic setting is thoroughly stable. Mining initially stabilizes the rock mass by reducing the pore fluid pressure from its initial hydrostatic state to nearly zero. The extensive mine excavations, as Cook showed, concentrate the deviatoric stresses, in localized regions of the abutments, back into a failure state resulting in seismicity. Secondly, there appears to be two distinct types of mining-induced earthquakes: the first is strongly coupled to the mining and involves shear failure plus a coseismic volume reduction; the second type is not evidently coupled to any particular mine face, shows purely deviatoric failure, and is presumably caused by more regional changes in the state of stress due to mining. Thirdly, energy budgets for mining induced earthquakes of both types indicate that, of the available released energy, only a few per cent is radiated by the seismic waves with the majority being consumed in overcoming fault friction. Published by Elsevier Science Ltd.In the early 1960's, N.G.W. Cook, using an underground network of geophones, demonstrated that most Witwatersrand tremors are closely associated with deep level gold mining operations. He also showed that the energy released by the closure of the tabular stopes at depths of the order of 2 km was more than sufficient to account for the

  16. Current-induced changes of migration energy barriers in graphene and carbon nanotubes

    Science.gov (United States)

    Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-05-01

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A

  17. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Nohrstedt, Daniel

    2007-04-01

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three essays is to posit

  18. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, Daniel

    2007-04-15

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three

  19. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  20. Thermal annealing of high dose radiation induced damage at room temperature in alkali halides. Stored energy, thermoluminiscence and colouration

    International Nuclear Information System (INIS)

    Delgado, L.

    1980-01-01

    The possible relation between stored energy, thermoluminiscence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminiscence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KCl samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose. Capacity of alkali halides to sotore energy by irradiation increases as the cation size decreases. It appears that most of the observed release is not related to annealing processes of the radiation induced anion Frenkel pairs. The existence of damage in the cation sublattice with which this energy release might be related is considered. (auth.)

  1. Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Tawara, Hiro.

    1995-03-01

    The yields of the ion-induced sputtering from monoatomic solids at normal incidence for various ion-target combinations are presented graphically as a function of the incident ion energy. In order to fill the lack of the experimental data, the sputtering yields are also calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows available experimental data points and the ACAT data, together with the sputtering yields calculated by the present empirical formula, whose parameters are determined by the best-fit to available data. (author)

  2. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay

  3. Measurements of neutron-induced fission cross sections of Pb and Bi at intermediate energies

    International Nuclear Information System (INIS)

    Ryzhov, Igor; Tutin, Gennady; Eismont, Vilen; Mitryukhin, Andrey; Oplavin, Valery; Soloviev, Sergey; Conde, Henri; Olsson, Nils; Renberg, Per-Ulf

    2002-01-01

    Neutron-induced fission cross sections of nat Pb and 209 Bi have been measured relative to the 238 U(n.f) cross section at energies 96 MeV for lead and 133 MeV for bismuth. The measurements were performed at the quasi-mono-energetic neutron beam facility of The Svedberg Laboratory in Uppsala using Frisch-gridded ionization chamber. The results obtained are compared with other experimental data. The present state of the Bi standard recommended by IAEA is discussed. (author)

  4. High energy proton-induced radioactivity in HgI2 crystals

    International Nuclear Information System (INIS)

    Porras, E.; Ferrero, J.L.; Sanchez, F.; Ruiz, J.A.; Lei, F.

    1995-01-01

    Mercuric iodide (HgI 2 ) semiconductor crystals are generating a lot of interest as room temperature solid state detectors for hard X-ray astronomy observations. For these applications one of the most important background sources is the cosmic proton induced radioactivity in the detector material. In order to study this background noise contribution a 1x1x1 cm HgI 2 crystal was irradiated with high energy protons. The resulting long-lived unstable isotopes and their production rates have been identified and compared with Monte Carlo simulations. ((orig.))

  5. Induced vacuum energy-momentum tensor in the background of a cosmic string

    OpenAIRE

    Sitenko, Yu. A.; Vlasii, N. D.

    2011-01-01

    A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional space-time. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the space-time curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decr...

  6. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    NARCIS (Netherlands)

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  7. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  8. Determination of the nuclear induced electrical conductivity of 3He for magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Bitteker, L.; Scheuer, J.; Howe, S.

    1996-01-01

    This is the final report for a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The continual need for more efficient, high-output energy conversion techniques has renewed interest in nuclear-driven magnetohydrodynamic (MHD) energy conversion. To provide the fundamental knowledge required to evaluate the potential value of this concept, a one-year project aimed at measuring the nuclear-induced electrical conductivity of a 3 He/ 4 He gas mixture under thermodynamic conditions consistent with the MHD flow conditions was carried out. The range of bulk gas conditions to be considered were: pressure = 0.1 to 3800 Torr and temperature = 300 to 1500 K. The maximum neutron flux to be considered was 10 16 /cm 2 sec. The range of parameters considered surpassed previous experiments in all aspects

  9. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  10. Effect of free-particle collisions in high energy proton and pion-induced nuclear reactions

    International Nuclear Information System (INIS)

    Jacob, N.P. Jr.

    1975-07-01

    The effect of free-particle collisions in simple ''knockout'' reactions of the form (a,aN) and in more complex nuclear reactions of the form (a,X) was investigated by using protons and pions. Cross sections for the 48 Ti(p,2p) 47 Sc and the 74 Ge(p,2p) 73 Ga reactions were measured from 0.3 to 4.6 GeV incident energy. The results indicate a rise in (p,2p) cross section for each reaction of about (25 +- 3) percent between the energies 0.3 and 1.0 GeV, and are correlated to a large increase in the total free-particle pp scattering cross sections over the same energy region. Results are compared to previous (p,2p) excitation functions in the GeV energy region and to (p,2p) cross section calculations based on a Monte Carlo intranuclear cascade-evaporation model. Cross section measurements for (π/sup +-/, πN) and other more complex pion-induced spallation reactions were measured for the light target nuclei 14 N, 16 O, and 19 F from 45 to 550 MeV incident pion energy. These measurements indicate a broad peak in the excitation functions for both (π,πN) and (π,X) reactions near 180 MeV incident energy. This corresponds to the large resonances observed in the free-particle π + p and π - p cross sections at the same energy. Striking differences in (π,πN) cross section magnitudes are observed among the light nuclei targets. The experimental cross section ratio sigma(π - ,π - n)/sigma(π + ,πN) at 180 MeV is 1.7 +- 0.2 for all three targets. The experimental results are compared to previous pion and analogous proton-induced reactions, to Monte Carlo intranuclear cascade-evaporation calculations, and to a semi-classical nucleon charge exchange model. (108 references) (auth)

  11. Design and Numerical Simulations of a Flow Induced Vibration Energy Converter for Underwater Mooring Platforms

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2017-09-01

    Full Text Available Limited battery energy restricts the duration of the underwater operation of underwater mooring platforms (UMPs. In this paper, a flow-induced vibration energy converter (FIVEC is designed to produce power for the UMPs and extend their operational time. The FIVEC is equipped with a thin plate to capture the kinetic energy in the vortices shed from the surface of the UMP. A magnetic coupling (MC is applied for the non-contacting transmission of the plate torque to the generators so that the friction loss can be minimized. In order to quantify and evaluate the performance of the FIVEC, two-dimensional computational fluid dynamics (CFD simulations are performed. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations and the shear stress transport (SST k-ω turbulent model is utilized. The CFD method is firstly validated using existing experimental data. Then the influences of plate length and system damping on the performance of the FIVEC are evaluated. The results show that the device has a maximum averaged power coefficient of 0.0520 (13.86 W in the considered situations. The results also demonstrate the feasibility of this energy converter plan.

  12. High energy nuclear data evaluations for neutron-, proton-, and photon-induced reactions at KAERI

    International Nuclear Information System (INIS)

    Lee, Young Ouk; Chang, Jong Hwa; Kim, Doo Hwan; Lee, Jeong Yeon; Han, Yinlu; Sukhovitski, Efrem Sh.

    2001-01-01

    The Korea Atomic Energy Research Institute (KAERI) is building high energy neutron-, proton-, and photon-induced nuclear data libraries for energies up to hundreds MeV in response to nuclear data needs from various R and Ds and applications. The librares provide nuclear data needed for the accelerator-driven transmutation of nuclear waste and radiation transport simulations of cancer radiotherapy. The neutron library currently has 10 isotopes such as C-12, N-14, O-16, Al-27, Si-28, Ca-40, Fe-56, Ni-58, Zr-90, Sn-120, and Pb-208 for energies from 20 up to 400 MeV. The proton nuclear data were evaluated in a consistent manner with the neutron case, using the same nuclear model parameters. In addition to the same isotopes included in the neutron library, the proton library has 70 extra isotopes of 24 elements ranging from nitrogen to lead up to 150 MeV for which the evaluations are focused on the medical and activation analyses applications. The photonuclear data library has been built along with international collaboration by participating in the IAEA's Coordinated Research Project (CRP) which ended last year. Currently the KAERI photonuclear library includes 143 isotopes of 39 elements

  13. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations

    Science.gov (United States)

    Zhang, L. B.; Abdelkefi, A.; Dai, H. L.; Naseer, R.; Wang, L.

    2017-11-01

    In this paper, an operable strategy to enhance the output power of piezoelectric energy harvesting from vortex-induced vibration (VIV) using nonlinear magnetic forces is proposed for the first time. Two introduced small magnets with a repulsive force are, respectively, attached on a lower support and the bottom of a circular cylinder which is subjected to a uniform wind speed. Experiments show that the natural frequency of the VIV-based energy harvester is significantly changed by varying the relative position of the two magnets and hence the synchronization region is shifted. It is observed that the proposed energy harvester displays a softening behavior due to the impact of nonlinear magnetic forces, which greatly increases the performance of the VIV-based energy harvesting system, showing a wider synchronization region and a higher level of the harvested power by 138% and 29%, respectively, compared to the classical configuration. This proposed design can provide the groundwork to promote the output power of conventional VIV-based piezoelectric generators, further enabling to realize self-powered systems.

