WorldWideScience

Sample records for energy facilities revision

  1. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Juan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Anderson, Art [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations. This plan is a living document that will be updated and refined throughout the lifetime of the facility.

  2. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  3. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  4. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  5. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  6. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  7. Planning Facilities for Athletics, Physical Education and Recreation. Revised.

    Science.gov (United States)

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This revised edition includes new material recommended by a panel of experts in the field of recreational planning. The following topics are covered: (1) the planning process; (2) indoor facilities; (3) outdoor facilities; (4) indoor and outdoor swimming pools; (5) encapsulated spaces and stadiums; (6) service areas; (7) recreation and park…

  8. Energy 83. Revised and Expanded.

    Science.gov (United States)

    Lord, John, Ed.

    Energy 80 is an energy education program for middle/junior high school students. This document is a booklet of energy topics designed for student use in the program. Topics considered in this booklet include: forms of energy; energy rules; solar energy; food energy; fossil fuels; coal; oil and gas production and consumption; nuclear fission;…

  9. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  10. China Energy Databook. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J. E.; Fridley, D. G.; Levine, M. D.; Yang, F.; Zhenping, J.; Xing, Z.; Kejun, J.; Xiaofeng, L.

    1996-09-01

    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

  11. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  12. Regional energy facility siting analysis

    International Nuclear Information System (INIS)

    Eberhart, R.C.; Eagles, T.W.

    1976-01-01

    Results of the energy facility siting analysis portion of a regional pilot study performed for the anticipated National Energy Siting and Facility Report are presented. The question of cell analysis versus site-specific analysis is explored, including an evaluation of the difference in depth between the two approaches. A discussion of the possible accomplishments of regional analysis is presented. It is concluded that regional sitting analysis could be of use in a national siting study, if its inherent limits are recognized

  13. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  14. Revised energy levels of singly ionized lanthanum

    Science.gov (United States)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  15. Energy solutions for sports facilities

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, Paola; Santiangeli, Adriano [CIRPS: Inter-University Research Centre for Sustainable Development, Sapienza University of Rome, Via Eudossiana, 18, Rome (Italy)

    2008-06-15

    The sports facilities are characterized by special energy needs different from any other user and they are characterized by high heat and electricity loads. For this reason, the aim of this work has been to propose a tool to provide a preliminary estimation of the power and energy required by the sports centres. In addition, the possibility to make the building self-energy sufficient has been considered, thanks to the exploitation of renewable energy sources (RES). The overall work has been performed following three steps: energy needs analysis; local RES availability analysis; energy balance of Sport Centres. Considering that each sport facility is characterized by different energy needs depending on the sport typology itself, the analysis started from the features established by the CONI (National Italian Olympic Committee) standardization. For calculations a program in LabVIEW has been developed to evaluate the energy requirements of the sports centre considering as inputs the sport halls, the playgrounds and the supporting rooms, the level of the sport activity (e.g. agonistic) and the climatic conditions of the area where the facilities are located. The locally available RES are evaluated in order to decide which one can be exploited to feed the Sport Centre. The proposed solution for the energy production refers to a combination of different and innovative technologies which involve, in particular, hydrogen technologies. The energy and costs analysis has been finally carried out for an application case in Dubai. (author)

  16. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Poderis, Reed J. [NSTec; King, Rebecca A. [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  17. 105-DR Large Sodium Fire Facility closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

  18. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  19. Southeast Regional Clean Energy Policy Analysis (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, J.

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  20. Programme for the Environmental Control at the Swedish Nuclear Facilities, Revision; Omgivningskontrollprogram foer de kaerntekniska anlaeggningarna, revision

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Ann-Marie

    2004-12-01

    This report contains a revised version of the Environmental Monitoring Programme for the Swedish Nuclear Facilities. The revision is based on earlier experiences and evaluations. Some samples have been excluded. Some have been added, for example spruce cone and the food products apple and currant. The sediment samples of 2 cm length have been completed with samples of 10 cm length every fourth year to follow the migration of radio nuclides down the sediment layers over time. The revised Environmental Monitoring Programme is valid from the 1st of January 2005.

  1. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  2. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    Adamson, M. G.

    1997-01-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  3. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  4. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  5. Optimization (ALARA) of radiation protection at Department of Energy facilities

    International Nuclear Information System (INIS)

    Weadock, A.A.; Jones, C.R.

    1992-01-01

    Maintaining worker and public exposures As Low As Reasonably Achievable (ALARA) is a key objective of the Department of Energy (DOE). Responsibility for occupational ALARA program policy and guidance resides within the DOE Office of Health. Current Office of Health initiatives related to ALARA include the development of additional regulatory guidance related to ALARA program implementation at DOE contractor facilities, the review of ALARA program status at various facilities and the production of technical reports summarizing this status, and the support of various mechanisms to improve communication among the DOE ALARA community. The Office of Health also monitors revisions to radiogenic risk estimates and radiation protection recommendations to evaluate adequacy of current DOE limits and impacts of potentially revised limits. (author)

  6. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  7. National Biomedical Tracer Facility planning and feasibility study. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ketchem, L. [ed.; Holmes, R.A.

