WorldWideScience

Sample records for energy gaining windows

  1. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  2. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... be expressed as a function of two parameters representing the energy performance and two parameters representing the geometry of the window. The two energy performance parameters are the net energy gain per area of the glazing unit and the sum of the heat losses through the frame and the assembly per length...... of the frame. The two geometry numbers are the area of the glazing unit relative to the window area and the length of the frame profiles relative to the window area. Requirements and classes for the energy performance of the window can be given by assigning values to the two energy performance parameters...

  3. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  4. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... resulted in a window with a positive net energy gain (in short the Net Gain Window), which means that it contributes to the space heating of the building. All improvements are based on existing technology and manufacturing methods. The results from this work show that the energy performances of windows can...

  5. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  6. Windows in Low Energy Houses. Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mari-Louise

    2004-06-01

    A generally accepted way of building passive houses has been to have small windows facing north and a large glass facade to the south. This is to minimize losses on the north side while gaining as much solar heat as possible on the south. In spring 2001, twenty terraced houses were built outside Goeteborg partly in this way. The indoor temperature is kept at a comfortable level by passive methods, using solar gains and internal gains from household appliances and occupants. Heat losses are very low, since the building envelope is well insulated and since modern coated triple-glazed windows have been installed. The purpose of this work is to investigate how decreasing the window size facing south and increasing the window size facing north in low energy houses will influence the energy consumption and maximum power needed to keep the indoor temperature between 23 and 26 deg C. Different climates and orientations have been investigated and so have the influence of occupancy and window type. A dynamic building simulation tool, DEROB, has been used and the simulations indicate an extremely low energy demand for the houses. The results show that the size of the energy efficient windows does not have a major influence on the heating demand in winter, but is of relevant signification looking at the cooling need in summer. This indicates that instead of the traditional technique of building passive houses it is possible to enlarge the window area facing north and get better lighting conditions. To decrease the energy need for cooling, there is an optimal window size facing south that is smaller than the original size of the investigated buildings.

  7. Calculation Tool for Determining the Net Energy Gain

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    is dependent on both the U-values and the g-values. Beyond this it is dependent on the orientation of the windows and the climate and the actual period. This makes it difficult to choose the glazings and windows that are optimal with regard to energy performance in a given case. These facts have aroused a need...... for simple and accurate methods to determine and compare the energy performance of different window products. When choosing windows for new buildings or retrofitting a calculation tool that in a simple way determines the net energy gain from the specific windows in the actual building will ease the selection...... of the best window solution. Such a tool combined with a database with window products can make calculations of the heat loss or energy demand corresponding to the requirements in the new building code easier and more correct. In the paper, methods to determine energy performance data and the net energy gain...

  8. How to be smart and energy efficient: A general discussion on thermochromic windows

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2014-01-01

    A window is a unique element in a building because of its simultaneous properties of being “opaque” to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a “smart” window behave? Is a “smart” window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided. PMID:25233891

  9. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    The handbook on windows and energy is a general description of windows with the main focus put on the energy performance. Common window products are described by commonly used nomenclature, description of frame and sash conctructions and description of commonly used glazing types.The energy...... transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...

  10. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  11. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    considerably by reducing the frame width, which results in a larger transparent area causing a larger solar gain but still main-taining a low thermal transmittance. Using three layers of glass with large gaps, using very slim frame profiles, and omitting the edge constructions that normally causes thermal...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  12. A generalized window energy rating system for typical office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  13. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  14. Roadmap for improving roof and façade windows in nearly zero-energy houses in Europe

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker; Svendsen, Svend

    2016-01-01

    Windows are central for the development of liveable nearly zero-energy homes and require careful consideration. Various studies have indicated that the effect of windows on energy consumption may change significantly with improved building insulation levels. Current guidelines on windows may...... comfort in nearly zero-energy houses located in the European cities Rome and Copenhagen. The aim was to identify options that can support the easy and robust design of future homes with typical use of roof and façade windows. Hourly daylight levels were calculated in DAYSIM, while space heating demand...... and operative temperatures were calculated in EnergyPlus. The results support previous findings on the limited ability of nearly zero-energy buildings to utilise solar gains. It was found that U-values are becoming increasingly important for the energy performance of windows. The paper sketches the increased...

  15. Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure

    Energy Technology Data Exchange (ETDEWEB)

    Gilbride, Theresa L.; Cort, Katherine A.

    2016-05-16

    This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNL Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate

  16. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  17. Influence of windows on the energy balance of apartment buildings in Amman

    International Nuclear Information System (INIS)

    Hassouneh, K.; Alshboul, A.; Al-Salaymeh, A.

    2010-01-01

    The influence of windows on the energy balance of apartment buildings in Amman is investigated by using self developed simulation software (SDS) based on the ASHRAE tables for solar heat gain calculation and coaling load factor for latitude 32 deg., where Amman city is located. The calculations of energy saving are made to find out the influence of windows on the energy balance of apartment buildings in Amman. Also, the present investigation aimed to study the energy performance of windows of an apartment building in Amman in order to select the most energy efficient windows that can save more energy and reduce heating load in winter, the percentage of saving energy and saving fuel and money through time. Variations of type of glazing using eight types of glazing (clear glass, types A, B, C, D, E, F, and G) are made to find out the most appropriate type of glazing in each direction. Also the orientation of window is changeable in the main four directions (N, S, E and W). The area of glazing varies also in different orientation to find the influence of window area on the thermal balance of the building. The results show that if energy efficient windows are used, the flexibility of choosing the glazed area and orientation increases. It has been found that choosing a larger area facing south, east and west can save more energy and decrease heating costs in winter using certain types of glazing such as glass type A and clear glass, while decreasing the glazing area facing north can save money and energy. However, it has been found that the energy can be saved in the north direction if glass type B has been used. In the apartment building, it is found that certain combination of glazing is energy efficient than others. This combination consists of using large area of glass type A in the east, west and south direction, and glass type B in the north direction or reducing glazing area as possible in the north direction.

  18. The nitrogen window for arctic herbivores: plant phenology and protein gain of migratory caribou (Rangifer tarandus)

    Science.gov (United States)

    Barboza, Perry S.; Van Someren, Lindsay L.; Gustine, David D.; Bret-Harte, M. Syndonia

    2018-01-01

    Terrestrial plants are often limited by nitrogen (N) in arctic systems, but constraints of N supply on herbivores are typically considered secondary to those of energy. We tested the hypothesis that forage N is more limiting than energy for arctic caribou by collecting key forages (three species of graminoids, three species of woody browse, and one genus of forb) over three summers in the migratory range of the Central Arctic Herd in Alaska from the Brooks Range to the Coastal Plain on the Arctic Ocean. We combined in vitro digestion and detergent extraction to measure fiber, digestible energy, and usable fractions of N in forages (n = 771). Digestible energy content fell below the minimum threshold value of 9 kJ/g for one single forage group: graminoids, and only beyond 64–75 d from parturition (6 June), whereas all forages fell below the minimum threshold value for digestible N (1% of dry matter) before female caribou would have weaned their calves at 100 d from parturition. The window for digestible N was shortest for browse, which fell below 1% at 30–41 d from parturition, whereas digestible N contents of graminoids were adequate until 46–57 d from parturition. The low quality of browse as a source of N was also apparent from concentrations of available N (i.e., the N not bound to fiber) that were <1% at 72–80 d from parturition. The Coastal Plain may be favored by female caribou because available and digestible concentrations of N are not only greater than those on the Brooks Range, the window of usable N on the Coastal Plain extends the period of protein gain for females and their calves by 17 d. Conversely, inland areas with greater biomass and densities of digestible N than the Coastal Plain may be more favorable for large male caribou that begin gaining protein from spring to breed in autumn. Our study provides evidence that phenological windows for protein gain in caribou are both spatially and temporally dynamic and likely to affect the

  19. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    According to the Danish energy protocol, Energy 21, one of the goals with highest priority is to reduce the CO2-emission. Energy consumption for domestic heating is a major contributor to the CO2-emission; hence one of the primary efforts to reach the goal is by saving energy in the households...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  20. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  1. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  2. Measure Guideline: Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  3. Measure Guideline. Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, John [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR; Haglund, Kerry [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  4. Energy efficiency and energy saving air conditioners window and split type; Eficiencia energetica e economia de energia de condicionadores de ar tipo janela e split

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson Palhares de; Cardoso, Rafael Balbino; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2010-07-01

    The air-conditioners of window end Split type are responsible for a significant portion of energy consumption in residential sector of Brazil, from 20% of the sector. This study evaluates the impact energy of the Seal Program PROCEL in air-conditioners of window end Split type, showing the efficiency gains for the country in terms of energy saving. For this evaluation it was considered the effects of temperature and loss of performance due to age, PROCEL Stamp Program resulted in a power savings of 664 GWh in air-conditioners of window type residential sector in 2008. (author)

  5. Study on the application of low energy U-window

    International Nuclear Information System (INIS)

    Li Binghai; Liu Shikai; Chen Guosheng

    2012-01-01

    For using the low energy U-window information, based on the theory and experiment, the advantage of identifying the subtle anomaly that the low energy U-window information has given is discussed, the method of drawing the low energy U-window information is stated; a method of calibration and obtaining the calibration parameters was developed which was applied to Dongsheng region. The result indicated that the anomaly of low energy U-window information upon known field is more easy identified by comparing with the standard three windows U-window information, which proved the practicability of the method of low energy U-windows information. (authors)

  6. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  7. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker

    2015-01-01

    a solution space defined by targets for daylighting and thermal comfort. In contrast with existing guidelines, the results show an upper limit for energy savings and utilisation of solar gains in south-oriented rooms. Instead, low U-values are needed in both north- and south oriented rooms before large......Appropriate window solutions are decisive for the design of 'nearly zero-energy' buildings with healthy and comfortable indoor environment. This paper focuses on the relationship between size, orientation and glazing properties of façade windows for different side-lit room geometries in Danish...... 'nearly zero-energy' houses. The effect of these parameters on space heating demand, daylighting and thermal environment is evaluated by means of EnergyPlus and DAYSIM and presented in charts illustrating how combinations of design parameters with minimum space heating demand can be selected within...

  8. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  9. Effect of energy window on cardiac ejection fraction

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Findley, S.L.; Daube-Witherspoon, M.E.; Larson, S.M.

    1988-01-01

    ECG gated gamma-ray energy spectra from the left ventricle were created each 50 msec during the cardiac cycle. Nine of ten subjects were studied with a nonimaging Nal probe, and the tenth with a high-resolution Germanium detector. Placing multiple energy windows over the energy spectra, EF was found to vary with the energy window selected. Moving a 20% window across the photopeak produced a roughly linear increase in EF with energy (2.3 EF units per 10 keV increase in energy) in eight of the ten subjects. Dividing the photopeak into a low (126-140 keV) and high-energy (140-154 keV) portion gave significantly different EFs (high energy exceeding low energy by 17%). Increasing the width of a narrow window centered about the photopeak produced negligible change in EF. Examining the energy spectra showed that the small-angle scattered radiation (126-139 keV) was proportionately greater at end systole than at end diastole, after normalizing the spectra to the same photopeak area

  10. Data in support of energy performance of double-glazed windows.

    Science.gov (United States)

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-06-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  11. Solar Heat Gain Reduction of Ventilated Double Skin Windows without a Shading Device

    Directory of Open Access Journals (Sweden)

    Bokyoung Koo

    2017-12-01

    Full Text Available With global efforts to strengthen various energy-saving policies for buildings to reduce greenhouse gas emissions, in South Korea, new laws and regulations have been in force since May 2015 to install shading devices in public buildings and to include the solar heat gain coefficient (SHGC reduction performance of shading devices in the evaluation of building performance. By making a ventilated air layer outer glass and inner glass to lower the temperatures of the air layer and glass surface, it is possible to reduce the amount of heat flowing into the building while maintaining the same level of light transmission as plain window systems. This study proposes a double-skin façade window with a 20 mm ventilated air cavity, and assumes that insolation inflow indoors would be reduced through ventilation in the air cavity. The artificial solar lab test results show that the SHGC can be lowered through ventilation by 28% to 52.9%. Additionally, in an outdoor test cell experiment, the results show that the mean temperature was 0.6 K and the peak temperature was 0.9 K lower with ventilation in the air cavity than that without ventilation in the air cavity.

  12. Data in support of energy performance of double-glazed windows

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-06-01

    Full Text Available This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy (“Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network” (Shakouri Hassanabadi and Banihashemi Namini, 2012 [1], “Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates” (Banihashemi et al., 2015 [2]. A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  13. Solar Heat Gain Coefficient (SHGC) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Compare of Energy Efficiency of Windows in Aalborg and Chongqing

    DEFF Research Database (Denmark)

    Lin, Zhenguo; Heiselberg, Per; Yao, Runming

    2007-01-01

    Focus on window's energy efficiency, this paper compared the difference of windows in Aalborg and Chongqing. The author analysed the designing process, the thermal insulation performances, the sun shading devices and the ventilation of windows in Aalborg and Chongqing respectively. Furthermore......, the author explored the reasons for window problems in Chongqing, found out the main barriers to overcome and measures to take for solving the problem. Deeper analysis should be made before the energy efficient windows of Aalborg used in Chongqing....

  15. Windows with an improved energy balance of 30%

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    means that both energy losses and transmittance of solar radiation is considered.The final goal of the project was to improve the energy balance of a window with at least 30%. As reference is chosen a common low energy glazing mounted in a wooden frame construction measuring 1188 × 1188 mm2...... the main emphasis has been put on improvement of the frame construction and the interaction between frame and glazing. Several theoretical analyses have been carried out and a prototype construction has been made, that meets the goal of a 30% improvement of the energy balance.The prototype has been tested....... A 30% improvement of the energy balance then corresponds to an reduction in net energy loss of 17 kWh/m2 window area.The frame costruction and the joint between glazing and frame is the thermally weak part of modern windows compared to centre values of the new super insulating glazings. As a result...

  16. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  17. Optimising window parameters for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Boland, J. [South Australia Univ., Adelaide, SA (Australia); Luther, M. [Deakin Univ., Geelong, VIC (Australia)

    1996-12-31

    Large north facing windows act a solar collectors, with the heat being stored in the building mass and being released later in the day. This study examines one of the elements of this paradigm, that increasing the size of equatorially facing windows necessarily improves the energy efficiency of a dwelling. This question and that of whether there is a case for using double glazing in Australia were examined for a number of locations ranging from cool temperate to warm temperate and for several types of construction from lightweight to heavyweight. Simulations were performed using the modelling tool Cheetah. It was found that the optimal window size on equatorially facing walls was smaller than expected for singly glazed windows. Double glazing was found to be effective in most situations and increased the optimum size of the window substantially. Changing the operational pattern of the house (specifically when cooling equipment may be employed) considerably affects conclusions about single and double glazing. (author). 3 tabs., 3 figs., 13 refs.

  18. Vacuum window glazings for energy-efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  19. VO2 thermochromic smart window for energy savings and generation

    Science.gov (United States)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  20. Energy window selection for a radiation signal processing system

    International Nuclear Information System (INIS)

    Knoll, G.F.; Schrader, M.E.

    1986-01-01

    This invention provides an apparatus and method for selecting only meaningful information from signals produced by Anger-type radioisotope cameras producing positional information. It is an improvement in the means for determining energy threshold values as a function of radiation event positional information. The establishment of an energy threshold table begins by flooding the camera face with a uniform source of radiation and utilizing the pre-established spatial translation table to reposition detected radiation events according to their true spatial element coordinates. A histogram is compiled for each spatial element, the histogram comprising the number of radiation events occurring at several discrete energy levels. A peak centroid value is then determined for each element, and an initial energy window is set. Next, a specified region of the camera field of view is inspected to determine a target sum of radiation events to be accepted by each element, setting a standard for adjusting the energy windows of each element. Using this standard, the energy window for each element is progressively adapted so that each will accept nearly the same number of radiation events or counts in response to a flood or calibration image. Finally the energy window for each true spatial element is translated back to its apparent spatial element and incorporated into an energy threshold table accessible by the apparent spatial coordinates of each radiation event

  1. Can LENR Energy Gains Exceed 1000?

    Science.gov (United States)

    Nagel, David J.

    2011-03-01

    Energy gain is defined as the energy realized from reactions divided by the energy required to produce those reactions. Low Energy Nuclear Reactions (LENR) have already been measured to significantly exceed the energy gain of 10 projected from ITER,possibly 15 years from now. Electrochemical experiments using the Pd-D system have shown energy gains exceeding 10. Gas phase experiments with the Ni-H system were reported to yield energy gains of over 100. Neither of these reports has been adequately verified or reproduced. However, the question in the title still deserves consideration. If, as thought by many, it is possible to trigger nuclear reactions that yield MeV energies with chemical energies of the order of eV, then the most optimistic expectation is that LENR gains could approach one million. Hence, the very tentative answer to the question above is yes. However, if LENR could be initiated with some energy cost, and then continue to ``burn,'' very high energy gains might be realized. Consider a match and a pile of dry logs. The phenomenon termed ``heat after death'' will be examined to see if it might be the initial evidence for nuclear ``burning.''

  2. Optical Characterization and Energy Simulation of Glazing for High-Performance Windows

    International Nuclear Information System (INIS)

    Jonsson, Andreas

    2010-01-01

    This thesis focuses on one important component of the energy system - the window. Windows are installed in buildings mainly to create visual contact with the surroundings and to let in daylight, and should also be heat and sound insulating. This thesis covers four important aspects of windows: antireflection and switchable coatings, energy simulations and optical measurements. Energy simulations have been used to compare different windows and also to estimate the performance of smart or switchable windows, whose transmittance can be regulated. The results from this thesis show the potential of the emerging technology of smart windows, not only from a daylight and an energy perspective, but also for comfort and well-being. The importance of a well functioning control system for such windows, is pointed out. To fulfill all requirements of modern windows, they often have two or more panes. Each glass surface leads to reflection of light and therefore less daylight is transmitted. It is therefore of interest to find ways to increase the transmittance. In this thesis antireflection coatings, similar to those found on eye-glasses and LCD screens, have been investigated. For large area applications such as windows, it is necessary to use techniques which can easily be adapted to large scale manufacturing at low cost. Such a technique is dip-coating in a sol-gel of porous silica. Antireflection coatings have been deposited on glass and plastic materials to study both visual and energy performance and it has been shown that antireflection coatings increase the transmittance of windows without negatively affecting the thermal insulation and the energy efficiency. Optical measurements are important for quantifying product properties for comparisons and evaluations. It is important that new measurement routines are simple and applicable to standard commercial instruments. Different systematic error sources for optical measurements of patterned light diffusing samples using

  3. Energy gains from lattice-enabled nuclear reactions

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    The energy gain of a system is defined as the ratio of its output energy divided by the energy provided to operate the system. Most familiar systems have energy gains less than one due to various inefficiencies. By contrast, lattice-enabled nuclear reactions (LENR) offer high energy gains. Theoretical values in excess of 1000 are possible. Energy gains over 100 have already been reported. But, they have not yet been sustained for commercially significant durations. This article summarizes the current status of LENR energy gains. (author)

  4. Evaluation of Energy Efficiency Performance of Heated Windows

    Science.gov (United States)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  5. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  6. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    International Nuclear Information System (INIS)

    Xiao, Xianbo; Nie, Wenjie; Chen, Zhaoxia; Zhou, Guanghui; Li, Fei

    2014-01-01

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Further study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.

  7. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo, E-mail: xxb-11@hotmail.com; Nie, Wenjie [School of Computer, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Chen, Zhaoxia [School of Mechatronics Engineering, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081 (China); Li, Fei, E-mail: wltlifei@sina.com [Office of Scientific Research, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China)

    2014-06-14

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Further study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.

  8. Saving and gaining energy

    International Nuclear Information System (INIS)

    Lauritzen, T.

    2008-01-01

    In this interview with Dirk U. Hindrichs from the Schueco International KG company, differences between ecological and economical points of view in general are discussed, as is the world's energy consumption and the visions held by the Schueco company in this respect. The importance of building facades, windows and photovoltaics for his business is discussed, as are solar thermal systems for the production of heat and cold. Further, energy-efficiency and examples of buildings realised internationally are discussed and co-operation with important players in the climate protection area is noted. Hindrichs' opinion, that pro-active actions must be taken by entrepreneurs, is noted.

  9. Selecting and Installing Energy-Efficient Windows to Improve Dwelling Sustainability

    OpenAIRE

    Friedman, Avi; Matheson, Morgan

    2017-01-01

    [EN] Windows play a significant role in achieving comfort in buildings by letting in natural light, solar warmth, fresh air and permitting outdoor views. On the other hand, poor quality windows can be the source of overheating or unwanted infiltration or exfiltration of air. Quality windows, therefore, influence the dwelling’s energy consumption and consequently its sustainability. Heat losses through the building envelope can occur in any of three mechanisms: conduction, convection and radia...

  10. Detection with Enhanced Energy Windowing Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Bass, David A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Enders, Alexander L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    This document reviews the progress of Phase I of the Detection with Enhanced Energy Windowing (DEEW) project. The DEEW project is the implementation of software incorporating an algorithm which reviews data generated by radiation portal monitors and utilizes advanced and novel techniques for detecting radiological and fissile material while not alarming on Naturally Occurring Radioactive Material. Independent testing indicated that the Enhanced Energy Windowing algorithm showed promise at reducing the probability of alarm in the stream of commerce compared to existing algorithms and other developmental algorithms, while still maintaining adequate sensitivity to threats. This document contains a brief description of the project, instructions for setting up and running the applications, and guidance to help make reviewing the output files and source code easier.

  11. Energy Labelling of Glazings and Windows in Denmark: Calculated and Measured Values

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Svend; Mogensen, Morten Møller

    2002-01-01

    The influence of windows on the energy consumption in buildings is well known and in order to encourage the development and the appropriate use of high performance glazings and windows in Denmark, an Energy Labelling and Rating system is being developed. During this work a need for establishing...

  12. The future 2015 Danish Building Regulations concerning energy performance of multi framed windows

    DEFF Research Database (Denmark)

    Hacksen Kampmann, Thomas

    The future Danish Building Regulation BR 2015 will reduce energy consumption within the overall building stock. Regarding the very important field windows, it seems that BR 2015 will be based on the same rules as today, except for a simple reduction of the limits for energy loss. Since a big part...... of the total amount of energy consumption in buildings is lost through windows, and the regulations concerning multi framed windows are already highly problematic today, there is a risk of the problem getting bigger in the future....

  13. Local charge nonequilibrium and anomalous energy dependence of normalized moments in narrow rapidity windows

    International Nuclear Information System (INIS)

    Wu Yuanfang; Liu Lianshou

    1990-01-01

    From the study of even and odd multiplicity distributions for hadron-hadron collision in different rapidity windows, we propose a simple picture for charge correlation with nonzero correlation length and calculate the multiplicity distributions and the normalized moments in different rapidity windows at different energies. The results explain the experimentally observed coincidence and separation of even and odd distributions and also the anomalous energy dependence of normalized moments in narrow rapidity windows. The reason for the separation of even-odd distributions, appearing first at large multiplicities, is shown to be energy conservation. The special role of no-particle events in narrow rapidity windows is pointed out

  14. Energy & Cost Savings | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  16. Effect of Various External Shading Devices on Windows for Minimum Heat Gain and Adequate Day lighting into Buildings of Hot and Dry Climatic Zone in India

    Directory of Open Access Journals (Sweden)

    Kirankumar Gorantla

    2018-01-01

    Full Text Available Glass is the major component of the building envelope to provide visual comfort to inside the buildings. In général clear and bronze glass was used as a main building envelope for both residential and commercial buildings to provide better day lighting into the buildings. If we use more glass area as a building envelope more radiation allows into the buildings. So that it is necessary to reduce more solar radiation and provide sufficient daylight factor inside the building's through glass windows with the help of external devices called shading devices. In this work four shading devices was tried on bronze glass window to find the heat gain and daylighting into buildings. This paper presents the experimental measurement of spectral characteristics of bronze glass which include transmission and reflection in entire solar spectrum region (300nm-2500nm based on ASTM standards. A MATLAB code was developed to compute visible and solar optical properties as per the British standards. A building model was designed by design builder software tool. 40% window to wall ratio was considered for building models, thermal and day lighting analysis of buildings through windows was carried out in Energy plus software tool for hot and dry climatic zone of India.

  17. The effect of barite mud on the division of the detector energy window in density logging while drilling

    International Nuclear Information System (INIS)

    Zhang Li; Sun Jianmeng; Yu Huawei; Jiang Dong; Zhang Jing

    2012-01-01

    In the litho-density logging, formation density and lithology were acquired by calculating the total counts in certain energy window. Therefore, the division of the energy window directly affects the evaluation of density and lithology value. In the process of the energy window division, mud type affects the determination of the range of energy window. In this work, Monte Carlo simulation method was applied to study the range of energy window regarding to water mud and barite mud, respectively. The results show that the range of the energy window with barite mud is less than that of the water mud, and lithology identification will have greater' error in the barite mud. It is important to analyze influencing factors and improve the measurement accuracy of the litho-density logging. (authors)

  18. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    Science.gov (United States)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  19. Application of Energy Window Concept in Doppler Broadening of {sup 238}U Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Khassnov, Azamat; Choi, Soo Young; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for {sup 2}38U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of {sup 238}U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K.

  20. New window design options for CEBAF energy upgrade

    International Nuclear Information System (INIS)

    Phillips, L.; Mammosser, J.; Nguyen, V.

    1997-01-01

    As the Jefferson Laboratory upgrades the existing CEBAF electron accelerator to operate at higher energies, the fundamental power coupler windows will be required to operate with lower RF dissipation and increased immunity to radiation from cavity field emission. New designs and modifications to existing designs which can achieve these goals are described

  1. Wavelet-based multiscale window transform and energy and vorticity analysis

    Science.gov (United States)

    Liang, Xiang San

    A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to investigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid flows which are intermittent in space and time. The development begins with the construction of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the real line then modified onto a finite domain. Properties are explored, the most important one being the property of marginalization which brings together a quadratic quantity in physical space with its phase space representation. Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-, meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes thus represented are classified into four categories: transport; transfer, conversion, and dissipation/diffusion. The separation of transport from transfer is made possible with the introduction of the concept of perfect transfer. By the property of marginalization, the classical energetic analysis proves to be a particular case of the MS-EVA. The MS-EVA developed is validated with classical instability problems. The validation is carried out through two steps. First, it is established that the barotropic and baroclinic instabilities are indicated by the spatial averages of certain transfer term interaction analyses. Then calculations of these indicators are made with an Eady model and a Kuo model. The results agree precisely with what is expected from their analytical solutions, and the energetics reproduced reveal a consistent and important aspect of the unknown dynamic structures of instability processes. As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) variability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Harvard Ocean Prediction System

  2. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  3. A thesis investigating the impact of energy related environmental factors on domestic window design

    Science.gov (United States)

    McEvoy, Michael Edward

    In recent years the extent of glazing in houses has been tightly controlled by the Building Regulations in order to save energy. In addition guidelines derived from passive solar principles prescribe the distribution of domestic windows between elevations according to their orientation. This thesis studies the impact of these energy-related environmental factors on domestic window design. The first of these investigations determined the degree to which limitations on the area and arrangement of windows are significant in terms of daylighting. The experiments measured the effect that passive solar requirements and detailed aspects of window design have on the quality of daylighting in houses. The volume of background ventilation required for domestic accommodation has recently been increased. As a result, in a well-sealed construction, heat loss due to background ventilation becomes a larger part of the total heat loss and larger air movements become a potential cause of draughts. The ventilation experiment sought to establish the impact of these more onerous requirements on comfort within rooms. The third experiment combines these factors and asks the question: Could windows be actively involved in overcoming some of these difficulties by being used to preheat ventilation air in order to diminish the extent of heat loss and to alleviate the problem of cold draughts? Also by designing the window to reclaim heat from the room might it be possible to offset the window's thermal inadequacy? Through analysis of responses to a questionnaire and the use of optimisation techniques, scenarios were suggested for the future modification of windows in relation to energy and health expectations. The conclusions form a commentary on recent and future revisions to the Building Regulations and determine whether or not the Regulations facilitate the environmental engineering of windows as an active component of a building's whole environmental system.

  4. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  5. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    balance of the ventilated window and clarified the methodology for thermal performance evaluation. Comparison between windows with and without ventilation using the window-room-ventilation heat balance revealed that a ventilated window can potentially contribute to energy savings. In addition...... transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept...

  6. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  7. Paul Hill d/b/a Alternative Energy Windows and Siding

    Science.gov (United States)

    Paul Hill d/b/a Alternative Energy Windows and Siding (the Company) is located in Concord, New Hampshire. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Concord, New Hampshire.

  8. Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye.

    Science.gov (United States)

    Zhong, Ying; Chai, Zhisheng; Liang, Zhimin; Sun, Peng; Xie, Weiguang; Zhao, Chuanxi; Mai, Wenjie

    2017-10-04

    Because of the popularity of smart electronics, multifunctional energy storage devices, especially electrochromic supercapacitors (SCs), have attracted tremendous research interest. Herein, a solid-state electrochromic asymmetric SC (ASC) window is designed and fabricated by introducing WO 3 and polyaniline as the negative and positive electrodes, respectively. The two complementary materials contribute to the outstanding electrochemical and electrochromic performances of the fabricated device. With an operating voltage window of 1.4 V and an areal capacitance of 28.3 mF cm -2 , the electrochromic devices show a high energy density of 7.7 × 10 -3 mW h cm -2 . Meanwhile, they exhibit an obvious and reversible color transition between light green (uncharged state) and dark blue (charged state), with an optical transmittance change between 55 and 12% at a wavelength of 633 nm. Hence, the energy storage level of the ASC is directly related to its color and can be determined by the naked eye, which means it can be incorporated with other energy cells to visual display their energy status. Particularly, a self-powered and color-indicated system is achieved by combining the smart windows with commercial solar cell panels. We believe that the novel electrochromic ASC windows will have great potential application for both smart electronics and smart buildings.

  9. If there is dissipation the particle can gain energy

    International Nuclear Information System (INIS)

    De Carvalho, R Egydio

    2015-01-01

    In this work, we summarize two different mechanisms to gain energy from the presence of dissipation in a time-dependent non-linear system. The particles can gain energy, in the average, from two different scenarios: i) for very week dissipation with the creation of an attractor with high velocity, and ii) in the opposite limit, for very strong dissipation, the particles can also gain energy from a boundary crisis. From the thermodynamic viewpoint both results are totally acceptable. (paper)

  10. Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  11. Experimental study on the location of energy windows for scatter correction by the TEW method in 201Tl imaging

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Matsumoto, Masanori; Ohyama, Yoichi; Tomiguchi, Seiji; Kira, Mitsuko; Takahashi, Mutsumasa.

    1997-01-01

    To investigate validity of scatter correction by the TEW method in 201 Tl imaging, we performed an experimental study using the gamma camera with the capability to perform the TEW method and a plate source with a defect. Images were acquired with the triple energy window which is recommended by the gamma camera manufacturer. The result of the energy spectrum showed that backscattered photons were included within the lower sub-energy window and main energy window, and the spectral shapes in the upper half region of the photopeak (70 keV) were not changed greatly by the source shape and the thickness of scattering materials. The scatter fraction calculated using energy spectra and, visual observation and the contrast values measured at the defect using planar images also showed that substantial primary photons were included in the upper sub-energy window. In TEW method (for scatter correction), two sub-energy windows are expected to be defined on the part of energy region in which total counts mainly consist of scattered photons. Therefore, it is necessary to investigate the use of the upper sub-energy window on scatter correction by the TEW method in 201 Tl imaging. (author)

  12. Simplified model for a ventilated glass window under forced air flow conditions

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Henriquez, J.R.

    2006-01-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance

  13. Simplified model for a ventilated glass window under forced air flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.A.R. [Depto. de Engenharia Termica e de Fluidos-FEM-UNICAMP CP: 6122 CEP 13083-970 Campinas, SP (Brazil); Henriquez, J.R. [Depto. de Eng. Mecanica-DEMEC, UFPE Av. Academico Helio Ramos, S/N CEP 50740-530, Recife, PE (Brazil)

    2006-02-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance. (author)

  14. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections

    DEFF Research Database (Denmark)

    de Nijs, Robin; Lagerburg, Vera; Klausen, Thomas L

    2014-01-01

    and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. MATERIALS AND METHODS: (177)Lu SPECT images of a phantom...... technique, the measured ratio was close to the real ratio, and the differences between spheres were small. CONCLUSION: For quantitative (177)Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated...