  14. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  15. Energy-imbalance mechanism of domain wall motion induced by propagation spin waves in finite magnetic nanostripe

    International Nuclear Information System (INIS)

    Zhu, Jinrong; Han, Zhaoyan; Su, Yuanchang; Hu, Jingguo

    2014-01-01

    The mechanism of the domain wall (DW) motions induced by spin wave in finite magnetic nanostripe is studied by micromagnetic simulations. We find that the spin-wave induced DM motions are always accompanied by an energy imbalance between two sides of the DW. The DW motion can be attributed to the expansion of the low-energy-density area and the contraction of the high-energy-density area. The energy imbalance strongly depends on whether the spin wave passes through the DW or is reflected by the DW. In the area of the spin wave propagation, the energy density increases with the time. However, in the superposition area of the incident spin wave and the reflected spin wave, the energy density decreases with the increasing of the time. It shows that this energy imbalance can be controlled by tuning the frequency of the spin wave. Finally, the effect of the damping parameter value is discussed. - Highlights: • The mechanism of the spin-wave induced DW motions is studied. • The spin-wave induced DW motions and the energy imbalance mechanism are given. • The DW motion with the same direction to that of SW is explained. • The DW motion with the opposite direction to that of SW is explained

  16. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  17. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  18. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  19. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    International Nuclear Information System (INIS)

    Rui Li

    2008-01-01

    Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes

  20. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    International Nuclear Information System (INIS)

    Baba, Miyako; Inoue, Masahiro; Itoh, Kazuyuki; Nishizawa, Yasuko

    2008-01-01

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited the association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells

  1. Simultaneous Decolorization and Biohydrogen Production from Xylose by Klebsiella oxytoca GS-4-08 in the Presence of Azo Dyes with Sulfonate and Carboxyl Groups

    Science.gov (United States)

    Cao, Ming-yue; Wang, Peng-tao; Wang, Shi; Yue, Ying-rong; Yuan, Wen-duo; Qiao, Wei-chuan; Wang, Fei

    2017-01-01

    ABSTRACT Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter−1 of xylose as the substrate, a maximum xylose utilization rate (URxyl) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H2 mol of xylose−1, respectively, were obtained. Biohydrogen kinetics and electron equivalent (e− equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes. IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such

  2. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-01-01

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  3. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  4. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.

    Science.gov (United States)

    Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R

    2016-05-17

    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.

  5. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    International Nuclear Information System (INIS)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-01-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)

  6. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  7. Inhomogeneity induced and appropriately parameterized semilocal exchange and correlation energy functionals in two-dimensions

    Science.gov (United States)

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-04-01

    The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.

  8. Light induced intramolecular electron and energy transfer events in rigidly linked borondipyrromethene: Corrole Dyad

    Energy Technology Data Exchange (ETDEWEB)

    Giribabu, Lingamallu, E-mail: giribabu@iict.res.in [Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana (India); Jain, Kanika [Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan 305817 (India); Sudhakar, Kolanu; Duvva, Naresh [Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana (India); Chitta, Raghu, E-mail: raghuchitta@curaj.ac.in [Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan 305817 (India)

    2016-09-15

    We have designed and synthesized a photo-induced energy/electron donor–acceptor conjugate comprising of corrole linked to BODIPY at the 5-position via ester linkage. The dyad was characterized by elemental analysis, MALDI-MS, UV-Visible, {sup 1}H NMR fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. A comparison of the UV–visible and {sup 1}H NMR spectra of the dyad with those of the corresponding individual model compounds (i.e., BODIPY-CO{sub 2}H and BPFC-OH) reveal that there exist minimum π–π interactions between BODIPY and corrole π-planes. Quenched emission of BODIPY and corrole part of the dyad has been observed in five different solvents. Excitation spectral data provided evidence for an intramolecular excitation energy transfer (EET) from the singlet BODIPY to the corrole and an intramolecular photoinduced electron transfer (PET) from singlet state of corrole to ground state of BODIPY. Detailed analysis of the data suggests that Forster's dipole–dipole mechanism does not adequately explain this energy transfer but, an electron exchange mediated mechanism can, in principle, contribute to the intramolecular EET.

  9. Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration

    Science.gov (United States)

    Ashok, P.; Jawahar Chandra, C.; Neeraj, P.; Santhosh, B.

    2018-02-01

    Self-powered systems have become the need of the hour and several devices and techniques were proposed in favour of this crisis. Among the various sources, vibrations, being the most practical scenario, is chosen in the present study to investigate for the possibility of harvesting energy. Various methods were devised to trap the energy generated by vibrating bodies, which would otherwise be wasted. One such concept is termed as flow-induced vibration which involves the flow of a fluid across a bluff body that oscillates due to a phenomenon known as vortex shedding. These oscillations can be converted into electrical energy by the use of piezoelectric patches. A two degree of freedom system containing a cylinder as the primary mass and a cantilever beam as the secondary mass attached with a piezoelectric circuit, was considered to model the problem. Three wake oscillator models were studied in order to determine the one which can generate results with high accuracy. It was found that Facchinetti model produced better results than the other two and hence a parametric study was performed to determine the favourable range of the controllable variables of the system. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization led to a considerable improvement in the harvested voltage from the system owing to the high displacement of secondary mass.

  10. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    Science.gov (United States)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: prestriction did not exaggerate bone resorption during HDBR.

  11. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  12. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    Science.gov (United States)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-06-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.

  13. Two alternative derivations of the static contribution to the radiation-induced intermolecular energy shift

    International Nuclear Information System (INIS)

    Salam, A.

    2007-01-01

    Two contrasting physical viewpoints and calculational approaches are adopted within the framework of molecular quantum electrodynamics for the evaluation of the static contribution to the change in mutual interaction energy between a pair of electric dipole polarizable molecules in an intense radiation field. This term arises when a real photon is scattered by the same molecular center with coupling between the two bodies occurring via exchange of a single virtual photon. In one method it is found that utilization of an effective three-photon interaction operator enables the energy shift to be obtained using second order perturbation theory with summation over only four time-ordered diagrams, each of which contain collapsed interaction vertices. The result is then shown to be obtained even more easily in a second approach that involves calculating the expectation values for both molecules in the ground electronic state and the field containing N photons of mode (k-vector,λ) of the electric dipole moments induced at each molecule by the incident field, which are coupled to the resonant dipole-dipole interaction tensor. The static contribution in question is shown to arise from the interaction of a permanent electric dipole moment in one species with the first hyperpolarizability of the other. Both methods are compared and contrasted with a previous computation in which contributions to the energy shift arising from 48 time-ordered diagrams were summed using fourth order perturbation theory

  14. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  15. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  16. ISOLATION AND CHARACTERIZATION OF A MOLYBDENUM-REDUCING AND AZO-DYE DECOLORIZING SERRATIA MARCESCENS STRAIN NENI-1 FROM INDONESIAN SOIL

    Directory of Open Access Journals (Sweden)

    Neni Gusmanizar

    2016-01-01

    Full Text Available Heavy metals and organic xenobiotics including dyes are important industrial components with their usage amounting to the millions of tonnes yearly. Their presence in the environment is a serious pollution issue globally. Bioremediation of these pollutants using microbes with multiple detoxification capacity is constantly being sought. In this work we screen the ability of a molybdenum-reducing bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes. The bacterium reduces molybdate to molybdenum blue (Mo-blue optimally at pH 6.0, and temperatures of between 25 and 40oC. Glucose was the best electron donor for supporting molybdate reduction followed by sucrose, trehalose, maltose, d-sorbitol, dmannitol, d-mannose, myo-inositol, glycerol and salicin in descending order. Other requirements include a phosphate concentration of between 5.0 and 7.5 mM and a molybdate concentration between 10 and 20 mM. The absorption spectrum of the Moblue produced was similar to previous Mo-reducing bacterium, and closely resembles a reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, silver and mercury at 2 ppm by 43.8%, 42.3% and 41.7%, respectively. We screen for the ability of the bacterium to decolorize various dyes. The bacterium was able to decolorize the dye Congo Red. Biochemical analysis resulted in a tentative identification of the bacterium as Serratia marcescens strain Neni-1. The ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium an important tool for bioremediation.

  17. Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye.

    Science.gov (United States)

    Rosales, E; Sanromán, M A; Pazos, M

    2012-06-01

    The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B. Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models. The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R(2) = 0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate. Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83 mg/L, electrode surface area 15 cm(2), voltage 14.19 V, and treatment time of 34.58 min.

  18. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    Science.gov (United States)

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang; Yao Jie [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); He Zhiqiao [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: zqhe@zjut.edu.cn; Qiu Jianping; Chen Jianmeng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2008-03-21

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm{sup 2}, salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%.

  20. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    International Nuclear Information System (INIS)

    Song Shuang; Yao Jie; He Zhiqiao; Qiu Jianping; Chen Jianmeng

    2008-01-01

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm 2 , salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%

  1. Radiation induced low-energy electron transport in a tissue environment

    International Nuclear Information System (INIS)

    Toburen, L.H.; Dingfelder, M.; Ozturk, N.; Christou, C.; Shinpaugh, J.L.; Friedland, W.; Wilson, W.E.; Paretzke, H.G.

    2003-01-01

    Monte Carlo (MC) track simulation codes are used extensively in radiobiology to quantify the spatial distributions of interactions initiated by the absorption of ionizing radiation. The spatial patterns of ionization and excitation are instrumental for assessing the formation of damage clusters in DNA and chromosomes leading to such biologic endpoints as cellular transformation and mutation. The MC codes rely on an extensive database of elastic and inelastic scattering cross sections to follow the production and slowing of secondary electrons. Because of inherent uncertainties in this database we are exploring the sensitivity of MC results to the details of the cross sections used with emphasis on low-energy electrons, i.e., track ends, that are anticipated to play a dominant role in damage cluster formation. Simulations of electron transport using gas or liquid based interaction cross sections illustrate substantial difference in the spectra of electrons with energies less than about 50 eV. In addition, the electron yields from MC simulations appear to be nearly a factor of five larger than our recent measurements of electron transport spectra in water (ice) at electron energies of about 10 eV. Examples of the changes in electron transport spectra for variations in the electron scattering cross sections used for the MC calculations will be illustrated and compared with an evolving database of measured spectra of electrons from ion induced secondary electron transport in thin foils. These measurements provide guidance for assessment of elastic and elastic cross sections appropriate to condensed phase transport. This work is supported in part by the U.S. Department of Energy, Grant No. DE-FG02-01ER-63233; the National Cancer Institute, Grant No. 1R01CA93351-01A1; and the European Community under Contract No. FIGH-CT-1999-00005

  2. Current-induced energy barrier suppression for electromigration from first principles

    KAUST Repository

    Zhang, Ruoxing

    2011-08-01

    We present an efficient method for evaluating current-induced forces in nanoscale junctions, which naturally integrates into the nonequilibrium Green\\'s function formalism implemented within density functional theory. This allows us to perform dynamic atomic relaxation in the presence of an electric current while evaluating the current-voltage characteristics. The central idea consists of expressing the system energy density matrix in terms of Green\\'s functions. To validate our implementation, we perform a series of benchmark calculations, both at zero and at finite bias. First we evaluate the current-induced forces acting over an Al nanowire and compare them with previously published results for fixed geometries. Then we perform structural relaxation of the same wires under bias and determine the critical voltage at which they break. We find that although a perfectly straight wire does not break at any of the voltages considered, a zigzag wire is more fragile and snaps at 1.4 V, with the Al atoms moving against the electron flow. The critical current density for the rupture is estimated to be 9.6 × 1010 A/cm2, in good agreement with the experimentally measured value of 5 × 1010 A/cm2. Finally, we demonstrate the capability of our scheme to tackle the electromigration problem by studying the current-induced motion of a single Si atom covalently attached to the sidewall of a (4,4) armchair single-walled carbon nanotube. Our calculations indicate that if Si is attached along the current path, then current-induced forces can induce migration. In contrast, if the bonding site is away from the current path, then the adatom remains stable regardless of the voltage. An analysis based on decomposing the total force into a wind and an electrostatic component, as well as on a detailed evaluation of the bond currents, shows that this remarkable electromigration phenomenon is due solely to the position-dependent wind force. © 2011 American Physical Society.