  15. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    Energy Technology Data Exchange (ETDEWEB)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while

  16. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage.

    Science.gov (United States)

    Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie

    2014-10-27

    Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparative Study of Single-glazed and Double-glazed Windows in Terms of Energy Efficiency and Economic Expenses

    Directory of Open Access Journals (Sweden)

    Samaneh Forughian

    2017-06-01

    Full Text Available Saving fossil fuels and the use of clean sources of energy lead to reduce in building operating costs, protect the environment and people's health. Windows are the most vulnerable part of building where energy loss occurs. Double-glazed windows are very effective in keeping inside temperature isolated from outside; thereby, saving electrical and thermal energy. The current study estimates the numerical changes in cooling and heating load in case of replacement double-glazed window with single-glazed window and calculates saving level for this replacement. In this context, this paper presents a model of real samples taken in Mashhad climate. To ensure the accuracy of the simulation results, real results were compared with electricity and gas bills. To calculate energy related parameters such as cooling load, heating load, the consumption of gas and electricity, the energy simulation software (Design Builder was used. The research method was a quantitative analysis based on energy consumption modeling, associated with building windows which comes in four sections. The field study was also used to compare with real electricity and gas bills. As the first stage, samples of the plan were identified, based on the observation of climate models and library studies. Then, simulation parameters such as window materials and internal and external walls were considered. The simulation was performed based software’s parameters and model limitations were determined based on thermal, lighting, climatic and architectural parameters. Finally, the experimental and practical data were used to determine the validity of the model under Mashhad climate conditions. Overall, the results indicated that double-glazed windows could save 50% of entire building loads, 0.2% on power consumption, 16.2% on gas and 12.4% on overall households’ energy consumption.

  18. The Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  19. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study

    International Nuclear Information System (INIS)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Pirayesh Islamian, Jalil

    2016-01-01

    Treatment efficacy of radioembolization using Yttrium-90 ( 90 Y) microspheres is assessed by the 90 Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of 90 Y microspheres distribution. One of the main reasons of the poor image quality in 90 Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the 90 Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the 90 Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8 mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a 90 Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35–3.3 mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for 90 Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3 mm. Geometry of the ME parallel-hole collimator and energy

  20. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. Uand g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  1. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  2. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  3. Windows and doors

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    A complete manual is presented on windows and doors for the housing contractor. In order to understand the role of windows and doors in a house's energy performance, an introduction explains the house as a system of components that can have effects on each other. Further chapters explain in detail the parts of a window, window types and RSI values; window servicing and repair; window replacement; parts of a door, door types and RSI values; door service and repair, including weatherstripping; door replacement; and how to ensure quality, service, and customer satisfaction. A glossary of terms is included. 61 figs., 3 tabs.

  4. Variations in resting energy expenditure: impact on gestational weight gain.

    Science.gov (United States)

    Berggren, E K; O'Tierney-Ginn, P; Lewis, S; Presley, L; De-Mouzon, S Hauguel; Catalano, P M

    2017-10-01

    There are significant variations in gestational weight gain, with many women gaining in excess of the Institute of Medicine guidelines. Unfortunately, efforts to improve appropriate gestational weight gain have had only limited success. To date, interventions have focused primarily on decreasing energy intake and/or increasing physical activity. Maternal resting energy expenditure, which comprises ∼60% of total energy expenditure compared with the ∼20% that comes from physical activity, may be an important consideration in understanding variations in gestational weight gain. Our objective was to quantify the changes in resting energy expenditure during pregnancy and their relationship to gestational weight gain and body composition changes among healthy women. We hypothesized that greater gestational weight gain, and fat mass accrual in particular, are inversely related to variations in resting energy expenditure. We conducted a secondary analysis of a prospective cohort studied before conception and late pregnancy (34-36 weeks). Body composition (estimated using hydrodensitometry) and resting energy expenditure (estimated using indirect calorimetry) were measured. The relationship between the changes in resting energy expenditure and gestational weight gain and the change in fat mass and fat-free mass were quantified. Resting energy expenditure was expressed as kilocalories per kilogram of fat-free mass per day (kilocalories per kilogram of fat-free mass -1 /day -1 ) and kilocalories per day. Correlations are reported as r. Among 51 women, preconception body mass index was 23.0 (4.7) kg/m 2 ; gestational weight gain was 12.8 (4.7) kg. Preconception and late pregnancy resting energy expenditure (kilocalories per day) correlated positively with the change in fat-free mass (r = 0.37, P = .008; r = 0.51, P = .001). Late-pregnancy resting energy expenditure (kilocalories per kilogram of fat-free mass -1 /day -1 ) was inversely associated with the change in fat

  5. The cost efficiency of improved roof windows in two well-lit nearly zero-energy houses in Copenhagen

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker; Svendsen, Svend

    2017-01-01

    .The aim of this study was to quantify the scope for investing in improved roof window solutions inbuildings insulated to consume nearly zero-energy. Based on two single-family houses in Copenhagenwith typical roof windows and adequate daylighting, the study identified the prices at which various typesof......Roof windows are efficient and flexible daylight sources that are essential in certain types of houses if theyare to achieve sufficient daylighting throughout. Previous studies have indicated that, for such buildingsto meet nearly zero-energy targets in an easy and robust way without compromising...... roof window improvements would have to be made available to achieve the same cost efficiency asimproved insulation. If the improvements can be made available for less than these prices, the installationof improved roof windows would make it cheaper to construct well-lit and comfortable nearly zero...

  6. Energy Choices and Climate Change: A New Interactive Feature on Windows to the Universe

    Science.gov (United States)

    Gardiner, L. S.; Russell, R. M.; Ward, D.; Johnson, R. M.; Henderson, S.; Foster, S. Q.

    2009-12-01

    We have developed a new, self-paced online module to foster understanding of how choices made about energy production and energy use affect greenhouse gas emissions and climate change. The module, entitled “Energy Choices and Climate Change” is available on Windows to the Universe (www.windows.ucar.edu), an extensive educational Web site used by over 20 million people each year. “Energy Choices and Climate Change” provides a new way to look at issues related to energy and climate change, emphasizing the climate implications of the choices we make. “Energy Choices and Climate Change” allows users to explore two different scenarios through which they make decisions about energy production or use. In the “Ruler of the World” scenario, the user is given the authority to make decisions about the mix of energy sources that will be used worldwide with the aim of reducing emissions while meeting global energy demand and monitoring costs and societal implications. In “The Joules Family” scenario, the user makes decisions about how to change the way a hypothetical family of four uses energy at home and for transportation with the aim of reducing the family’s carbon emissions and fossil fuel use while keeping costs less than long-term savings. While this module is intended for a general public audience, an associated teacher’s guide provides support for secondary educators using the module with students. Windows to the Universe is a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Funding for the Energy Choices and Climate Change online module was provided by the National Center for Atmospheric Research.

  7. Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine.

    Science.gov (United States)

    Asgari, Afrouz; Ashoor, Mansour; Sohrabpour, Mostafa; Shokrani, Parvaneh; Rezaei, Ali

    2015-05-01

    Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with solid water slab phantom (RW3) and Teflon bone phantoms have been compared, and Matlab software and Monte Carlo N-Particle (MCNP4C) code were modified to simulate these methods and obtaining the amounts of FWHM and full width at tenth maximum (FWTM) using line spread functions (LSFs). The experimental data were obtained from the Orbiter Scintron gamma camera. Based on the results of the simulation as well as experimental work, the performance of WH and ASW display of the results, lowest scatter fraction as well as constant linear attenuation coefficient as a function of phantom thickness. WH and ASW were optimal windows in nuclear medicine imaging for Tc-99m in RW3 phantom and Sm-153 in Teflon bone phantom. Attenuation correction was done for WH and ASW optimal windows and for these radionuclides using filtered back projection algorithm. Results of simulation and experimental show that very good agreement between the set of experimental with simulation as well as theoretical values with simulation data were obtained which was nominally less than 7.07 % for Tc-99m and less than 8.00 % for Sm-153. Corrected counts were not affected by the thickness of scattering material. The Simulated results of Line Spread Function (LSF) for Sm-153 and Tc-99m in phantom based on four windows and TEW method were

  8. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...... on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...

  9. Even-odd charged multiplicity distributions and energy dependence of normalized multiplicity moments in different rapidity windows

    International Nuclear Information System (INIS)

    Wu Yuanfang; Liu Lianshou

    1990-01-01

    The even and odd multiplicity distributions for hadron-hadron collision in different rapidity windows are calculated, starting from a simple picture for charge correlation with non-zero correlation length. The coincidence and separation of these distributions are explained. The calculated window-and energy-dependence of normalized moments recovered the behaviour found in experiments. A new definition for normalized moments is propossed, especially suitable for narrow rapidity windows

  10. Thermal performance of natural airflow window in subtropical and temperate climate zones - A comparative study

    International Nuclear Information System (INIS)

    Chow Tintai; Lin Zhang; Fong Kwongfai; Chan Lokshun; He Miaomiao

    2009-01-01

    Airflow window is highly useful in conserving building energy, and lessens the comfort problems caused by glazing. In this study, the thermal performance of a natural airflow window was examined through the use of a dynamic model, developed based on the integrated energy balance and airflow networks. The validity of the model was first tested by measured data obtained from a prototype installed at an environmental chamber. The application in the subtropical and temperate climate zones were then examined with the typical weather data of Hong Kong and Beijing. The findings confirmed that the natural airflow window can achieve substantial energy saving in both cities, and the reversible window frame is only required for Beijing, a location with hot summer and cold winter. The space cooling load via fenestration in Hong Kong, a subtropical city, can be reduced to 60% of the commonly used single absorptive glazing. In Beijing, as an example of the temperate climate, this can be reduced to 75% of the commonly used double glazing configuration in the summer period, and the space heat gain can be improved by 46% in the winter period.

  11. Impact Analysis of Window-Wall Ratio on Heating and Cooling Energy Consumption of Residential Buildings in Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Qiaoxia Yang

    2015-01-01

    Full Text Available In order to assess the optimal window-wall ratio and the proper glazing type in different air conditioning system operation modes of residential buildings for each orientation in three typical cities in hot summer and cold winter zone: Chongqing, Shanghai, and Wuhan simulation models were built and analyzed using Designer’s Simulation Toolkit (DeST. The study analyzed the variation of annual heating energy demand, annual cooling energy demand, and the annual total energy consumption in different conditions, including different orientations, patterns of utilization of air conditioning system, window-wall ratio, and types of windows. The results show that the total energy consumption increased when the window-wall ratio is also increased. It appears more obvious when the window orientation is east or west. Furthermore, in terms of energy efficiency, low-emissivity (Low-E glass performs better than hollow glass. From this study, it can be concluded that the influence and sensitivity of window-wall ratio on the total energy consumption are related to the operation mode of air conditioning system, the orientation of outside window, and the glazing types of window. The influence of the factors can be regarded as reference mode for the window-wall ratio when designing residential buildings.

  12. Microsoft Windows networking essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    The core concepts and technologies of Windows networking Networking can be a complex topic, especially for those new to the field of IT. This focused, full-color book takes a unique approach to teaching Windows networking to beginners by stripping down a network to its bare basics, thereby making each topic clear and easy to understand. Focusing on the new Microsoft Technology Associate (MTA) program, this book pares down to just the essentials, showing beginners how to gain a solid foundation for understanding networking concepts upon which more advanced topics and technologies can be built.

  13. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  14. Scaling of gain with energy spread and energy in the PEP FEL

    International Nuclear Information System (INIS)

    Fisher, A.S.

    1992-01-01

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread σ var-epsilon . I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field

  15. Energy-efficient and preservable windows. Measurements and calculations; Energieffektive bevaringsverdige vinduer. Maalinger og beregninger

    Energy Technology Data Exchange (ETDEWEB)

    Homb, Anders; Uvsloekk, Sivert

    2012-11-01

    SINTEF has carried out a project for Cultural Heritage and Enova to document specific qualities of energy-efficient and preservable windows. The work has been based on an older type two-rams window with simple frames and one glass divided into three squares of horizontal crossbars. There were produced two kinds of commodity window, respectively, with single glazing with Insulating. Measurements and calculations have been performed with two different distances from the outer glass to the last frame. The project had the following contents: Measurements of the U-value, Calculation of U-value of accurate and simplified method, Measurements of air density and drying ability, Measurement and evaluation of sound insulation, Estimation of the heat balance (eb)

  16. The effects of window alternatives on energy efficiency and building economy in high-rise residential buildings in moderate to humid climates

    International Nuclear Information System (INIS)

    Yaşar, Yalçın; Kalfa, Sibel Maçka

    2012-01-01

    Highlights: ► We investigated energy and economy efficiency of window alternatives in Trabzon. ► Energy consumptions of eight window alternatives were simulated and discussed. ► Window alternatives’s life cycle costs were calculated and compared. ► We suggested appropriate energy and economy efficient window alternatives. ► The study defines useful guidelines to select appropriate window alternatives. - Abstract: Currently, focused efforts are being made to determine the influence of windows on the energy consumption and economy of high-rise buildings. Certain window designs and appropriate glazing systems reduce building energy consumption for heating and cooling and contribute to building economy. This paper addresses double-glazed window units that are composed of tinted glass; clear reflective glass; low emissivity (low-e) glass; and smart glass (one surface consists of a high-performance, heat-reflective glass, and other surface has a low-emissivity coated). These materials reduce the heating and cooling loads of buildings by providing solar control and heat conservation. The aim of this study was to investigate the effects of these alternative units, rather than readily available double-glazed units, in two types of flats. The flats have the same construction and operating system, but they have different plan types with regard to building energy consumption and building economy as it relates to life cycle cost analysis. For this study, we selected buildings in Trabzon, in Climate Region II of Turkey, due to its moderate-humid climate. F- and C-type high-rise residential blocks, with flats composed of two to three bedrooms, constructed by the Republic of Turkey’s Prime Ministry Housing Development Administration of Turkey (TOKİ) are used as models for the simulation. The flat plans in these blocks are modeled using DesignBuilder v.1.8 energy simulation software. The simulation results show that smart-glazed units and those with low emissivity

  17. Energy efficient window opening for air quality control in classrooms

    DEFF Research Database (Denmark)

    Faria Da Silva, Nuno Alexandre

    2012-01-01

    of naturally and mechanically ventilated classrooms during normal school hours with and without CO2 sensors that provided a green/yellow/red visual indication. At the end of each week children reported their perceptions and symptoms using a questionnaire. The classroom temperature, humidity and CO2 levels were......The aim of the present work was to study how to maximize indoor environmental quality and energy performance in classrooms, when having different ventilation alternatives combined with a visual CO2 feedback. In this effort, in heating and cooling seasons, field experiments were carried out in pairs...... continuously measured together with the outdoor conditions. Magnetic sensors recorded opening of windows and classrooms energy usage was recorded by the meters installed on water-based radiators. An energy simulation model was created in IDA-ICE-4 to reproduce and compare energy demands...

  18. Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.; Arasteh, D.; Selkowitz, S.

    1998-08-01

    Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

  19. Demonstration with Energy and Daylighting Assessment of Sunlight Responsive Thermochromic (SRT) Window Systems

    Energy Technology Data Exchange (ETDEWEB)

    Broekhuis, Michael; Liposcak, Curtis; Witte, Michael; Henninger, Robert; Zhou, Xiaohui; Petzen, George; Buchanan, Michael; Kumar, Sneh

    2012-03-31

    Pleotint, LLC was able to successfully extrude thermochromic interlayer for use in the fenestration industry. Pleotint has developed a thermochromic sytem that requires two thermochromic colors to make a neutral color when in the tinted state. These two colors were assembled into a single interlayer called a tri-layer prelam by Crown Operations for use in the glass lamination industry. Various locations, orientations, and constructions of thermochromic windows were studied with funds from this contract. Locations included Australia, California, Costa Rica, Indiana, Iowa, Mexico. Installed orientations included vertical and skylight glazing applications. Various constructions included monolithic, double pane, triple pane constructions. A daylighting study was conducted at LinEl Signature. LinEl Signature has a conference room with a sylight roof system that has a west orientation. The existing LinEl Signature conference room had constant tint 40% VLT transparent skylights. Irradiance meters were installed on the interior and exterior sides of a constant tint skylight. After a month and a half of data collection, the irradiance meters were removed and the constant tint skylights were replaced with Pleotint thermochromic skylight windows. The irradiance meters were reinstalled in the same locations and irradiance data was collected. Both data sets were compared. The data showed that there was a linear relationship with exterior and interior irradiance for the existing constant tint skylights. The thermochromic skylights have a non-linear relationship. The thermochromic skylights were able to limit the amount of irradiance that passed through the thermochromic skylight. A second study of the LinEl Signature conference was performed using EnergyPlus to calculate the amount of Illuminance that passed through constant tint skylights as compared to thermochromic skylights. The constant tint skylights transmitted Illuminance is 2.8 times higher than the thermochromic

  20. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... been an important driver for the development of new window solutions in Denmark, increasing the inner-surface temperature at the sealing of window panes. However, it will not stop complaints fromconsumers, as this temperature is calculated under standardized conditions. Increasing requirements...

  1. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  2. Microsoft Windows Security Essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    Windows security concepts and technologies for IT beginners IT security can be a complex topic, especially for those new to the field of IT. This full-color book, with a focus on the Microsoft Technology Associate (MTA) program, offers a clear and easy-to-understand approach to Windows security risks and attacks for newcomers to the world of IT. By paring down to just the essentials, beginners gain a solid foundation of security concepts upon which more advanced topics and technologies can be built. This straightforward guide begins each chapter by laying out a list of topics to be discussed,

  3. Switchable Materials for Smart Windows.

    Science.gov (United States)

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  4. Windows and lighting program

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  5. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments

    KAUST Repository

    Sherif, A.

    2012-09-01

    In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a thickness that provides selective shading properties. Perforated wooden solar screens were traditionally used for windows shading. Developing modern types of these shading systems can lead to significant energy savings. The paper addresses the influence of changing the perforation percentage and depth of these screens on the annual energy loads, hence defining the optimum depth/perforation configurations for various window orientations. Series of experiments were performed using the EnergyPlus simulation software for a typical residential building in the Kharga Oasis, located in the Egyptian desert. A range of perforation percentages and depths were tested. Conclusions prove that external fixed deep perforated solar screens could effectively achieve energy savings up to 30% of the total energy consumption in the West and South orientations. Optimum range of depths and perforation percentages were recommended. These are: 80-90% perforation rate and 1:1 depth/opening width ratio. These lighter and deeper solar screen configurations were found to be more efficient in energy consumption in comparison with the traditional ones. © 2012 Elsevier B.V. All rights reserved.

  6. Experimental determination of the weighting factor for the energy window subtraction-based downscatter correction for I-123 in brain SPECT studies

    DEFF Research Database (Denmark)

    de Nijs, Robin; Holm, Søren; Thomsen, Gerda

    2010-01-01

    Correction for downscatter in I-123 SPECT can be performed by the subtraction of a secondary energy window from the main window, as in the triple-energy window method. This is potentially noise sensitive. For studies with limited amount of counts (e.g. dynamic studies), a broad subtraction window...... were investigated in this study. Energy windows with a width of 32 keV were centered at 159 keV and 200 keV. The weighting factor was measured both with an I-123 point source and in a dopamine transporter brain SPECT study in 10 human subjects (5 healthy subjects and 5 patients) by minimizing...... the background outside the head. Weighting factors ranged from 1.11 to 1.13 for the point source and from 1.16 to 1.18 for human subjects. Point source measurements revealed no position dependence. After correction, the measured specific binding ratio (image contrast) increased significantly for healthy subjects...

  7. Comparison of Imaging Characteristics of 124I PET for Determination of Optimal Energy Window on the Siemens Inveon PET

    Directory of Open Access Journals (Sweden)

    A Ram Yu

    2016-01-01

    Full Text Available Purpose.124I has a half-life of 4.2 days, which makes it suitable for imaging over several days over its uptake and washout phases. However, it has a low positron branching ratio (23%, because of prompt gamma coincidence due to high-energy γ-photons (602 to 1,691 keV, which are emitted in cascade with positrons. Methods. In this study, we investigated the optimal PET energy window for 124I PET based on image characteristics of reconstructed PET. Image characteristics such as nonuniformities, recovery coefficients (RCs, and the spillover ratios (SORs of 124I were measured as described in NEMA NU 4-2008 standards. Results. The maximum and minimum prompt gamma coincidence fraction (PGF were 33% and 2% in 350~800 and 400~590 keV, respectively. The difference between best and worst uniformity in the various energy windows was less than 1%. The lowest SORs of 124I were obtained at 350~750 keV in nonradioactive water compartment. Conclusion. Optimal energy window should be determined based on image characteristics. Our developed correction method would be useful for the correction of high-energy prompt gamma photon in 124I PET. In terms of the image quality of 124I PET, our findings indicate that an energy window of 350~750 keV would be optimal.

  8. LEAP Phase II, Net Energy Gain From Laser Fields in Vacuum

    International Nuclear Information System (INIS)

    Barnes, C.D.; Colby, E.R.; Plettner, T.

    2005-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  9. LEAP Phase II, net energy gain from laser fields in vacuum

    International Nuclear Information System (INIS)

    Barnes, Christopher D.; Colby, Eric R.; Plettner, Tomas

    2002-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  10. Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Chang Heon Cheong

    2014-10-01

    Full Text Available Cooling load in highly glazed residential building can be excessively large due to uncontrolled solar energy entering the indoor space. This study focuses on the cooling load reduction and changes in the daylighting properties via the application of a double window system (DWS with shading with various surface reflectivities in highly glazed residential buildings. Evaluation of thermal and daylighting performances is carried out using simulation tools. The reductions in cooling load and energy cost through the use of DWS are evaluated through a comparative simulation considering conventional windows: a single window and a double window. Three variables of window types, natural ventilation, and shading reflectivity are reflected in the study. According to our results, implementation of DWS reduced cooling load by 43%–61%. Electricity cost during the cooling period was reduced by a maximum of 24%. However, a shading device setting that prioritizes effective cooling load reduction can greatly decrease the daylighting factor and luminance level of indoor space. A DWS implementing shading device with highly reflective at all surfaces is appropriate option for the more comfortable thermal and visual environment, while a shading device with low reflectivity at rear of the surface can contribute an additional 4% cooling load reduction.

  11. Energy expenditure, spontaneous physical activity and with weight gain in kidney transplant recipients.

    Science.gov (United States)

    Heng, Anne-Elisabeth; Montaurier, Christophe; Cano, Noël; Caillot, Nicolas; Blot, A; Meunier, Nathalie; Pereira, Bruno; Marceau, Geoffroy; Sapin, Vincent; Jouve, Christelle; Boirie, Yves; Deteix, Patrice; Morio, Beatrice

    2015-06-01

    Alterations in energy metabolism could trigger weight gain after renal transplantation. Nineteen transplanted non-diabetic men, 53 ± 1.6 years old, receiving calcineurin inhibitors but no corticosteroids were studied. They were compared with nine healthy men matched for height, age and lean body mass. Daily energy expenditure and its components (sleeping, basal and absorptive metabolic rates) were analyzed for 24 h in calorimetric chambers and for 4 days in free living conditions using calibrated accelerometry. Other variables known to influence energy expenditure were assessed: body composition, physical activity, 4-day food intake, drug consumption, serum C-reactive protein, interleukin-6, thyroid and parathyroid hormones, and epinephrine. Transplant recipients who gained more than 5% body weight after transplantation (n = 11, +11.0 ± 1.5 kg) were compared with those who did not (n = 8) and with the controls. Weight gain compared with non-weight gain patients and controls exhibited higher fat mass without change in lean body mass. Daily, sleeping and resting energy expenditure adjusted for lean body mass was significantly higher in non-weight gain (167.1 ± 4.2 kJ/kg/lean body mass/24 h, P controls (146.1 ± 4.6). Weight gain compared with controls and non-weight gain subjects had lower free living physical activity and a higher consumption of antihypertensive drugs and β-blockers. After kidney transplantation, weight gain patients were characterized by lower adjusted energy expenditure, reduced spontaneous physical activity but a more sedentary life style and a trend toward a higher energy intake explaining the reason they gained weight. The nWG KTR had increased resting and sleeping EE which protected them from weight gain. Such hypermetabolism was also observed in 24-h EE measurements. By comparison with the nWG patients, the WG transplant recipients were characterized by higher β-blocker consumption. These data could be helpful in the prevention of weight

  12. Energy neutral window for retrofitting residential building; Energineutralt vindue for opgradering af bolig

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Per

    2010-05-15

    The purpose of this project has been to develop and demonstrate a window solution with a ventilation system with energy efficient heat recovery to satisfy the inhabitants' wish for optimal indoor climate at a minimum energy usage. The focus in the different developing phases has been the following products and technologies: 1) Fans - focus on sound level, vibration level, duty point and energy efficiency; 2) Heat recovery - focus on low pressure loss and high heat recovery; 3) System build-up - focus on low pressure loss, physical exploitation and condense water handling; 4) Condense water - focus on handling the condensed water so that it leaves the system by gravity; 5) Materials - focus on water resistance and production costs; 6) Filters - focus on pressure loss, filtration and possibility to change it from the inside; 7) Inlet air profile - focus on minimum short circuit between inlet and exhaust; 8) Internal leakage - focus on assembling and the production phase. During the project the the geometry had to be changed from an inside unit to and outside unit due to problems with the sound levels from the unit. The final result is a ventilation unit fitted to a window solution which provides optimal indoor comfort at a very low energy usage. (author)

  13. Beam energy gain fluctuation in a linac caused by RF system noise

    International Nuclear Information System (INIS)

    Sakaki, H.; Yoshikawa, H.; Hori, T.; Yokomizo, H.

    2002-01-01

    In this paper, energy gain fluctuation caused by white noise in a linear accelerator is calculated. First, we formulate a computational procedure to determine the energy gain in the acceleration structure. Then, using this computational procedure, the size of the white noise of the gain is calculated. These noise sources are caused by various RF components, especially the thyratron. The calculated gain fluctuation per one RF system is ±0.054%∼±0.134%(±3σ). In general, it is difficult to control white noise. This gain fluctuation is composed only of the white noise. Therefore, this value has the same meaning as a 'Control threshold'. Thus, the control method can be evaluated based on this value

  14. Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly.

    Science.gov (United States)

    Bhatnagar, Akshay; Gupta, Anupam; Mitra, Dhrubaditya; Pandit, Rahul

    2018-03-01

    We present an extensive numerical study of the time irreversibility of the dynamics of heavy inertial particles in three-dimensional, statistically homogeneous, and isotropic turbulent flows. We show that the probability density function (PDF) of the increment, W(τ), of a particle's energy over a time scale τ is non-Gaussian, and skewed toward negative values. This implies that, on average, particles gain energy over a period of time that is longer than the duration over which they lose energy. We call this slow gain and fast loss. We find that the third moment of W(τ) scales as τ^{3} for small values of τ. We show that the PDF of power-input p is negatively skewed too; we use this skewness Ir as a measure of the time irreversibility and we demonstrate that it increases sharply with the Stokes number St for small St; this increase slows down at St≃1. Furthermore, we obtain the PDFs of t^{+} and t^{-}, the times over which p has, respectively, positive or negative signs, i.e., the particle gains or loses energy. We obtain from these PDFs a direct and natural quantification of the slow gain and fast loss of the energy of the particles, because these PDFs possess exponential tails from which we infer the characteristic loss and gain times t_{loss} and t_{gain}, respectively, and we obtain t_{loss}gain} for all the cases we have considered. Finally, we show that the fast loss of energy occurs with greater probability in the strain-dominated region than in the vortical one; in contrast, the slow gain in the energy of the particles is equally likely in vortical or strain-dominated regions of the flow.

  15. Evaluation of Building Energy Saving Through the Development of Venetian Blinds' Optimal Control Algorithm According to the Orientation and Window-to-Wall Ratio

    Science.gov (United States)

    Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho

    2018-02-01

    As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.

  16. The importance of learning when supporting emergent technologies for energy efficiency-A case study on policy intervention for learning for the development of energy efficient windows in Sweden

    International Nuclear Information System (INIS)

    Kiss, Bernadett; Neij, Lena

    2011-01-01

    The role of policy instruments to promote the development and diffusion of energy efficient technologies has been repeatedly accentuated in the context of climate change and sustainable development. To better understand the impact of policy instruments and to provide insights into technology change, assessments of various kinds are needed. This study analyzes the introduction and development of energy efficient windows in Sweden and the policy incentives applied to support this process. The study focuses on the assessment of technology and market development of energy efficient windows in Sweden; and by applying the concept of learning, it assesses how conditions for learning-by-searching, learning-by-doing, learning-by-using and learning-by-interacting have been supported by different policies. The results show successful progress in technology development and an improvement in best available technology of Swedish windows from 1.8 W/m 2 K in the 1970s to 0.7 W/m 2 K in 2010; in the same time period the market share of energy efficient windows increased from 20% in 1970 (average U-value of 2.0 W/m 2 K) to 80-85% in 2010 (average U-value of 1.3-1.2 W/m 2 K). The assessment shows that various policy instruments have facilitated all four learning processes resulting in the acknowledged slow but successful development of energy efficient windows. - Highlights: → Policy instruments for learning and technology change are assessed. → The development and diffusion of energy efficient windows (EEWs) in Sweden is taken as showcase. → Learning has been supported by various policies resulting in successful development of EEWs. → The thermal performance of EEWs improved with 2/3 and their market share increased by 3/5 in 40 years. → Main policies for learning are RD and D, technology procurement, testing and voluntary initiatives.

  17. Study of Six Energy-Window Settings for Scatter Correction in Quantitative 111In Imaging: Comparative analysis Using SIMIND

    International Nuclear Information System (INIS)

    Gomez Facenda, A.; Castillo Lopez, J. P.; Torres Aroche, L. A.; Coca Perez, M. A.

    2013-01-01

    Activity quantification in nuclear medicine imaging is highly desirable, particularly for dosimetry and biodistribution studies of radiopharmaceuticals. Quantitative 111 In imaging is increasingly important with the current interest in therapy using 90 Y-radiolabeled compounds. Photons scattered in the patient are one of the major problems in quantification, which leads to degradation of image quality. The aim of this work was to assess the configuration of energy windows and the best weight factor for the scatter correction in 111 In images. All images were obtained using the Monte Carlo simulation code, Simind, configured to emulate the gamma camera Nucline SPIRIT DH-V. Simulations were validated by a positive agreement between experimental and simulated line-spread functions (LSF) of 99 mTc. It was examined the sensitivity, the scatter-to-total ratio, the contrast and the spatial resolution for scatter-compensated images obtained from six different multi-windows scatter corrections. Taking into consideration the results, the best energy-window setting was two 20% windows centered at 171 and 245keV, together with a 10% scatter window located between the photo peaks at 209keV. (Author)

  18. Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate

    Directory of Open Access Journals (Sweden)

    Halil Alibaba

    2016-02-01

    Full Text Available Heat loss and gain through windows has a very high impact on the thermal comfort of offices. This paper analyzes a standard low energy consumption university office that has a standard envelope. Dynamic thermal simulations with EDSL Tas software, a predicted mean vote (PMV, and a predicted percentage of dissatisfied (PPD with all local discomfort as stated in ASHRAE, ISO 7730: 2005, EN 15251: 2007 were used for thermal sensation, in order to optimize the best window to external wall proportion in a hot and humid climate that exists in the Famagusta case study. A simulated office building is oriented east to west in order to take advantage of the wind direction. In May 45% (PPD < 6%–0.7% open window, 93% (PPD < 10–0.2 open window, and 97% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the window to external wall ratio (WWR is 10%. In October 43% (PPD < 6%–0.7% open window, 86% (PPD < 10–0.2 open window, and 92% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the WWR is 10%. In September 49% (PPD < 10% full open window and 51% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the WWR is 10%.

  19. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  20. Energy efficiency evaluation of hospital building office

    International Nuclear Information System (INIS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  1. Energy deposition in the window of the TOTEM Roman pot for the nominal TOTEM run

    CERN Document Server

    Dimovasili, E

    2005-01-01

    The TOTEM Roman Pot needs to be protected from possible accidents. One of the most serious accident scenarios is the beam loss during an asynchronous abort dump. In this case of dump failure it is possible that a deflected bunch hits the Roman Pot, causing severe damage to its thin window. This technical note discusses the results of FLUKA Monte Carlo studies that have been performed in order to calculate the energy deposition and the temperature increase in the thin window due to the nominal LHC bunch.

  2. The economics of window selection: An incremental approach

    International Nuclear Information System (INIS)

    Dixon, W.T.

    1993-01-01

    The options available to Energy Service Companies when improving the energy performance of an existing building are often driven by short-term payback cycles. The value of a measure is based on how quickly it pays for itself. The more quickly the energy savings created by the measure exceed the cost of purchasing and installing the measure, the more comfortable the engineer feels recommending that improvement. In the best cases, the short-term approach will quickly retire the debts associated with a particular retrofit and provide a dependable, albeit limited net savings stream for the property owner. The engineer has obtained energy savings for his client. The problem with this short-term approach is that it automatically eliminates other conservation measures which, over longer time horizons, could add far more value for the customer. The installation of new, extremely energy efficient replacement windows is a case in point. During preliminary discussions with our clients, (typically Public Housing Authorities or owners of subsidized, multi-family housing), the conversation eventually turns to the issue of replacement windows. The perception is that new windows are a luxury. The decision to install new windows is driven by maintenance costs and, in some cases, resident complaints over operability or draftiness associated with the existing windows. Typically the windows are not handled as part of the mainstream energy conservation program. If the client has already installed new windows, he probably based his selection on the low bidder of a unit that has marginal thermal performance. Every property has a budget and compromises must often be made to meet budgets. The purchaser may have not gotten the Cadillac of windows, but at least he got a good deal on the window that he did buy. His maintenance problems have been solved for the near term and resident complaints have gone down, for now

  3. Energy dependences of absorption in beryllium windows and argon gas

    International Nuclear Information System (INIS)

    Chantler, C.T.; Staudenmann, J-P.

    1994-01-01

    In part of an ongoing work on x-ray form factors, new absorption coefficients are being evaluated for all elements, across the energy range from below 100 eV to above 100 keV. These new coefficients are applied herein to typical problems in synchrotron radiation stations, namely the use of beryllium windows and argon gas detectors. Results are compared with those of other authors. The electron-ion pair production process in ionization chambers is discussed, and the effects of 3d-element impurities are indicated. 15 refs., 6 figs

  4. Highly Insulating Windows Volume Purchase Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  5. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    International Nuclear Information System (INIS)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-01-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  6. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments

    KAUST Repository

    Sherif, A.; El-Zafarany, A.; Arafa, R.

    2012-01-01

    In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a

  7. Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly

    Science.gov (United States)

    Bhatnagar, Akshay; Gupta, Anupam; Mitra, Dhrubaditya; Pandit, Rahul

    2018-03-01

    We present an extensive numerical study of the time irreversibility of the dynamics of heavy inertial particles in three-dimensional, statistically homogeneous, and isotropic turbulent flows. We show that the probability density function (PDF) of the increment, W (τ ) , of a particle's energy over a time scale τ is non-Gaussian, and skewed toward negative values. This implies that, on average, particles gain energy over a period of time that is longer than the duration over which they lose energy. We call this slow gain and fast loss. We find that the third moment of W (τ ) scales as τ3 for small values of τ . We show that the PDF of power-input p is negatively skewed too; we use this skewness Ir as a measure of the time irreversibility and we demonstrate that it increases sharply with the Stokes number St for small St; this increase slows down at St≃1 . Furthermore, we obtain the PDFs of t+ and t-, the times over which p has, respectively, positive or negative signs, i.e., the particle gains or loses energy. We obtain from these PDFs a direct and natural quantification of the slow gain and fast loss of the energy of the particles, because these PDFs possess exponential tails from which we infer the characteristic loss and gain times tloss and tgain, respectively, and we obtain tlossprobability in the strain-dominated region than in the vortical one; in contrast, the slow gain in the energy of the particles is equally likely in vortical or strain-dominated regions of the flow.

  8. Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit

    Directory of Open Access Journals (Sweden)

    Francesca Romana d’Ambrosio Alfano

    2016-09-01

    Full Text Available Energy saving and Indoor Air Quality (IAQ in buildings are strongly affected by air leakages. Several studies reveal that the energy loss owing to leaky windows can account for up to 40% of the total building energy demand. Furthermore, at the design stage, the possible infiltration of outdoor air through windows is not taken into account when determining the nominal outdoor airflow rate of the ventilation system. This practice may result in an oversizing of the ventilation system and consequent energy waste. Thus, the air-tightness class of a wall assembly should be assessed for each window component considering the type of material, the presence of the seal, the type of closure, the sealing and the maintenance condition. In this paper, the authors present the experimental results of air-tightness measurements carried out using the fan pressurization method in three residential buildings located in the Mediterranean region before and after a window retrofit. Two different window retrofits were investigated: the application of rubber seals on window frames and the substitution of existing windows with new certified high performance windows. The effectiveness of such retrofits was estimated also in terms of energy saving. Test results demonstrated a high variability of the building air tightness after window retrofits, despite the fact that air tight–certified windows were used.

  9. Correlation between Quantumchemically Calculated LUMO Energies and the Electrochemical Window of Ionic Liquids with Reduction-Resistant Anions

    Directory of Open Access Journals (Sweden)

    Wim Buijs

    2012-01-01

    Full Text Available Quantum chemical calculations showed to be an excellent method to predict the electrochemical window of ionic liquids with reduction-resistant anions. A good correlation between the LUMO energy and the electrochemical window is observed. Surprisingly simple but very fast semiempirical calculations are in full record with density functional theory calculations and are a very attractive tool in the design and optimization of ionic liquids for specific purposes.

  10. Understanding Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1993-01-01

    The US Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF programs at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy

  12. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1994-01-01

    The U.S. Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy. (author)

  13. Investigation of energy windowing algorithms for effective cargo screening with radiation portal monitors

    International Nuclear Information System (INIS)

    Hevener, Ryne; Yim, Man-Sung; Baird, Ken

    2013-01-01

    Radiation portal monitors (RPMs) are distributed across the globe in an effort to decrease the illicit trafficking of nuclear materials. Many current generation RPMs utilizes large polyvinyltoluene (PVT) plastic scintillators. These detectors are low cost and reliable but have very poor energy resolution. The lack of spectroscopic detail available from PVT spectra has restricted these systems primarily to performing simple gross counting measurements in the past. A common approach to extend the capability of PVT detectors beyond simple “gross-gamma” use is to apply a technique known as energy windowing (EW) to perform rough nuclide identification with limited spectral information. An approach to creating EW algorithms was developed in this work utilizing a specific set of calibration sources and modified EW equations; this algorithm provided a degree of increased identification capability. A simulated real-time emulation of the algorithm utilizing actual port-of-entry RPM data supplied by ORNL provided an extensive proving ground for the algorithm. This algorithm is able to identify four potential threat nuclides and the major NORM source with a high degree of accuracy. High-energy masking, a major detriment of EW algorithms, is reduced by the algorithm's design. - Highlights: • Gross counting algorithms do not produce detailed screenings. • Energy windowing algorithms enhance nuclide identification capability. • Proper use of EW algorithm can identify multiple threat nuclides. • Utilizing specific set of calibration sources is important for nuclide identification

  14. Body weight gain in free-living Pima Indians: effect of energy intake vs expenditure

    DEFF Research Database (Denmark)

    Tataranni, P A; Harper, I T; Snitker, S

    2003-01-01

    Obesity results from a chronic imbalance between energy intake and energy expenditure. However, experimental evidence of the relative contribution of interindividual differences in energy intake and expenditure (resting or due to physical activity) to weight gain is limited.......Obesity results from a chronic imbalance between energy intake and energy expenditure. However, experimental evidence of the relative contribution of interindividual differences in energy intake and expenditure (resting or due to physical activity) to weight gain is limited....

  15. Growing an emerging energy workforce: forecasting labour demand and gaining access to emerging energy skills

    International Nuclear Information System (INIS)

    Thomsen, V.

    2006-01-01

    This paper discusses the needs of emerging energies sector in terms of growing an emerging energy workforce, forecasting labour demands and gaining access to emerging energy skills. It will require industrial renewal and innovation and not just selling our resources. It will also require educating ourselves to utilise our own finished products. Conservation is a key element in a sustainable energy future. finally, a market for renewable energy has been established in Canada

  16. A methodology for modelling energy-related human behaviour: Application to window opening behaviour in residential buildings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano P.

    2013-01-01

    that affect the results accuracy. Above all, the real energy performance can be affected by the actual behaviour of the building occupants. Thus, there are great benefits to be derived from improving models that simulate the behaviour of human beings within the context of engineered complex systems...... for modelling the human behaviour related to the control of indoor environment. The procedure is applied at models of occupants’ interactions with windows (opening and closing behaviour). Models of occupants’ window opening behaviour were inferred based on measurements and implemented in a simulation program......An energy simulation of a building is a mathematical representation of its physical behaviour considering all the thermal, lighting, acoustics aspects. However, a simulation cannot precisely replicate a real construction because all the simulations are based on a number of key assumptions...

  17. Live histograms in moving windows

    International Nuclear Information System (INIS)

    Zhil'tsov, V.E.

    1989-01-01

    Application of computer graphics for specific hardware testing is discussed. The hardware is position sensitive detector (multiwire proportional chamber) which is used in high energy physics experiments, and real-out electronics for it. Testing program is described (XPERT), which utilises multi-window user interface. Data are represented as histograms in windows. The windows on the screen may be moved, reordered, their sizes may be changed. Histograms may be put to any window, and hardcopy may be made. Some program internals are discussed. The computer environment is quite simple: MS-DOS IBM PC/XT, 256 KB RAM, CGA, 5.25'' FD, Epson MX. 4 refs.; 7 figs

  18. Simultaneous collection method of on-peak window image and off-peak window image in Tl-201 imaging

    International Nuclear Information System (INIS)

    Murakami, Tomonori; Noguchi, Yasushi; Kojima, Akihiro; Takagi, Akihiro; Matsumoto, Masanori

    2007-01-01

    Tl-201 imaging detects the photopeak (71 keV, in on-peak window) of characteristic X-rays of Hg-201 formed from Tl-201 decay. The peak is derived from 4 rays of different energy and emission intensity and does not follow in Gaussian distribution. In the present study, authors made an idea for the method in the title to attain the more effective single imaging, which was examined for its accuracy and reliability with phantoms and applied clinically to Tl-201 scintigraphy in a patient. The authors applied the triple energy window method for data acquisition: the energy window setting was made on Hg-201 X-rays photopeak in three of the lower (3%, L), main (72 keV, M) and upper (14%, U) windows with the gamma camera with 2-gated detector (Toshiba E. CAM/ICON). L, M and U images obtained simultaneously were then constructed to images of on-peak (L+M, Mock on-peak) and off-peak (M+U) window settings for evaluation. Phantoms for line source with Tl-201-containing swab and for multi-defect with acrylic plate containing Tl-201 solution were imaged in water. The female patient with thyroid cancer was subjected to preoperative scintigraphy under the defined conditions. Mock on-, off-peak images were found to be equivalent to the true (ordinary, clinical) on-, off-peak ones, and the present method was thought usable for evaluation of usefulness of off-peak window data. (R.T.)

  19. Parametric Study Of Window Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis...... is conducted to determine which of the parameters describing the frame have the highest impact on its thermal performance. Afterwards, an optimization process is conducted on each frame in order to optimize the design with regard to three objectives: minimizing the thermal transmittance, maxim izing the net...... energy gain factor and minimizing the material use. Since the objectives contradiet each other, it was found that it is not possible to identifY a single solution that satisfies all these goals. lnstead, a compromise between the objectives has to be found....

  20. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    of buildings, the window area is the weakest part with respect to the heat loss, but at the same time, it also provides e.g. solar energy gain. Glazing prototypes have been made of aerogel tiles of about 55 cm sq. (elaborated within the projects). Those tiles are quickly evacuated and easily sealed between two...... glass panes and a specific rim seal. A heat treatment phase (after the supercritical CO2 drying) of the aerogel is currently being developed in order to improve its optical quality. This step increases the solar transmittance about 6 percent points. For glazing prototypes with an aerogel thickness...... of approx. 15 mm, a centre heat loss coefficient of below 0.7 W/m² K and a solar transmittance of 76% have been obtained. The research is funded in part by the European Commission within the frameworks of the Non-Nuclear Energy Programme – JOULE III and the Energy, Environment and Sustainable Development...

  1. X-Window for process control in a mixed hardware environment

    International Nuclear Information System (INIS)

    Clausen, M.; Rehlich, K.

    1992-01-01

    X-Window is a common standard for display purposes on the current workstations. The possibility to create more than one window on a single screen enables the operators to gain more information about the process. Multiple windows from different control systems using mixed hardware is one of the problems this paper will describe. The experience shows that X-Window is a standard per definition, but not in any case. But it is an excellent tool to separate data-acquisition and display from each other over long distances using different types of hardware and software for communications and display. Our experience with X-Window displays for the cryogenic control system and the vacuum control system at HERA on DEC and SUN hardware will be described. (author)

  2. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  3. Establishment of Passive Energy Conservation Measure and Economic Evaluation of Fenestration System in Nonresidential Building of Korea

    Directory of Open Access Journals (Sweden)

    Bo-Eun Choi

    2017-01-01

    Full Text Available ECO2 (building energy efficiency rating program and passive energy conservation measures (ECMs were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR and horizontal shading angle. The performance elements are the thermal transmittance (U-value of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.

  4. Window Glazing Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Window Frame Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Window Operator Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    Energy Technology Data Exchange (ETDEWEB)

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg

    2013-03-15

    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  8. High energy gain in three-dimensional simulations of light sail acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sgattoni, A., E-mail: andrea.sgattoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milano (Italy); CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Sinigardi, S. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN sezione di Bologna, Bologna (Italy); Macchi, A. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa (Italy)

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  9. High energy gain in three-dimensional simulations of light sail acceleration

    International Nuclear Information System (INIS)

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-01-01

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  10. Contrast enhancement of bone imaging: use of a asymmetrical energy window of Tc99m MDP (133-145 keV)

    International Nuclear Information System (INIS)

    Elsaid, M.; Hommoud, S.; Shehab, F.; Elgazzar, A

    2004-01-01

    Objective: One of the major problems than can affect image quality of bone scan is poor target to non target ratio, due to scattered photons. The ideal Tc-99m energy spectrum is line shaped while the actual one is broader to include attenuated and scattered photons from the soft tissue. The air of this study is to evaluate the effect of asymmetrical 15% energy window of Tc-99m MDP setting at (133-154 keg) on the contrast of bone imaging in comparison to the commonly used 20% symmetrical energy window (126-154 keV). Methods: Sixty adult patients from those who are regularly referred to the clinic for bone scan were scanned twice, after intravenous injection of 925 Mbq (25mCi) of Tc-99m MDP, using 15% (133-154 keV) and 20% (126-154 keV) energy window respectively. Whole body scan was performed on 20 patients, 17 females and 3 males, with ages between 32-61 years. SPECT of the femurs were done on another 20 patients, 2 males and 18 females, with ages between 29-62 years. Planar images were acquired on 20 different patients 6 males and 14 females, with ages between 23-66 years. All technical parameters were kept the same for every group of patients. The acquisition time was recorded in case of the planar views and the count per projection was recorded for each SPECT study. Results: Our preliminary results shows that target to none target ratio were improved in all patients, using the 15% asymmetrical window, compared to the ratio obtained from imaging using the 200/o symmetrical window. The ratios wee increased by 12.4% in the planar images, 9.46% in SPECT images and 11.1% n the whole body images. The improvements in the planner images were on the expense of the acquisition time which increased by 31.1%. Conclusion: We conclude that the use of asymmetrical energy window of 15% (133-154 keV) will improve the image quality of bone scan by enhancing the contrast between bone and soft tissue. (authors)

  11. Roof windows in low-energy buildings - Analyses of demands and possibilities for future product development

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Duer, Karsten; Hviid, Christian Anker

    As part of an ambitious energy policy and strategy for reducing the use of fossil fuels in the European Union, all new buildings are required to consume `nearly zero-energy' by the end of 2020. This creates a strong need for research in cost-effective solutions and technology that can help balance...... transmittances of about 40-70% could provide suffcient daylighting without overheating in the climates of Rome and Copenhagen, as long as they were located in rooms with a reasonable layout for daylighting and appropriate solar-control coating was used on solar exposed glazing. The same was true for sloped...... and horizontal roof windows with any choice of light transmittance in both climates. Roof-window thermal properties needed for flexibility were then identied by studying the effect of these options on space-heating demand in rooms representing various parts of a 11/2-storey house with a simplied floor plan and...

  12. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows.

    Science.gov (United States)

    Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi

    2017-09-01

    Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  14. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  15. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  16. The nitrogen window for arctic herbivores: plant phenology and protein gain of migratory caribou (Rangifer tarandus)

    Science.gov (United States)

    Barboza, Perry S.; Van Someren, Lindsay L.; Gustine, David D.; Bret-Harte, M. Syndonia

    2018-01-01

    Terrestrial plants are often limited by nitrogen (N) in arctic systems, but constraints of N supply on herbivores are typically considered secondary to those of energy. We tested the hypothesis that forage N is more limiting than energy for arctic caribou by collecting key forages (three species of graminoids, three species of woody browse, and one genus of forb) over three summers in the migratory range of the Central Arctic Herd in Alaska from the Brooks Range to the Coastal Plain on the Arctic Ocean. We combined in vitro digestion and detergent extraction to measure fiber, digestible energy, and usable fractions of N in forages (n = 771). Digestible energy content fell below the minimum threshold value of 9 kJ/g for one single forage group: graminoids, and only beyond 64–75 d from parturition (6 June), whereas all forages fell below the minimum threshold value for digestible N (1% of dry matter) before female caribou would have weaned their calves at 100 d from parturition. The window for digestible N was shortest for browse, which fell below 1% at 30–41 d from parturition, whereas digestible N contents of graminoids were adequate until 46–57 d from parturition. The low quality of browse as a source of N was also apparent from concentrations of available N (i.e., the N not bound to fiber) that were distribution and growth of the population.

  17. Empirical Study on Total Factor Productive Energy Efficiency in Beijing-Tianjin-Hebei Region-Analysis based on Malmquist Index and Window Model

    Science.gov (United States)

    Xu, Qiang; Ding, Shuai; An, Jingwen

    2017-12-01

    This paper studies the energy efficiency of Beijing-Tianjin-Hebei region and to finds out the trend of energy efficiency in order to improve the economic development quality of Beijing-Tianjin-Hebei region. Based on Malmquist index and window analysis model, this paper estimates the total factor energy efficiency in Beijing-Tianjin-Hebei region empirically by using panel data in this region from 1991 to 2014, and provides the corresponding political recommendations. The empirical result shows that, the total factor energy efficiency in Beijing-Tianjin-Hebei region increased from 1991 to 2014, mainly relies on advances in energy technology or innovation, and obvious regional differences in energy efficiency to exist. Throughout the window period of 24 years, the regional differences of energy efficiency in Beijing-Tianjin-Hebei region shrank. There has been significant convergent trend in energy efficiency after 2000, mainly depends on the diffusion and spillover of energy technologies.

  18. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  19. Proper Installation of Replacement Windows | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  20. Performance Standards for Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. Benefits of Efficient Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  2. Assessing Window Replacement Options | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Windows for New Construction | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. New Liquid Crystal Smart Window and its Production Process (SmartWin II)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    2005-01-01

    the operating modes don’t require energy consumption and where the transition from one to the other mode is fast (10 ms) thanks to an applied voltage or voltage pulse, 4) allowing a high solar factor modulation; a Solar Heat Gain Factor (SHGS) between 0.3 and 0.8.and a high daylight modulation between 0.1 and 0.......8, 5) with a good lifetime. The outcome of the project was: Several methods were developed and these allowed improving and realisation a number of lab-scale size (from 2 cm sq. up to 15 cm x 30 cm), active films with three optical states (clear, reflective or scattering state) to three original...... as well as realisation and scaling-up of switch-able patterned glass samples for smart windows. A market assessment study of smart windows have been carried out and by taking into account e.g. the fenestration markets, functionality and cost of currently available daylight systems, and it shows a very...

  5. A Simplified Tool for Predicting the Thermal Behavior and the Energy Saving Potential of Ventilated Windows

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Larsen, Olena Kalyanova

    2016-01-01

    Currently, the studies of ventilated windows mainly rely on complex fluid and thermal simulation software, which require extensive information, data and are very time consuming. The aim of this paper is to develop a simplified tool to assess the thermal behavior and energy performance of ventilat...

  6. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  7. Window opening behaviour modelled from measurements in Danish dwellings

    DEFF Research Database (Denmark)

    Andersen, Rune Korsholm; Fabi, Valentina; Toftum, Jorn

    2013-01-01

    environment.Measurements of occupant's window opening behaviour were conducted in 15 dwellings in Denmark during eight months. Indoor and outdoor environmental conditions were monitored in an effort to relate the behaviour of the occupants to the environmental conditions. The dwellings were categorized......A method of defining occupants' window opening behaviour patterns in simulation programs, based on measurements is proposed.Occupants' window opening behaviour has a strong effect on indoor environment and the energy consumed to sustain it. Only few models of window opening behaviour exist...... and these are solely based on the thermal indoor/outdoor environment. Consequently, users of simulation software are often left with little or no guidance for the modelling of occupants' window opening behaviour, resulting in potentially large discrepancies between real and simulated energy consumption and indoor...

  8. Thermal performance of a double pane window with a solar control coating for warm climate of Mexico

    International Nuclear Information System (INIS)

    Xamán, J.; Jiménez-Xamán, C.; Álvarez, G.; Zavala-Guillén, I.; Hernández-Pérez, I.; Aguilar, J.O.

    2016-01-01

    Highlights: • Pseudo-transient thermal performance of a double pane window (DPW) was determined. • The DPW was analyzed each 5 s by a period from 8:00 to 18:00 h. • 57,600 computational runs were necessary and the additive correction multigrid was implemented. • Solar control coating (SCC) in a DPW reduces 1073.79 W/m 2 with respect to the DPW without SCC. • SCC is highly recommended in a DPW because it reduces a 53.88% of the amount of energy gained. - Abstract: The pseudo-transient thermal performance (each 5 s) of a double pane window without and with a solar control coating was determined numerically. The study considers warm climatic conditions (Mexico) and a period from 8:00 to 18:00 h. The effect of varying the indoor air temperature (15–30 °C); and the incident solar radiation and the outdoor air temperature as functions of time is analyzed. The simulations were done with a self-developed ForTran program and it was verified with results from the literature. To obtain the results, 57,600 computational runs were necessary. From the results, the double pane window with a solar control coating allows a smaller heat flux to enter into a room than the corresponding without a solar control coating. The solar control coating in double glass window reduces the amount of 1073.79 W h/m 2 with respect to the case without a solar control coating, which represents a reduction of 53.88% of the heat gain.

  9. Experience gained with energy taxes in Europe - Lessons for Switzerland

    International Nuclear Information System (INIS)

    Peter, M.; Lueckge, H.; Iten, R.; Trageser, J.; Goerlach, B.; Blobel, D.; Kraemer, A.

    2007-12-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at experience gained with energy taxes in Europe and the lessons that can be learned for Switzerland. The variety of energy and CO 2 taxes that have been introduced in Europe since the early 1990s is reviewed. These are intended to reduce energy consumption and CO 2 emissions and complement conventional mineral oil taxes. Some of these non-fiscal energy and CO 2 taxes that have been created within the scope of the EU directive on energy taxation are examined and commented on, as is their impact on energy consumption. The situation in EU member states is described and commented on. Success-factors and general conditions are examined and conclusions that can be drawn for Switzerland are examined.

  10. Daylighting for energy conservation in an existing building under tropical climate conditions: a case study of Lai Sue Thai building Ramkhamhaeng University

    Directory of Open Access Journals (Sweden)

    Lerdlekha Tanachaikhan

    2015-12-01

    Full Text Available Daylighting using skylight has been shown to have a high potential in reducing electrical lighting energy, and could provide a more pleasant atmosphere of a daylit space. However, in hot climates, the main constraint of daylighting is the solar heat gain that contributes to major heat load for an air-conditioning system. If the balance between the beneficial light gain used to offset lighting energy requirement and heat gain from daylight is well considered, significant energy savings can be obtained. The main objective of the study is to evaluate the potential of daylighting for energy conservation in the tropics through theoretical analysis (simulation study and experimental observation. Lai Sue Thai Building (an existing and educational building located at Ramkhamkaeng University was selected as a case study. From analysis, use of daylight could reduce electrical energy in this building by up to 76% compared to the initial condition where fully lighting was supplied. Window orientation would also play an important role. Moreover, heat gain through windows due to daylighting can be controlled by overhangs and the appropriate Window-to-Wall ratio that would be about 30% for this building. An experimental study was also carried out to validate the results in a selected room. About 49% and 37% of Relative Root Mean Square Error (RRMSE were observed in light and heat measurements, respectively

  11. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  12. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  13. THE EFFECT OF THE WINDOW-TO-WALL RATIO ON COOLING ENERGY USAGE AND COMFORT TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Aris Budhiyanto

    2017-12-01

    Full Text Available This study presents an investigation of the effect of building envelope, especially glass facade buildings on cooling energy usage and thermal comfort. An office building was modeled with various window-to-wall ratio (WWR using panasap glass with SC=0.58 in order to analyze the effect of the WWR addition on cooling energy usage and comfort temperature. The result suggested that the average increase of the cooling energy usage is about 5.67% per 10% WWR addition, and of the operative temperature ranges from 0.350C to 0.560C per 10% WWR addition. Moreover, the building with above 20% WWR doesn’t provide comfort temperature.

  14. Replacement Windows for Existing Homes Homes | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  15. Design Guidance for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. Selection Process for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Selection Process for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Design Guidance for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Proper Installation of New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Window Energy Rating System and Calculation of Energy Performance of Windows

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    The goal of reducing the energy consumption in buildings is the background for the introduction of an energy rating system of fenestration products in Denmark. The energy rating system requires that producers declare, among other things, the heat loss coefficient, U, and the total solar energy...... development, e.g. when the resulting effects of a reduced frame area are evaluated....

  1. Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Jacob; Jonsson, Jacob C.; Lee, Eleanor S.; Rubin, Mike

    2008-08-01

    Shade-screens are widely used in commercial buildings as a way to limit the amount of direct sunlight that can disturb people in the building. The shade screens also reduce the solar heat-gain through glazing the system. Modern energy and daylighting analysis software such as EnergyPlus and Radiance require complete scattering properties of the scattering materials in the system. In this paper a shade screen used in the LBNL daylighting testbed is characterized using a photogoniometer and a normal angle of incidence integrating sphere. The data is used to create a complete bi-directional scattering distribution function (BSDF) that can be used in simulation programs. The resulting BSDF is compared to a model BADFs, both directly and by calculating the solar heat-gain coefficient for a dual pane system using Window 6.

  2. Low-e Storm Windows: Market Assessment and Pathways to Market Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.

    2013-06-08

    Field studies sponsored by the U.S. Department of Energy (DOE) have shown that the use of low-e storm windows can lead to significant heating and cooling energy savings in residential homes. This study examines the market for low-e storm windows based on market data, case studies, and recent experience with weatherization deployment programs. It uses information from interviews conducted with DOE researchers and industry partners involved in case studies and early deployment efforts related to low-e storm windows. In addition, this study examines potential barriers to market acceptance, assesses the market and energy savings potential, and identifies opportunities to transform the market for low-e storm windows and overcome market adoption barriers.

  3. Effect of scatter correction on quantification of myocardial SPECT and application to dual-energy acquisition using triple-energy window method

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Matsudaira, Masamichi; Yamada, Masato; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi

    1995-01-01

    Triple-energy window (TEW) method is a simple and practical approach for correcting Compton scatter in single-photon emission tracer studies. The fraction of scatter correction, with a point source or 30 ml-syringe placed under the camera, was measured by the TEW method. The scatter fraction was 55% for 201 Tl, 29% for 99m Tc and 57% for 123 I. Composite energy spectra were generated and separated by the TEW method. Combination of 99m Tc and 201 Tl was well separated, and 201 Tl and 123 I were separated within an error of 10%; whereas asymmetric photopeak energy window was necessary for separating 123 I and 99m Tc. By applying this method to myocardial SPECT study, the effect of scatter elimination was investigated in each myocardial wall by polar map and profile curve analysis. The effect of scatter was higher in the septum and the inferior wall. The count ratio relative to the anterior wall including scatter was 9% higher in 123 I, 7-8% higher in 99m Tc and 6% higher in 201 Tl. Apparent count loss after scatter correction was 30% for 123 I, 13% for 99m Tc and 38% for 201 Tl. Image contrast, as defined myocardium-to-left ventricular cavity count ratio, improved by scatter correction. Since the influence of Compton scatter was significant in cardiac planar and SPECT studies; the degree of scatter fraction should be kept in mind both in quantification and visual interpretation. (author)

  4. Window shopping

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'A large window for surprises' was how Gordon Kane of Michigan summarized the potential of the proposed 84-kilometre US Superconducting Supercollider (SSC). With George Trilling of Berkeley unable to attend this year's High Energy Physics Conference at Vanderbilt University, Nashville, Tennessee, from 8-10 October, Kane played a dual role - looking ahead to SSC physics, and summarizing the meeting

  5. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    Energy consumption in buildings is influenced by several factors related to the building properties and the building controls, some of them highly connected to the behaviour of their occupants.In this paper, a definition of items referring to occupant behaviour related to the building control...... systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...

  6. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru

    1983-01-01

    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  7. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging

    International Nuclear Information System (INIS)

    Rong Xing; Du Yong; Frey, Eric C

    2012-01-01

    Quantitative Yttrium-90 ( 90 Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of 90 Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for 90 Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as 90 Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In 90 Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative 90 Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were derived for

  8. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.

    Science.gov (United States)

    Rong, Xing; Du, Yong; Frey, Eric C

    2012-06-21

    Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were

  9. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  10. Economic efficiency of application of solar window

    Science.gov (United States)

    Shapoval, Stepan

    2017-12-01

    Priority and qualitatively new direction in the fuel and energy sector is renewable energy. This paper describes a feasibility study of using solar window in the system of solar heat supply. The article presents literature data about the effectiveness of the use of solar systems in other countries. The results confirm a sufficient efficiency of solar heat supply with using solar Windows. Insights based on practical experience and mathematical calculations, which are aimed at a detailed explanation of economic efficiency of the proposed construction.

  11. Laser induced damage and fracture in fused silica vacuum windows

    International Nuclear Information System (INIS)

    Campbell, J.H.; Hurst, P.A.; Heggins, D.D.; Steele, W.A.; Bumpas, S.E.

    1996-11-01

    Laser-induced damage, that initiates catastrophic fracture, has been observed in large (≤61 cm dia) fused silica lenses that also serve as vacuum barriers in Nova and Beamlet lasers. If the elastic stored energy in the lens is high enough, the lens will fracture into many pieces (implosion). Three parameters control the degree of fracture in the vacuum barrier window: elastic stored energy (tensile stress), ratio of window thickness to flaw depth, and secondary crack propagation. Fracture experiments were conducted on 15-cm dia fused silica windows that contain surface flaws caused by laser damage. Results, combined with window failure data on Beamlet and Nova, were used to develop design criteria for a ''fail-safe'' lens (that may catastrophically fracture but not implode). Specifically, the window must be made thick enough so that the peak tensile stress is less than 500 psi (3.4 MPa) and the thickness/critical flaw size is less than 6. The air leak through the window fracture and into the vacuum must be rapid enough to reduce the load on the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments ''lock'' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase, leading to further (i.e. secondary) crack growth

  12. Dynamic window daylighting systems: electropolymeric technology for solar responsive building envelopes

    Science.gov (United States)

    Krietemeyer, Elizabeth A.; Smith, Shane I.; Dyson, Anna H.