  3. Irradiation of electron with high energy induced micro-crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Zhong Yule; Huang Junkai; Liu Weiping; Li Jingna

    2001-01-01

    Amorphous silicon is amorphous alloy of Si-H. It is random network of silicon with some hydrogen. And its structure has many unstable bonds as weak bonds of Si-Si and distortion bonds of all kinds. The bonds was broken or was out of shape by light and electrical ageing. It induced increase of defective state that causes character of material going to bad. This drawback will be overcome after micro-crystallization of amorphous silicon. It was discovered that a-Si:H was micro-crystallized by irradiated of electrons with energy of 0.3-0.5 MeV, density of electronic beam of 1.3 x 10 19 cm -1 s -1 and irradiated time of 10-600 s. Size of grain is 10-20 nm. Thick of microcrystalline lager is 25-250 nm

  4. Energy and orientation dependence of electron-irradiation-induced defects in InP

    International Nuclear Information System (INIS)

    Sibille, A.; Suski, J.; LeRoux, G.

    1984-01-01

    The concentration of several electron-irradiation-induced deep defect levels in InP has been measured by deep-level transient spectroscopy (DLTS) as a function of electron energy. The dominant centers exhibit a threshold at about 100 keV, which clearly points to a primary production event by electron--phosphorus-atom collision. This unambiguous determination allowed a test of the recently proposed orientation dependence technique to find the nature of the sublattice involved in the collision process for III-V compounds. A good quantitative agreement is obtained with a hard-sphere model for secondary collisions if disorientation of the beam in the sample is taken into account. Other traps exhibit higher thresholds which correspond either to indium-atom displacements or to the involvement of secondary collisions in the production event

  5. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  6. Non-linear sputtering effects induced by MeV energy gold clusters

    International Nuclear Information System (INIS)

    Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.

    1993-09-01

    Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab

  7. Induced vacuum energy-momentum tensor in the background of a cosmic string

    International Nuclear Information System (INIS)

    Sitenko, Yu A; Vlasii, N D

    2012-01-01

    A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional spacetime. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the spacetime curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decreasing exponentially with the distance from the brane. The case of the massless quantized scalar field is also considered, and the relevance of Bernoulli’s polynomials of even order for this case is discussed. (paper)

  8. Induced vacuum energy-momentum tensor in the background of a cosmic string

    Science.gov (United States)

    Sitenko, Yu A.; Vlasii, N. D.

    2012-05-01

    A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional spacetime. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the spacetime curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decreasing exponentially with the distance from the brane. The case of the massless quantized scalar field is also considered, and the relevance of Bernoulli’s polynomials of even order for this case is discussed.

  9. Neutron-induced particle production in the cumulative and noncumulative regions at intermediate energies

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1992-01-01

    The first systematic measurements of neutron-induced inclusive production of protons, deuterons, tritons and charged pions on carbon, copper, and bismuth in the bombarding energy range of 300-580 MeV and in the angular interval from 51 deg to 165 deg have been analyzed in the framework of the cascade-exciton model. The role of single-particle scattering, the effects of rescattering, the pre-equilibrium emission and 'coalescence' mechanism in particle production in the cumulative (i.e., kinematically - forbidden for quasi-free intranuclear projectile-nucleon collisions) and noncumulative regions are discussed. A week sensitivity of the inclusive distributions to the specific reaction mechanisms and a need of correlation and polarization measurements are noted. 27 refs.; 12 figs.; 1 tab

  10. Proton-induced fission cross sections on "2"0"8Pb at high kinetic energies

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J.L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Alvarez-Pol, H.; Cortina-Gil, D.; Pietras, B.; Ramos, D.; Vargas, J.; Taieb, J.; Chatillon, A.; Belier, G.; Boutoux, G.; Gorbinet, T.; Laurent, B.; Martin, J.F.; Pellereau, E.; Casarejos, E.; Rodriguez-Tajes, C.

    2014-01-01

    Total fission cross sections of "2"0"8Pb induced by protons have been determined at 370 A, 500 A, and 650 A MeV. The experiment was performed at GSI Darmstadt where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to determine these cross sections with an uncertainty below 6%. This result was achieved by an accurate beam selection and registration of both fission fragments in coincidence which were also clearly distinguished from other reaction channels. These data solve existing discrepancies between previous measurements, providing new values for the Prokofiev systematics. The data also allow us to investigate the fission process at high excitation energies and small deformations. In particular, some fundamental questions about fission dynamics have been addressed, which are related to dissipative and transient time effects. (authors)

  11. Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation.

    Science.gov (United States)

    Alaverdashvili, Mariam; Caine, Sally; Li, Xue; Hackett, Mark J; Bradley, Michael P; Nichol, Helen; Paterson, Phyllis G

    2018-02-03

    Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ± 8%) than the NP-St rats (15 ± 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery.

  12. DCHAIN-SP 2001: High energy particle induced radioactivity calculation code

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Maekawa, Fujio; Kasugai, Yoshimi; Takada, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kosako, Kazuaki [Sumitomo Atomic Energy Industries, Ltd., Tokyo (Japan)

    2001-03-01

    For the purpose of contribution to safety design calculations for induced radioactivities in the JAERI/KEK high-intensity proton accelerator project facilities, the DCHAIN-SP which calculates the high energy particle induced radioactivity has been updated to DCHAIN-SP 2001. The following three items were improved: (1) Fission yield data are included to apply the code to experimental facility design for nuclear transmutation of long-lived radioactive waste where fissionable materials are treated. (2) Activation cross section data below 20 MeV are revised. In particular, attentions are paid to cross section data of materials which have close relation to the facilities, i.e., mercury, lead and bismuth, and to tritium production cross sections which are important in terms of safety of the facilities. (3) User-interface for input/output data is sophisticated to perform calculations more efficiently than that in the previous version. Information needed for use of the code is attached in Appendices; the DCHAIN-SP 2001 manual, the procedures of installation and execution of DCHAIN-SP, and sample problems. (author)

  13. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Science.gov (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. Effect of stacking fault energy on the neutron radiation induced defect accumulation in stainless steels

    International Nuclear Information System (INIS)

    Li Xiaoqiang; Al Mazouzi Abderrahim

    2009-01-01

    Current knowledge highlights the radiation induced segregation (RIS) and the radiation hardening as the two main effects on irradiation assisted stress corrosion cracking (IASCC). Stacking fault energy is considered as a key parameter of materials, which can influence IASCC of stainless steels in nuclear light water reactor (LWR), because it plays an important role in every process of plastic deformation, work hardening and creep behaviour. The study of the impact of SFE variations on the plastic deformation and SCC behaviour of irradiated and unirradiated austenitic steels will contribute to the understanding of IASCC mechanism. The objectives of this work, as a task within the FP6-European Project PERFECT, are to investigate the influence of the SFE on IASCC susceptibility of stainless steels, to correlation n-irradiation induced defect production, accumulation and mechanical deformation behaviour with SFE by using the state of the art experimental tools such as transmission electron microscope (TEM), positron annihilation spectroscopy (PAS), slow strain rate tests (SSRT) in simulated LWR conditions

  15. Measurement of NdFeB permanent magnets demagnetization induced by high energy electron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Temnykh, Alexander B. [Wilson Lab, Cornell University, LEPP, Ithaca, NY 14850 (United States)], E-mail: abt6@cornell.edu

    2008-03-11

    Demagnetization of NdFeB permanent magnets has been measured as function of radiation dose induced by high energy electrons. The magnet samples were of different intrinsic coercive forces, {approx_equal}12 and {approx_equal}20KOe, dimensions and direction of magnetization. 5 GeV electron beam from 12 GeV Cornell Synchrotron was used as a radiation source. A calorimetric technique was employed for radiation dose measurement. Results indicated that depending on the sample intrinsic coercive force, shape and direction of magnetization the radiation dose causing 1% of demagnetization of the sample varies from 0.0765{+-}0.005Mrad to 11.3{+-}3.0Mrad, i.e., by more than a factor of 100. Experimental data analysis revealed that demagnetization of the given sample induced by radiation is strongly correlated with the sample demagnetizing temperature. This correlation was approximated by an exponential function with two parameters obtained from the data fitting. The function can be used to predict the critical radiation dose for permanent magnet assemblies like undulator magnets based on its demagnetizing temperature. The latter (demagnetization temperature) can be determined at the design stage from 3-D magnetic modeling and permanent magnet material properties.

  16. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    Science.gov (United States)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  17. Rutin (quercetin rutinoside) induced protein-energy malnutrition in chronic kidney disease, but quercetin acted beneficially.

    Science.gov (United States)

    Hsieh, Chiu-Lan; Peng, Chiung-Chi; Chen, Kuan-Chou; Peng, Robert Y

    2013-07-31

    Nutraceutically, much of the literature has indicated that an aglycon and its related glycoside would act similarly. However, controversial reports are accumulating. We hypothesize that rutin (RT) and quercetin (QT) pharmacodynamically could act differently. To confirm this, doxorubicin (DR) (8.5 mg/kg) was used to induce rat chronic kidney disease (CKD) and then treated with QT and RT (each 70 mg/kg body weight per day) for 13 weeks. QT exhibited better body weight gaining effect (420 ± 45) vs RT, 350 ± 57 g/rat (p protein-energy malnutrition". RT stimulated serum creatinine (sCr) production to reach 6.0 ± 0.9 mg/dL (p < 0.001). QT did not alter the sCr level. RT but not QT induced uremia and hypercreatininemia. DR significantly downregulated Bcl-2, but highly upregulated Bax, Bad, and cleaved caspase-3, implicating the intrinsic mitochondrial pathway. DR damaged DNA, but QT completely rescued such an effect and recovered renal amyloidosis and collagen deposition. Conclusively, RT and QT act differently, and RT is inferior to QT with respect to treating CKD.