    2011-04-01

    Human health and energy problems associated with the lack of control of sunlight in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing window technologies have made moderate progress towards greater energy performance for facades but remain limited in their response to dynamic solar conditions, building energy requirements, and variable user preferences for visual comfort. Recent developments in electropolymeric display technology provide opportunities to transfer electroactive polymers to windows that can achieve high levels of geometric and spectral selectivity through the building envelope in order to meet the lighting, thermal and user requirements of occupied spaces. Experimental simulations that investigate daylight quality, energy performance, and architectural effects of electropolymeric glazing technology are presented.

  13. Smart windows based on cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.

    2017-02-01

    With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.

  14. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  15. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ngo, Ngoc-Tri

    2016-01-01

    Highlights: • This study develops a novel time-series sliding window forecast system. • The system integrates metaheuristics, machine learning and time-series models. • Site experiment of smart grid infrastructure is installed to retrieve real-time data. • The proposed system accurately predicts energy consumption in residential buildings. • The forecasting system can help users minimize their electricity usage. - Abstract: Smart grids are a promising solution to the rapidly growing power demand because they can considerably increase building energy efficiency. This study developed a novel time-series sliding window metaheuristic optimization-based machine learning system for predicting real-time building energy consumption data collected by a smart grid. The proposed system integrates a seasonal autoregressive integrated moving average (SARIMA) model and metaheuristic firefly algorithm-based least squares support vector regression (MetaFA-LSSVR) model. Specifically, the proposed system fits the SARIMA model to linear data components in the first stage, and the MetaFA-LSSVR model captures nonlinear data components in the second stage. Real-time data retrieved from an experimental smart grid installed in a building were used to evaluate the efficacy and effectiveness of the proposed system. A k-week sliding window approach is proposed for employing historical data as input for the novel time-series forecasting system. The prediction system yielded high and reliable accuracy rates in 1-day-ahead predictions of building energy consumption, with a total error rate of 1.181% and mean absolute error of 0.026 kW h. Notably, the system demonstrates an improved accuracy rate in the range of 36.8–113.2% relative to those of the linear forecasting model (i.e., SARIMA) and nonlinear forecasting models (i.e., LSSVR and MetaFA-LSSVR). Therefore, end users can further apply the forecasted information to enhance efficiency of energy usage in their buildings, especially

  16. Application issues for large-area electrochromic windows incommercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  17. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions

  18. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  19. Gains from an integrated market for tradable renewable energy credits

    International Nuclear Information System (INIS)

    Mozumder, Pallab; Marathe, Achla

    2004-01-01

    Decoupling the environmental attributes of renewable energy (RE) generation from the physical unit of energy is an innovative mechanism for marketing green or renewable power. The introduction of 'Tradable Renewable Energy Credits' (TRECs) allows the green power attributes of energy to be sold or traded separately from the physical unit of energy. Since the green power certificate system removes potential locational and physical bottlenecks, both suppliers and consumers gain flexibility in the marketplace. The TREC is also an efficient tool to meet 'Renewable Portfolio Standard' (RPS) required by different states in the US. This paper discusses the RPS requirements for different states and examines the implications of an integrated TREC market. It offers a competitive setting to the consumers to pay for renewable energy and a cost effective tool to support renewable energy generation [Grace and Wiser, 2002]. This paper also highlights some practical difficulties that should be addressed in order to establish an efficient integrated TREC market

  20. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  1. Improving the thermal performance of the US residential window stock

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.E.; Arasteh, D.K.; Eto, J.H.

    1992-05-01

    Windows have typically been the least efficient thermal component in the residential envelope, but technology advances over the past decade have helped to dramatically improve the energy efficiency of window products. While the thermal performance of these advanced technology windows can be easily characterized for a particular building application, few precise estimates exist of their aggregate impact on national or regional energy use. Policy-makers, utilities, researchers and the fenestration industry must better understand these products` ultimate conservation potential in order to determine the value of developing new products and initiating programs to accelerate their market acceptance. This paper presents a method to estimate the conservation potential of advanced window technologies, combining elements of two well-known modeling paradigms: supply curves of conserved energy and residential end-use forecasting. The unique features include: detailed descriptions of the housing stock by region and vintage, state-of-the-art thermal descriptions of window technologies, and incorporation of market effects to calculate achievable conservation potential and timing. We demonstrate the methodology by comparing, for all new houses built between 1990 and 2010, the conservation potential of very efficient, high R-value ``superwindows`` in the North Central federal region and spectrally-selective low-emissivity (moderate Revalue and solar transmittance) windows in California.

  2. Lighting performance and electrical energy consumption of a virtual window prototype

    NARCIS (Netherlands)

    Mangkuto, R.A.; Wang, S.; Meerbeek, B.W.; Aries, M.B.C.; Loenen, van E.J.

    2014-01-01

    This article discusses the design and evaluation of a virtual window prototype, built using arrays of LED tiles to simulate the light as well as the view of a window. Arrays of white light LED fixtures with adjustable colour temperatures were incorporated to provide direct light into the test room.

  3. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  4. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools.

    Science.gov (United States)

    Persson, Josefin; Wang, Thanh; Hagberg, Jessika

    2018-07-01

    The construction of extremely airtight and energy efficient low-energy buildings is achieved by using functional building materials, such as age-resistant plastics, insulation, adhesives, and sealants. Additives such as organophosphate flame retardants (OPFRs) can be added to some of these building materials as flame retardants and plasticizers. Some OPFRs are considered persistent, bioaccumulative and toxic. Therefore, in this pilot study, the occurrence and distribution of nine OPFRs were determined for dust, air, and window wipe samples collected in newly built low-energy preschools with and without environmental certifications. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) were detected in all indoor dust samples at concentrations ranging from 0.014 to 10μg/g and 0.0069 to 79μg/g, respectively. Only six OPFRs (predominantly chlorinated OPFRs) were detected in the indoor air. All nine OPFRs were found on the window surfaces and the highest concentrations, which occurred in the reference preschool, were measured for 2-ethylhexyl diphenyl phosphate (EHDPP) (maximum concentration: 1500ng/m 2 ). Interestingly, the OPFR levels in the environmental certified low-energy preschools were lower than those in the reference preschool and the non-certified low-energy preschool, probably attributed to the usage of environmental friendly and low-emitting building materials, interior decorations, and consumer products. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Diamond Windows for High Powered Microwave Transmission. Final Report

    International Nuclear Information System (INIS)

    Gat, R.

    2011-01-01

    This phase II SBIR developed technology for manufacturing diamond windows for use in high energy density photon transmission e.g. microwave or laser light photons. Microwave sources used in fusion research require microwave extraction windows with high thermal conductivity, low microwave absorption, and low resistance to thermal cracking. Newly developed, man made diamond windows have all three of these properties, but these windows are prohibitively expensive. This limits the natural progress of these important technologies to higher powers and slows the development of additional applications. This project developed a lower cost process for manufacturing diamond windows using microwave plasma. Diamond windows were deposited. A grinding process was used to provide optical smoothness for 2 cm diameter diamond windows that met the parallelism specifications for fusion beam windows. The microwave transmission performance (loss tangent) of one of the windows was measured at 95GHz to be less than 10-4, meeting specifications for utilization in the ITER tokamak.

  6. Energy taxation in a small, open economy: Social efficiency gains versus industrial concerns

    International Nuclear Information System (INIS)

    Bjertnaes, Geir H.; Faehn, Taran

    2008-01-01

    Welfare analyses of energy taxes typically show that systems with uniform rates perform better than differentiated systems, especially if revenue can be recycled by cutting taxes that are more distortionary. However, in practical policy, efficiency gains must be traded off against industrial concerns. Presumably, energy-dependent industries of small, open economies will suffer relatively more if taxed. This computable general equilibrium (CGE) study examines the social costs of compensating the energy-intensive export industries in Norway for their profit losses from imposing the same electricity tax on all industries. The costs are surprisingly modest. This is explained by the role of the Nordic electricity market, which is still limited enough to respond to national energy tax reforms. Thus, an electricity price reduction partly neutralizes the direct impact of the tax on profits. In addition, we examine the effects of different compensation schemes and find significantly lower compensation costs when the scheme is designed to release productivity gains. (author)

  7. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  8. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  9. Improved modified energy ratio method using a multi-window approach for accurate arrival picking

    Science.gov (United States)

    Lee, Minho; Byun, Joongmoo; Kim, Dowan; Choi, Jihun; Kim, Myungsun

    2017-04-01

    To identify accurately the location of microseismic events generated during hydraulic fracture stimulation, it is necessary to detect the first break of the P- and S-wave arrival times recorded at multiple receivers. These microseismic data often contain high-amplitude noise, which makes it difficult to identify the P- and S-wave arrival times. The short-term-average to long-term-average (STA/LTA) and modified energy ratio (MER) methods are based on the differences in the energy densities of the noise and signal, and are widely used to identify the P-wave arrival times. The MER method yields more consistent results than the STA/LTA method for data with a low signal-to-noise (S/N) ratio. However, although the MER method shows good results regardless of the delay of the signal wavelet for signals with a high S/N ratio, it may yield poor results if the signal is contaminated by high-amplitude noise and does not have the minimum delay. Here we describe an improved MER (IMER) method, whereby we apply a multiple-windowing approach to overcome the limitations of the MER method. The IMER method contains calculations of an additional MER value using a third window (in addition to the original MER window), as well as the application of a moving average filter to each MER data point to eliminate high-frequency fluctuations in the original MER distributions. The resulting distribution makes it easier to apply thresholding. The proposed IMER method was applied to synthetic and real datasets with various S/N ratios and mixed-delay wavelets. The results show that the IMER method yields a high accuracy rate of around 80% within five sample errors for the synthetic datasets. Likewise, in the case of real datasets, 94.56% of the P-wave picking results obtained by the IMER method had a deviation of less than 0.5 ms (corresponding to 2 samples) from the manual picks.

  10. Development of a slim window frame made of glass fibre reinforced polyester

    DEFF Research Database (Denmark)

    Appelfeld, David; Hansen, Christian Skodborg; Svendsen, Svend

    2010-01-01

    This paper presents the development of an energy efficient window frame made of a glass fibre reinforced polyester (GFRP) material. Three frame proposals were considered. The energy and structural performances of the frames were calculated and compared with wooden and aluminium reference frames....... In order to estimate performances, detailed thermal calculations were performed in four successive steps including solar energy and light transmittance in addition to heat loss and supplemented with a simplified structural calculation of frame load capacity and deflection. Based on these calculations, we...... carried out an analysis of the potential energy savings of the frame. The calculations for a reference office building showed that the heating demand was considerably lower with a window made of GFRP than with the reference frames. It was found that GFRP is suitable for window frames, and windows made...

  11. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  12. Energy losses (gains) of massive coloured particles in stochastic colour medium

    International Nuclear Information System (INIS)

    Leonidov, A.; Rossijskaya Akademiya Nauk, Moscow

    1995-01-01

    The propagation of massive coloured particles in stochastic background chromoelectric field is studied using the semiclassical equations of motion. Depending on the nature of the stochastic background we obtain the formulae for the energy losses of heavy coloured projectile in nonperturbative hadronic medium and for the energy gains in the stochastic field present, e.g., in the turbulent plasma. The result appears to be significantly dependent on the form of the correlation function of stochastic external field. (orig.)

  13. Nano-materials Enabled Thermoelectricity from Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-13

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 206C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  14. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R. [Oak Ridge National Lab., TN (United States); Palmer, R.L.; Moscone, C.G.; Jackson, R.G. [Tennessee Univ., Knoxville, TN (United States)

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  15. Impact of energy efficiency gains on output and energy use with Cobb-Douglas production function

    International Nuclear Information System (INIS)

    Wei Taoyuan

    2007-01-01

    A special issue of Energy Policy-28 (2000)-was devoted to a collection of papers, edited by Dr. Lee Schipper. The collection included a paper entitled 'A view from the macro side: rebound, backfire, and Khazzoom-Brookes' in which it was argued that the impact of fuel efficiency gains on output (roughly, GDP) is likely to be relatively small by Cobb-Douglas production function. However, an error in the analysis leads to under-estimation of the long-term impact. This paper first provides a partial equilibrium analysis by an alternative method for the same case and then proceeds to an analysis on the issue in a two-sector general equilibrium system. In the latter analysis, energy price is internalized. Both energy use efficiency and energy production efficiency are involved

  16. Rfq With An Increased Energy Gain

    CERN Document Server

    Kapin, Valery

    2004-01-01

    The radio-frequency quadrupole (RFQ) linacs are widely used in the initial part of ion accelerators. For industrial and medical applications, the size of RFQ linac as well as the construction and operation costs are important. Therefore, there is a interest to design a compact RFQ linac. In this paper, RFQ linac is studied with the aim of increasing the energy gain. Parameters of a conventional RFQ linac are usually chosen to ensure beam acceleration and stability, providing the autophasing and strong quadrupole focusing in the longitudinal and transverse directions simultaneously. As results, the accelerating efficiency of RFQ is limited by the transverse defocusing effect, and its value is below of a maximum value, which can be provided by RFQ electrodes. To facilitate these limitations, the well-known idea of alternating phase focusing (APF) is utilized. The APF effects boost transverse focusing, allowing to increase an accelerating efficiency, electrode voltage and decreasing average value of the synchron...

  17. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  18. Single-sided natural ventilation through a centre-pivot roof window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Nielsen, Peter V.; Gunner, Amalie

    2014-01-01

    The characteristics of centre pivot roof windows for wind driven single-sided ventilation has not been studied before. These types of windows are dominating roof windows in Europe. Knowledge of flow characteristics of this kind of window is essential for accurate designing of natural ventilation...... systems. In this study, numerical methods were used to characterise a centre-pivot roof window for wind-driven single-sided ventilation. A 1:20 scale model house of the Energy Flex House (Denmark) was used in this study. The roof slope was 36o. It was found that the single-sided ventilation through...

  19. Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8

    CERN Document Server

    Webber-Cross, Geoff

    2014-01-01

    This book is based around a case study game which was written for the book. This means that the chapters progress in a logical way and build upon lessons learned as we go. Real-world examples are provided for each topic that are practical and not given out-of-context so they can be applied directly to other applications.If you are a developer who wishes to build Windows 8 and Phone 8 applications and integrate them with Windows Azure Mobile Services, this book is for you. Basic C# and JavaScript skills are advantageous, as well as some knowledge of building Windows 8 or Windows Phone 8 applica

  20. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  1. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States)

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  2. Systematic measurements of the gain and the energy resolution of single and double mask GEM detectors

    International Nuclear Information System (INIS)

    Biswas, S.; Schmidt, D.J.; Abuhoza, A.; Frankenfeld, U.; Garabatos, C.; Hehner, J.; Kleipa, V.; Morhardt, T.; Schmidt, C.J.; Schmidt, H.R.; Wiechula, J.

    2016-01-01

    Systematic studies on the gain and the energy resolution have been carried out by varying the voltage across the GEM foils for both single mask and double mask triple GEM detector prototypes. Variation of the gain and the energy resolution has also been measured by varying either the drift voltage, transfer voltage and induction voltage keeping other voltages constant. The results of the systematic measurements have been presented.

  3. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624

    DEFF Research Database (Denmark)

    Heebøll, Anna; Wargocki, Pawel; Toftum, Jørn

    2018-01-01

    of Copenhagen, Denmark, were retrofitted either with a decentralized, balanced supply and exhaust mechanical ventilation unit with heat recovery; automatically operable windows with an exhaust fan; automatically operable windows with alternating counter-flow heat recovery through slots in the outside wall......; or a visual feedback display unit showing the current classroom carbon dioxide concentration, thus advising when the windows should be opened. For comparison, one classroom retained the original approach for achieving ventilation by manual opening of windows. One year after retrofitting the classrooms carbon...... dioxide concentrations, temperatures, energy use, and window and door opening behavior were recorded during a four week period in the heating season in January. The measured carbon dioxide concentrations were significantly lower in the classrooms with the mechanical ventilation system and the system...

  4. Acoustic window planning for ultrasound acquisition.

    Science.gov (United States)

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  5. Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods

    Directory of Open Access Journals (Sweden)

    Yeo Beom Yoon

    2014-04-01

    Full Text Available Windows are the primary aperture to introduce solar radiation to the interior space of a building. This experiment explores the use of EnergyPlus software for analyzing the illuminance level on the floor of a room with reference to its distance from the window. For this experiment, a double clear glass window has been used. The preliminary modelling in EnergyPlus showed a consistent result with the experimentally monitored data in real time. EnergyPlus has two mainly used daylighting algorithms: DElight method employing radiosity technique and Detailed method employing split-flux technique. Further analysis for illuminance using DElight and Detailed methods showed significant difference in the results. Finally, we compared the algorithms of the two analysis methods in EnergyPlus.

  6. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to transverse without interacting with air molecules. These vessels generally have a large aperture opening known as a open-quotes vacuum windowclose quotes which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions

  7. Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    OpenAIRE

    Bulanov, S. V.; Echkina, E. Yu.; Esirkepov, T. Zh.; Inovenkov, I. N.; Kando, M.; Pegoraro, F.; Korn, G.

    2009-01-01

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the ...

  8. Windows of opportunity for synchronization in stochastically coupled maps

    Science.gov (United States)

    Golovneva, Olga; Jeter, Russell; Belykh, Igor; Porfiri, Maurizio

    2017-02-01

    Several complex systems across science and engineering display on-off intermittent coupling among their units. Most of the current understanding of synchronization in switching networks relies on the fast switching hypothesis, where the network dynamics evolves at a much faster time scale than the individual units. Recent numerical evidence has demonstrated the existence of windows of opportunity, where synchronization may be induced through non-fast switching. Here, we study synchronization of coupled maps whose coupling gains stochastically switch with an arbitrary switching period. We determine the role of the switching period on synchronization through a detailed analytical treatment of the Lyapunov exponent of the stochastic dynamics. Through closed-form expressions and numerical findings, we demonstrate the emergence of windows of opportunity and elucidate their nontrivial relationship with the stability of synchronization under static coupling. Our results are expected to provide a rigorous basis for understanding the dynamic mechanisms underlying the emergence of windows of opportunity and leverage non-fast switching in the design of evolving networks.

  9. Windows server cookbook for Windows server 2003 and Windows 2000

    CERN Document Server

    Allen, Robbie

    2005-01-01

    This practical reference guide offers hundreds of useful tasks for managing Windows 2000 and Windows Server 2003, Microsoft's latest server. These concise, on-the-job solutions to common problems are certain to save you many hours of time searching through Microsoft documentation. Topics include files, event logs, security, DHCP, DNS, backup/restore, and more

  10. Effect of photoperiod on body weight gain, and daily energy intake and energy expenditure in Japanese quail (Coturnix c. Japonica)

    NARCIS (Netherlands)

    Boon, P; Visser, GH; Daan, S

    2000-01-01

    Effect of photoperiod and food duration on body weight gain, energy intake, energy expenditure, and sexual development were investigated in two strains of Japanese quail (Coturnix c. japonica), bred for meat (broilers) or egg production (layers), from 7 to 71 days of age. In a first experiment

  11. A high gain modified SEPIC DC-to-DC boost converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar

    2017-01-01

    The proposed work present the modified high gain Single Ended Primary Inductance Converter (SEPIC) for renewable energy applications. The voltage gain of proposed converter is very highly related to conventional dc-to-dc converter and recently projected converter based on conventional converter....... The key feature of projected converter is only one controlled device and voltage gain is increased without using a transformer and coupled inductor structure. The voltage gain of projected converter is increased by 10 times compared to the SEPIC converter by adding one extra inductor and capacitor...... in SEPIC converter for a duty ratio of 90%. The detailed analysis of the voltage gain with the voltage drop across passive device and working of projected converter is deliberated in details in the paper. The projected converter is simulated in Matrix Laboratory software (2014). The simulation results...

  12. Development of new concepts for escape windows to minimise cod catches in Norway lobster fisheries

    DEFF Research Database (Denmark)

    Madsen, Niels; Frandsen, Rikke; Holst, René

    2010-01-01

    Gear selectivity with regard to cod (Gadus morhua) needs to be improved in the Kattegat and Skagerrak Norway lobster (Nephrops norvegicus) fishery. One way to achieve this goal is to improve the selectivity of an escape window (henceforth window) in the gear. Our gear development focused particul......Gear selectivity with regard to cod (Gadus morhua) needs to be improved in the Kattegat and Skagerrak Norway lobster (Nephrops norvegicus) fishery. One way to achieve this goal is to improve the selectivity of an escape window (henceforth window) in the gear. Our gear development focused...... particularly on moving the window further back, gaining more stability in the codend to avoid loss of Norway lobster through the window, making a relatively narrow section where the window is located, and testing larger mesh sizes in the window. We designed a four panel sorting section—the sorting box......, but no improvement was observed for cod that came into contact with the window after reducing the distance from the window to the codline. The sorting box also showed a high reduction of flatfish and other roundfish species. The retention of Norway lobster above minimum landing size in the sorting box was higher...

  13. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Brian D' Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents

  14. MS Windows domēna darbstaciju migrācija no MS Windows XP uz Windows Vista.

    OpenAIRE

    Tetere, Agate

    2009-01-01

    Kvalifikācijas darbā izpētīju darbstaciju migrācijas no Windows XP uz Windows Vista plusus un mīnusus. Darba gaitā tika veikti sekojoši uzdevumi: 1.Veikta Windows XP un Windows Vista darbstaciju instalācija, iestatījumu konfigurēšana un tika pārbaudīta sistēmas darbība 2.Veikta Windows Server 2003 un Windows Server 2008 instalācija, iestatījumu konfigurēšana un tika pārbaudīta sistēmas darbība 3.Izstrādāts migrācijas modelis 4.Veikta migrācijas optimizēšana 5.Veikta datu migrāc...

  15. Gated cardiac blood pool studies in atrial fibrillation: Role of cycle length windowing

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, J W; Juni, J E; Wu, L [Michigan Univ., Ann Arbor (USA). Div. of Nuclear Medicine

    1991-01-01

    Cycle length windowing is gaining increasing acceptance in gated blood pool imaging of patients with atrial fibrillation (AF). The goals of this study were: to assess differences of ejection fraction (EF) in AF with and without windowing and to determine how EF varied with cycle length in patients with AF. Twenty patients with AF were prospectively studied by gated blood pool imaging, with simultaneous collection in each patient of 5-7 studies with cycle length windows spanning the cycle length histogram. Each window accepted beats of only a narrow range of cycle lengths. EF was determined for each of the narrow cycle length windows as well as for the entire gated blood pool study without cycle length windowing. For every patient an average of the windowed EFs was compared with the non-windowed EF. EF values were similar (mean windowed: 46.6; non-windowed: 45.5; P=0.16), and there was a good correlation between the two techniques (r=0.97). The data were then examined for a relationship of EF with cycle length. The difference from average windowed EF ({Delta}EF) was calculated for each window and plotted vs. the cycle length of the center of each window. No predictable linear or nonlinear relationship of {Delta}EF with window position was observed. Lack of predictable variation of EF with cycle length is likely due to lack of a predictable amount of ventricular filling for a given cycle length, as the amount of diastolic filling in AF depends on the random cycle length of the preceding beat. In summary, windowing in AF does not provide a clinically significant difference in EF determination. If cycle length windowing is used, the exact location of the window is not critical. (orig.).

  16. Voltage Gain Derivation Based on Energy-Balanced Criterion for a Novel Hybrid-Input PV-Wind Power Conversion System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-01-01

    Full Text Available This paper applies energy-balanced criterion to a novel hybrid-input PV-wind power conversion system (HPWPCS for voltage gain derivation. With the energy-balanced concept, complicated mathematical problems related to voltage gain derivation can be readily resolved. Based on the derived results, it is proven that the proposed HPWPCS is able to process two different kinds of renewable energy resources simultaneously. Even though the HPWPCS includes seven capacitors and three magnetic components, its voltage gain still can be found by the mathematical analysis. In the theoretical derivation, only the energy status of output inductor is dealt with such that complicated derivation procedure is avoided. This analysis method can also be applied to other hybrid green-energy conversion systems. In this paper, a 200 W 50 kHz prototype of HPWPCS is built and examined to verify the mathematical results.

  17. Thermal Analysis of the Al Window for a New CESR-c Luminosity Monitor

    CERN Document Server

    He, Yun; Palmer, Mark A; Rice, David

    2005-01-01

    A luminosity monitor using photons from radiative bhabha events at the CLEO interaction point (IP) has been installed in the Cornell Electron Storage Ring (CESR). A key vacuum and detector component is the photon window/converter whose uniformity and thickness are critical for determining the resolution of the total energy deposited in the segmented luminosity monitor. The window design must accommodate the operational requirements of the new monitor at CLEO-c beam energies of 1.5-2.5 GeV and also provide sufficient safety margin for operation at 5.3 GeV beam energies for Cornell High Energy Synchrotron Source (CHESS) running. During 5.3 GeV operation, intense stripes of synchrotron radiation from the interaction region superconducting quadrupole magnets as well as nearby bending magnets strike the window. During the course of window development, several materials and designs were evaluated. Thermal stresses were calculated using the finite element code ANSYS for various beam conditions to guide the cooling d...

  18. Window opening behaviour: simulations of occupant behaviour in residential buildings using models based on a field survey

    DEFF Research Database (Denmark)

    Valentina, Fabi; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Window opening behaviour has been shown to have a significant impact on airflow rates and hence energy consumption. Nevertheless, the inhabitant behaviour related to window opening in residential buildings is currently poorly investigated through both field surveys and building energy simulations....... In particular, reliable information regarding user behaviour in residential buildings is crucial for suitable prediction of building performance (energy consumption, indoor environmental quality, etc.). To face this issue, measurements of indoor climate and outdoor environmental parameters and window “opening...... and closing” actions were performed in 15 dwellings from January to August 2008 in Denmark. Probabilistic models of inhabitants’ window “opening and closing” behaviour were developed and implemented in the energy simulation software IDA ICE to improve window opening and closing strategies in simulations...

  19. Window Size Impact in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Oresti Banos

    2014-04-01

    Full Text Available Signal segmentation is a crucial stage in the activity recognition process; however, this has been rarely and vaguely characterized so far. Windowing approaches are normally used for segmentation, but no clear consensus exists on which window size should be preferably employed. In fact, most designs normally rely on figures used in previous works, but with no strict studies that support them. Intuitively, decreasing the window size allows for a faster activity detection, as well as reduced resources and energy needs. On the contrary, large data windows are normally considered for the recognition of complex activities. In this work, we present an extensive study to fairly characterize the windowing procedure, to determine its impact within the activity recognition process and to help clarify some of the habitual assumptions made during the recognition system design. To that end, some of the most widely used activity recognition procedures are evaluated for a wide range of window sizes and activities. From the evaluation, the interval 1–2 s proves to provide the best trade-off between recognition speed and accuracy. The study, specifically intended for on-body activity recognition systems, further provides designers with a set of guidelines devised to facilitate the system definition and configuration according to the particular application requirements and target activities.

  20. Grab Windows training opportunities; check CERN Windows roadmap!

    CERN Multimedia

    IT Department

    2011-01-01

    CERN Operating Systems and Information Services group (IT-OIS) actively monitors market trends to check how new software products correspond to CERN needs. In the Windows world, Windows 7 has been a big hit, with over 1500 Windows 7 PCs within less than a year since its support was introduced at CERN. No wonder: Windows XP is nearly 10 years old and is steadily approaching the end of its life-cycle. At CERN, support for Windows XP will stop at the end of December 2012. Compared to Vista, Windows 7 has the same basic hardware requirements, but offers higher performance, so the decision to upgrade is rather straightforward. CERN support for Vista will end in June 2011. In the world of Microsoft Office, version 2007 offers better integration with the central services than the older version 2003. Progressive upgrade from 2003 to 2007 is planned to finish in September 2011, but users are encouraged to pro-actively upgrade at their convenience. Please note that Office 2007 brings an important change in the area of ...

  1. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  2. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    Science.gov (United States)

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  3. Design of the beryllium window for Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-01-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn't been a single window failure since the new design was implemented in 2012.

  4. A concept for switchable, energy-generating ‘smart’ windows

    NARCIS (Netherlands)

    Debije, M.G.

    2010-01-01

    Smart’ windows, mostly based on chromogenic events triggered chemically, electrically or otherwise, are able to variably control the amount of light that passes into a room space, but make no use of the rejected light. Photovoltaic ‘windows’ such as those based on thin films or tiled photovoltaic

  5. Net requirements of energy, protein and macrominerals for weight gain of grazing beef cattle castrated at different ages, with and without supplementation

    Directory of Open Access Journals (Sweden)

    Anilza Andréia da Rocha

    2012-02-01

    Full Text Available The objective of this experiment was to estimate the requirements of energy, protein and macrominerals of grazing crossbreds calves, in Brachiaria decumbens Stapf pasture, castrated at different ages, with and without supplementation. Forty-seven young calves at initial age of 120±30.1 days and 115.3±1.97 kg of live weight were used. To estimate net energy requirements for weight gain, a regression equation between energy retained in the gain and empty body weight gain and metabolic empty body weight was obtained. For estimation of net protein requirements for weight gain, a regression equation was adjusted between protein retained in gain and empty body weight gain and energy content of this gain. Net requirements of Ca, P, Mg and Na for weight gain were determined by the equation Y' = a.b. Xb-1, in which a and b represent the intercept and the coefficient of the alometric equation of macromineral body content prediction, respectively. Neither castration nor concentrate supplementation affects body weight gain net requirements, except the ones of Ca, which were higher for non-castrated animals.

  6. A high gain energy amplifier operated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [CERN, Geneva (Switzerland)

    1995-10-01

    The basic concept and the main practical considerations of an Energy Amplifier (EA) have been exhaustively described elsewhere. Here the concept of the EA is further explored and additional schemes are described which offer a higher gain, a larger maximum power density and an extended burn-up. All these benefits stem from the use of fast neutrons, instead of thermal or epithermal ones, which was the case in the original study. The higher gain is due both to a more efficient high energy target configuration and to a larger, practical value of the multiplication factor. The higher power density results from the higher permissible neutron flux, which in turn is related to the reduced rate of {sup 233}Pa neutron captures (which, as is well known, suppress the formation of the fissile {sup 233}U fuel) and the much smaller k variations after switch-off due to {sup 233}Pa decays for a given burn-up rate. Finally a longer integrated burn-up is made possible by reduced capture rate by fission fragments of fast neutrons. In practice a 20 MW proton beam (20 mA @ 1 GeV) accelerated by a cyclotron will suffice to operate a compact EA at the level of {approx} 1 GW{sub e}. The integrated fuel burn-up can be extended in excess of 100 GW d/ton, limited by the mechanical survival of the fuel elements. Radio-Toxicity accumulated at the end of the cycle is found to be largely inferior to the one of an ordinary Reactor for the same energy produced. Schemes are proposed which make a {open_quotes}melt-down{close_quotes} virtually impossible. The conversion ratio, namely the rate of production of {sup 233}U relative to consumption is generally larger than unity, which permits production of fuel for other uses. Alternatively the neutron excess can be used to transform unwanted {open_quotes}ashes{close_quotes} into more acceptable elements.

  7. Energy performance of the low-energy house in Greenland

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    by ventilation heat recovery (90% efficiency) specially designed for arctic conditions, by using thicker insulation in walls (300 mm) and roof/floor (350 mm), and by using solar hot water heating (3250 kWh/year). The building is intended to enhance sustainability in the building sector in Greenland....... energy gain, efficient ventilation system with heat recovery and solar heating. In this paper the results of a calculation of the energy consumption of low-energy house is presented. The calculation was done using the program BSim2002 [1] and a new weather test reference year based on climatic data......The object of the low-energy house in Sisimiut in Greenland was to build a house with an energy consumption less than 80 kWh/m² corresponding to half the energy frame of the coming building code. Therefore the focus in this project has been on large insulation thicknesses, windows with high net...

  8. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and wh...

  9. Windows 10 simplified

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

  10. Round window stimulation for conductive and mixed hearing loss.

    Science.gov (United States)

    Dillon, Margaret T; Tubbs, Rhonda S; Adunka, Marcia C; King, English R; Hillman, Todd A; Adunka, Oliver F; Chen, Douglas A; Buchman, Craig A

    2014-10-01

    Assess surgical complications, postoperative residual hearing, and speech perception outcomes of placement of a middle ear implant on the round window in conductive and mixed hearing loss cases. Single-subject, repeated-measures design where each subject served as his or her own control. Tertiary referral medical systems. Eighteen subjects with either conductive or mixed hearing loss who could not benefit from conventional amplification were enrolled in a clinical trial investigating vibratory stimulation of the round window. The floating mass transducer (FMT) was positioned in the round window niche. Unaided residual hearing, and aided sound field thresholds and speech perception abilities were evaluated preoperatively, and at 1, 3, 6, and 10 months post-activation of the external speech processor. Six subjects experienced complications that either required further medical management or resolved on their own. There was no difference in residual bone conduction thresholds or unaided word discrimination over time. All subjects experienced a significant improvement in aided speech perception abilities as compared to preoperative performance. Subjects with conductive and mixed hearing loss with placement of the FMT in the round window niche experienced improved sound field thresholds and speech perception, without compromising residual hearing thresholds. Vibratory stimulation of the round window via a middle ear implant may be an appropriate treatment option for patients with conductive and mixed hearing loss. Additional research is needed on the preferred placement of the FMT, improvement of functional gain, and methods to limit postoperative complications and need for revision surgery.

  11. Impaired brain energy gain upon a glucose load in obesity.

    Science.gov (United States)

    Wardzinski, Ewelina K; Kistenmacher, Alina; Melchert, Uwe H; Jauch-Chara, Kamila; Oltmanns, Kerstin M

    2018-03-06

    There is evidence that the brain's energy status is lowered in obesity despite of chronic hypercaloric nutrition. The underlying mechanisms are unknown. We hypothesized that the brain of obese people does not appropriately generate energy in response to a hypercaloric supply. Glucose was intravenously infused in 17 normal weights and 13 obese participants until blood glucose concentrations reached the postprandial levels of 7 mmol/L and 10 mmol/L. Changes in cerebral adenosine triphosphate (ATP) and phosphocreatine (PCr) content were measured by 31 phosphorus magnetic resonance spectroscopy and stress hormonal measures regulating glucose homeostasis were monitored. Because vitamin C is crucial for a proper neuronal energy synthesis we determined circulating concentrations during the experimental testing. Cerebral high-energy phosphates were increased at blood glucose levels of 7 mmol/L in normal weights, which was completely missing in the obese. Brain energy content moderately raised only at blood glucose levels of 10 mmol/L in obese participants. Vitamin C concentrations generally correlated with the brain energy content at blood glucose concentrations of 7 mmol/L. Our data demonstrate an inefficient cerebral energy gain upon a glucose load in obese men, which may result from a dysfunctional glucose transport across the blood-brain barrier or a downregulated energy synthesis in mitochondrial oxidation processes. Our finding offers an explanation for the chronic neuroenergetic deficiency and respectively missing satiety perception in obesity. Copyright © 2018. Published by Elsevier Inc.

  12. Some Notes on the Use of theWindowed Fourier Transform for Spectral Analysis of Discretely Sampled Data

    Directory of Open Access Journals (Sweden)

    Robert W. Johnson

    2013-06-01

    Full Text Available The properties of the Gabor and Morlet transforms are examined with respect to the Fourier analysis of discretely sampled data. Forward and inverse transform pairs based on a fixed window with uniform sampling of the frequency axis can satisfy numerically the energy and reconstruction theorems; however, transform pairs based on a variable window or nonuniform frequency sampling in general do not. Instead of selecting the shape of the window as some function of the central frequency, we propose constructing a single window with unit energy from an arbitrary set of windows that is applied over the entire frequency axis. By virtue of using a fixed window with uniform frequency sampling, such a transform satisfies the energy and reconstruction theorems. The shape of the window can be tailored to meet the requirements of the investigator in terms of time/frequency resolution. The algorithm extends naturally to the case of nonuniform signal sampling without modification beyond identification of the Nyquist interval.

  13. Energy renovation of an old single-family house

    DEFF Research Database (Denmark)

    Overgaard, L.L.; Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    After having identified a large potential for profitable energy renovation of the existing building stock, a demonstration project was carried out in practice. This paper deals with the methods and results from the demonstration project concerning a 161 m² poorly insulated single-family house built...... saving improvements carried out in the project are “easy to carry out” and cost-beneficial measures such as cavity wall insulation, loft insulation, insulation of walls under windows and a new second window-frame with energy-saving glass. The work was carried out by professional contractors at a total......). If a conservative way of financing the building work of 157,000 DKK is assumed, the first year’s cost equals DKK 8,500 and the house owner will gain a net saving the first year of DKK 7,500....

  14. MS Windows domēna darbstacijas migrācijas iespējas no MS Windows XP uz MS Windows 7.

    OpenAIRE

    Zariņš, Valdis

    2009-01-01

    Kvalifikācijas darbā tiek aprakstītas MS Windows domēna darbstacijas migrācijas iespējas no MS Windows XP uz MS Windows 7, kā servera operētājsistēmas izmantojot tādus Microsoft produktus, kā Microsoft Windows Server 2003 un Microsoft Windows Server 2008. Kvalifikācijas darba teorētiskaja daļā tiek apskatīti Microsoft Windows 7 priekšrocības un uzlabojumus gan no darbstacijas lietotāja , gan no darbstacijas administratora puses. Ir aprakstītas Microsoft Windows Server 2008 jauninājumu ie...

  15. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  16. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures.

    Science.gov (United States)

    Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A

    2018-07-01

    The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.

  17. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    International Nuclear Information System (INIS)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrödinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy

  18. Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel

    Directory of Open Access Journals (Sweden)

    Martin Koláček

    2017-07-01

    Full Text Available This paper reports the experimental and simulation analysis of a window system incorporating Phase Change Materials (PCMs. In this study, the latent heat storage material is exploited to increase the thermal mass of the building component. A PCM-filled window can increase the possibilities of storage energy from solar radiation and reduce the heating cooling demand. The presented measurements were performed on a specific window panel that integrates a PCM. The PCM window panel consists of four panes of safety glass with three gaps, of which the first one contains a prismatic glass, the second a krypton gas, and the last one a PCM. New PCM window panel technology uses the placement of the PCM in the whole space of the window cavity. This technology improves the thermal performance and storage mass of the window panel. The results show the incongruent melting of salt hydrates and the high thermal inertia of the PCM window panel. The simulation data showed that the PCM window panel and the double glazing panel markedly reduced the peak temperature on the interior surface, reduced the air temperature inside the room, and also considerably improved the thermal mass of the building. This means that the heat energy entering the building through the panel is reduced by 66% in the summer cycle.

  19. Building envelope influence on the annual energy performance in office buildings

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  20. Novel Design for a Diffusive Solar Cell Window

    OpenAIRE

    Chen, Ruei-Tang; Kang, Chih-Chieh; Lin, Jeng-Feng; Chiou, Sheng-Wei; Cheng, Hung-Hsiang; Lai, Chih-Wen

    2015-01-01

    Building integrated photovoltaics (BIPV) are an important application of future solar energy development. The incorporation of solar cells into windows must not only maintain indoor natural lighting but also generate electrical power at the same time. In our continuing effort to improve the design of diffusion solar window, a more fundamental and efficient three-layer structure—glass/EVA with TiO2 nanoparticles embedded/glass—was proposed. In this work, a well-established ASAP ray-tracing mod...

  1. Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  2. Links | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Efficient Windows Collaborative | Home

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. FAQ | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Glossary | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. The maximum energy of cosmic rays gained in the jet of black holes

    International Nuclear Information System (INIS)

    Tascau, Oana; Biermann, Peter

    2003-01-01

    In this paper we will present the results of the calculation of maximum energy gained by a particle in the acceleration process done by the black hole mechanism. We are using here the model of P. Biermann and H. Falcke to determine if and how the black holes contribute to the cosmic rays that reach the Earth. The conclusion is that at the highest energy only M87 contributes, as has been claimed for many years. Secondly, at lower energy, Cen A may indeed take over as second most important source, again as expected for some time. (authors)

  7. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  8. Development and production of radiation shielding window (RSW) glass: Indian scenario

    International Nuclear Information System (INIS)

    Phani, K.K.

    2006-01-01

    Nuclear energy/power and its peaceful applications play an ever increasing role in India. Irradiated nuclear fuels, irradiated structural materials from reactors, nuclear wastes and radio-isotopes emit high energy gamma radiations which are extremely health hazardous. These materials are handled remotely by manipulators inside the hot cells, which are constructed by shielding materials such as lead and concrete walls. The direct visual control of processes in the hot cells during operation demands the windows in the radiation shielding walls. These windows must provide the clear viewing but yet ensure the good protection to the working personnel from the high energy radiation

  9. Study on the impact of the engineering energy gain and the FPC mass power density on the generation cost of fusion power plant

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican

    2004-01-01

    The impact of the engineering energy gain and the fusion-power-core (FPC) mass power density (MPD) on the generation cost of fusion power plant are analyzed based on the economic elasticity approach in this paper. From the functions describing the relationship of the generation cost with the engineering energy gain and the MPD, the elasticity coefficients of the generation cost with the engineering energy gain and the MPD have been derived respectively to analyze their sensitivity to the generation cost and the MPD to the generation cost decreases with increasing the engineering energy gain or the MPD. (authors)

  10. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure

    Directory of Open Access Journals (Sweden)

    Sarah M. Bahr

    2015-11-01

    Full Text Available Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80 μg/day exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism.

  11. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  12. Electromagnetic and thermal analysis of distributed cooled high power millimeter wave windows

    International Nuclear Information System (INIS)

    Nelson, S.D.; Reitter, T.; Caplan, M.; Moeller, C.

    1996-01-01

    The sectional high-frequency internally-cooled window, as proposed by General Atomics(1), has unique potential for allowing microwave sources to reach multi-megawatt CW levels with application to ECRH. Designs are being investigated using computational electromagnetic (EM), thermal, and mechanical codes at 110 GHz and 170 GHz to examine the design tradeoffs between RF performance and thermal mechanical safety margins. The EM analyses are for the window, under vacuum at one MW and includes variations in the shapes of the cooling fins, the surface treatment of the window elements themselves, the cooling fin tip treatment, the window pitch angle, and the waveguide effects. One advantage of the distributed cooled window is it close-quote s extensibility to higher power levels. Results in the modeling efforts are presented showing the EM field concentrations (which then will feed into the thermal analysis), the energy scattering/reflection, the transmitted launch angle variation as a function of physical geometry, and the spatial energy distribution and loss as a function of time and position. copyright 1996 American Institute of Physics

  13. Effect of facade components on energy efficiency in office buildings

    International Nuclear Information System (INIS)

    Ihara, Takeshi; Gustavsen, Arild; Jelle, Bjørn Petter

    2015-01-01

    Highlights: • Investigation of facade properties for energy efficiency of Tokyo office buildings. • Higher reflectance for opaque parts may slightly reduce energy demand. • Lower window U-value and solar heat gain coefficient are potential solutions. • Decreased heating due to insulation did not always compensate increased cooling. • Fundamental data for adjustment of facade properties of buildings are provided. - Abstract: Properties of facade materials should be considered to determine which of them strongly affect building energy performance, regardless of the building shapes, scales, ideal locations, and building types, and thus may be able to promote energy efficiency in buildings. In this study, the effects of four fundamental facade properties related to the energy efficiency of office buildings in Tokyo, Japan, were investigated with the purpose of reducing the heating and cooling energy demands. Some fundamental design factors such as volume and shape were also considered. It was found that the reduction in both the solar heat gain coefficient and window U-value and increase in the solar reflectance of the opaque parts are promising measures for reducing the energy demand. Conversely, the reduction in the U-value of the opaque parts decreased the heating energy demand, and this was accompanied by an increase in the cooling energy demand in some cases because the total energy demands were predominantly for cooling. The above-mentioned promising measures for reducing building energy demands are thus recommended for use, and an appropriate U-value should be applied to the opaque parts based on careful considerations. This study provides some fundamental ideas to adjust the facade properties of buildings.

  14. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    Science.gov (United States)

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  15. Dietary intake and weight gain of pregnant women attending ante ...

    African Journals Online (AJOL)

    Background: Birth-weight remains an indicator for survivalof infants and a summary of maternal nutrition during pregnancy. Low birth-weight is prevalent in developing countries and contributes to infant mortality. Weight gain during pregnancy is a good predictor of birth-weight and window of opportunity to reduce LBW rates ...

  16. Maximum power gains of radio-frequency-driven two-energy-component tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1974-11-01

    Two-energy-component fusion reactors in which the suprathermal component (D) is produced by harmonic cyclotron ''runaway'' of resonant ions are considered. In one ideal case, the fast hydromagnetic wave at ω = 2ω/sub cD/ produces an energy distribution f(W) approximately constant (up to W/sub max/) that includes all deuterons, which then thermalize and react with the cold tritons. In another ideal case, f(W) approximately constant is maintained by the fast wave at ω = ω/sub cD/. If one neglects (1) direct rf input to the bulk-plasma electrons and tritons, and (2) the fact that many deuterons are not resonantly accelerated, then the maximum ideal power gain is about 0.85 Q/sub m/ in the first case and 1.05 Q/sub m/ in the second case, where Q/sub m/ is the maximum fusion gain in the beam-injection scheme (e.g., Q/sub m/ = 1.9 at T/sub e/ = 10 keV). Because of nonideal effects, the cyclotron runaway phenomenon may find its most practical use in the heating of 50:50 D--T plasmas to ignition. (auth)

  17. Windows 2012 Server network security securing your Windows network systems and infrastructure

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    Windows 2012 Server Network Security provides the most in-depth guide to deploying and maintaining a secure Windows network. The book drills down into all the new features of Windows 2012 and provides practical, hands-on methods for securing your Windows systems networks, including: Secure remote access Network vulnerabilities and mitigations DHCP installations configuration MAC filtering DNS server security WINS installation configuration Securing wired and wireless connections Windows personal firewall

  18. Windows 8.1 bible

    CERN Document Server

    Boyce, Jim; Tidrow, Rob

    2014-01-01

    Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

  19. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A

    2003-01-01

    Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.

  20. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.

    2012-01-01

    In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized

  1. A study on the effects of double skin facades on the energy management in buildings

    International Nuclear Information System (INIS)

    Chou, S.K.; Chua, K.J.; Ho, J.C.

    2009-01-01

    Double skin facades (DSF) are gaining popularity for their ability to reduce solar heat gain in buildings. However, research works on the impact of DSF on the energy management, aerophysics and air conditioning of buildings are still at their infancy. The concept of envelope thermal transfer value (ETTV) has been specifically applied to evaluate the solar radiation gain component through a DSF fenestration system. The aim of this paper is to study the effects of DSF on the solar heat gain, the ETTV and hence the energy management within buildings. A systematic methodology to investigate the effectiveness of DSF in reducing solar heat gain has been presented. Experimental works have been performed to obtain the solar heat gain coefficient (SHGC) values of a DSF fenestration system. These values are then applied to compare the ETTVs generated from a model building with different DSF configurations, namely, different wall-to-window ratios and varying shading coefficients.

  2. New windows - attitude evaluation concerning energy efficient windows; Nya foenster uppaat vaeggarna - en utvaerdering av attityder till energieffektiva foenster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This attitude investigation was made as structured telephone interviews of 200 persons during January 1995. The 200 persons were selected among those who had been involved in the window area of 300 building projects. 4 figs

  3. Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels.

    Science.gov (United States)

    La, Thanh-Giang; Li, Xinda; Kumar, Amit; Fu, Yiyang; Yang, Shu; Chung, Hyun-Joong

    2017-09-27

    In a cold night, a clear window that will become opaque while retaining the indoor heat is highly desirable for both privacy and energy efficiency. A thermally responsive material that controls both the transmittance of solar radiance (predominantly in the visible and near-infrared wavelengths) and blackbody radiation (mainly in the mid-infrared) can realize such windows with minimal energy consumption. Here, we report a smart coating made from polyampholyte hydrogel (PAH) that transforms from a transparency state to opacity to visible radiation and strengthens opacity to mid-infrared when lowering the temperature as a result of phase separation between the water-rich and polymer-rich phases. To match a typical temperature fluctuation during the day, we fine-tune the phase transition temperature between 25 and 55 °C by introducing a small amount of relatively hydrophobic monomers (0.1 to 0.5 wt % to PAH). To further demonstrate an actively controlled, highly flexible, and high-contrast smart window, we build in an array of electric heaters made of printed elastomeric composite. The multipixelated window offers rapid switching, ∼70 s per cycle, whereas the device can withstand high strain (up to 80%) during operations.

  4. Relation between holiday weight gain and total energy expenditure among 40- to 69-y-old men and women (OPEN study).

    Science.gov (United States)

    Cook, Chad M; Subar, Amy F; Troiano, Richard P; Schoeller, Dale A

    2012-03-01

    A significant proportion of the average annual body weight (BW) gain in US adults (~0.5-1 kg/y) may result from modest episodes of positive energy balance during the winter holiday season. We tested whether holiday BW gain was reduced in participants with high baseline total energy expenditure (TEE) or whether it varied by BMI (in kg/m(2)). In a secondary analysis of previously published data, ΔBW normalized over 90 d from mid-September/mid-October 1999 to mid-January/early March 2000 was analyzed by sex, age, and BMI in 443 men and women (40-69 y of age). TEE was measured by doubly labeled water. High or low energy expenditure was assessed as residual TEE after linear adjustment for age, height, and BW. No correlations between ΔBW and TEE or TEE residuals were found. Sixty-five percent of men and 58% of women gained ≥0.5 kg BW, with ~50% of both groups gaining ≥1% of preholiday BW. Obese men (BMI ≥30) gained more BW than did obese women. A high preholiday absolute TEE or residual TEE did not protect against BW gain during the winter holiday quarter. It is not known whether higher than these typical TEE levels would protect against weight gain or if the observed gain may be attributed to increased food consumption and/or reduced physical activity during the holiday quarter.

  5. Windows constructons from ecological materials fullfilling specifications of low energy consuming - and passive building architecture as also the new energy conservation ordinance; Fensterkonstruktion aus oekologischen Baustoffen entsprechend den Anforderungen der Niedrigenergie- und Passivhausbauweise sowie der neuen Energieeinsparverordnung EnEV. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mack, R.

    2002-04-01

    A newly developed window system for passive standard buildings was investigated with regard to its thermal properties, airtightness, tightness in driving rain, and acoustic properties. The emphasis was on the optimisaiton of the total heat transfer coefficient and the absence of cold gaps between windows, frames, and walls. This involved simulations in consideration of the Energy Conservation Ordinance and current standards and regulations. The measurements and simulations proved that the window was superior to the requirements of current regulations, so the window system was certified as a recommended component for passive buildings (''Passivhaustaugliche Komponente''). Further, an ecological life cycle analysis was carried out, also with good results. A marketing strategy was developed for the new window system and for other components produced by medium-sized organizations.

  6. A Methodology to Link the Internal Heat Gains from Lighting to the Global Consumption for the Energy Certification of Buildings in Italy

    Directory of Open Access Journals (Sweden)

    Valerio R.M. Lo Verso

    2014-12-01

    Full Text Available This paper critically discusses the procedure prescribed by the Italian Technical Standards to account for the internal gains in the calculation of the energy performance indices for a building. This procedure is based on a tabular value set depending on the building usage only (e.g., 6 W/m2 for office buildings, independently of the site and of the controls for blinds and lighting systems. Instead, the paper proposes a new procedure, which relies on the lighting energy numerical indicator (LENI according to the European Standard EN 15193:2007. Basically, the procedure consists of the following steps: 1 internal gains from lighting are calculated accounting for the integration between electric appliances and daylighting; 2 these gains are summed to the internal gains from occupants and appliances; 3 the global gains are used as input data to calculate the energy performance indices for an office building (for space heating, space cooling, and lighting consumption following the Italian Technical Standards. The office building which was used as case-study is the Department of Energy of the Politecnico di Torino. This was assumed to be located both in Turin (northern Italy and in Palermo (southern Italy. In the study, the use of a manual on/off switch and of a photodimming sensor was also compared. For each configuration, the single and the global energy performance indices were calculated comparing two approaches to calculate the internal gains (Italian standard vs. new proposed procedure: a shift of one energy class for the building energy label was observed depending on the approach, which was used.

  7. Study of the energy gain and the beam loading of the detuned structure with a simple model

    International Nuclear Information System (INIS)

    Heifets, S.A.; Kheifets, S.A.

    1993-01-01

    A circuit model for the longitudinal case from which to study the field pattern, energy gain and beam loading of a detuned structure is derived from Maxwell's equations. The results obtained with the model are compared to numerical results of the code PROGON. The model gives reasonable scaling of the group velocity and voltage with geometric parameters. The energy gain and beam loading are compared and are shown to depend on the same factor. This is true even for periodic variations of the boundary. Finally, a way to find the shape of the rf pulse envelope for the beam loading compensation is suggested

  8. Use of UV-protective windows and window films to aid in the prevention of skin cancer.

    Science.gov (United States)

    Edlich, Richard F; Winters, Kathryne L; Cox, Mary Jude; Becker, Daniel G; Horowitz, Jed H; Nichter, Larry S; Britt, L D; Long, William B; Edlic, Elizabeth C

    2004-01-01

    People are exposed to ambient solar ultraviolet (UV) radiation throughout their daily routine, intentionally and unintentionally. Cumulative and excessive exposure to UV radiation is the behavioral cause to skin cancers, skin damage, premature skin aging, and sun-related eye disorders. More than one million new cases of skin cancer were diagnosed in the United States this year. UV radiates directly and diffusely scattered by the various environmental and atmospheric conditions and has access to the skin from all directions. Because of this diffuse UV radiation, a person situated under a covering, such as the roof of a car or house, is not completely protected from the sun's rays. Because shade structures do not protect effectively against UV radiation, there have been major advances in photoprotection of glass by the development of specially designed photoprotective windows and films. It is the purpose of this collective review to highlight the photoprotective windows and films that should be incorporated into residential, commercial, and school glass windows to reduce sun exposure. Low-emittence (low-E) coatings are microscopically thin, virtually invisible, metal or metallic oxide layers deposited on a window or skylight glazing surface to reduce the U-factor by suppressing radiative heat flow as well as to limit UV radiation. The exclusive Thermaflect coating uses the most advanced, double-layer soft coat technology to continue to deliver top performance for UV protection as well as prevent heat loss in the home. This product blocks 87% of UV radiation and has an Energy Star certification in all climate zones. Tints and films have been another important advance in glass photoprotection, especially in automobiles. Quality widow film products are high-tech laminates of polyester and metallized coatings bonded by distortion-free adhesives. The International Window Film Association provides members with accreditation in solar control films, safety films, and

  9. Meningkatkan Keterbukaan Diri Dalam Komunukasi Antar Teman Sebaya Melalui Bimbingan Kelompok Teknik Johari Window

    Directory of Open Access Journals (Sweden)

    Sania Nur Hanifa

    2012-12-01

    Full Text Available This research was conducted based on the phenomenon that is in high school Walisongo Pecangaan Jepara indicating students who have low self-disclosure in the communication between peers. The purpose of this study to determine the efficacy in improving transparency in the communication between peers through group guidance Johari window techniques. This techniques type of research used in this study is experimental research. Sample were 10 students who have low self-disclosure in personal communication between peers. Methods of data collection using psychological scales. Wilcoxon test results obtained Thitung 55.0 > 8.0 TTable or imply Ha accepted and Ho rejected. These results indicate the level of openness in communication among peers increased after receiving group guidance Johari window technique. These results demonstrate openness in communication among peers before getting group guidance Johari window technique 57.5% with medium category and guidance johari window technique after gaining guidance johari window technique 76.5% with high category. The difference in levels of self-disclosure of students before and after the technical guidance of Johari window by 19%. In addition, students progressing better behavior seen from the increasing some indicators such as, be objective, provisional, understand yourself, understand others, adopted a trusting and open attitude.

  10. Extension of the DIRAC workload management system to allow use of distributed windows resources

    International Nuclear Information System (INIS)

    Li, Y Y; Harrison, K; Parker, M A; Lyutsarev, V; Tsaregorodtsev, A

    2008-01-01

    The DIRAC Workload Management System of the LHCb experiment allows coordinated use of globally distributed computing power and data storage. The system was initially deployed on the Linux platforms, where it has been used very successfully both for collaboration-wide production activities and for single-user physics studies. To increase the resources available to LHCb, DIRAC has been extended so that it also allows use of Microsoft Windows machines. As DIRAC is mostly written in Python, a large part of the code base was already platform independent, but Windows-specific solutions have had to be found in areas such as certificate-based authentication and secure file transfers, where .NetGridFTP has been used. In addition, new code has been written to deal with the way that jobs are run and monitored under Windows, enabling interaction with Microsoft Windows Compute Cluster Server 2003 on sets of machines were this is available. The result is a system that allows users transparent access to Linux and Windows distributed resources. This paper gives details of the Windows-specific developments for DIRAC; outlines the experience gained in deploying the system at a number of sites, and reports on the performance achieved running the LHCb data-processing applications

  11. A Pilot Demonstration of Electrochromic and Thermochromic Windows in the Denver Federal Center, Building 41, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fernandes, Luis L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goudey, Chad Howdy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jonsson, Carl Jacob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Curcija, D. Charlie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pang, Xiufeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DiBartolomeo, Dennis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffmann, Sabine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-07-01

    Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This project demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.

  12. Solution-Processed Smart Window Platforms Based on Plasmonic Electrochromics

    KAUST Repository

    Abbas, Sara

    2018-04-30

    Electrochromic smart windows offer a viable route to reducing the consumption of buildings energy, which represents about 30% of the worldwide energy consumption. Smart windows are far more compelling than current static windows in that they can dynamically modulate the solar spectrum depending on climate and lighting conditions or simply to meet personal preferences. The latest generation of smart windows relies on nominally transparent metal oxide nanocrystal materials whose chromism can be electrochemically controlled using the plasmonic effect. Plasmonic electrochromic materials selectively control the near infrared (NIR) region of the solar spectrum, responsible for solar heat, without affecting the visible transparency. This is in contrast to conventional electrochromic materials which block both the visible and NIR and thus enables electrochromic devices to reduce the energy consumption of a building or a greenhouse in warm climate regions due to enhancements of both visible lighting and heat blocking. Despite this edge, this technology can benefit from important developments, including low-cost solution-based manufacturing on flexible substrates while maintaining durability and coloration efficiency, demonstration of independent control in the NIR and visible spectra, and demonstration of self-powering capabilities. This thesis is focused on developing low-temperature and all-solution processed plasmonic electrochromic devices and dual-band electrochromic devices. We demonstrate new device fabrication approaches in terms of materials and processes which enhance electrochromic performance all the while maintaining low processing temperatures. Scalable fabrication methods are used to highlight compatibility with high throughput, continuous roll-to-roll fabrication on flexible substrates. In addition, a dualband plasmonic electrochromic device was developed by combining the plasmonic layer with a conventional electrochromic ion storage layer. This enables

  13. Windows 10 for dummies

    CERN Document Server

    Rathbone, Andy

    2015-01-01

    The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

  14. Provide Views | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Reduced Fading | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. EWC Members | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Visible Transmittance | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Gas Fills | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. EWC Membership | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Reducing Condensation | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. Improved Comfort | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  2. Financing & Incentives | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Tools & Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. Books & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Design Considerations | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Windows forensic analysis toolkit advanced analysis techniques for Windows 7

    CERN Document Server

    Carvey, Harlan

    2012-01-01

    Now in its third edition, Harlan Carvey has updated "Windows Forensic Analysis Toolkit" to cover Windows 7 systems. The primary focus of this edition is on analyzing Windows 7 systems and on processes using free and open-source tools. The book covers live response, file analysis, malware detection, timeline, and much more. The author presents real-life experiences from the trenches, making the material realistic and showing the why behind the how. New to this edition, the companion and toolkit materials are now hosted online. This material consists of electronic printable checklists, cheat sheets, free custom tools, and walk-through demos. This edition complements "Windows Forensic Analysis Toolkit, 2nd Edition", (ISBN: 9781597494229), which focuses primarily on XP. It includes complete coverage and examples on Windows 7 systems. It contains Lessons from the Field, Case Studies, and War Stories. It features companion online material, including electronic printable checklists, cheat sheets, free custom tools, ...

  7. Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-10-01

    Full Text Available This paper presents a novel interleaved converter (NIC with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

  8. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  9. Plasma focus as an x-ray source for tailoring of radiation in different energy windows

    International Nuclear Information System (INIS)

    Zakaullah, M.; Alamgir, K.; Shafiq, M.; Sharif, M.

    2001-01-01

    A low energy (2.3 kj) plasma focus energized by a single 32 micro f capacitor charged at 12 kv with filling gases hydrogen, neon and argon is investigated as an X-ray source. Experiments are conducted with a copper and an aluminum anode. Specifically, attention in given to tailoring the radiation in different windows, e. g. 1.2-1.3 keV, 1.3-1.5 keV, 2.5-5 keV and Cu-Ka line radiation. The highest X-ray emission is observed with neon filling and the copper anode in the 1.2-1.3 keV window, which speculated to be generated due to recombination of hydrogen like neon ions with a few eV to a few 10s of eV electrons. The wall-plug efficiency of the device is found to be 4%. The other significant emission occurs with Hydrogen filling, which exhibits wall plug efficiency of 1.7% for over all x-ray emission and 0.35% for Cu- Ka line radiation. The emission is dominated by the interaction of electrons in the current sheath with the anode tip. The emission with the aluminum anode and hydrogen filling is up to 10 j, which corresponds to wall-plug efficiency of 0.4%. The X-ray emission with argon filling is less significant. (author)

  10. Efficiency of metabolizable energy utilization for maintenance and gain and evaluation of Small Ruminant Nutrition System model in Santa Ines sheep

    Directory of Open Access Journals (Sweden)

    José Gilson Louzada Regadas Filho

    2011-11-01

    Full Text Available This study was carried out to estimate efficiencies of the utilization of metabolizable energy for maintenance (k m and weight gain (k g and to evaluate the Small Ruminant Nutrition System (SRNS model in predicting dry matter intake and average daily gain of growing Santa Ines sheep. Twenty-four non-castrated Santa Ines sheep, at 50 days of age and with average body weight of 13.00 ± 0.56 kg, respectively, were used. After a 10-day adaptation period, four animals were slaughtered to be used as reference for estimating initial empty body weight and body composition of the other animals. The remaining animals were distributed in a random block design, with the treatments consisting of diets containing different levels of metabolizable energy (2.08, 2.28, 2.47 and 2.69 Mcal/kg of DM, with five replicates. The metabolizable energy use efficiencies for maintenance and for weight gain were calculated from the relationship between the dietary net energy for maintenance and gain and ME concentration in the diets. Evaluation of the SRNS model was performed by adjustment of simple linear regression model between the predicted (independent variable and observed (dependent variable values. The estimated energy use efficiency for maintenance (k m was 0.70; and for gain weight (kg it showed to be inversely proportional to the increase of metabolizable energy concentration in the diet. The dry matter intake predicted by the SRNS model did not statistically differ from that observed, but the model overestimated the average daily gain by 5.18%. Those results can contribute to the construction of a database, which could be condensed into several others in a predictive model of performance and feed planning for sheep reared in Brazil.

  11. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  12. Programming Windows Azure

    CERN Document Server

    Krishnan, Sriram

    2010-01-01

    Learn the nuts and bolts of cloud computing with Windows Azure, Microsoft's new Internet services platform. Written by a key member of the product development team, this book shows you how to build, deploy, host, and manage applications using Windows Azure's programming model and essential storage services. Chapters in Programming Windows Azure are organized to reflect the platform's buffet of services. The book's first half focuses on how to write and host application code on Windows Azure, while the second half explains all of the options you have for storing and accessing data on the plat

  13. Beginning Windows 8

    CERN Document Server

    Halsey, Mike

    2012-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

  14. Windows 8 tweaks

    CERN Document Server

    Sinchak, Steve

    2013-01-01

    Acres of Windows 8 tweaks from a Microsoft MVP and creator of Tweaks.com! From a Microsoft MVP, who is also the savvy creator of Tweaks.com, comes this ultimate collection of Windows 8 workarounds. Steve Sinchak takes you way beyond default system settings, deep under the hood of Windows 8, down to the hidden gems that let you customize your Windows 8 system like you wouldn't believe. From helping you customize the appearance to setting up home networking, sharing media, and squeezing every ounce of performance out of the OS, this book delivers. Get ready to rock and roll with Wind

  15. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window.