  18. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Tayeb, A., E-mail: ahmed.khalil@ejust.edu.eg; El-Shazly, A. H.; Elkady, M. F. [Egypt−Japan University of Science and Technology, Chemicals and Petrochemicals Engineering Department (Egypt); Abdel-Rahman, A. B. [Egypt−Japan University of Science and Technology, Electronics and Communications Engineering Department (Egypt)

    2016-09-15

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O{sub 3} in air discharge, O{sub 3} in water, and H{sub 2}O{sub 2}) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  19. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    International Nuclear Information System (INIS)

    El-Tayeb, A.; El-Shazly, A. H.; Elkady, M. F.; Abdel-Rahman, A. B.

    2016-01-01

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O 3 in air discharge, O 3 in water, and H 2 O 2 ) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  20. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  1. Polymers under ionizing radiation: the study of energy transfers to radiation induced defects

    International Nuclear Information System (INIS)

    Ventura, A.

    2013-01-01

    Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H 2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author) [fr

  2. Direct reactions induced by 16O on 208Pb at high incident energy

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)

  3. Metallic behavior and enhanced adsorption energy of graphene on BN layer induced by Cu(111) substrate

    International Nuclear Information System (INIS)

    Hashmi, Arqum; Hong, Jisang

    2014-01-01

    We have investigated the adsorption properties and the electronic structure of graphene/BN and graphene/BN/Cu(111) systems by using van der Waals density functional theory. The ground-state adsorption site of graphene on BN/Cu(111) is found to be the same as that of graphene/BN. The Cu(111) substrate did not induce a significant change in the geometrical feature of graphene/BN. However, the adsorption energy of graphene on BN/Cu(111) is observed to be enhanced due to the Cu(111) substrate. In addition, we have found that the graphene layer displays a weak metallic character in graphene/BN/Cu(111) whereas an energy band gap is observed in the graphene in the graphene/BN bilayer system. Therefore, we have found that the metallic Cu(111) substrate affects the electronic structure and adsorption properties of graphene on BN/Cu(111), although it has no significant effect on the geometrical features.

  4. A Benchmarking Study of High Energy Carbon Ion Induced Neutron Using Several Monte Carlo Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Oh, J. H.; Jung, N. S.; Lee, H. S. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Shin, Y. S.; Kwon, D. Y.; Kim, Y. M. [Catholic Univ., Gyeongsan (Korea, Republic of); Oranj, L. Mokhtari [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    In this study, the benchmarking study was done for the representative particle interaction of the heavy ion accelerator, especially carbon-induced reaction. The secondary neutron is an important particle in the shielding analysis to define the source term and penetration ability of radiation fields. The performance of each Monte Carlo codes were verified for selected codes: MCNPX 2.7, PHITS 2.64 and FLUKA 2011.2b.6. For this benchmarking study, the experimental data of Kurosawa et al. in the SINBAD database of NEA was applied. The calculated results of the differential neutron yield produced from several materials irradiated by high energy carbon beam reproduced the experimental data well in small uncertainty. But the MCNPX results showed large discrepancy with experimental data, especially at the forward angle. The calculated results were lower a little than the experimental and it was clear in the cases of lower incident carbon energy, thinner target and forward angle. As expected, the influence of different model was found clearly at forward direction. In the shielding analysis, these characteristics of each Monte Carlo codes should be considered and utilized to determine the safety margin of a shield thickness.

  5. A Benchmarking Study of High Energy Carbon Ion Induced Neutron Using Several Monte Carlo Codes

    International Nuclear Information System (INIS)

    Kim, D. H.; Oh, J. H.; Jung, N. S.; Lee, H. S.; Shin, Y. S.; Kwon, D. Y.; Kim, Y. M.; Oranj, L. Mokhtari

    2014-01-01

    In this study, the benchmarking study was done for the representative particle interaction of the heavy ion accelerator, especially carbon-induced reaction. The secondary neutron is an important particle in the shielding analysis to define the source term and penetration ability of radiation fields. The performance of each Monte Carlo codes were verified for selected codes: MCNPX 2.7, PHITS 2.64 and FLUKA 2011.2b.6. For this benchmarking study, the experimental data of Kurosawa et al. in the SINBAD database of NEA was applied. The calculated results of the differential neutron yield produced from several materials irradiated by high energy carbon beam reproduced the experimental data well in small uncertainty. But the MCNPX results showed large discrepancy with experimental data, especially at the forward angle. The calculated results were lower a little than the experimental and it was clear in the cases of lower incident carbon energy, thinner target and forward angle. As expected, the influence of different model was found clearly at forward direction. In the shielding analysis, these characteristics of each Monte Carlo codes should be considered and utilized to determine the safety margin of a shield thickness

  6. Optimization of the LHC interaction region with respect to beam-induced energy deposition

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Strait, J.B.

    1996-06-01

    Energy deposition in the superconducting magnets by particles from p- p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studies the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7x7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture ≥70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets

  7. Phonon-induced enhancement of the energy gap and critical current of superconducting aluminum films

    International Nuclear Information System (INIS)

    Seligson, D.; Clarke, J.

    1983-01-01

    Enhancements of the energy gap Δ and the critical current I/sub c/ have been induced in thin superconducting aluminum films near the transition temperature T/sub c/ by pulses of phonons at approximately 9 GHz. In terms of the change in temperature Vertical BardeltaT/T/sub c/Vertical Bar necessary to produce the same enhancement in equilibrium, the gap enhancement increased smoothly with phonon power at fixed temperature and decreasing temperature at fixed phonon power; however, very close to T/sub c/ the enhancement rolled off. At relatively low phonon powers, the data were in good agreement with the theory of Eckern, Schmid, Schmutz, and Schoen, but at higher power levels the data fell markedly below the predictions of the theory. The critical-current enhancements in terms of Vertical BardeltaT/T/sub c/Vertical Bar were always larger than the gap enhancements at the same temperature and phonon power. At fixed phonon power the critical-current enhancements were nearly independent of temperature, except very close to T/sub c/ where the enhancement became small. The inclusion of the nonequilibrium quasiparticle distribution and the kinetic energy of the supercurrent in the theory relating the critical-current enhancement to the gap enhancement did not resolve the discrepancies between the two enhancements. It appears likely that there is an additional mechanism for critical-current enhancement that has not yet been identified

  8. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Science.gov (United States)

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  10. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Directory of Open Access Journals (Sweden)

    Gaëtan Gruel

    Full Text Available Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This

  11. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  12. Statistical Analysis and ETAS Modeling of Seismicity Induced by Production of Geothermal Energy from Hydrothermal Systems

    Science.gov (United States)

    Dinske, C.; Langenbruch, C.; Shapiro, S. A.

    2017-12-01

    We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence

  13. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    Science.gov (United States)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  14. How do policies for efficient energy use in the household sector induce energy-efficiency innovation? An evaluation of European countries

    International Nuclear Information System (INIS)

    Girod, Bastien; Stucki, Tobias; Woerter, Martin

    2017-01-01

    Research on innovation induced by climate-mitigation policy has been focused predominantly on the supply side of the energy system. Despite considerable climate-mitigation potential on the demand side, less attention is given to the innovation effect of policies addressing the household sector. Based on a comprehensive data set, including 550 policy measures over 30 years (1980–2009) and covering 21 European countries, we find—based on econometric estimations—that policies targeting efficient energy use in the household sector significantly increase the number of patented energy-efficiency inventions. A comparison of the different policy types reveals a particularly strong influence from financial subsidies and energy labels. The results indicate that policies supporting early market adoption of energy-efficient technologies are effective in fostering innovation. - Highlights: • We evaluate the impact of energy-efficiency policy on energy-efficiency innovation. • The dataset covers patents and policies for 1980–2009 in 21 European countries. • Household policies show a positive influence on innovation activity (patented inventions). • The influence is most pronounced for financial subsidies and energy labels.

  15. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater

    Institute of Scientific and Technical Information of China (English)

    Yuanfang Wang; Baoyu Gao; Qinyan Yue; Yah Wang

    2011-01-01

    A coagulation/flocculation process using the composite floceulant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye).The effect of viscosity (η),basicity (B =[OH]/[Al]) and organic content (Wp) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated.The η was the key factor affecting the dye removal efficiency of PAC-EPI-DMA.PAC-EPI-DMA with an intermediate η (2400 mPa-sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers.The Wp of the composite flocculant was a minor important factor for the flocculation.The adsorption bridging of PAC-EPI-DMA with η of 300 or 4300 mPa.sec played an important role with the increase of Wp,whereasthe charge neutralization of them was weaker with the increase of Wp.There was interaction between Wp and B on the removal of reactive dye.The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater,which could achieve high reactive dye removal efficiency with low organic dosage.

  16. Decoloration and mineralization of aqueous solution of cationic (basic) dye Astrazon Black FDL by using gamma rays

    International Nuclear Information System (INIS)

    Kantoglu, Oemer

    2017-01-01

    Degree of decolorization due to the irradiation of aqueous solutions of commercial cationic (basic) Astrazon Black FDL textile dye was studied in this study. Factor effecting radiolysis of the dye such as dye concentration, absorbed dose, toxicity, COD, BOD_5 and pH of solutions were studied at air, O_2 saturated and H_2O_2 environments. Unirradiated Astrazon Black FDL was non-biodegradable, whereas it was biodegradable after irradiation. The biodegradability (BOD_5/COD) increased at 2 kGy for Astrazon Black FDL in all solutions. The biorefractory organic compounds were converted into more easily biodegradable compounds having lower molecular weights. In optimum dose and pH determination experiments, 5 kGy pH 12 at air, 7 kGy pH 3 at O_2 saturated, 9 kGy pH 3 at 2.6 mM H_2O_2 for Astrazon Black FDL were found as the optimum irradiation conditions. Toxicity level of unirradiated solutions was high, whereas toxicity level of irradiated solutions was lower.

  17. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.

    Science.gov (United States)

    Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M

    2018-06-01

    In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1  mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.

  18. A Decolorization Technique with Spent “Greek Coffee” Grounds as Zero-Cost Adsorbents for Industrial Textile Wastewaters

    Science.gov (United States)

    Kyzas, George Z.