    Science.gov (United States)

    Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping

    2018-05-03

    Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.

  16. Smart window using a thermally and optically switchable liquid crystal cell

    Science.gov (United States)

    Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon

    2018-02-01

    Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.

  17. The effect of energy peak drift on the calibration of a high resolution gamma-ray soil density gauge

    International Nuclear Information System (INIS)

    Henshall, J.K.

    1994-01-01

    High spatial resolution is obtained from a gamma-ray transmission density gauge by restricting the measured counts to a narrow band of the energy spectrum, close to the emission energy peak. The effect on measurement accuracy of any movement of this measurement window relative to the energy peak was investigated. The findings were related to anticipated energy peak movements in a proposed LED-based gain-stabilization system. Movements of the energy peaks during recording of unstabilized spectra prevented direct comparisons of spectra at different positions. A simulation procedure was, therefore, developed in which movements of the measurement window relative to sets of stable calibration spectra were examined. When analysing spectra, recorded using a gauge with a different gain-stabilization system, accuracy was found to be unaffected by simulated peak movements of up to 0.03 MeV in the direction of increasing energy. However, movements of stabilized spectra in the direction of decreasing energy, and of unstabilized spectra in either direction, increased measurement errors to twice the level of inherent measurement errors within 0.02 MeV, with errors in bulk density of up to 0.7 Mg m −3 for movements of 0.1 MeV. The spectra of the new LED-based stabilization system are expected to behave in a manner similar to the unstabilized system, therefore requiring regular monitoring of the peak position. (author)

  18. Possibility of Recombination Gain Increase in CV Ions at 4.0 nm Via Coherence

    Science.gov (United States)

    Luo, Y.; Morozov, A.; Gordon, D.; Sprangle, P.; Svidzinsky, A.; Xia, H.; Scully, M.; Suckewer, S.

    This paper is about the recent experimental results on amplification of the CV line in the "water window" at 4.03 nm from resonance transition to the ground level of He-like ions in recombination scheme. The indication of the amplification of the CV line has been observed when an elongated narrow plasma channel was created, where high intensity 100 fs beams, optimal for creating CV ions in high density plasma, was propagated up to 0.5-0.6 mm. Without channeling the effective plasma length was much shorter and there was no indication of amplification.The large interest in gain generation in He-like ions in the transition to ground state is due to the possibility of applying a recently developed theory of Lasing Without Inversion (LWI) in XUV and X-ray regions to largely increase the gain for such transitions. The presented results of the indication of CV line amplifications are being discussed from the point of view of using LWI as a superradiance gain increase, hence to construct a very compact soft X-ray laser in the "water window".The last part of the paper is related to the application of the ultra-intensive fs plasma laser, which is currently in the process of development by using stimulated Raman backscattering (SRBS) to create a plasma amplifier and compressor, as the pump for compact laser operating in the "water window" and also at shorter wavelengths.

  19. Sucrose exposure in early life alters adult motivation and weight gain.

    Directory of Open Access Journals (Sweden)

    Cristianne R M Frazier

    2008-09-01

    Full Text Available The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  20. Sucrose exposure in early life alters adult motivation and weight gain.

    Science.gov (United States)

    Frazier, Cristianne R M; Mason, Peggy; Zhuang, Xiaoxi; Beeler, Jeff A

    2008-09-17

    The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  1. Monetary benefits of preventing childhood lead poisoning with lead-safe window replacement.

    Science.gov (United States)

    Nevin, Rick; Jacobs, David E; Berg, Michael; Cohen, Jonathan

    2008-03-01

    Previous estimates of childhood lead poisoning prevention benefits have quantified the present value of some health benefits, but not the costs of lead paint hazard control or the benefits associated with housing and energy markets. Because older housing with lead paint constitutes the main exposure source today in the US, we quantify health benefits, costs, market value benefits, energy savings, and net economic benefits of lead-safe window replacement (which includes paint stabilization and other measures). The benefit per resident child from improved lifetime earnings alone is $21,195 in pre-1940 housing and $8685 in 1940-59 housing (in 2005 dollars). Annual energy savings are $130-486 per housing unit, with or without young resident children, with an associated increase in housing market value of $5900-14,300 per housing unit, depending on home size and number of windows replaced. Net benefits are $4490-5,629 for each housing unit built before 1940, and $491-1629 for each unit built from 1940-1959, depending on home size and number of windows replaced. Lead-safe window replacement in all pre-1960 US housing would yield net benefits of at least $67 billion, which does not include many other benefits. These other benefits, which are shown in this paper, include avoided Attention Deficit Hyperactivity Disorder, other medical costs of childhood lead exposure, avoided special education, and reduced crime and juvenile delinquency in later life. In addition, such a window replacement effort would reduce peak demand for electricity, carbon emissions from power plants, and associated long-term costs of climate change.

  2. Window in the dark matter exclusion limits

    International Nuclear Information System (INIS)

    Zaharijas, Gabrijela; Farrar, Glennys R.

    2005-01-01

    We consider the cross section limits for light dark matter cadnidates (m=0.4 to 10 GeV). We calculate the interaction of dark matter in the crust above underground dark matter detectors and find that in the intermediate cross section range, the energy loss of dark matter is sufficient to fall below the energy threshold of current underground experiments. This implies the existence of a window in the dark matter exclusion limits in the micro-barn range

  3. Sound pressure gain produced by the human middle ear.

    Science.gov (United States)

    Kurokawa, H; Goode, R L

    1995-10-01

    The acoustic function of the middle ear is to match sound passing from the low impedance of air to the high impedance of cochlear fluid. Little information is available on the actual middle ear pressure gain in human beings. This article describes experiments on middle ear pressure gain in six fresh human temporal bones. Stapes footplate displacement and phase were measured with a laser Doppler vibrometer before and after removal of the tympanic membrane, malleus, and incus. Acoustic insulation of the round window with clay was performed. Umbo displacement was also measured before tympanic membrane removal to assess baseline tympanic membrane function. The middle ear has its major gain in the lower frequencies, with a peak near 0.9 kHz. The mean gain was 23.0 dB below 1.0 kHz, the resonant frequency of the middle ear; the mean peak gain was 26.6 dB. Above 1.0 kHz, the second pressure gain decreased at a rate of -8.6 dB/octave, with a mean gain of 6.5 dB at 4.0 kHz. Only a small amount of gain was present above 7.0 kHz. Significant individual differences in pressure gain were found between ears that appeared related to variations in tympanic membrane function and not to variations in cochlear impedance.

  4. Window selection for dual photopeak window scatter correction in Tc-99m imaging

    International Nuclear Information System (INIS)

    Vries, D.J. de; King, M.A.

    1994-01-01

    The width and placement of the windows for the dual photopeak window (DPW) scatter subtraction method for Tc-99m imaging is investigated in order to obtain a method that is stable on a multihead detector system for single photon emission computed tomography (SPECT) and is capable of providing a good scatter estimate for extended objects. For various window pairs, stability and noise were examined with experiments using a SPECT system, while Monte Carlo simulations were used to predict the accuracy of scatter estimates for a variety of objects and to guide the development of regression relations for various window pairs. The DPW method that resulted from this study was implemented with a symmetric 20% photopeak window composed of a 15% asymmetric photopeak window and a 5% lower window abutted at 7 keV below the peak. A power function regression was used to relate the scatter-to-total ratio to the lower window-to-total ratio at each pixel, from which an estimated scatter image was calculated. DPW demonstrated good stability, achieved by abutting the two windows away from the peak. Performance was assessed and compared with Compton window subtraction (CWS). For simulated extended objects, DPW generally produced a less biased scatter estimate than the commonly used CWS method with k = 0.5. In acquisitions of a clinical SPECT phantom, contrast recovery was comparable for both DPW and CWS; however, DPW showed greater visual contrast in clinical SPECT bone studies

  5. Ecophysiological function of leaf 'windows' in Lithops species - 'Living Stones' that grow underground.

    Science.gov (United States)

    Martin, C E; Brandmeyer, E A; Ross, R D

    2013-01-01

    Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Persistent luminescence in both first and second biological windows in ZnGa2O4:Cr3+,Yb3+ glass ceramics

    Science.gov (United States)

    Castaing, V.; Sontakke, A. D.; Xu, J.; Fernández-Carrión, A. J.; Allix, M.; Tanabe, S.; Viana, B.

    2018-02-01

    ZnGa2O4:Cr3+ is an optical material well known for its deep red persistent luminescence properties which are centered in the first biological window. In this work, Yb3+, Cr3+ co-doped zinc gallate oxide has been prepared in the form of glass-ceramics. The studied samples have been elaborated via conventional melt quenching process leading to nanometer scale phase separated glass which was subsequently crystallized to obtain nanocrystals embedded in a transparent glass matrix. In these as-prepared ZnGa2O4:Cr3+,Yb3+ glass-ceramics, regular Cr3+ emission (at around 695 nm) as well as Yb3+ emission (between 950 and 1100 nm) is observed. Several photoluminescence emission and excitation experiments have been recorded in order clarify (i) the simultaneous emission of these cations in different optical windows and (ii) the energy transfer process between these two emitting centers. Further studies proved that Yb3+ is not only active in photoluminescence but also in persistent luminescence, leading to a material demonstrating persistent luminescence properties in both first and second biological windows (650-950 and 1000-1350 nm respectively). Thermoluminescence experiments have been carried out on these materials in order to gain deeper information about the persistent luminescence process.

  7. An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Petrie, Thomas [ORNL; Kosny, Jan [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Hulvey, Kimberly D [ORNL

    2007-11-01

    A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

  8. Windows for Intel Macs

    CERN Document Server

    Ogasawara, Todd

    2008-01-01

    Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

  9. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    Energy Technology Data Exchange (ETDEWEB)

    Alsharo' a, Mohammad M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2004-12-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements.

  10. Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keV-100 GeV: A comparative study

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Ozdemir, Yueksel; Simsek, Onder; Durak, Ridvan

    2010-01-01

    The effective atomic numbers, Z eff of some glass systems with and without Pb have been calculated in the energy region of 1 keV-100 GeV including the K absorption edges of high Z elements present in the glass. Also, these glass systems have been compared with some standard shielding concretes and commercial window glasses in terms of mean free paths and total mass attenuation coefficients in the continuous energy range. Comparisons with experiments were also provided wherever possible for glasses. It has been observed that the glass systems without Pb have higher values of Z eff than that of Pb based glasses at some high energy regions even if they have lower mean atomic numbers than Pb based glasses. When compared with some standard shielding concretes and commercial window glasses, generally it has been shown that the given glass systems have superior properties than concretes and window glasses with respect to the radiation-shielding properties, thus confirming the availability of using these glasses as substitutes for some shielding concretes and commercial window glasses to improve radiation-shielding properties in the continuous energy region.

  11. Windows XP ends its life at CERN – register for Windows 7 training!

    CERN Multimedia

    Michał Kwiatek (IT-OIS)

    2012-01-01

    Windows XP has been around for over 10 years and it is now time to move on. At CERN, general support for Windows XP will end in December 2012, and before this date users are requested to schedule a migration to the next version of WindowsWindows 7.   Windows 7 is already well established at CERN – it is used by a large majority of users. In fact, there was a considerable user demand even before its official release in October 2009 and its adoption has been smooth. Users praise Windows 7 for its improved stability and a clear advantage on laptops is a much more efficient implementation of offline files. The migration to Windows 7 involves a reinstallation of the operating system. Files stored in user home folders on DFS will be immediately available after the reinstallation. Applications will be upgraded to more recent versions and in certain cases, an application may even be replaced by another application providing the same functionality. Microsoft Office suite is a good ...

  12. Energy saving using solar filters with iron base in windows; Ahorro de energia usando filtros solares con base en hierro en ventanas

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Galan, Jesus

    2003-07-01

    For the high temperature seasons, the radiation emitted by the sun later introduced through the windows, provokes a great thermal gain in the buildings causing within them an excessive warming. For the cold seasons, the exterior is at low temperature and the window is the main element through which the building losses the heat generated in the interior. The former turns out into an elevated energy consumption (mainly electricity) to obtain the conditions of human thermal comfort; this altogether with the growing energy demand that the residential, commercial and public sector experiences in Mexico, constitutes a serious problem. As a proposal for the solution to the problem of thermal discomfort generated in the interior of the buildings because of the inadequate properties of the construction materials, in this work were developed solar filers with iron base by means of which it is obtained a selective control of the solar radiation that is transmitted through the windows. These solar filters consist in thin films of FeO deposited over subtracts of lime-soda glass (the most used in our country for buildings) of 600 x 300 x 3 mm, by means of the sputtering technique added with a radio frequency and flat magnetrons, starting from a pure iron target of 127 x 254 mm and using an argon plasma. To obtain the desired oxidation degree in the iron, small samples (45 x 22 mm) were subjected to a heating process in a reducing atmosphere constituted by 50% H{sub 2} + 50% N{sub 2} for a period of time of 10 minutes at a temperature of 400 centigrade. The solar filters with the FeO base present a transmissibility of 30.2 % for the visible interval of the electromagnetic spectrum (radiation with a wave length of 380-780 nm) and of 39.9 % for the near infrared (radiation with a wave length of 780-2500 nm); while the reflectivity is of 17.5 and 19% for the visible intervals and near infrared of electromagnetic spectrum respectively. A simulation was performed by means of the

  13. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  14. Tokamak physics experiment: Diagnostic windows study

    International Nuclear Information System (INIS)

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented

  15. Mastering Windows 7 Deployment

    CERN Document Server

    Finn, Aidan; van Surksum, Kenneth

    2011-01-01

    Get professional-level instruction on Windows 7 deployment tools Enterprise-level operating system deployment is challenging and requires knowledge of specific tools. It is expected that Windows 7 will be extensively deployed in businesses worldwide. This comprehensive Sybex guide provides thorough coverage of the Microsoft deployment tools that were specifically created for Windows 7, preparing system administrators, MIS professionals, and corporate programmers to tackle the task effectively.Companies worldwide are expected to deploy Windows 7 as their enterprise operating system; system admi

  16. Analysis of regional total factor energy efficiency in China under environmental constraints: based on undesirable-minds and DEA window model

    Science.gov (United States)

    Zhang, Shuying; Li, Deshan; Li, Shuangqiang; Jiang, Hanyu; Shen, Yuqing

    2017-06-01

    With China’s entrance into the new economy, the improvement of energy efficiency has become an important indicator to measure the quality of ecological civilization construction and economic development. According to the panel data of Chinese regions in 1996-2014, the nearest distance to the efficient frontier of Undesirable-MinDS Xeon model and DEA window model have been used to calculate the total factor energy efficiency of China’s regions. Study found that: Under environmental constraints, China’s total factor energy efficiency has increased after the first drop in the overall 1996-2014, and then increases again. And the difference between the regions is very large, showing a characteristic of “the east is the highest, the west is lower, and lowest is in the central” finally, this paper puts forward relevant policy suggestions.

  17. Simulation of the effects of coated material SEY property on output electron energy distribution and gain of microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China); Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xingchao [North Night Vision Technology (NNVT) Co., Ltd., Nanjing 210110 (China); Tian, Jinshou, E-mail: tianjs@opt.ac.cn [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China); Liu, Chunliang [Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Hulin [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Chen, Ping [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Graduate School of Chinese Academy of Sciences (CAS), Beijing 100049 (China); Wei, Yonglin; Sai, Xiaofeng [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); Sun, Jianning; Si, Shuguang [North Night Vision Technology (NNVT) Co., Ltd., Nanjing 210110 (China); Wang, Xing; Lu, Yu [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi' an 710119 (China); and others

    2016-12-21

    To obtain a high spatial resolution of a image intensifier based on microchannel plate (MCP), the long tail in the exit energy distribution of the output electrons (EDOE) is undesirable. The existing solution is increasing the penetration depth of the MCP output electrode, which will result in a serious gain reduction. Coating the MCP output electrode with efficient secondary electron yield (SEY) materials is supposed to be an effective approach to suppress the unfavorable tail component in the EDOE without negative effects on the gain. In our work, a three-dimensional MCP single channel model is developed in CST STUDIO SUITE to systematically investigate the dependences of the EDOE and the gain on the SEY property of the coated material, based on the Finite Integral Technique and Monte Carlo method. The results show that besides the high SEY of the coated material, the low incident energy corresponding to the peak SEY is another essential element affecting the electron yield in the final stage of multiplication and suppressing the output energy spread.

  18. Low-energy office buildings using existing technology. Simulations with low internal heat gains

    Energy Technology Data Exchange (ETDEWEB)

    Flodberg, Kajsa; Blomsterberg, Aake; Dubois, Marie-Claude [Lund Univ. (Sweden). Div. of Energy and Building Design

    2012-11-01

    Although low-energy and nearly zero-energy residential houses have been built in Sweden in the past decade, there are very few examples of low-energy office buildings. This paper investigates the design features affecting energy use in office buildings and suggests the optimal low-energy design from a Swedish perspective. Dynamic simulations have been carried out with IDA ICE 4 on a typical narrow office building with perimeter cell rooms. The results from the parametric study reveal that the most important design features for energy saving are demand-controlled ventilation as well as limited glazing on the facade. Further energy-saving features are efficient lighting and office equipment which strongly reduce user-related electricity and cooling energy. Together, the simulation results suggest that about 48% energy can be saved compared to a new office building built according to the Swedish building code. Thus, it is possible, using a combination of simple and well-known building technologies and configurations, to have very low energy use in new office buildings. If renewable energy sources, such as solar energy and wind power, are added, there is a potential for the annual energy production to exceed the annual energy consumption and a net zero-energy building can be reached. One aspect of the results concerns user-related electricity, which becomes a major energy post in very low-energy offices and which is rarely regulated in building codes today. This results not only in high electricity use, but also in large internal heat gains and unnecessary high cooling loads given the high latitude and cold climate. (orig.)

  19. Studying The Effect of Window type On Power Spectrum Based On MATLAB

    Directory of Open Access Journals (Sweden)

    Soad T. Abed

    2012-06-01

    Full Text Available The representation that describes signal’s frequency behavior can be divided into two categories: linear representation such as the Fourier-transform and quadratic representation such as power spectrum. Power spectrum characterizes the signal’s energy distribution in the frequency domain, and can answer whether most of the power of the signal resides at low or high frequencies. By performing spectral analysis, some important features of signals can be discovered that are not obvious in the time waveform of the signal. One problem with spectrum analysis is that the duration of the signals is finite, although adjustable. Applying the FFT method to finite duration sequences can produce inadequate results because of “spectral leakage”, to reduce the spectral leakage FFT window function is applied. Power spectrum parameters are window size, window type, window over lap and number of FFT. The aim of this work is to demonstrate the effect of varying window type on the power spectrum using Mat Lab software. Five windows have been compared to study their effect on the spectrum of a typical data.

  20. Lower HVAC Costs | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. Increased Light & View | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  2. Condensation Resistance (CR) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Fact Sheets & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. State Fact Sheets | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. State Code Guides | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Low Conductance Spacers | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Provide Natural Light | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. Provide Fresh Air | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  9. Air Leakage (AL) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  10. Windows 95 Beslutningsguide

    DEFF Research Database (Denmark)

    Sørensen, Jens Otto

    1996-01-01

    Mange virksomheder der bruger pc'er står netop nu over for valget: Skal vi fortsætte med DOS/Windows 3.x som operativsystem, eller skal vi skifte til efterfølgeren Windows 95? Skal vi/kan vi skifte successivt, eller skal det være en "alt eller intet beslutning". Hvornår er det rigtige tidspunkt...... at skifte? Denne artikel vil forsøge at give en baggrundsviden om Windows 95, der kan hjælpe virksomhederne igennem denne beslutningsfase....

  11. Gabor windows supported on [-1,1] and compactly supported dual windows

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, H. O.; Rae Young, Kim

    2010-01-01

    window. More precisely, we show that if b window supported on [-N, N]. Under the additional assumption that g is continuous and only has a finite number of zeros on inverted left perpendicular-1, 1inverted right perpendicular, we...... characterize the frame property of {E(mb)T(n)g}(m,n is an element of Z). As a consequence we obtain easily verifiable criteria for a function g to generate a Gabor frame with a dual window having compact support of prescribed size....

  12. Designing for Windows 8 fundamentals of great design in Windows Store apps

    CERN Document Server

    Schooley, Brent

    2013-01-01

    Designing for Windows 8 is a fast-paced, 150-page primer on the key design concepts you need to create successful Windows 8 apps. This book will help you design a user interface that is both delightful and effective, feels 'right' to your users, and encapsulates a great Windows 8 experience. In this book, you will: Meet the building blocks of solid Windows 8 UI design in a well-designed sample app. Learn how to incorporate key design elements into your apps, such as the app bar, charms and subtle animations from the animation library. Find out how to deliver the core experience that your users

  13. Windows: Win/Win? or when are windows net energy sources?

    Energy Technology Data Exchange (ETDEWEB)

    Moller, S.K.; Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1994-12-31

    The energy balance of domestic glazing is quantified by using program CHEETAH to examine the effects of orientation, U-value, shading coefficient, overhangs, heating operation (times and temperature), curtain U-value, climate, and building thermal mass. The results are presented graphically, allowing the benefit of increasingly glazing area to be assessed quickly. It is shown that unfavourable combinations of these factors can lead to glazing that is a net loser of energy, even when it is facing north. (author). 1 tab., 17 figs., 6 refs.

  14. Gain Shift Corrections at Chi-Nu

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Tristan Brooks [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Massachusetts, Lowell, MA (United States). Dept. of Physics and Applied Physics; Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-30

    Ambient conditions have the potential to cause changes in liquid scintillator detector gain that vary with time and temperature. These gain shifts can lead to poor resolution in both energy as well as pulse shape discrimination. In order to correct for these shifts in the Chi-Nu high energy array, a laser system has been developed for calibration of the pulse height signals.

  15. Review of window and filter requirements for commissioning of the Advanced Photon Source insertion device beamlines

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Wang, Zhibi.

    1994-01-01

    The Advanced Photon Source (APS) is building 16 insertion device (ID) front ends for the first phase of the project. Eleven of these are to be equipped with the APS Undulator A and the other five with a Wiggler-A-type source. The Undulator A front ends are designed to operate in a ''windowless'' mode using an APS-designed differential pump. However, during beamline commissioning and early operations of the storage ring, it is prudent to install windows to ensure storage ring vacuum safety before easing into windowless operation. However, the window designed for this interim period may not meet all the needs of a user's scientific program. In the early phases of the project through commissioning and start of operations, such a window will permit the user to prepare for his program, while allowing both the user and the facility operators to gain experience for safe phasing into eventual windowless operations. In this report, we will present analysis and design options for a variety of windows particularly suited to either the APS Undulator A front ends or as user windows located in the first optics enclosure (FOE)

  16. From symmetry violation to dynamics: The charm window

    International Nuclear Information System (INIS)

    Appel, J.A.

    1997-12-01

    C.S. Wu observed parity violation in the low energy process of nuclear decay. She was the first to observe this symmetry violation at any energy. Yet, her work taught us about the form and strengths of the couplings of the massive weak boson. Today, we use the same approach. We look for very much higher mass-scale interactions through symmetry violations in the decays of charm quark systems. These charm decays provide a unique window to new physics

  17. Beginning Windows 8.1

    CERN Document Server

    Halsey, Mike

    2013-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever and the 8.1 update enhances the paradigm further. Beginning Windows 8.1 takes you through the new features and helps you get more out of the familiar to reveal the fullest possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes w

  18. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    International Nuclear Information System (INIS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-01-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission. (paper)

  19. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  20. Light Ion Beams for Energy Production in ADS

    Directory of Open Access Journals (Sweden)

    Paraipan Mihaela

    2018-01-01

    Full Text Available A comparative study of the energy efficiency of proton beams with an energy from 0.5 GeV to 4 GeV and light ion beams (7Li, 9Be, 11B, and 12C with energies from 0.25 AGeV to 1 AGeV in natural and enriched quasi-infinite U target is presented. The numerical results on the particle transport and interaction are obtained using the code Geant4. The following target optimization issues are addressed: the beam window dimensions, and the possibility to use a core from low Z materials. The best solution for ADS from the point of view of the energy gain and miniaturization is obtained for 7Li or 9Be beam with an energy of 0.3–0.4 AGeV and a target with Be core.

  1. Windows 7 is supported at CERN

    CERN Multimedia

    IT Department

    2010-01-01

    The new version of the Windows operating system - Windows 7 - is now officially supported at CERN. Windows 7 32-bit is now the default operating system for the new computers at CERN. What’s new in Windows 7 Users of Windows XP will find many new features and options. Users of Windows Vista will feel very familiar with one major difference: higher performance and better responsiveness of the operating system. Other enhancements include: refined Aero desktop that makes it easier to navigate between your different application windows; new snapping windows that allows user to resize a window simply by dragging it to the edge of the screen and “pin” that allows grouping and arranging often accessed applications on the taskbar. Windows 7 introduces the new concept of libraries – containers for user files that have links to different local or network folders. By default, users can see four libraries: Documents, Music, Pictures and Videos. These libraries point to the cor...

  2. GA microwave window development

    International Nuclear Information System (INIS)

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

  3. Music@Microsoft.Windows: Composing Ambience

    Science.gov (United States)

    Rickert, Thomas

    2010-01-01

    It is well known, of course, that all Windows versions except for 3.1 have a brief (four to six second) piece of music indicating that Windows is booted and ready for use. While the music may indicate Windows has booted, it bears no immediately discernable relation to the various uses we might actually put Windows to--working, gaming,…

  4. Windows 8 simplified

    CERN Document Server

    McFedries, Paul

    2012-01-01

    The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 360,000 copies sold, previous Windows editions are among the bestselling Visual books. This guide goes straight to the point with easy-to-follow, two-page tutorials for each task. With full-color screen shots and step-by-step directions, it gets beginners up and running on the newest version of Windows right away. Learn to work with the new interface and improved Internet Explorer, manage files, share your computer, and much more. Perfect fo

  5. Rails on Windows

    CERN Document Server

    Hibbs, Curt

    2007-01-01

    It's no secret that the entire Ruby onRails core team uses OS X as their preferreddevelopment environment. Becauseof this, it is very easy to findauthoritative information on the webabout using Rails on OS X. But the truthis that Windows developers using Railsprobably outnumber those using otherplatforms. A Windows development environmentcan be just as productive asany other platform. This is a guide to developing with Rubyon Rails under Windows. It won't teachyou how to write Ruby on Rails web applications,but it will show you what toolsto use and how to set them up to createa complete Rail

  6. Thermotropic layers for glazing of windows, facades and solar collectors. Final report; Thermotrope Systeme fuer Verglasung von Fenstern, Fassaden und Solarkollektoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, E.; Gerst, M.; Nitz, P. [BASF AG, Ludwigshafen am Rhein (Germany); Grochal, P.; Raicu, A. [Sto AG, Stuehlingen (Germany); Blessing, R.; Wilson, H.R. [INTERPANE Entwicklungs- und Beratungsgesellschaft mbH und Co. KG, Lauenfoerde (Germany); Wittwer, V.; Fuchs, K. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1997-02-01

    Increased use of solar energy is needed to save heating energy. In the German climate, however, passive use of solar energy with windows and facades in summer is also accompanied by the risk of overheating the living areas. Simple, automatically regulating systems to protect against overheating are not commercially available at present. The project, `Thermotropic Layers for Glazing of Windows, Facades and Solar Collectors`, aimed to develop thermotropic shading systems for windows, facades and solar collectors. Thermotropic hydrogels and polymer blends were developed, large-area samples produced and characterised under practice-relevant conditions. Building simulations proved that with the help of the polymer systems developed, heating costs can be saved by passive use of solar energy. The knowledge gained has not yet resulted in a commercially marketable product. Processing of large-area products and lifetime testing could not be brought to completion within the project duration. The project partners have thus lodged an application for funding by BMBF (German Ministry for Education, Science, Research and Technology) to continue the work. (orig.) [Deutsch] Zur Heizkostenersparnis ist der verstaerkte Einsatz von Sonnenenergie notwendig. In unserem Klima birgt die passive Nutzung von Sonnenenergie ueber Fenster und Fassaden im Sommer aber die Gefahr der Ueberhitzung der Wohnraeume. Einfache, selbstregelnde Systeme als Ueberhitzungsschutz sind zur Zeit am Markt nicht erhaeltlich. Das Projekt `Thermotrope Schichten fuer Verglasung von Fenstern, Fassaden und Solarkollektoren` hatte die Entwicklung von thermotropen Abschattungssystemen fuer Fenster, Fassaden und Sonnenkollektoren zum Ziel. Es wurden thermotrope Hydrogele und Polymerblends entwickelt, flaechige Muster hergestellt und in anwendungsnahen Pruefungen charakterisiert. Gebaeudesimulationen erbrachten den Nachweis, dass mit den entwickelten Polymersystemen eine Heizkostenersparnis durch passive

  7. Adjustment of Energy requirements in TEK; TEK= Technical Regulations under the Norwegian Planning and Building Act; Justering av energikrav i TEK

    Energy Technology Data Exchange (ETDEWEB)

    Thyholt, Marit; Dokka, Tor Helge; Schild, Peter; Grini, Catherine; Mysen, Mads; Sartori, Igor

    2008-07-01

    The National Office of Building Technology and Administration (BE) desired to review the consequences of different levels of ambition for requirements for heat gaining from vent air, as well as a possible requirement for energy efficient design of building fronts. In addition the energy scope in the regulation (TEK2007) should be adjusted according to the final establishment of a new calculation standard (Norwegian Standard - NS 3031:2007). A statement on these subjects has been carried out at SINTEF Byggforsk, and is described in this report. Adjustments of framework regulations.There are only minor differences between adjusted calculations according to NS 3031 and the original energy framework calculations, i.e. the difference for net energy need amounts to the size of 0 to 6 percent. Heat gain.The report shows that it is possible - both from techical and financial considerations - to increase the requirement level for heat gain from vent air for most categories of buildings. This implies a sharpening of the annual median temperature efficiency from 70 % to 80 %, for all building categories, except from hospitals, institutions and light industry/workshops. A possible sharpening of regulations for heat gain in houses has not been evaluated. Depending on building category a sharpening of regulations for heat gain from vent air will imply that net energy need will be reduced on a scale of 20 to 30 kWh/m2 per annum. The report demonstrates that despite a possible sharpening of the requirements on energy efficiency for heat recovery devices does not prevent the use of large areas of windows and window panes. Vulnerability analyses show that deviations from the prerequisites in the basis for the energy framework concerning air quantities and air temperatures give the possibility of weakening the building's heating characteristics. Building fronts. Different methods for added requirements for building fronts have been examined. The aim has been to find methods and

  8. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Bridge (P2DAB) converter, i.e. low-voltage (LV) side parallel and high-voltage (HV) side series, is proposed to achieve high voltage gain and low current stress over switching devices and transformer windings. Given the unmodified P2DAB power stage, by regulating the phase-shift angle between......Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...... the paralleled active bridges, the power equations and voltage gain are then modified, and therefore the operation range can be extended effectively. The operating principles of the proposed converter and its power characteristics under various operation modes are studied, and the design constraints...

  9. Optimized tuning of contention window for IEEE 802.11 WLAN

    African Journals Online (AJOL)

    In wireless networks, the size of Contention Window (CW) plays a vital role as it changes the ... This leads to proper scheduling of transmission when more .... As a consequent, protocol overhead, processing time and energy consumption are.

  10. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...

  11. Windows Home Server users guide

    CERN Document Server

    Edney, Andrew

    2008-01-01

    Windows Home Server brings the idea of centralized storage, backup and computer management out of the enterprise and into the home. Windows Home Server is built for people with multiple computers at home and helps to synchronize them, keep them updated, stream media between them, and back them up centrally. Built on a similar foundation as the Microsoft server operating products, it's essentially Small Business Server for the home.This book details how to install, configure, and use Windows Home Server and explains how to connect to and manage different clients such as Windows XP, Windows Vist

  12. Teach yourself visually Windows 10

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 visually with step-by-step instructions Teach Yourself VISUALLY Windows 10 is the visual learner's guide to the latest Windows upgrade. Completely updated to cover all the latest features, this book walks you step-by-step through over 150 essential Windows tasks. Using full color screen shots and clear instruction, you'll learn your way around the interface, set up user accounts, play media files, download photos from your camera, go online, set up email, and much more. You'll even learn how to customize Windows 10 to suit the way you work best, troubleshoot and repair common

  13. Energy-efficient relay selection and optimal power allocation for performance-constrained dual-hop variable-gain AF relaying

    KAUST Repository

    Zafar, Ammar; Radaydeh, Redha Mahmoud Mesleh; Chen, Yunfei; Alouini, Mohamed-Slim

    2013-01-01

    This paper investigates the energy-efficiency enhancement of a variable-gain dual-hop amplify-and-forward (AF) relay network utilizing selective relaying. The objective is to minimize the total consumed power while keeping the end-to-end signal

  14. A Microsoft Windows version of the MCNP visual editor

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Carter, L.L.; Pfohl, J.

    1999-01-01

    Work has started on a Microsoft Windows version of the MCNP visual editor. The MCNP visual editor provides a graphical user interface for displaying and creating MCNP geometries. The visual editor is currently available from the Radiation Safety Information Computational Center (RSICC) and the Nuclear Energy Agency (NEA) as software package PSR-358. It currently runs on the major UNIX platforms (IBM, SGI, HP, SUN) and Linux. Work has started on converting the visual editor to work in a Microsoft Windows environment. This initial work focuses on converting the display capabilities of the visual editor; the geometry creation capability of the visual editor may be included in future upgrades

  15. Windows registry forensics advanced digital forensic analysis of the Windows registry

    CERN Document Server

    Carvey, Harlan

    2011-01-01

    Harlan Carvey brings readers an advanced book on Windows Registry - the most difficult part of Windows to analyze in forensics! Windows Registry Forensics provides the background of the Registry to help develop an understanding of the binary structure of Registry hive files. Approaches to live response and analysis are included, and tools and techniques for postmortem analysis are discussed at length. Tools and techniques will be presented that take the analyst beyond the current use of viewers and into real analysis of data contained in the Registry. This book also has a DVD containing tools, instructions and videos.

  16. Influence of Shading on Cooling Energy Demand

    Science.gov (United States)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  17. Findings relating to the use of ACPI in Windows servers; Erfahrungen in der Anwendung von ACPI bei Windows-Servern

    Energy Technology Data Exchange (ETDEWEB)

    Huser, A.; Grieder, T.

    2004-07-01

    In a practical test, the possibilities and limits of the use of energy-saving sleep modes were compiled for servers of the lower price segment. Many of these servers are used by small to medium-sized enterprises and are left running around the clock, although they are not used at night or during the week-end. The implementation of the sleep modes is based on the so-called ACPI specification (Advanced Configuration and Power Interface), which was created by an industrial consortium. The most advanced of these is the implementation for the Windows Server 2003 operating system. With Linux, the sleep modes are not yet fully available. The test was therefore carried out with the Windows Server 2003 operating system. In many applications, and in particular when the servers are used as file or web servers, no operational disadvantages result from the use of the rest states. By making use of the lowest possible sleep mode during the night and at week-ends, the energy consumption of the server can be halved. For users, the results have been summarised in a two-page fact sheet, which is enclosed with this report as an appendix. (author)

  18. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  19. Solar control window film: report and manual

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A method has been developed by which the energy and energy cost savings associated with application of solar control film to windows of commercial and institutional buildings can be calculated. This method has been prepared as a separate, self-contained user's manual. It is simple and essentially non-technical, based on Toronto conditions, and is sufficiently accurate to provide a basis for economic feasibility analysis. The report explains the method in depth and compares it to alternate methods developed by the solar film industry. Variables which affect film performance, the savings that result, and limitations on the use of solar film as an energy conserving method are discussed. 8 refs., 2 figs., 1 tab.

  20. Effectiveness and Discussion of Ventilation Design with Automatic Revolving Window

    Directory of Open Access Journals (Sweden)

    Chang Jing Yi

    2016-01-01

    Full Text Available This paper aims to improve and discuss the effectiveness of automatic revolving window ventilation on human comfort, where the temperature sensor mounted indoors gives the signal to start the stepping motor of the revolving window. There is a controller for automatic regulation according to the difference between the preset temperature and indoor temperature, where the air flow of ventilating fan imports outside air to take excess heat away from the room, in order to reduce the indoor temperature. The revolving window opening angle is simulated and analyzed, and the impact of different air rates on the indoor temperature is analyzed. This system can regulate the indoor temperature to effectively reach the optimal human comfort temperature, and can reduce the frequency of using air conditioning, in order to attain the goals of energy saving, carbon reduction, and environmental protection.

  1. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  2. Window Selection Tool | Efficient Windows Collaborative

    Science.gov (United States)

    Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Window Selection Tool will take you through a series of design conditions pertaining to your design and

  3. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  4. Optical gain and gain suppression of quantum-well lasers with valence band mixing

    International Nuclear Information System (INIS)

    Ahn, D.; Chuang, S.L.

    1990-01-01

    The effects of valence band mixing on the nonlinear gains of quantum-well lasers are studied theoretically. The authors' analysis is based on the multiband effective-mass theory and the density matrix formalism with intraband relaxation taken into account. The gain and the gain-suppression coefficient of a quantum-well laser are calculated from the complex optical susceptibility obtained by the density matrix formulation with the theoretical dipole moments obtained from the multiband effective-mass theory. The calculated gain spectrum shows that there are remarkable differences (both in peak amplitude and spectral shape) between our model with valence band mixing and the conventional parabolic band model. The shape of the gain spectrum calculated by the authors' model becomes more symmetric due to intraband relaxation together with nonparabolic energy dispersions and is closer to the experimental observations when compared with the conventional method using the parabolic band model and the multiband effective-mass calculation without intraband relaxation. Both give quite asymmetric gain spectra. Optical intensity in the GaAs active region is estimated by solving rate equations for the stationary states with nonlinear gain suppression. The authors calculate the mode gain for the resonant mode including the gain suppression, which results in spectral hole burning of the gain spectrum

  5. Financing renewable energies. Windows for new opportunities

    International Nuclear Information System (INIS)

    Pontenagel, I.

    1999-01-01

    Renewable Energies are recognized as indispensable for a sustainable energy economy. Their progressive market introduction, however, depend very much on their economic competitiveness. A wide range of Renewable Energies are already cost competitive today. But still a shortage of information as well as mental and structural barriers are hindering their rapid market penetration. This volume publishes the results of two conferences, held by EUROSOLAR and dealing with the problems of Financing Renewable Energies. In five chapters - Banking Concepts for Financing Renewable Energies - Public Frameworks for Renewable Energy Market Introduction - Financing Renewable Energies in Developing Countries - Green Power - Market Structures and Players - Renewable Energy Financing Applications a variety of new concepts and fresh ideas are presented. (orig.)

  6. National Fenestration Rating Council (NFRC) | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  7. U-Factor (U-value) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. Low energy housing in Ticino - The 'Vitali-Velti' house

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.; Generelli, M. [SUPSI-DCT/LEEE-UREC, Trevano-Canobbio (Switzerland); Velti, A; Vitali, B. [architetto, Monte Carasso (Switzerland)

    2003-02-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at work done concerning low energy consumption housing in southern Switzerland. Thanks to large windows in the south-east facade and a well insulated building envelope, the passive solar gains are quoted as providing significant contributions to heating. The remaining heating requirements are covered by a closed fireplace and an electric radiator. Heat is distributed by free convection inside the house, A double-flux ventilation system with heat recovery ensures air renewal (3 volumes per day). Each house has a solar hot water system with electric auxiliary energy supply. Space heating requirements are discussed and compared with the standard values as defined in Swiss energy standards and the conventional auxiliary space heating energy required for the houses is noted.

  9. Right-to-left-shunt detected by c-TCD using the orbital window in comparison with temporal bone windows.

    Science.gov (United States)

    Kobayashi, Kazuto; Kimura, Kazumi; Iguchi, Yasuyuki; Sakai, Kenichirou; Aoki, Junya; Iwanaga, Takeshi; Shibazaki, Kensaku

    2012-01-01

    There have been some reports on right-to-left shunt as a cause of cryptogenic stroke. Although contrast transcranial Doppler (c-TCD) can detect RLS, an insufficient temporal window has occasionally restricted its applicability. Thus, we compared the rates of detecting RLS among temporal windows for the middle cerebral arteries (MCAs) and the orbital window for the internal carotid artery (ICA) on c-TCD. We used c-TCD to detect RLS in patients with suspected ischemic stroke. We enrolled patients who had both sufficient bilateral temporal windows for MCAs and a right orbital window for ICA and performed c-TCD using all three windows simultaneously. We enrolled 106 consecutive patients and identified microembolic signals (MES) in 30 (28%) of them. Among these 30 patients, 15 had MES from all 3 windows. When these 30 patients were defined as being positive for RLS, the rates of detection were 67%, 73%, and 80% from the right temporal, left temporal, and right orbital windows, respectively (P= .795). The right orbital window as well as the temporal window for c-TCD could detect RLS. Insonation from the orbital window should be useful for patients who lack temporal windows. Copyright © 2010 by the American Society of Neuroimaging.

  10. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  11. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  12. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  13. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  14. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  15. Mastering Microsoft Windows Server 2008 R2

    CERN Document Server

    Minasi, Mark; Finn, Aidan

    2010-01-01

    The one book you absolutely need to get up and running with Windows Server 2008 R2. One of the world's leading Windows authorities and top-selling author Mark Minasi explores every nook and cranny of the latest version of Microsoft's flagship network operating system, Windows Server 2008 R2, giving you the most in-depth coverage in any book on the market.: Focuses on Windows Windows Server 2008 R2, the newest version of Microsoft's Windows' server line of operating system, and the ideal server for new Windows 7 clients; Author Mark Minasi is one of the world's leading Windows authorities and h

  16. Studies on energy gain of muon catalyzed hybrid D-D Reactor and it comparison to D-T system

    International Nuclear Information System (INIS)

    Eskandari, M.R.; Hoseine-Motlagh, S.N.; Faghihi, F.

    1998-01-01

    Regarding the advantages of hybrid fusion reactors, in most recent studies, the energy gain of muon catalyzed D-T hybrid reactors are studied. Knowing advantages of D-D fuel such as availability, not being radio-active, no tritium inventory requirement and transport problems, the muon catalyzed hybrid D-D reactor (μCHDDR) gain is calculated here for a given net reaction by solving its dynamical equations for various deuterium densities. It is shown theμCHDDR has advantages even for previously suggested similar D-T reactor

  17. Application of evaporative cooling on the condenser of window-air-conditioner

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim

    2007-01-01

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%

  18. Application of evaporative cooling on the condenser of window-air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, Ebrahim [Shahid Chamran University, Department of Mechanical Engineering, Golestan St., Ahwaz, Khoozestan 61355 (Iran, Islamic Republic of)]. E-mail: hajidae_1999@yahoo.com

    2007-08-15

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%.

  19. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    the absorber tubes. For this reason, the PV/T hybrid is not recommended over other options in new installations. The hybrid solar window is evaluated for a horizontal skylight and south and east facing vertical windows in Minneapolis, MN. The predicted visible transmittance for the solar window is 0.66 to 0.73 for single glazed systems and 0.61 to 0.67 for double glazed systems. The solar heat gain coefficient and the U-factor for the window are comparable to existing glazing technology. Annual thermal efficiencies of up to 24% and 26% are predicted for the vertical window and the horizontal skylight respectively. Experimental measurements of the solar thermal component of the window confirm the trends of the model. In conclusion, the hybrid solar window combines the functionality of an energy efficient fenestration system with hybrid thermal energy generation to provide a compelling solution towards sustainable design of the built environment.

  20. Schematic Window Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this IRAD is to produce a generic launch window analyzer (SWM) that allows for large-scale rapid analysis of a launch window and orbit design trade space....

  1. Windows 7 resource kit

    CERN Document Server

    Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

    2009-01-01

    In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

  2. Composition of 12-18th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings

    International Nuclear Information System (INIS)

    Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwe, Danielle

    2007-01-01

    A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th -18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making

  3. Composition of 12-18 th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings

    Science.gov (United States)

    Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwé, Danielle

    2007-07-01

    A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th-18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making.

  4. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  5. Relative contributions of energy expenditure on physical activity, body composition and weight gain to the evolution of impaired glucose tolerance to Frank diabetes

    International Nuclear Information System (INIS)

    Forrester, T.; Wilks, R.; Jahoor, F.; Adeyemo, A.

    1999-01-01

    In modem technological societies the requirement for physical work is diminished and access to food is unrestricted. Under these circumstances a large proportion of the population will gain weight and develop obesity and diabetes. At the individual level, genetic and behavioural factors must combine to lead to an imbalance between energy intake and its expenditure. Weight gain, especially rapid weight gain in a population appears to increase the risk of diabetes sharply. Thus understanding the route to weight gain and obesity, and the modulatory effects of physical activity on development of glucose intolerance is critical to credible intervention strategies to reverse or prevent diabetes in populations especially those in transitional societies. In this proposal we will examine the quantitative importance of non-resting energy expenditure (EE) in populations with rising levels of obesity and high prevalence of diabetes. (author)

  6. Method for design of low-energy type houses based on simulations of indoor environment and energy use

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies

    2013-01-01

    with current and future energy requirements, the influence of window size, type and orientation on space heating demand and thermal indoor environment were investigated in EnergyPlus by comparing a window design with an even distribution (same glazingto-floor-area in each room) with a traditional window design....... Charts illustrating a space of solutions for space heating demand defined by targets for daylight and thermal indoor environment were used to discuss the effect of different window parameters and potential conflicts related to window design were identified in deep or narrow southoriented side-lit rooms...

  7. Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance

    Directory of Open Access Journals (Sweden)

    Yeo Beom Yoon

    2014-09-01

    Full Text Available The accuracy and speed of the daylighting analysis developed for use in EnergyPlus is better than its predecessors. In EnergyPlus, the detailed method uses the Split-flux algorithm whereas the DElight method uses the Radiosity algorithm. Many existing studies have addressed the two methods, either individually or compared with other daylight analysis methods like Ray tracing but still there is lack of detailed comparative study of these two methods. Our previous studies show that the Split-flux method overestimates the illuminance, especially for the areas away from the window. The Radiosity method has the advantage of accurately predicting this illuminance because of how it deals with the diffuse light. For this study, the EnergyPlus model, which has been calibrated using data measured in a real building in previous studies, has also been used. The calibrated model has a south oriented window only. This model is then used to analyze the interior illuminance inside the room for north, west and east orientation of the window by rotating the model and by changing the wall reflectance of the model with south oriented window. Direct and diffuse component of the illuminance as well as the algorithms have been compared for a detailed analysis.

  8. 50-Year Window to Establish a Space Faring Civilization

    Science.gov (United States)

    Howe, A. Scott

    2015-01-01

    Humankind may only have a short window of 50 years to become a space-faring civilization, after which time the opportunity to do so may become too difficult or impractical to pursue. Current policies for space exploration and infrastructure development implicitly assume a gradualistic approach to technology, budgets, and mission execution -- the common thought has been that there will be plenty of time in humankind's future to become a space-based species, and whatever we are unable to accomplish will be borne by the generations that follow. However, considering natural events, available energy, and human tendencies, the timing to make the most effective effort to achieve multi-planet status might be now, before momentum is lost and we become distracted by Peak Oil and changing energy economies -- restarting a space program after such turmoil may be more difficult than would be practical without cheap, storable, high-energy density petroleum. "Space-faring civilization" is defined as an economically profitable space-based economy that demands the presence of humans off-world in order to sustain a high level of prosperity. An initial foothold for a space-based economy that would fit within the 50-year window might include Earth dependence on rare-earth elements or other hard-to-obtain minerals mined from moons or asteroids, or a permanent settlement on another planet. Using published sources, notional mass and energy requirements for a minimal self-sustaining Mars settlement is calculated, and the number of launch vehicles discussed. Setting the launch schedule to match that of current NASA projections, it could take more than 26 years of semi-annual launches to build up such a self-sustaining human settlement -- a cost and commitment that has not been acknowledged nor planned for. Considering the time required to establish a multi-planet species, this paper frames the required window of decision that, if not taken, could condemn the species to Earth subject to

  9. Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-01-01

    Full Text Available The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.

  10. Windows 7 The Missing Manual

    CERN Document Server

    Pogue, David

    2010-01-01

    In early reviews, geeks raved about Windows 7. But if you're an ordinary mortal, learning what this new system is all about will be challenging. Fear not: David Pogue's Windows 7: The Missing Manual comes to the rescue. Like its predecessors, this book illuminates its subject with reader-friendly insight, plenty of wit, and hardnosed objectivity for beginners as well as veteran PC users. Windows 7 fixes many of Vista's most painful shortcomings. It's speedier, has fewer intrusive and nagging screens, and is more compatible with peripherals. Plus, Windows 7 introduces a slew of new features,

  11. Microsoft Windows Operating System Essentials

    CERN Document Server

    Carpenter, Tom

    2012-01-01

    A full-color guide to key Windows 7 administration concepts and topics Windows 7 is the leading desktop software, yet it can be a difficult concept to grasp, especially for those new to the field of IT. Microsoft Windows Operating System Essentials is an ideal resource for anyone new to computer administration and looking for a career in computers. Delving into areas such as fundamental Windows 7 administration concepts and various desktop OS topics, this full-color book addresses the skills necessary for individuals looking to break into a career in IT. Each chapter begins with a list of topi

  12. Electron capture and energy-gain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taulbjerg, K.

    1989-01-01

    The applicability of translation energy spectroscopy as a tool to determine individual reaction cross sections in atomic collisions is analyzed with special emphasis on the electron capture process in highly charged ion collisions. A condition is derived to separate between higher collision energies where translation energy spectroscopy is problem free and lower energies where strong overlap of individual spectra features prohibits an analysis of the total translation energy spectrum by means of a simple deconvolution procedure. 8 refs., 6 figs.

  13. Rigid thin windows for vacuum applications

    Science.gov (United States)

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  14. Windows 8.1 for dummies

    CERN Document Server

    Rathbone, Andy

    2013-01-01

    The bestselling book on Windows, now updated for the new 8.1 features Microsoft has fine-tuned Windows 8 with some important new features, and veteran author Andy Rathbone explains every one in this all-new edition of a long-time bestseller. Whether you're using Windows for the first time, upgrading from an older version, or just moving from Windows 8 to 8.1, here's what you need to know. Learn about the dual interfaces, the new Start button, how to customize the interface and boot operations, and how to work with programs and files, use the web and social media, manage music and photos, and

  15. Windows 7 the definitive guide

    CERN Document Server

    Stanek, William R

    2010-01-01

    This book provides everything you need to manage and maintain Windows 7. You'll learn all of the features and enhancements in complete detail, along with specifics for configuring the operating system to put you in full control. Bestselling author and Windows expert William Stanek doesn't just show you the steps you need to follow, he also tells you how features work, why they work, and how you can customize them to meet your needs. Learn how to squeeze every bit of power out of Windows 7 to take full advantage of its features and programs. Set up, customize, and tune Windows 7-Optimize its

  16. Working with Windows 7 at CERN (EN)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Overview of new concepts and user interface changes in Windows 7 as compared with older versions of Windows: XP or Vista. Availability of Windows 7 at CERN and its integration with CERN Windows infrastructure will be discussed.

  17. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows.

    Science.gov (United States)

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-08-22

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.

  18. Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control

    Directory of Open Access Journals (Sweden)

    Boe-Shong Hong

    2015-09-01

    Full Text Available This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV L2-gain control. The observer embedded into this multi-objective controller no longer assumes Kalman-filtering structure, and structural conservatism is thus removed. A full-spectrum set of experiments is performed. The results reveal that the feedback design significantly improves energy-motion management.

  19. Mastering Windows Server 2012 R2

    CERN Document Server

    Minasi, Mark; Booth, Christian; Butler, Robert; McCabe, John; Panek, Robert; Rice, Michael; Roth, Stefan

    2013-01-01

    Check out the new Hyper-V, find new and easier ways to remotely connect back into the office, or learn all about Storage Spaces-these are just a few of the features in Windows Server 2012 R2 that are explained in this updated edition from Windows authority Mark Minasi and a team of Windows Server experts led by Kevin Greene. This book gets you up to speed on all of the new features and functions of Windows Server, and includes real-world scenarios to put them in perspective. If you're a system administrator upgrading to, migrating to, or managing Windows Server 2012 R2, find what you need to

  20. Microsoft Windows Intune 20 Quickstart Administration

    CERN Document Server

    Overton, David

    2012-01-01

    This book is a concise and practical tutorial that shows you how to plan, set up and maintain Windows Intune and manage a group of PCs. If you are an administrator or partner who wants to plan, set up and maintain Windows Intune and manage a group of PCs then this book is for you . You should have a basic understanding of Windows administration, however, knowledge of Windows Intune would not be required.

  1. Travailler avec Windows 7 au CERN

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). Le plan de migration à Windows 7 sera aussi débattu.

  2. Travailler avec Windows 7 au CERN

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). Le plan de migration à Windows 7 sera aussi débattu.

  3. Windows VPN Set Up | High-Performance Computing | NREL

    Science.gov (United States)

    Windows VPN Set Up Windows VPN Set Up To set up Windows for HPC VPN, here are the steps: Download your version of Windows. Note: We only support the the Endian Connect software when connecting to the a VPN connection to the HPC systems. Windows Version Connect App Windows 10

  4. Energy Saver: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  5. Energy Savers: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  6. Energy Savers: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  7. Energy Savers Tips on Saving Energy& Money at Home

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances

  8. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng; De La Cruz, Joshua A.; Hess, Andrew J.; Yang, Ronggui; Smalyukh, Ivan I.

    2018-06-01

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels. Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.

  9. The Nicest way to migrate your Windows computer ( The Windows 2000 Migration Task Force)

    CERN Document Server

    2001-01-01

    With Windows 2000, CERN users will discover a more stable and reliable working environment and will have access to all the latest applications. The Windows 2000 Migration Task Force - a representative from each division.

  10. GAIN Technology Workshops Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  11. GAIN Technology Workshops Summary Report

    International Nuclear Information System (INIS)

    Braase, Lori Ann

    2016-01-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  12. Peliohjelmointi Windows Phone 8:lle

    OpenAIRE

    Bäckström, Toni

    2014-01-01

    Tässä insinöörityössä tutustutaan Windows Phone 8 -mobiilikäyttöjärjestelmään peliohjelmoijan näkökulmasta. Työn tavoitteena oli erityisesti esitellä Microsoftin itse kehittämiä XNA- ja DirectX-peliohjelmointikirjastoja teoriassa ja käytännössä. Työn aluksi käydään läpi hieman Windows Phonen historiaa ja yleisesti kehittämistä Windows Phone 8:lle. Tämän jälkeen luodaan katsaus Windows Phone 8:aan pelialustana. Työn suurin osuus on XNA:n ja DirectX:n esittely teoriassa; kummastakin men...

  13. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  14. The Development of a Hibachi Window for Electron Beam Transmission in a KrF Laser

    International Nuclear Information System (INIS)

    Gentile, C.A.; Parsells, R.; Butler, J.E.; Sethian, J.D.; Ciebiera, L.; Hegeler, F.; Jun, C.; Langish, S.; Myers, M.

    2003-01-01

    In support of Inertial Fusion Energy (IFE), a 150 (micro)m thick silicon (Si) wafer coated on one side with a 1.2 (micro)m nanocrystalline diamond foil is being fabricated as an electron beam transmission (hibachi) window for use in KrF lasers. The hibachi window separates the lasing medium from the electron beam source while allowing the electron beam to pass through. The hibachi window must be capable of withstanding the challenging environment presented in the lasing chamber, which include: fluorine gas, delta pressure >2 atm at 5 Hz, and a high heat flux due to the transmission of electrons passing through the foil. Tests at NRL/Electra and at PPPL have shown that a device employing these novel components in the stated configuration provide for a robust hibachi window with structural integrity

  15. Imaging windows for long-term intravital imaging

    Science.gov (United States)

    Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco

    2014-01-01

    Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure. PMID:28243510

  16. Assessment of the Portuguese building thermal code: Newly revised requirements for cooling energy needs used to prevent the overheating of buildings in the summer

    International Nuclear Information System (INIS)

    Oliveira Panao, Marta J.N.; Camelo, Susana M.L.; Goncalves, Helder J.P.

    2011-01-01

    In this paper, cooling energy needs are calculated by the steady-state methodology of the Portuguese building thermal code. After the first period of building code implementation, re-evaluation according to EN ISO 13790 is recommended in order to compare results with the dynamic simulation results. From these analyses, a newly revised methodology arises including a few corrections in procedure. This iterative result is sufficiently accurate to calculate the building's cooling energy needs. Secondly, results show that the required conditions are insufficient to prevent overheating. The use of the gain utilization factor as an overheating risk index is suggested, according to an adaptive comfort protocol, and is integrated in the method used to calculate the maximum value for cooling energy needs. This proposed streamlined method depends on reference values: window-to-floor area ratio, window shading g-value, integrated solar radiation and gain utilization factor, which leads to threshold values significantly below the ones currently used. These revised requirements are more restrictive and, therefore, will act to improve a building's thermal performance during summer. As a rule of thumb applied for Portuguese climates, the reference gain utilization factor should assume a minimum value of 0.8 for a latitude angle range of 40-41 o N, 0.6 for 38-39 o N and 0.5 for 37 o N. -- Highlights: → A newly revised methodology for Portuguese building thermal code. → The use of the gain utilization factor as an overheating risk index is suggested. → The proposed streamlined method depends on reference values. → Threshold maximum values are significantly below the ones currently used.

  17. Optical materials technology for energy efficiency and solar energy conversion XI: Chromogenics for smart windows; Proceedings of the Meeting, Toulouse, France, May 19, 21, 1992

    International Nuclear Information System (INIS)

    Hugot-le Goff, A.; Granqvist, C.G.; Lampert, C.M.

    1992-01-01

    The present conference discusses electrochromic tungsten oxide and nickel oxide films, electrochromic smart window devices, and thermochromic and variable light-scattering materials. Attention is given to the structural and physical properties of WO3 films prepared by CVD, the degradation of electrochromic amorphous WO3 films after coloration, the electrochromic mechanism of RF diode-sputtered nickel oxide films, and the optical and electrochemical properties of CeO2 and CeO2-TiO2 coatings. Also discussed are new solid electrolytes for electrochromic smart windows, electrochromic glazing, a smart window using a proton-conducting polymer as an electrolyte, and the electrochromism of colloidal WO3 and IrO2

  18. Temporal Gain Correction for X-Ray Calorimeter Spectrometers

    Science.gov (United States)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.

    2016-01-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  19. Windows 7 A quick, hands-on introduction

    CERN Document Server

    Lee, Wei-Meng

    2009-01-01

    This compact book offers the quickest path for Windows users to get started with Microsoft's Windows 7 operating system. You get the essential information you need to upgrade or install the system and configure it to fit your activities, along with a tour of Windows 7's features and built-in applications. Microsoft has learned from the mistakes of Windows Vista, and Windows 7 shows it-this new OS is much faster and more stable. With Windows 7: Up and Running, you'll learn what's new and what's changed from XP and Vista, and get advice on ways to use this system for work, entertainment, inst

  20. Windows 8.1 for seniors for dummies

    CERN Document Server

    Weverka, Peter

    2013-01-01

    Seniors, here's what you need to get up and running on Windows 8.1 Microsoft, now a little older and wiser, is back with Windows 8.1, the revamped version that brings fresh changes and welcome improvements to the Windows 8 operating system. And now you savvy seniors can get the very most out of this easier-to-use Windows 8.1 with our friendly new guide. Using large print that makes the book easier to read plus magnified screen shots to help make Windows less intimidating, this book walks you through common tasks and show you how to get things done in fine style. Helps you get to know Windows

  1. Development and Investigation of Evacuated Windows Based on Monolithic Silica Xerogel Spacers

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    hydrophobic it has to be protected against liquid water, that will demolish the pore structure of the material due to the surface tensions. For the application in window glazings the protection against liquid water is formed by placing the xerogel in between two sheets of glass and sealing the rim...... conductivity. Furthermore, properties necessary for the application (task 3) were investigated: Thermal expansion, elastic modulus and long term (inelastic) creep as well as water vapour adsorption and hence condensation risk.The thermal properties make the monolithic silica xerogel a well suited material...... with the low thermal conductivity offers good possibilities for production of energy efficient windows. For the xerogel window system it is necessary to have the xerogel sufficiently dried, if not hydrophobic xerogels are used, because residual water vapour adsorbed in the material will cause condensation...

  2. Windows Server 2012 R2 administrator cookbook

    CERN Document Server

    Krause, Jordan

    2015-01-01

    This book is intended for system administrators and IT professionals with experience in Windows Server 2008 or Windows Server 2012 environments who are looking to acquire the skills and knowledge necessary to manage and maintain the core infrastructure required for a Windows Server 2012 and Windows Server 2012 R2 environment.

  3. A window on urban sustainability

    International Nuclear Information System (INIS)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-01-01

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced

  4. A window on urban sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  5. Travailler avec Windows 7 au CERN (FR)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). La mise à disposition de Windows 7 au CERN et son intégration dans l’infrastructure de Windows au CERN seront présentées.

  6. 30 CFR 18.30 - Windows and lenses.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...

  7. 49 CFR 238.114 - Rescue access windows.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Rescue access windows. 238.114 Section 238.114... § 238.114 Rescue access windows. (a) Number and location. Except as provided in paragraph (a)(1)(ii) of... rescue access windows. At least one rescue access window shall be located in each side of the car...

  8. Gain-switched all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, M.; Nyga, S.

    2013-01-01

    pulse energy is 20 μJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 μJ while keeping......Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted...

  9. Mastering Windows Server 2008 Networking Foundations

    CERN Document Server

    Minasi, Mark; Mueller, John Paul

    2011-01-01

    Find in-depth coverage of general networking concepts and basic instruction on Windows Server 2008 installation and management including active directory, DNS, Windows storage, and TCP/IP and IPv4 networking basics in Mastering Windows Server 2008 Networking Foundations. One of three new books by best-selling author Mark Minasi, this guide explains what servers do, how basic networking works (IP basics and DNS/WINS basics), and the fundamentals of the under-the-hood technologies that support staff must understand. Learn how to install Windows Server 2008 and build a simple network, security co

  10. Microsoft Windows 7 Administration Instant Reference

    CERN Document Server

    Panek, William

    2010-01-01

    An on-the-spot reference for Windows 7 administrators. Hundreds of thousands of IT administrators, network administrators, and IT support technicians work daily with Windows 7. This well-organized, portable reference covers every facet of Windows 7, providing no-nonsense instruction that is readily accessible when you need it. Designed for busy administrators, it features thumb tabs and chapter outlines to make answers easy to find.: Windows 7 administrative and support personnel need quick answers to situations they confront each day; this Instant Reference is designed to provide information,

  11. Production management of window handles

    Directory of Open Access Journals (Sweden)

    Manuela Ingaldi

    2014-12-01

    Full Text Available In the chapter a company involved in the production of aluminum window and door handles was presented. The main customers of the company are primarily companies which produce PCV joinery and wholesalers supplying these companies. One chosen product from the research company - a single-arm pin-lift window handle - was described and its production process depicted technologically. The chapter also includes SWOT analysis conducted in the research company and the value stream of the single-arm pin-lift window handle.