    2012-01-01

    In this study, the decolorization of industrial textile wastewaters was studied in batch mode using spent “Greek coffee” grounds (COF) as low-cost adsorbents. In this attempt, there is a cost-saving potential given that there was no further modification of COF (just washed with distilled water to remove dirt and color, then dried in an oven). Furthermore, tests were realized both in synthetic and real textile wastewaters for comparative reasons. The optimum pH of adsorption was acidic (pH = 2) for synthetic effluents, while experiments in free pH (non-adjusted) were carried out for real effluents. Equilibrium data were fitted to the Langmuir, Freundlich and Langmuir-Freundlich (L-F) models. The calculated maximum adsorption capacities (Qmax) for total dye (reactive) removal at 25 °C was 241 mg/g (pH = 2) and 179 mg/g (pH = 10). Thermodynamic parameters were also calculated (ΔH0, ΔG0, ΔS0). Kinetic data were fitted to the pseudo-first, -second and -third order model. The optimum pH for desorption was determined, in line with desorption and reuse analysis. Experiments dealing the increase of mass of adsorbent showed a strong increase in total dye removal.

  19. Decoloration and mineralization of aqueous solution of cationic (basic) dye Astrazon Black FDL by using gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Kantoglu, Oemer [Turkish Atomic Energy Authority, Ankara (Turkey). Saraykoey Nuclear Research and Training Center

    2017-06-01

    Degree of decolorization due to the irradiation of aqueous solutions of commercial cationic (basic) Astrazon Black FDL textile dye was studied in this study. Factor effecting radiolysis of the dye such as dye concentration, absorbed dose, toxicity, COD, BOD{sub 5} and pH of solutions were studied at air, O{sub 2} saturated and H{sub 2}O{sub 2} environments. Unirradiated Astrazon Black FDL was non-biodegradable, whereas it was biodegradable after irradiation. The biodegradability (BOD{sub 5}/COD) increased at 2 kGy for Astrazon Black FDL in all solutions. The biorefractory organic compounds were converted into more easily biodegradable compounds having lower molecular weights. In optimum dose and pH determination experiments, 5 kGy pH 12 at air, 7 kGy pH 3 at O{sub 2} saturated, 9 kGy pH 3 at 2.6 mM H{sub 2}O{sub 2} for Astrazon Black FDL were found as the optimum irradiation conditions. Toxicity level of unirradiated solutions was high, whereas toxicity level of irradiated solutions was lower.

  20. Enhancement of zinc oxide-mediated solar light decoloration of Acid Yellow 99 dye by addition of β-CD

    Science.gov (United States)

    Pitchaimuthu, Sakthivel; Rajalakshmi, Subramanian; Kannan, Nagarathinam; Velusamy, Ponnusamy

    2015-06-01

    In the current work, the commercially available ZnO photocatalyst was used to investigate the photodecoloration of Acid yellow 99 (AY99) dye under solar light radiation. Promising enhancement of photodecoloration of AY99 dye was also achieved by the addition of β-cyclodextrin (β-CD) with the ZnO (ZnO-β-CD). The effects of process parameters such as initial concentration, pH, catalyst loading, and illumination time on the extent of decoloration were investigated. The optimum catalyst loading was observed at 2.0 g/L. The higher photoactivity of ZnO-β-CD/solar light system than ZnO/solar light system can be ascribed due to the ligand to metal charge transfer (LMCT) from β-CD to ZnII. The complexation patterns have been confirmed with UV-visible and FT-IR spectroscopy and the interaction between ZnO and β-CD has been characterized by FE-SEM, powder XRD analysis, and UV-visible diffuse reflectance spectroscopy.

  1. A potential application of sludge-based catalysts for the anaerobic bio-decolorization of tartrazine dye.

    Science.gov (United States)

    Athalathil, Sunil; Fortuny, Agusti; Font, Josep; Stüber, Frank; Bengoa, Christophe; Fabregat, Azael

    2015-01-01

    Two highly efficient (K2CO3/sludge carbon and ZnCl2/sludge carbon) solids were prepared by chemical addition following carbonization at 800 °C and were tested for anaerobic reduction of tartrazine dye in a continuous upflow packed-bed biological reactor, and their performance was compared to that of commercial activated carbon (CAC). The chemical and structural information of the solids was subjected to various characterizations in order to understand the mechanism for anaerobic decolorization, and efficiency for SBCZN800 and SBCPC800 materials was 87% and 74%, respectively, at a short space time (τ) of 2.0 min. A first-order kinetic model fitted the experimental points and kinetic constants of 0.40, 0.92 and 1.46 min(-1) were obtained for SBCZN800, SBCPC800 and CAC, respectively. The experimental results revealed that performance of solids in the anaerobic reduction of tartrazine dye can depend on several factors including chemical agents, carbonization, microbial population, chemical groups and surface chemistry. The Langmuir and Freundlich models are successfully described in the batch adsorption data. Based on these observations, a cost-effective sludge-based catalyst can be produced from harmful sewage sludge for the treatment of industrial effluents.

  2. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  3. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  4. GRAIN ALIGNMENT INDUCED BY RADIATIVE TORQUES: EFFECTS OF INTERNAL RELAXATION OF ENERGY AND COMPLEX RADIATION FIELD

    International Nuclear Information System (INIS)

    Hoang, Thiem; Lazarian, A.

    2009-01-01

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns the grain axis of maximum moment of inertia (the axis of major inertia) with respect to the grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of major inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of major inertia with angular momentum, and both the axis of major inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For alignment without high-J attractors, beside the earlier studied attractors with low angular momentum (low-J attractors), there appear new low-J attractors. In addition, we also study the alignment of grains in the presence of strong internal relaxation, but induced not by a radiation beam as in earlier studies but instead induced by a complex radiation field that can be decomposed into dipole and quadrupole components. We found that in this situation the parameter space q max , for which high-J attractors exist in trajectory maps, is more extended, resulting in the higher degree of polarization expected. Our results are useful for modeling polarization arising from aligned dust grains in molecular clouds.

  5. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  6. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    Directory of Open Access Journals (Sweden)

    Manoj K Bhasin

    Full Text Available The relaxation response (RR is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS as top upregulated critical molecules (focus hubs and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress.

  7. MeV energy electron beam induced damage in isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, N.L.; Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    A few thin films of isotactic polypropylene were irradiated with 6 MeV energy electrons, in the fluence range from 5 x 10{sup 14} to 2 x 10{sup 15} electrons/cm{sup 2}. The structural, optical and mechanical properties were characterized by techniques such as FTIR, UV-vis, XRD, SEM, hardness and contact angle measurements. The FTIR spectra indicate that C-H and C-C bonds are scissioned and an isotactic arrangement of chains is partially destroyed. Moreover, the new carbonyl groups (C=O) are observed, which signifies oxidation. The UV-vis spectra shows a red shift in the absorption edge from pristine value of 240 to 380 nm, which corresponds to decrease in the optical band gap from 5.17 to 3.27 eV. This is because of the formation of conjugated double bonds as well as carbonization. The crystalline properties were analysed using XRD and it shows no profound change. This result may attribute that the radiation-induced changes have probably occurred to a large extent in amorphous regions. However, surface morphology by SEM and contact angle measurements showed considerable surface roughening, which indicates an uneven evolution of gases from the surface. Interestingly, the surface hardness of the films was found to increase with fluence and it may be due to crosslinking and carbonization on the surface. Overall, in conclusion this study shows considerable modifications in the physicochemical properties of isotactic polypropylene irradiated by 6 MeV energy pulsed electrons.

  8. The measurement of tripartition alpha particle low energy spectrum in 235U fission induced by thermal neutrons

    International Nuclear Information System (INIS)

    El Hage Sleiman, F.

    1980-01-01

    The energy spectrum of the α particles emitted in the thermal neutron induced fission of 235 U was measured from 11.5 MeV down to 2 MeV using the parabola mass spectrometer Lohengrin at the ILL high flux reactor. A Monte Carlo program, that simulates the α particle motion to the spectrometer, has been developed. Numerical results of Monte Carlo calculations for differents values of parameter are reported. The overall energy spectrum is slightly asymmetric at low energy. The possible reasons for the existence of this asymmetry are discussed [fr

  9. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saettone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of 235 U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution (σ e (m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  10. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

    2007-07-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  11. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  12. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  13. Exploring ultrashort high-energy electron-induced damage in human carcinoma cells

    International Nuclear Information System (INIS)

    Rigaud, O.; Fortunel, N.O.; Vaigot, P.; Cadio, E.; Martin, M.T.; Lundh, O.; Faure, J.; Rechatin, C.; Malka, V.; Gauduel, Y.A.

    2010-01-01

    In conventional cancer therapy or fundamental radiobiology research, the accumulated knowledge on the complex responses of healthy or diseased cells to ionizing radiation is generally obtained with low-dose rates. Under these radiation conditions, the time spent for energy deposition is very long compared with the dynamics of early molecular and cellular responses. The use of ultrashort pulsed radiation would offer new perspectives for exploring the 'black box' aspects of long irradiation profiles and favouring the selective control of early damage in living targets. Several attempts were previously performed using nanosecond or picosecond pulsed irradiations on various mammalian cells and radiosensitive mutants at high dose rate. The effects of single or multi-pulsed radiations on cell populations were generally analyzed in the framework of dose survival curves or characterized by 2D imaging of γ-H2AX foci and no increase in cytotoxicity was shown compared with a delivery at a conventional dose rate. Moreover, when multi-shot irradiations were performed, the overall time needed to obtain an integrated dose of several Grays again overlapped with the multi-scale dynamics of bio-molecular damage-repair sequences and cell signalling steps. Ideally, a single-shot irradiation delivering a well-defined energy profile, via a very short temporal window, would permit the approach of a real-time investigation of early radiation induced molecular damage within the confined spaces of cell compartments. Owing to the potential applications of intense ultrashort laser for radiation therapy, the model of the A431 carcinoma cell line was chosen. An ultrafast single-shot irradiation strategy was carried out with these radio-resistant human skin carcinoma cells, using the capacity of an innovating laser-plasma accelerator to generate quasi mono-energetic femtosecond electron bunches in the MeV domain and to deliver a very high dose rate of 10 13 Gy s -1 per pulse. The alkaline comet

  14. Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors

    Directory of Open Access Journals (Sweden)

    C. Gadermaier

    2014-03-01

    Full Text Available We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate Γ_{1} of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ_{1} increases monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and Γ_{1} is consistent with the canonical assignment of Γ_{1} to the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting critical temperature T_{c} on the a-axis strain is also reflected in a systematic dependence T_{c} on Γ_{1}, with a distinct maximum at intermediate values (∼16  ps^{−1} at room temperature. The empirical nonmonotonic systematic variation of T_{c} with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-T_{c} superconductivity as a crossover phenomenon.

  15. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  16. Tear energy and strain-induced crystallization of natural rubber/styrene-butadiene rubber blend

    International Nuclear Information System (INIS)

    Noguchi, F; Akabori, K; Yamamoto, Y; Kawahara, S; Kawazura, T

    2009-01-01

    Strain-induced crystallization of natural rubber (NR), dispersed in styrene-butadiene rubber (SBR), was investigated in relation to dimensional feature of a dispersoid and crosslink density of NR by measuring tear energy (G) of crosslinked NR/SBR blends. The crosslinked NR/SBR blends in ratios of 1/9 and 3/7 by weight were prepared by mixing masticated NR and SBR with an internal mixer at a rotor speed of 30 rpm, followed by crosslinking with dicumyl peroxide on a hot press at 444 K for 60 min. The G, measured in wide-ranges of temperature and tear rate, was superposed into a master curve with a Williams-Landel-Ferry shift factor. The G of the NR/SBR(3/7) blend abruptly decreased to a level comparable to that of SBR at about melting temperature of NR crystals formed on straining. The temperature, at which the dramatic decrease in the G occurred, was associated with the dimensional feature of the NR dispersoid and the crosslink density.

  17. Experimental determination of proton induced reaction cross sections on {sup nat}Ni near threshold energy

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Shuza [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Chakraborty, Animesh Kumer [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics; Spellerberg, Stefan; Spahn, Ingo; Qaim, Syed M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Shariff, Md. Asad; Das, Sopan [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Rashid, Md. Abdur [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2016-08-01

    A newly developed facility at the 3 MV Tandem Accelerator at Dhaka for measurement of proton induced reaction cross sections in the energy region below 5 MeV is outlined and tests for the beam characterization are described. The results were validated by comparison with the well-known excitation function of the {sup 64}Ni(p, n){sup 64}Cu reaction. Excitation functions of the reactions {sup nat}Ni(p, x){sup 60,61}Cu, {sup nat}Ni(p, x){sup 55,57,58m+g}Co and {sup nat}Ni(p, x){sup 57}Ni were also measured from threshold to 16 MeV using the stacked-foil technique, whereby irradiations were performed with 5 MeV protons available at the Tandem Accelerator and 16.7 MeV protons at the BC 1710 cyclotron at Juelich, Germany. The radioactivity was measured using HPGe γ-ray detectors. A few results are new, the others strengthen the database. In particular, the results of the reaction {sup nat}Ni(p, x){sup 61}Cu below 3 MeV could serve as beam monitor.

  18. High energy Xe{sup +} ion beam induced ripple structures on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg; Facsko, Stefan; Winkler, Ingolf [Forschungszentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, Dresden (Germany); Biermanns, Andreas; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany). Institute of Physics

    2008-07-01

    Ion beam bombardment on semiconductor surfaces leads to well-defined morphological structures in the nanoscale range. Due to the impact of ions a self-organized wave-like surface structure develops. Ion bombardment causes an amorphization of a surface-adjacent layer of several nanometers and creates a periodical structure on the surface as well as at the amorphous-crystalline interface. We investigate the dependence of the periodicity on the crystallography of (100) silicon bombarded with Xe{sup +} ions, the ion beam incidence and the azimutal angle of the sample surface. So far we found that the ripple wavelength scales with the ion energy in a range of 5 to 70 keV. In order to understand the initiation of the ripple formation we also ask the question which role the initial surface structure plays. Therefore we investigate the formation of ripples on pre-structured and rough surfaces such as wafers with an intentional miscut. Therefore, we not only introduce a certain initial roughness but also vary the orientation of the (100) lattice plane in respect to the surface. We distinguish between ion beam induced surface effects (sputter erosion) and the influence of the crystalline Si lattice (strain) on the ripple formation.

  19. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Horn, K.M.; Doyle, B.; Segal, M.N.; Adler, R.J.; Glatstein, E.

    1995-01-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3 He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3 He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  20. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Science.gov (United States)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  1. Hepatoprotective and nephroprotective effects of Cnidoscolus aconitifolius in protein energy malnutrition induced liver and kidney damage.

    Science.gov (United States)

    Oyagbemi, Ademola A; Odetola, Adebimpe A

    2013-10-01

    This study was designed to evaluate the ameliorative and hypocholesterolemic effects of dietary supplementation of Cnidoscolus aconitifolius leaf meal (CALM) on hepatic injury and kidney injury associated with protein energy malnutrition (PEM). In this study, PEM was induced in weaning male Wistar albino rats by feeding them with low protein diet for 2 weeks. The effects of several recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed were assessed in PEM rats. Plasma biochemical parameters were assessed as well. After the induction of PEM, results obtained showed significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total proteins (T.P), total bilirubin (T.Bil), triglycerides, total cholesterol, low density lipoproteins (LDL), blood urea nitrogen (BUN), and creatinine with significant reduction in plasma high density lipoproteins (HDL), albumin, sodium (Na(+)), potassium (K(+)), chloride (Cl(-)), bicarbonate (HC03(-)), and phosphate (P04(2-)) in PEM rats. Upon introduction of recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed for 4 weeks caused significant (P protein deficient diets has a protective role against hepatic injury and renal damage associated with PEM.

  2. RFLP analysis of rice semi-dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Zhuang Chuxiong; Hu Weimin; Mei Mantong

    1997-01-01

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi-dwarf mutants induced by high energy argon ion radiation, Ar-10, and Xiang-Ar-1, were examined with restriction fragment length polymorphism (RFLP) analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes. Among the markers screened, 9 detected polymorphism were between Bianpizhen and Ar-10, and 11 detected polymorphism were between Xiangzhan and Xiang-Ar-1. Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5.15% and 6.39% for Ar-10 and Xiang-Ar-1 respectively. These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation. Genetic analysis and gene tagging of semi-dwarf mutation in one of the mutant line, Ar-10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4

  3. RFLP Analysis of rice semi dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Zhuang Chuxiong; Hu Weimin; Mei Mantong

    1997-01-01

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi dwarf mutants induced by high energy argon ion radiation, Ar 10, and Xiang Ar 1, were examined with restriction fragment length polymorphism(RFLP)analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes.Among the markers screened, 9 detected polymorphism were between Bianpizhan and Ar 10, and 11 detected polymorphism were between Xiangzhan and Xiang Ar 1.Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5 15% and 6 39% for Ar 10 and Xiang Ar 1 respectively.These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation.Genetic analysis and gene tagging of semi dwarf mutation in one of the mutant line, Ar 10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4. (author)

  4. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    Science.gov (United States)

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Inducing Strong Density Modulation with Small Energy Dispersion in Particle Beams and the Harmonic Amplifier Free Electron Laser

    CERN Document Server

    McNeil, Brian W J; Robb, Gordon

    2005-01-01

    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative ele...

  6. MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies

    International Nuclear Information System (INIS)

    Miyashiro, S.; Fujita, S.; Okita, T.; Okuda, H.

    2012-01-01

    Highlights: ► Strain effects on defect formation were evaluated at various PKA energies by MD. ► Radiation-induced defects were increased numerically by external strain. ► Enhanced formation of larger clusters causes the numerical increase of defects. ► Strain influence on the number of defects was greatest at about 20 keV PKA. ► Cluster size, which is mostly affected by strain, was greater with higher PKA energy. - Abstract: Molecular Dynamics (MD) simulations were conducted to investigate the influence of applied tensile strain on defect production during cascade damages at various Primary Knock-on Atom (PKA) energies of 1–30 keV. When 1% strain was applied, the number of surviving defects increased at PKA energies higher than 5 keV, although they did not increase at 1 keV. The rate of increase by strain application was higher with higher PKA energy, and attained the maximum at 20 keV PKA energy with a subsequent gradual decrease at 30 keV PKA energy The cluster size, mostly affected by strain, was larger with higher PKA energy, although clusters with fewer than seven interstitials did not increase in number at any PKA energy.

  7. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A., E-mail: armina_84@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Maknoon, R., E-mail: rmaknoon@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Kowsari, E., E-mail: kowsarie@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • Three combined advanced SBR and enhanced Fenton process as post treatment was compared. • Higher biomass concentration, dye, COD and metabolites removal was presented together. • Pseudo zero and pseudo first-order bio-decolorization kinetics were observed in all SBRs. • High reduction of AR18 to intermediate metabolites was monitored by HPLC. - Abstract: The purpose of this research was to compare three combined sequencing batch reactor (SBR) – Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD = 3270 mg/L) at the end of alternating anaerobic–aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10 mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV–vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  8. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  9. Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Ability from Kurthia huakuii LAM0618T.

    Directory of Open Access Journals (Sweden)

    Xiang Guo

    Full Text Available Laccases are green biocatalysts that possess attractive advantages for the treatment of resistant environmental pollutants and dye effluents. A putative laccase-like gene, laclK, encoding a protein of 29.3 kDa and belonging to the Cu-oxidase_4 superfamily, was cloned and overexpressed in Escherichia coli. The purified recombinant protein LaclK (LaclK was able to oxidize typical laccase substrates such as 2,6-dimethoxyphenol and l-dopamine. The characteristic adsorption maximums of typical laccases at 330 nm and 610 nm were not detected for LaclK. Cu2+ was essential for substrate oxidation, but the ratio of copper atoms/molecule of LaclK was determined to only be 1:1. Notably, the optimal temperature of LaclK was 85°C with 2,6-dimethoxyphenol as substrates, and the half-life approximately 3 days at 80°C. Furthermore, 10% (v/v organic solvents (methanol, ethanol, isopropyl alcohol, butyl alcohol, Triton x-100 or dimethyl sulfoxide could promote enzymatic activity. LaclK exhibited wide-spectrum decolorization ability towards triphenylmethane dyes, azo dyes and aromatic dyes, decolorizing 92% and 94% of Victoria Blue B (25 μM and Ethyl Violet (25 μM, respectively, at a concentration of 60 U/L after 1 h of incubation at 60°C. Overall, we characterized a novel thermostable and organic solvent-tolerant copper-containing polyphenol oxidase possessing dye-decolorizing ability. These unusual properties make LaclK an alternative for industrial applications, particularly processes that require high-temperature conditions.

  10. Stable ABTS Immobilized in the MIL-100(Fe) Metal-Organic Framework as an Efficient Mediator for Laccase-Catalyzed Decolorization.