  12. Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza; Heiselberg, Per

    2013-01-01

    equation. This equation involves a discharge coefficient of the window. The value of the discharge coefficient is the major cause of erroneous estimation of airflow rates. This paper focuses on the experimental study of the discharge coefficient (CD) of a centre-pivot roof window. The measurements were...... performed in the energy flex house of the Technological Institute - Denmark. The discharge coefficient is evaluated for both inflows and outflows. It is concluded that the use of single value of CD for different flap opening angles is one of the cause of erroneous estimation. Likewise, the value of CD...

  13. Exam 70-411 administering Windows Server 2012

    CERN Document Server

    Course, Microsoft Official Academic

    2014-01-01

    Microsoft Windows Server is a multi-purpose server designed to increase reliability and flexibility of  a network infrastructure. Windows Server is the paramount tool used by enterprises in their datacenter and desktop strategy. The most recent versions of Windows Server also provide both server and client virtualization. Its ubiquity in the enterprise results in the need for networking professionals who know how to plan, design, implement, operate, and troubleshoot networks relying on Windows Server. Microsoft Learning is preparing the next round of its Windows Server Certification program

  14. Impact of three window configurations on daylight conditions

    DEFF Research Database (Denmark)

    Dubois, Marie-Claude; Sørensen, Karl Grau; Traberg-Borup, Steen

    The report describes the results of a pilot study on daylight conditions in simple rooms of residential buildings. As a tool for the analyses the Radiance Lighting Simulating System was used to simulate one room with three different window configurations, a vertical window, a dormer window......, and a roof window. The simulations were performed for overcast sky conditions and under one sunny sky, for two different times of the day. The study shows that the window configuration affects the daylight conditions (distribution and intensity) significantly. The roof window results in a higher (average......) daylight factor on a horizontal plane, i.e. more than twice as high compared with the vertical window, and more than triple as high compared with the dormer window....

  15. Association of Proton Pump Inhibitor (PPI Use with Energy Intake, Physical Activity, and Weight Gain

    Directory of Open Access Journals (Sweden)

    Jennifer L. Czwornog

    2015-10-01

    Full Text Available Studies suggest proton pump inhibitor (PPI use impacts body weight regulation, though the effect of PPIs on energy intake, energy extraction, and energy expenditure is unknown. We used data on 3073 eligible adults from the National Health and Nutrition Examination Survey (NHANES. Medication use, energy intake, diet composition, and physical activity were extracted from NHANES. Multivariate regression models included confounding variables. Daily energy intake was similar between PPI users and non-users (p = 0.41. Diet composition was similar between the two groups, except that PPI users consumed a slightly greater proportion of calories from fat (34.5% vs. 33.2%; p = 0.02. PPI users rated themselves as being as physically active as their age/gender-matched peers and reported similar frequencies of walking or biking. However, PPI users were less likely to have participated in muscle-strengthening activities (OR: 0.53; 95% CI: 0.30–0.95. PPI users reported similar sedentary behaviors to non-users. Male PPI users had an increase in weight (of 1.52 ± 0.59 kg; p = 0.021 over the previous year compared to non-users, while female PPI users had a non-significant increase in weight. The potential mechanisms for PPI-associated weight gain are unclear as we did not find evidence for significant differences in energy intake or markers of energy expenditure.

  16. Impact of floating mass transducer coupling and positioning in round window vibroplasty.

    Science.gov (United States)

    Rajan, Gunesh P; Lampacher, Peter; Ambett, Ranjeeta; Dittrich, Gregor; Kuthubutheen, Jafri; Wood, Bradley; McArthur, Anne; Marino, Roberta

    2011-02-01

    The round window application of the Vibrant Sound bridge, the so-called round window vibroplasty, is gaining increasing popularity for hearing rehabilitation of patients with mixed hearing loss or conductive hearing loss. In these patients, conventional hearing amplification and/or surgical restoration is either not possible or has failed because of chronic ear disease, extensive otosclerosis, or malformations. The exact mechanisms of direct cochlear stimulation via the round window membrane are not yet completely understood. It is unclear what kind and what degree of contact is required between the floating mass transducer (FMT) and the round window membrane (RWM) to elicit a functional hearing perception with the implant. We investigated the coupling efficiency between the FMT and the RWM and how the efficiency is altered by the FMT position, the degree of FMT-RWM contact, and the use of a soft tissue coupler. Prospective cohort study. Tertiary referral center in Western Australia. Patients undergoing round window vibroplasty for a mixed or conductive hearing loss otherwise not aidable. Patients underwent round window vibroplasty and received audiological and coupling analysis in the follow-up. These data were then correlated with FMT positioning and the extent of FMT-RWM interface as determined by postoperative high-resolution temporal bone computed tomography. Coupling and hearing levels in relation to FMT positioning and degree of FMT-RWM contact. Of 10 patients, 8 were available for vibroplasty behavioral threshold testing. In 2 patients, testing could not be done because of wound breakdown requiring device explantation in 1 case, and in the other case, the bone conduction thresholds dropped 2 months after implantation, thus falling out of the performance range of the device. Postoperative FMT migration occurred in 50% of the patients (3/6) with recurrent chronic ear disease and status after multiple previous ear operations. All patients, including the 3

  17. Economic levels of thermal resistance for house envelopes: Considerations for a national energy code

    International Nuclear Information System (INIS)

    Swinton, M.C.; Sander, D.M.

    1992-01-01

    A code for energy efficiency in new buildings is being developed by the Standing Committee on Energy Conservation in Buildings. The precursor to the new code used national average energy rates and construction costs to determine economic optimum levels of insulation, and it is believed that this resulted in prescription of sub-optimum insulation levels in any region of Canada where energy or construction costs differ significantly from the average. A new approach for determining optimum levels of thermal insulation is proposed. The analytic techniques use month-by-month energy balances of heat loss and gain; use gain load ratio correlation (GLR) for predicting the fraction of useable free heat; increase confidence in the savings predictions for above grade envelopes; can take into account solar effects on windows; and are compatible with below-grade heat loss analysis techniques in use. A sensitivity analysis was performed to determine whether reasonable variations in house characteristics would cause significant differences in savings predicted. The life cycle costing technique developed will allow the selection of thermal resistances that are commonly met by industry. Environmental energy cost multipliers can be used with the proposed methodology, which could have a minor role in encouraging the next higher level of energy efficiency. 11 refs., 6 figs., 2 tabs

  18. Windows Phone 7 Made Simple

    CERN Document Server

    Trautschold, Martin

    2011-01-01

    With Windows Phone 7, Microsoft has created a completely new smartphone operating system that focuses on allowing users to be productive with their smartphone in new ways, while offering seamless integration and use of Microsoft Office Mobile as well as other productivity apps available in the Microsoft App Store. Windows Phone 7 Made Simple offers a clear, visual, step-by-step approach to using your Windows Phone 7 smartphone, no matter what the manufacturer. Author Jon Westfall is an expert in mobile devices, recognized by Microsoft as a "Most Valuable Professional" with experience

  19. Holography through optically active windows

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

  20. Purged window apparatus utilizing heated purge gas

    Science.gov (United States)

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  1. Protocol Monitoring Passive Solar Energy. Background document

    International Nuclear Information System (INIS)

    Van den Ham, E.R.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The monitoring will be directed at the absolute amount of used solar energy, the relative contribution of passive solar energy to the energy demand in the Netherlands, and the average efficiency of passive solar energy systems. Based on a model of the total building stock the quantities to be monitored can be determined. The most important parameters in the model are: the window surface per orientation, the average U-value (heat transfer coefficient) of windows, the average ZTA-value (incoming solar radiation factor) of windows, and the presence of sun lounges and atriums

  2. Window area and development drive spatial variation in bird-window collisions in an urban landscape.

    Science.gov (United States)

    Hager, Stephen B; Cosentino, Bradley J; McKay, Kelly J; Monson, Cathleen; Zuurdeeg, Walt; Blevins, Brian

    2013-01-01

    Collisions with windows are an important human-related threat to birds in urban landscapes. However, the proximate drivers of collisions are not well understood, and no study has examined spatial variation in mortality in an urban setting. We hypothesized that the number of fatalities at buildings varies with window area and habitat features that influence avian community structure. In 2010 we documented bird-window collisions (BWCs) and characterized avian community structure at 20 buildings in an urban landscape in northwestern Illinois, USA. For each building and season, we conducted 21 daily surveys for carcasses and nine point count surveys to estimate relative abundance, richness, and diversity. Our sampling design was informed by experimentally estimated carcass persistence times and detection probabilities. We used linear and generalized linear mixed models to evaluate how habitat features influenced community structure and how mortality was affected by window area and factors that correlated with community structure. The most-supported model was consistent for all community indices and included effects of season, development, and distance to vegetated lots. BWCs were related positively to window area and negatively to development. We documented mortalities for 16/72 (22%) species (34 total carcasses) recorded at buildings, and BWCs were greater for juveniles than adults. Based on the most-supported model of BWCs, the median number of annual predicted fatalities at study buildings was 3 (range = 0-52). These results suggest that patchily distributed environmental resources and levels of window area in buildings create spatial variation in BWCs within and among urban areas. Current mortality estimates place little emphasis on spatial variation, which precludes a fundamental understanding of the issue. To focus conservation efforts, we illustrate how knowledge of the structural and environmental factors that influence bird-window collisions can be used to

  3. Window area and development drive spatial variation in bird-window collisions in an urban landscape.

    Directory of Open Access Journals (Sweden)

    Stephen B Hager

    Full Text Available Collisions with windows are an important human-related threat to birds in urban landscapes. However, the proximate drivers of collisions are not well understood, and no study has examined spatial variation in mortality in an urban setting. We hypothesized that the number of fatalities at buildings varies with window area and habitat features that influence avian community structure. In 2010 we documented bird-window collisions (BWCs and characterized avian community structure at 20 buildings in an urban landscape in northwestern Illinois, USA. For each building and season, we conducted 21 daily surveys for carcasses and nine point count surveys to estimate relative abundance, richness, and diversity. Our sampling design was informed by experimentally estimated carcass persistence times and detection probabilities. We used linear and generalized linear mixed models to evaluate how habitat features influenced community structure and how mortality was affected by window area and factors that correlated with community structure. The most-supported model was consistent for all community indices and included effects of season, development, and distance to vegetated lots. BWCs were related positively to window area and negatively to development. We documented mortalities for 16/72 (22% species (34 total carcasses recorded at buildings, and BWCs were greater for juveniles than adults. Based on the most-supported model of BWCs, the median number of annual predicted fatalities at study buildings was 3 (range = 0-52. These results suggest that patchily distributed environmental resources and levels of window area in buildings create spatial variation in BWCs within and among urban areas. Current mortality estimates place little emphasis on spatial variation, which precludes a fundamental understanding of the issue. To focus conservation efforts, we illustrate how knowledge of the structural and environmental factors that influence bird-window

  4. Communities’ Strategic Opportunities Through Broken Window Repair and Global Commons Improvements

    Science.gov (United States)

    2014-06-01

    capabilities (e.g., sensors, information,  biotechnology , miniaturization on the molecular level, cyber‐operations, space, directed‐ energy, and other...www.theatlantic.com/ magazine /print/1982/03/broken-windows/304465/ (Kendall and Voorhies, 2014) – Kendall, Jake and Rodger Voorhies, The Mobile-Finance...breakthrough capabilities (e.g., sensors, information, biotechnology , miniaturization on the molecular level, cyber-operations, space, directed- energy

  5. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  6. The influence of opening windows and doors on the natural ventilation rate of a residential building

    Science.gov (United States)

    Increased building energy efficiency is important in reducing national energy use and greenhouse gas emissions. An analysis of air change rates due to door and window openings in a research test house located in a residential environment are presented. These data inform developme...

  7. AN INTRODUCTION TO WINDOWS 2000 AT CERN

    CERN Document Server

    2001-01-01

    A demonstration of the new supported Windows environment for all the CERN personal computers (PC) will be given which is based on Windows 2000. This presentation will assume little or no familiarity with the PC, or NICE, and will concentrate on the services being offered to the users of PCs at CERN. How NICE 2000 can facilitate the work of all users, eventually becoming the key access point to all activities in the laboratory will be demonstrated. Date Title Language Location Speaker Fri 1/6 10:00 Une introduction à Windows 2000 au CERN F IT Auditorium (31/3-004) Alberto Pace Tue 5/6 10:00 Une introduction à Windows 2000 au CERN F LHC Auditorium (30/7th floor) Frederic Hemmer Tue 5/6 14:00 Une introduction à Windows 2000 au CERN F SL Auditorium (864/1s floor) Michel Bornand Tue 5/6 14:00 An introduction to Windows 2000 at CERN E IT Auditorium (31/3-004) Andreas Wagner Wed 6/6 14:00 Une introduction à Windows 2000 au CERN F SL ...

  8. Solar orbiter/PHI full disk telescope entrance window mechanical mount

    Science.gov (United States)

    Barandiaran, J.; Zuluaga, P.; Fernandez, A. B.; Vera, I.; Garranzo, D.; Nuñez, A.; Bastide, L.; Royo, M. T.; Alvarez, A.

    2017-11-01

    PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, and polarization sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft (spacecraft (S/C)). PHI will consist of two telescopes: The High Resolution Telescope (HRT)[1] and the Full Disk Telescope (FDT). The HRT and the FDT will view the Sun through entrance windows located in the S/C heat shield. These windows act as heat rejecting filters with a transmission band of about 30 nm width centered on the science wavelength, such that the total transmittance (integral over the filter curve weighted with solar spectrum, including white leakage plus transmission profile of the pass band) does not exceed 4% of the total energy falling onto the window [2][3]. The HREW filter has been designed by SELEX in the framework of an ESA led technology development activity under original ESTEC contract No. 20018/06/NL/CP[4], and extensions thereof. For FDT HREW SLEX will provide the windows and it coatings. The HREW consists of two parallel-plane substrate plates (window 1 & window 2)[5] made of SUPRASIL 300 with a central thickness of 9 mm and a wedge of 30 arcsec each. These two substrates are each coated on both sides with four different coatings. These coatings and the choice of SUPRASIL help to minimize the optical absorptivity in the substrate and to radiatively decouple the HREW, which is expected to run at high temperatures during perihelion passages, from the PHI instrument cavity. The temperature distribution of the HREW is driven by two main factors: the mechanical mounting of the substrates to the feedthrough, and the radiative environment within the heat-shield/feedthrough assembly. The mechanical mount must ensure the correct integration of both suprasil substrates in its correct position and minimize the loads in windows due to thermal induced deformations and launching vibration environment. All the

  9. Experience gained with energy taxes in Europe - Lessons for Switzerland; Erfahrungen mit Energiesteuern in Europa. Lehren fuer die Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Peter, M.; Lueckge, H.; Iten, R.; Trageser, J. [Infras, Zuerich (Switzerland); Goerlach, B.; Blobel, D.; Kraemer, A. [Ecologic Institut fuer Internationale und Europaeische Umweltpolitik, Berlin (Germany)

    2007-12-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at experience gained with energy taxes in Europe and the lessons that can be learned for Switzerland. The variety of energy and CO{sub 2} taxes that have been introduced in Europe since the early 1990s is reviewed. These are intended to reduce energy consumption and CO{sub 2} emissions and complement conventional mineral oil taxes. Some of these non-fiscal energy and CO{sub 2} taxes that have been created within the scope of the EU directive on energy taxation are examined and commented on, as is their impact on energy consumption. The situation in EU member states is described and commented on. Success-factors and general conditions are examined and conclusions that can be drawn for Switzerland are examined.

  10. Windows 8 app projects XAML and C#

    CERN Document Server

    Vermeir, Nico

    2013-01-01

    Become a leading Windows 8 app developer by using Windows 8 App Projects - XAML and C# Edition to learn techniques, tools, and ideas to create successful, 5-star apps. Windows 8 App Projects - XAML and C# Edition shows you the nuts and bolts of the Windows 8 development ecosystem. Then, through a series of example driven chapters, you'll discover how to leverage the platform's unique features. With each project, you'll be one step closer to building full-featured, responsive, and well designed apps that feel like they're a part of the operating system. Windows 8 App Projects - XAML and C# Edit

  11. Feasibility study of a highly sensitive LaBr{sub 3} PET scanner based on the DOI-dependent extended-energy window

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [Naitonal Institute of Radiological Sciences, Chiba (Japan)], E-mail: rush@nirs.go.jp; Kitamura, Keishi [Shimadzu Corporation, Kyoto (Japan); Nishikido, Fumihiko; Shibuya, Kengo [Naitonal Institute of Radiological Sciences, Chiba (Japan); Hasegawa, Tomoyuki [Kitasato University, Kanagawa (Japan); Yamaya, Taiga; Inadama, Naoko; Murayama, Hideo [Naitonal Institute of Radiological Sciences, Chiba (Japan)

    2009-06-01

    Conventionally, positron emission tomograph (PET) scanners use scintillators which have a high effective atomic number. Recently, novel scintillators like LaBr{sub 3} have been developed which have excellent timing and energy resolutions. LaBr{sub 3} has a high performance for PET scanner use, but its effective atomic number is lower than that of lutetium oxyorthosilicate (LSO). As an alternative, we have developed a scatter reduction method using depth-of-interaction (DOI) information and energy information to increase the sensitivity. The sensitivity of the PET scanner with LaBr{sub 3} can be improved using the DOI-dependent extended-energy window (DEEW) method. In this work, our method is applied to the whole-body LSO/LaBr{sub 3} PET scanner using the GATE simulation toolkit. Simulation results show the number of true coincidences can be increased while minimizing the scatter and random coincidences by using the DEEW method. Noise equivalent count rate (NECR) can be improved by 20-70% for the whole-body DOI-PET scanner. Sensitivity of the PET scanner with a scintillator of low-effective atomic number can be improved by the DEEW method.

  12. Solar Energy Gain and Space-Heating Energy Supply Analyses for Solid-Wall Dwelling Retrofitted with the Experimentally Achievable U-value of Novel Triple Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-06-01

    Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.

  13. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  14. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Mapes, M.; Leonhardt, W.J.

    1993-01-01

    Large aperture, low mass, thin vacuum windows are required to minimize beam loss in the beam lines of particle accelerators as the products of nuclear collisions move from upstream targets to downstream detectors. This article describes the design, fabrication, testing, and operating experience of a large rectangular vacuum window, 122 cmx61 cm, and two circular windows of 91.4 and 96.5 cm diam. These window designs utilize a composite Kevlar 29 fabric and Mylar laminate as a window material with a typical combined thickness of 0.35 mm. Data for several material thicknesses are also presented. The windows are usually designed to withstand a pressure differential of two to three atmospheres to achieve the required factor of safety. These windows are typically used in the medium vacuum range of 10 -4 Torr. The equations used to predict the behavior of the window material will also be discussed

  15. Gabor windows supported on [ − 1, 1] and dual windows with small support

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2012-01-01

    Consider a continuous function g ∈ L 2(ℝ) that is supported on [ − 1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter 0 for some N ∈ ℕ. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [ − N...

  16. NOUR. Daylighting and thermal effects of windows in desert houses

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Djamel

    1999-07-01

    constitutes a true improvement of daylighting level rather than a fashion. Especially for new activities such as reading and using modern kitchen equipment, the lighting in traditional houses is not adequate. Only the courtyard receives enough daylight, but it is not uniformly distributed and the activities are therefore located according to their visual demands. The daylighting in modern houses, on the other hand, allows a larger number of activities to take place in different spaces. Most studies on design of passive buildings recommend the location of windows on the south facade because of the ease of passive solar control during summer and optimum solar gain during winter. However, in the urban reality, a house could be oriented to the east, west or north, depending on the constraints of the site. Recommendations for the design of windows with these orientations are scarce. The thermal and daylighting studies indicate that it is possible to have windows to the east or west orientations with still acceptable thermal and daylighting effects as long as they comply with the following recommendations: * For a south orientation, the absolute surfaces and the fenestration should be in the medium to high range, * For an east orientation, the absolute surfaces and the fenestration should be in the medium range, * For an orientation to the west, similar recommendations may be appropriate, albeit with more carefully designed solar shading, since the probability for overheating will be higher, and * For a north orientation, the absolute surfaces and the fenestration should be in the medium to high range. As a device to control eventual glare from opposite walls, solar shading, such as light coloured curtains, are recommended.

  17. NOUR. Daylighting and thermal effects of windows in desert houses

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Djamel

    1999-07-01

    true improvement of daylighting level rather than a fashion. Especially for new activities such as reading and using modern kitchen equipment, the lighting in traditional houses is not adequate. Only the courtyard receives enough daylight, but it is not uniformly distributed and the activities are therefore located according to their visual demands. The daylighting in modern houses, on the other hand, allows a larger number of activities to take place in different spaces. Most studies on design of passive buildings recommend the location of windows on the south facade because of the ease of passive solar control during summer and optimum solar gain during winter. However, in the urban reality, a house could be oriented to the east, west or north, depending on the constraints of the site. Recommendations for the design of windows with these orientations are scarce. The thermal and daylighting studies indicate that it is possible to have windows to the east or west orientations with still acceptable thermal and daylighting effects as long as they comply with the following recommendations: * For a south orientation, the absolute surfaces and the fenestration should be in the medium to high range, * For an east orientation, the absolute surfaces and the fenestration should be in the medium range, * For an orientation to the west, similar recommendations may be appropriate, albeit with more carefully designed solar shading, since the probability for overheating will be higher, and * For a north orientation, the absolute surfaces and the fenestration should be in the medium to high range. As a device to control eventual glare from opposite walls, solar shading, such as light coloured curtains, are recommended.

  18. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  19. Big Book of Windows Hacks

    CERN Document Server

    Gralla, Preston

    2008-01-01

    Bigger, better, and broader in scope, the Big Book of Windows Hacks gives you everything you need to get the most out of your Windows Vista or XP system, including its related applications and the hardware it runs on or connects to. Whether you want to tweak Vista's Aero interface, build customized sidebar gadgets and run them from a USB key, or hack the "unhackable" screensavers, you'll find quick and ingenious ways to bend these recalcitrant operating systems to your will. The Big Book of Windows Hacks focuses on Vista, the new bad boy on Microsoft's block, with hacks and workarounds that

  20. Windows 8 visual quick tips

    CERN Document Server

    McFedries, Paul

    2012-01-01

    Easy-in, easy-out format covers all the bells and whistles of Windows 8 If you want to learn how to work smarter and faster in Microsoft's Windows 8 operating system, this easy-to-use, compact guide delivers the goods. Designed for visual learners, it features short explanations and full-color screen shots on almost every page, and it's packed with timesaving tips and helpful productivity tricks. From enhancing performance and managing digital content to setting up security and much more, this handy guide will help you get more out of Windows 8. Uses full-color screen shots and short, step-by-

  1. Windows Security patch required

    CERN Multimedia

    3004-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  2. Soft measures and incremental gains in mines; Mesures douces et gains incrementaux : mines

    Energy Technology Data Exchange (ETDEWEB)

    Laliberte, P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2008-07-01

    This paper presented a variety of measures that mine operators can adopt to save energy. Researchers at the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada have conducted a joint study with Hydro-Quebec to investigate the impact of alternate energy technologies and control systems on energy savings. The impacts of a range of technologies were evaluated and rates of energy efficiency were compared. Technologies included hybrid vehicles; fuel cell-powered vehicles; automated ventilation control systems; heat recovery; compressed air; and electrical mining equipment. Energy profiles for various industrial applications were included. This paper also provided details of computerized simulations currently being conducted to estimate the potential incremental gains associated with the use of technology innovations in mining applications. 9 tabs., 3 figs.

  3. Fault Diagnosis of Induction Machines in a Transient Regime Using Current Sensors with an Optimized Slepian Window.

    Science.gov (United States)

    Burriel-Valencia, Jordi; Puche-Panadero, Ruben; Martinez-Roman, Javier; Sapena-Bano, Angel; Pineda-Sanchez, Manuel

    2018-01-06

    The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current's spectrogram with a significant reduction of the required computational resources.

  4. Fault Diagnosis of Induction Machines in a Transient Regime Using Current Sensors with an Optimized Slepian Window

    Directory of Open Access Journals (Sweden)

    Jordi Burriel-Valencia

    2018-01-01

    Full Text Available The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current’s spectrogram with a significant reduction of the required computational resources.

  5. Energy use behaviour: A window of opportunity

    Science.gov (United States)

    Roy, Deborah

    2017-06-01

    The environmental impact of electric vehicles depends on the kind of energy used to charge them. They are typically charged at peak times, when extra fossil fuels are needed to meet energy demands. A study shows that e-mails targeting electric vehicle charging for new owners can be effective for promoting greener charging behaviours.

  6. Optimisation of window settings for traditional and noise-optimised virtual monoenergetic imaging in dual-energy computed tomography pulmonary angiography

    International Nuclear Information System (INIS)

    D'Angelo, Tommaso; ''G. Martino'' University Hospital, Messina; Bucher, Andreas M.; Lenga, Lukas; Arendt, Christophe T.; Peterke, Julia L.; Martin, Simon S.; Leithner, Doris; Vogl, Thomas J.; Wichmann, Julian L.; Caruso, Damiano; University Hospital, Latina; Mazziotti, Silvio; Blandino, Alfredo; Ascenti, Giorgio; University Hospital, Messina; Othman, Ahmed E.

    2018-01-01

    To define optimal window settings for displaying virtual monoenergetic images (VMI) of dual-energy CT pulmonary angiography (DE-CTPA). Forty-five patients who underwent clinically-indicated third-generation dual-source DE-CTPA were retrospectively evaluated. Standard linearly-blended (M 0 .6), 70-keV traditional VMI (M70), and 40-keV noise-optimised VMI (M40+) reconstructions were analysed. For M70 and M40+ datasets, the subjectively best window setting (width and level, B-W/L) was independently determined by two observers and subsequently related with pulmonary artery attenuation to calculate separate optimised values (O-W/L) using linear regression. Subjective evaluation of image quality (IQ) between W/L settings were assessed by two additional readers. Repeated measures of variance were performed to compare W/L settings and IQ indices between M 0 .6, M70, and M40+. B-W/L and O-W/L for M70 were 460/140 and 450/140, and were 1100/380 and 1070/380 for M40+, respectively, differing from standard DE-CTPA W/L settings (450/100). Highest subjective scores were observed for M40+ regarding vascular contrast, embolism demarcation, and overall IQ (all p<0.001). Application of O-W/L settings is beneficial to optimise subjective IQ of VMI reconstructions of DE-CTPA. A width slightly less than two times the pulmonary trunk attenuation and a level approximately of overall pulmonary vessel attenuation are recommended. (orig.)

  7. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  8. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar

    2012-06-01

    In this report, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized while keeping the signal-to-noise-ratio (SNR) above a certain threshold. In the dual problem of power allocation, the end-to-end SNR is maximized under individual and global power constraints. Closed-form expressions for the optimal source and relay powers and the Lagrangian multiplier are obtained. Numerical results show that the optimal power allocation with partial CSI provides comparable performance as optimal power allocation with full CSI at low SNR.

  9. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar

    2012-09-16

    In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized while keeping the signal-to-noise-ratio (SNR) above a certain threshold. In the dual problem of power allocation, the end-to-end SNR is maximized under individual and global power constraints. Closed-form expressions for the optimal source and relay powers and the Lagrangian multiplier are obtained. Numerical results show that the optimal power allocation with partial CSI provides comparable performance as optimal power allocation with full CSI at low SNR. © 2012 IEEE.

  10. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.; Lu, Y. R.; Yuan, Z. X.; Shi, B. L.; Gan, P. P. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Hershcovitch, A. [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-01-15

    As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generate arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.

  11. Gain reduction measurements in transient stimulated Raman scattering

    NARCIS (Netherlands)

    Heeman, R.J.; Godfried, H.P

    1995-01-01

    Threshold energy measurements of transient rotational stimulated Raman scattering are compared to Raman conversion calculations from semiclassical theories using a simple concept of a gain reduction factor which expresses the reduction of the gain from its steady-state value due to transient

  12. Assessment of the feasible CTA windows for efficient spacing with energy-neutral CDO

    OpenAIRE

    Dalmau Codina, Ramon; Prats Menéndez, Xavier

    2016-01-01

    Continuous descent operations (CDO) with con- trolled times of arrival (CTA) at one or several metering fixes could enable environmentally friendly procedures at the same time that terminal airspace capacity is not compromised. This paper focuses on CTA updates once the descent has been already initiated, assessing the feasible CTA window (and associated fuel consumption) of CDO requiring neither thrust nor speed-brake usage alon...

  13. Energy Savers--Tips on Saving Energy and Money at Home (Fifth Printing)

    International Nuclear Information System (INIS)

    DOE Office of Building Technology, State and Community Programs

    2001-01-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances

  14. Energy Savers---Tips on Saving Energy and Money at Home (Fifth Printing)

    Energy Technology Data Exchange (ETDEWEB)

    DOE Office of Building Technology, State and Community Programs

    2001-08-13

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  15. Windows 7 Tweaks A Comprehensive Guide on Customizing, Increasing Performance, and Securing Microsoft Windows 7

    CERN Document Server

    Sinchak, Steve

    2009-01-01

    The definitive guide to unlocking the hidden potential of the Windows 7 OS. Written by bestselling author and the creator of tweaks.com Steve Sinchak, this unique guide provides you with the ultimate collection of hidden gems that will enable you to get the most out of Windows 7. Packed with more than 400 pages of insider tips, the book delves beneath the surface to reveal little-known ways to tweak, modify, and customize Windows 7 so you can get every ounce of performance from your operating system. Regardless of your experience with tweaking your system, you'll find fascinating and fun tips

  16. Monetary benefits of preventing childhood lead poisoning with lead-safe window replacement

    OpenAIRE

    Nevin, Rick; Jacobs, David / E.; Berg, Michael; Cohen, Jonathan

    2007-01-01

    Previous estimates of childhood lead poisoning prevention benefits have quantified the present value of some health benefits, but not the costs of lead paint hazard control or the benefits associated with housing and energy markets. Because older housing with lead paint constitutes the main exposure source today in the U.S., we quantify health benefits, costs, market value benefits, energy savings, and net economic benefits of lead-safe window replacement (which includes paint stabilization ...

  17. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  18. Energy efficiency façade design in high-rise apartment buildings using the calculation of solar heat transfer through windows with shading devices

    Science.gov (United States)

    Ha, P. T. H.

    2018-04-01

    The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.

  19. Displaying DIII-D plasma data using DEC's X window system

    International Nuclear Information System (INIS)

    Greene, K.L.

    1992-01-01

    This paper reports on the DIII-D tokamak program funded by the Department of Energy, which carries out plasma physics and fusion energy research experiments. The machine began operation in February 1986; at that time, approximately 7 Mbytes of data was collected for each shot. Since that time, the shot size has steadily increased to over 50 Mbytes with the average shot size between 35 and 45 Mbytes. Shots are fired every 12 to 15 minutes and last approximately 5 to 10 seconds. Between 30 and 40 shots are fired each day when plasma experiments are scheduled. In 1990, both programs were converted from User Interface Services (UIS) routines, which are part of the MicroVMS workstation graphics software, to DEC's X Window System using the DECWindows window manager. These modifications were required because of a move by Digital Equipment Corporation (DEC) to support Xwindows and phase out UIS. Due to the nature and purpose of each program, MFITD needed only simple graphics conversion while MFITPLAY was completely rewritten. The DECWindows version of MFITPLAY offers a number of improvements, such as a more intuitive user interface

  20. USB Storage Device Forensics for Windows 10.

    Science.gov (United States)

    Arshad, Ayesha; Iqbal, Waseem; Abbas, Haider

    2018-05-01

    Significantly increased use of USB devices due to their user-friendliness and large storage capacities poses various threats for many users/companies in terms of data theft that becomes easier due to their efficient mobility. Investigations for such data theft activities would require gathering critical digital information capable of recovering digital forensics artifacts like date, time, and device information. This research gathers three sets of registry and logs data: first, before insertion; second, during insertion; and the third, after removal of a USB device. These sets are analyzed to gather evidentiary information from Registry and Windows Event log that helps in tracking a USB device. This research furthers the prior research on earlier versions of Microsoft Windows and compares it with latest Windows 10 system. Comparison of Windows 8 and Windows 10 does not show much difference except for new subkey under USB Key in registry. However, comparison of Windows 7 with latest version indicates significant variances. © 2017 American Academy of Forensic Sciences.