    Science.gov (United States)

    Liu, Youxun; Geng, Yuanyuan; Yan, Mingyang; Huang, Juan

    2017-06-02

    The successful encapsulation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a well-known laccase mediator, within a mesoporous metal-organic framework sample (i.e., MIL-100(Fe)) was achieved using a one-pot hydrothermal synthetic method. The as-prepared ABTS@MIL-100(Fe) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nitrogen sorption, and cyclic voltammetry (CV). Our ABTS@MIL-100(Fe)-based electrode exhibited an excellent electrochemical response, indicating that MIL-100(Fe) provides an appropriate microenvironment for the immobilization and electroactivity of ABTS molecules. ABTS@MIL-100(Fe) was then evaluated as an immobilized laccase mediator for dye removal using indigo carmine (IC) as a model dye. Through the application of laccase in combination with a free (ABTS) or immobilized (ABTS@MIL-100(Fe)) mediator, decolorization yields of 95% and 94%, respectively, were obtained for IC after 50 min. In addition, following seven reuse cycles of ABTS@MIL-100(Fe) for dye treatment, a decolorization yield of 74% was obtained. Dye decolorization occurred through the breakdown of the chromophoric group by the Laccase/ABTS@MIL-100(Fe) system, and a catalytic mechanism was proposed. We therefore expect that the stability, reusability, and validity of ABTS@MIL-100(Fe) as a laccase mediator potentially render it a promising tool for dye removal, in addition to reducing the high running costs and potential toxicity associated with synthetic mediators.

  11. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting

    Science.gov (United States)

    Zhang, Yunshun; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2018-04-01

    Nonlinear energy harvesters are frequently considered in preference to linear devices because they can potentially overcome the narrow frequency bandwidth limitations inherent to linear variants; however, the possibility of variable harvesting efficiency is raised for the nonlinear case. This paper proposes a rotational energy harvester which may be fitted into an automobile tyre, with the advantage that it may broaden the rotating frequency bandwidth and simultaneously stabilise high-energy orbit oscillations. By consideration of the centrifugal effects due to rotation, the overall restoring force will potentially be increased for a cantilever implemented within the harvester, and this manifests as an increase in its equivalent elastic stiffness. In addition, this study reveals that the initial potential well barriers become as shallow as those for a bistable system. When the rotational frequency increases beyond an identifiable boundary frequency, the system transforms into one with a potential barrier of a typical monostable system. On this basis, the inter-well motion of the bistable system can provide sufficient kinetic energy so that the cantilever maintains its high-energy orbit oscillation for monostable hardening behaviour. Furthermore, in a vehicle drive experiment, it has been shown that the effective rotating frequency bandwidth can be widened from 15 km/h-25 km/h to 10 km/h-40 km/h. In addition, it is confirmed that the centrifugal effects can improve the harvester performance, producing a mean power of 61 μW at a driving speed of 40 km/h, and this is achieved by stabilising the high-energy orbit oscillations of the rotational harvester.

  12. Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye

    International Nuclear Information System (INIS)

    El-Ghenymy, Abdellatif; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Garrido, José Antonio; Sirés, Ignasi; Brillas, Enric

    2015-01-01

    Highlights: • Degradation of Malachite Green oxalate solutions at pH 3.0 by AO, AO-H 2 O 2 , EF and PEF. • A Pt anode leads to slower decolorization and mineralization than BDD. • Up to 97% mineralization by the most powerful PEF process with BDD at 100 mA cm −2 . • Study of the evolution of seven final short-chain aliphatic carboxylic acids. • Conversion of the initial N atoms of the dye mainly into NH 4 + , along with small amounts of NO 3 − . - Abstract: The degradation of 100 cm 3 of 177 mg dm −3 of the triphenylmethane dye Malachite Green oxalate at pH 3.0 was studied by anodic oxidation with stainless steel cathode (AO-SS), AO with air-diffusion cathode (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The main oxidizing species were hydroxyl radicals formed from either water oxidation at the anode surface or in the bulk between added Fe 2+ and H 2 O 2 generated at the air-diffusion cathode. The use of a Pt anode led to slower decolorization and mineralization than BDD in all treatments because of the higher oxidation power of the latter. The decolorization was much faster for EF and PEF compared to AO-SS and AO-H 2 O 2 due to the contribution of hydroxyl radicals in the bulk. PEF allowed the quickest color removal by the rapid Fe 2+ regeneration from the photolysis of Fe(III) complexes with oxalate. The most powerful process was PEF with BDD, which yielded total decolorization in 6 min and 97% mineralization at 240 min operating at 100 mA cm −2 , thanks to hydroxyl radicals formed at the anode surface and in the bulk along with the photolytic action of UVA radiation. The evolution of final carboxylic acids like maleic, fumaric, succinic, acetic, oxalic, formic and oxamic was followed by ion-exclusion HPLC. All these acids and their Fe(III) complexes were removed more slowly with Pt anode. The initial N atoms of the dye were pre-eminently accumulated as NH 4 + ion, along with small amounts of NO 3 − ion.

  13. Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

    Science.gov (United States)

    Son, Yu-Lim; Kim, Hyoun-Young; Thiyagarajan, Saravanakumar; Xu, Jing Jing

    2012-01-01

    cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H2O2 over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H2O2 improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 150 µM within 90 min. PMID:23323052

  14. Biopulping of sugarcane bagasse and decolorization of kraft liquor by the laccase produced by Klebsiella aerogenes NCIM 2098

    Directory of Open Access Journals (Sweden)

    Jha H.

    2013-12-01

    Full Text Available Aims: Laccase, a copper-containing enzyme, oxidizes variety of aromatic compounds. Since laccase is essential for lignin degradation, it can be used for lignin removal in the pulp and paper industry (biopulping. Laccase is also employed as a dechlorinating agent (biobleaching, along with the removal of phenolic and other aromatic pollutants. In the present investigation it was aimed to employ the laccase produced by the bacterium Klebsiella aerogenes along with the bacterium itself in biopulping of sugarcane bagasse and biobleaching of kraft liquor effluent. Methodology and results: A laccase was isolated from the bacterium K. aerogenes, purified to homogeneity and characterized. The enzyme was purified by conventional techniques following salt precipitation, ion exchange chromatography, and affinity chromatography on Con A sepharose. The purified laccase was found to be monomeric glycoprotein with a Mr of 64 kDa when measured by Sephadex G-200 gel chromatography and SDS-PAGE. The Vmax and Km of laccase towards the substrate guaiacol was determined. The optimum pH of the laccase was found to be 5.0. biopulping and biobleaching activities were determined by TAPPI standard methods. Treatment of sugarcane baggase by K. aerogenes also significantly reduced lignin content of the bagasse. Conclusion, significance and impact of study: The bacterium K. aerogenes and a laccase produced by it were used separately for biopulping of sugarcane bagasse and biobleaching of kraft liquor effluent. Treatment with both brought significant reduction in lignin content and kappa number of the pulp. The handsheets prepared from the treated pulp showed improved brightness without affecting the strength properties of paper. The bacterium and the laccase efficiently decolorized the kraft liquor proving to have biobleaching potential.

  15. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Hsing, H.-J.; Chiang, P.-C.; Chang, E.-E.; Chen, M.-Y.

    2007-01-01

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO 2 , O 3 , O 3 /UV, O 3 /UV/TiO 2 , Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O 3 /UV and O 3 /UV/TiO 2 processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O 3 dose = 45 mg/L; (2) the optimum pH and ratio of [H 2 O 2 ]/[Fe 2+ ] found for the Fenton process, are pH 4 and [H 2 O 2 ]/[Fe 2+ ] = 6.58. The optimum [H 2 O 2 ] and [Fe 2+ ] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O 3 3 /UV = O 3 /UV/TiO 2 3 = Fenton 3 /UV 3 /UV/TiO 2 for 30 min of reaction time

  16. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    International Nuclear Information System (INIS)

    Yetilmezsoy, Kaan; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha

    2009-01-01

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm 2 , and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics

  17. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    Energy Technology Data Exchange (ETDEWEB)

    Yetilmezsoy, Kaan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)], E-mail: yetilmez@yildiz.edu.tr; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)

    2009-02-15

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm{sup 2}, and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics.

  18. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis.

    Science.gov (United States)

    Zhao, Ming; Sun, Peng-Fei; Du, Lin-Na; Wang, Guan; Jia, Xiao-Ming; Zhao, Yu-Hua

    2014-05-01

    Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0-9.0 and 30-40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg(2+) and Mn(2+) (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe(3+) or Fe(2+) was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N'dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR.

  19. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    International Nuclear Information System (INIS)

    Barbosa, D; De Freitas, U; De Mello, E R Bezerra

    2011-01-01

    We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green's function associated with this physical system. We explicitly show that for points outside the monopole's core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.

  20. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, D; De Freitas, U; De Mello, E R Bezerra, E-mail: denis.barros@ifpb.edu.br, E-mail: umbelino@fisica.ufpb.br, E-mail: emello@fisica.ufpb.br [Instituto Federal de Educacao, Ciencia e Tecnologia da ParaIba, 58.800-970, Sousa, PB (Brazil)

    2011-03-21

    We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green's function associated with this physical system. We explicitly show that for points outside the monopole's core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.

  1. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Denis; Freitas, Umbelino; Mello, Eugenio Bezerra de [Instituto Federal de Educacao, Ciencia e Tecnologia da Paraiba (IFPB), Joao Pessoa, PB (Brazil); Universidade Federal da Paraiba (IFPB), PB (Brazil)

    2011-07-01

    Full text: Global monopoles are heavy spherically symmetric topological objects which may have been formed by the vacuum phase transition in the early universe after Planck time. Although the global monopole was first introduced by Sokolov and Starobinsky, its gravitational effects have been analyzed by Barriola and Vilenkin. We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green function associated with this physical system. We explicitly show that for points outside the monopoles core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ball-point pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole. (author)

  2. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    International Nuclear Information System (INIS)

    Barbosa, Denis; Freitas, Umbelino; Mello, Eugenio Bezerra de

    2011-01-01

    Full text: Global monopoles are heavy spherically symmetric topological objects which may have been formed by the vacuum phase transition in the early universe after Planck time. Although the global monopole was first introduced by Sokolov and Starobinsky, its gravitational effects have been analyzed by Barriola and Vilenkin. We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green function associated with this physical system. We explicitly show that for points outside the monopoles core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ball-point pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole. (author)

  3. [Changes of productions of energy metabolism in masseter of rats induced by occlusal interference].

    Science.gov (United States)

    Xu, X X; Cao, Y; Fu, K Y; Xie, Q F

    2017-02-18

    To investigate the effect of occlusal interference on the energy metabolism of masticatory muscle by studying the changes of adenosine triphosphate (ATP), adenosine diphosphate (ADP), inosine monophosphate (IMP), phosphocreatine, creatine, lactate and pH level in masseter muscles of rats after occlusal interference. Fifty male Sprague-Dawley rats were randomly assigned into experimental group (n=40) and control group (n=10). In experimental group, 0.4 mm thick metal crown was cemented to the upper right first molar of the rat, and maintained for 3, 7, 10, 14 d separately (n=10 for each time point). No occlusal interference was applied for control group. Bilateral masseter muscles of all the rats were acquired under general anesthesia. The samples of 5 rats in each group were fully homogenized with 0.4 mol/L perchlorate (10 mL/g). The homogenates were centrifuged, filtered and analyzed for ATP, ADP, IMP, phosphocreatine, creatine and lactate content by high performance liquid chromatography. The other samples in each group were mixed with homogenates containing 5 mmol/L sodium iodoacetate (10 mL/g), then homogenized and measured for pH value by pH meter in thermostatic water bathunder 37 degrees centigrade. Compared with control group, ATP content in bilateral masseter of the rats increased 3 d after occlusal interference [right side:(5.36±0.13) μmol/g,left side:(5.77±0.25) μmol/g] (Pocclusal interference (Pocclusal interference and maintained the low level on 10 and 14 d [right side:(10.70±0.71) μmol/g, (11.57±0.52) μmol/g, (10.74±1.39) μmol/g, left side:(10.05±0.57) μmol/g, (10.75±1.12)μmol/g, (10.61±1.15) μmol/g](Pocclusal interference was observed (P>0.05). Occlusal interference influences the content of energy metabolites in masticatory muscle of rats, which may be related to the pathological process of masticatory muscles induced by occlusal interference, such as muscle pain, dysfunction and altered fiber architecture.

  4. Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC

    Science.gov (United States)

    Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.

    2018-05-01

    Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.

  5. Integrated inventory-based carbon accounting for energy-induced emissions in Chongming eco-island of Shanghai, China

    International Nuclear Information System (INIS)

    Li Qingqing; Guo Ru; Li Fengting; Xia Bingbin

    2012-01-01

    The majority of the total carbon emissions in China are energy induced. A clear understanding of energy-induced carbon emissions is therefore necessary for local communities to develop a better carbon emissions management system. We develop an integrated inventory method for energy-induced carbon emissions accounting in local Chinese communities. The method combines scope and sectoral analyses on the basis of local statistical features. As an outcome four core findings are presented: (1) From 2000 to 2009, the energy-induced carbon emissions of Chongming rapidly increased from 1.75 to 4.90 million tons, with the annual growth rate of 12.12%. (2) Emissions from manufacturing, construction, and household sectors accounted for 84.44%; manufacturing is the biggest emitting sector. (3) Carbon emissions from imported electricity reached a historic high of 22.51% in 2009, indicating the necessity of taking the imported carbon emissions into consideration. (4) In 2008, the per capita carbon emissions of Chongming were lower than that of the United States and Shanghai, but higher than that of the global average. Three strategic approaches are proposed: to optimize industrial structure and improve efficiency, reinforce carbon management for the household sector, and enhance carbon statistics. - Highlights: ► The use of natural gas in the large-sized industrial and commercial sectors is shown. ► This study estimates the market potential and characterizes the energy consumption. ► It makes a selection of technological alternatives for the use of natural gas. ► The residual oil and diesel consumption decline over time by the natural gas use. ► In 2017, the cogeneration could provide 7.7% of total electricity demand in Peru.

  6. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  7. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  8. Multi-bunch energy spread induced by beam loading in standing wave structure

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1995-04-01

    The interaction of a relativistic beam with the modes of the TM 010 pass-band of a multicell cavity does not cause any problem: although all the modes are excited by the RF (radiofrequency) generator, resulting in different cell excitations during the cavity filling and the beam pulse, the net accelerating field exhibits negligible fluctuations from bunch to bunch. However, when the beam is not fully relativistic, this is no more true. The phase slippage occurring in the first cells, between the non relativistic beam and the lower pass-band modes, produces an effective enhancement of the shunt impedances, which is usually negligible for a relativistic beam in a well tuned cavity. Moreover, the voltage jumps (amplitude and phase) occurring at each bunch passage, as well as the beam detuning caused by the off-crest bunches, vary from cell to cell. These effects enhance dramatically the fluctuation of the accelerating voltage, with a dominant beating provided by the pass-band mode nearest to the pi-mode. The induced beam energy spread has been estimated by the help of two distinct codes, developed at Frascati (Italy) and (Saclay), with results in good agreement. While an interaction integral is computed at each bunch passage, the cavity refilling is calculated by solving coupled differential equations of the modes of the pass-band, driven by a generator linked to one end-cell. It is shown also that the intermode coupling arises from the external Q of the drive end-cell, and not from the wall losses. For illustration, the authors applied the method to the beam-loading problem in the SC capture cavity of the low charge injector of the TESLA test facility installed at DESY

  9. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  10. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  11. Synthesis of 5'-CMP and 5'-dCMP in aqueous solution induced by low energy ions implantation

    International Nuclear Information System (INIS)

    Shi Huaibin; Shao Chunlin; Wang Xiangqin; Yu Zengliang

    2001-01-01

    Low energy N + ions produced by N 2 are accelerated and then introduced into aqueous solution to induce chemical reactions. This process avoids the need of a vacuum chamber and makes it possible to investigate the actions of low energy ions in aqueous solution. In order to explore prebiotic synthesis of nucleotide via reaction between low energy ions and aqueous solution under the primitive earth conditions, low energy N + is implanted into aqueous solution containing cytosine, D-ribose, D-2-deoxyribose and NH 4 H 2 PO 4 . It is confirmed that 5'-CMP and 5'-dCMP are produced by HPLC and 1 H-NMR analyses. The relation between yields of 5'-CMP and 5'-dCMP and irradiation time has been obtained

  12. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    International Nuclear Information System (INIS)

    Tsukada, Yuhki; Shiraki, Atsuhiro; Murata, Yoshinori; Takaya, Shigeru; Koyama, Toshiyuki; Morinaga, Masahiko

    2010-01-01

    The correlation of defect energies with precipitation of the ferromagnetic phase near M 23 C 6 carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M 23 C 6 carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  13. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    The correlation of defect energies with precipitation of the ferromagnetic phase near M{sub 23}C{sub 6} carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M{sub 23}C{sub 6} carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  14. A population-induced renewable energy timeline in nine world regions

    International Nuclear Information System (INIS)

    Warner, Kevin J.; Jones, Glenn A.

    2017-01-01

    Approximately 1.1 billion people worldwide do not have access to electricity. The World Bank's Sustainable Energy for All initiative seeks to provide universal access to energy by the year 2030. The current world population of 7.3 billion is projected to reach 8.5 billion by 2030 and 11.2 billion by 2100. Population growth and increasing energy access are incongruous with forecasts of declining non-renewable energy production and climate change concerns. Previous studies have examined these issues at global or at individual regional or national levels. Here we use a nine region model of the world with two per capita energy consumption scenarios to find that significant restructuring of the current energy mix will be necessary in order to support population projections. Modelled interaction between the regions highlights the importance of examining energy and population concerns in a systemic manner, as each of the nine regions faces unique energy-population challenges in the coming decades. As non-renewable energy reserves decline globally, the transition to a renewable energy infrastructure will develop at different times in each region. - Highlights: • A 9-region model of energy, population, and development through 2100 is presented. • Developing >50% renewable energy is required in 8 regions, though not concurrently. • Population growth and development will compound energy scarcity issues. • Early and significant renewable energy investment is key to realizing development. • Each region will face unique, though interlacing, challenges this century.

  15. Combined experimental and numerical investigation of energy harness utilizing vortex induced vibration over half cylinder using piezoelectric beams

    Science.gov (United States)

    Ahmed, Md. Tusher; Hossain, Md. Tanver; Rahman, Md. Ashiqur

    2017-06-01

    Energy harvesting technology has the ability to create self-powered electronic systems that do not rely on battery power for their operation. Wind energy can be converted into electricity via a piezoelectric transducer during the air flow over a cylinder. The vortex-induced vibration over the cylinder causes the piezoelectric beam to vibrate. Thus useful electric energy at the range 0.2-0.3V is found which can be useful for self-powering small electronic devices. In the present study, prototypes of micro-energy harvester with a shape of 65 mm × 37 mm × 0.4 mm are developed and tested for airflow over D-shaped bluff body for diameters of 15, 20 and 28mm in an experimental setup consisting of a long wind tunnel of 57cm × 57cm with variable speeds of the motor for different flow velocities and the experimental setup is connected at the downstream where flow velocity is the maximum. Experimental results show that the velocity and induced voltage follows a regular linear pattern. A maximum electrical potential of 140 mV for velocity of 1.1 ms-1 at a bluff body diameter of 15 mm is observed in the energy harvester that can be applied in many practical cases for self-powering electronic devices. The simulation of this energy harvesting phenomena is then simulated using COMSOLE multi-physics. Diameter of the bluff bodies as well as flow velocity and size of cantilever beam are varied and the experimental findings are found to be in good agreement with the simulated ones. The simulations along with the experimental data show the possibility of generating electricity from vortex induced vibration and can be applied in many practical cases for self-powering electronic devices.

  16. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.

    Science.gov (United States)

    Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2012-12-01

    Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.

  17. A novel kerf-free wafering process combining stress-induced spalling and low energy hydrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pingault, Timothee; Pokam-Kuisseu, Pauline Sylvia; Ntsoenzok, Esidor [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Blondeau, Jean-Philippe [CEMTHI - CNRS, Site Cyclotron, 3 A rue de la Ferollerie, 45071 Orleans (France); Universite d' Orleans, Chateau de la Source, 45100 Orleans (France); Ulyashin, Alexander [SINTEF, Forskningsveien 1, 0314 Oslo (Norway); Labrim, Hicham; Belhorma, Bouchra [CNESTEN, B.P. 1382 R.P., 10001 Rabat (Morocco)

    2016-12-15

    In this work, we studied the potential use of low-energy hydrogen implantation as a guide for the stress-induced cleavage. Low-energy, high fluence hydrogen implantation in silicon leads, in the right stiffening conditions, to the detachment of a thin layer, around a few hundreds nm thick, of monocrystalline silicon. We implanted monocrystalline silicon wafers with low-energy hydrogen, and then glued them on a cheap metal layer. Upon cooling down, the stress induced by the stressor layers (hardened glue and metal) leads to the detachment of a thin silicon layer, which thickness is determined by the implantation energy. We were then able to clearly demonstrate that, as expected, hydrogen oversaturation layer is very efficient to guide the stress. Using such process, thin silicon layers of around 710 nm-thick were successfully detached from low-energy implanted silicon wafers. Such layers can be used for the growth of very good quality monocrystalline silicon of around 50 μm-thick or less. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    Science.gov (United States)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  19. Mechanisms and significance of brain glucose signaling in energy balance, glucose homeostasis, and food-induced reward.

    Science.gov (United States)

    Devarakonda, Kavya; Mobbs, Charles V

    2016-12-15

    The concept that hypothalamic glucose signaling plays an important role in regulating energy balance, e.g., as instantiated in the so-called "glucostat" hypothesis, is one of the oldest in the field of metabolism. However the mechanisms by which neurons in the hypothalamus sense g