    1991-03-02

    Since its establishment in mid-1989, the DOE Office of Isotope Production and Distribution has examined the recommendations of the Los Alamos Report and the Health and Environmental Research Advisory Committee (HERAC) Report. The main recommendation from these deliberations is for the DOE to establish an accelerator dedicated to biomedical radioisotope production. Representatives of the nuclear medicine community, meeting at a DOE workshop in August 1988, evaluated present and future needs for accelerator-produced radioisotopes. Workshop participants concluded in the Los Alamos Report that approximately 90% of their radioisotope needs could be met by a machine that delivers a 70 million electronic volts (MeV), 500-microamp proton beam. The HERAC Report provides more quantification of radioisotope needs, and included isotopes that can be produced effectively only at higher energies. An accelerator facility with an upper energy limit of 100 MeV and beam current of 750 to 1,000 microamps, could produce all important accelerator- produced radioisotopes in current use, as well as those isotopes judged to have future potential value in medical research and clinical practice. We therefore recommend that the NBTF have a 100-MeV proton beam accelerator with an extracted beam current of 750 to 1,000 microamps.

  8. MITI revises outlooks for energy and power demand

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The Ministry of International Trade and Industry has revised downward its long-term outlook on energy supply and demand, lowering the estimated primary energy demand for fiscal 2000 from 600 million tons in oil equivalent to 540 MTOE, and reducing total power demand for fiscal 2000 from 899.1 billion kWh to 838 billion. In this content, the outlook for installed nuclear capacity has been revised downward from 62,000 MW to 53,500 MW. This revision of the power supply-demand outlook was reported on Oct. 1 to the supply and demand committee (Chairman - Yoshihiko Morozumi, Adviser to Nippon Schlum-berger) of the Electric Utility Industry Council; the energy supply-demand outlook was decided on Oct. 14 by the MITI Supply and Demand Subcommittee of the Advisory Committee for Energy and reported on Oct. 16 to the conference of ministers concerned with energy. (author)

  9. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  10. Hanford surplus facilities hazards identification document. Revision 2

    International Nuclear Information System (INIS)

    Egge, R.G.

    1996-02-01

    This document provides general safety information needed by personnel who enter and work in surplus facilities managed by Bechtel Hanford, Inc. (BHI). The purpose of the document is to enhance access control of surplus facilities, educate personnel on the potential hazards associated with these facilities prior to entry, and ensure that safety precautions are taken while in the facility. Questions concerning the currency of this information should be directed to the building administrator (as listed in BHI-FS-01, Field Support Administration, Section 1.1, ''Access Control for ERC Surplus Facilities'')

  11. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  12. Planning the School Food Service Facilities. Revised 1967.

    Science.gov (United States)

    Utah State Board of Education, Salt Lake City.

    Evaluations of food service equipment, kitchen design and food service facilities are comprehensively reviewed for those concerned with the planning and equipping of new school lunchrooms or the remodeling of existing facilities. Information is presented in the form of general guides adaptable to specific local situations and needs, and is…

  13. Manual for Accessibility: [Conference, Meeting, and Lodging Facilities]. Revised.

    Science.gov (United States)

    National Rehabilitation Association, Alexandria, VA.

    This illustrated manual and survey forms are designed to be used by organizations, hotel and restaurant associations, interested individuals and others as a guide for selecting accessible conference, meeting, and lodging facilities. The guidelines can also be used with existing facilities to identify specific modifications and accommodations. The…

  14. Energy-efficient computing and networking. Revised selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Hatziargyriou, Nikos; Dimeas, Aris [Ethnikon Metsovion Polytechneion, Athens (Greece); Weidlich, Anke (eds.) [SAP Research Center, Karlsruhe (Germany); Tomtsi, Thomai

    2011-07-01

    This book constitutes the postproceedings of the First International Conference on Energy-Efficient Computing and Networking, E-Energy, held in Passau, Germany in April 2010. The 23 revised papers presented were carefully reviewed and selected for inclusion in the post-proceedings. The papers are organized in topical sections on energy market and algorithms, ICT technology for the energy market, implementation of smart grid and smart home technology, microgrids and energy management, and energy efficiency through distributed energy management and buildings. (orig.)

  15. 105-DR large sodium fire facility closure Plan. Revision 2

    International Nuclear Information System (INIS)

    Ruck, F.A. III.

    1995-03-01

    The 105-DR Large Sodium Fire Facility (LSFF), which was operated 1972-1986, was a research laboratory that occupied the former ventilation supply room on the SW side of the 105-DR Reactor Facility. (The 105-DR defense reactor was shut down in 1964.) LSFF was used to investigate fire and safety aspects of large sodium or other metal alkali fires in the LMFBR facilities; it was also used to store and treat alkali metal waste. This closure plan presents a description of the unit, the history of the waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of LSFF is expected. It is located within the 100-DR-2 (source) and 100-HR-3 (groundwater) operable units, which will be addressed through the RCRA facility investigation/corrective measures study process

  16. Solar Energy in the Home. Revised.

    Science.gov (United States)

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site…

  17. Illinois energy conservation plan report: 1979 revision

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-02-01

    In response to Energy Policy and this Conservation Act (PL 94-163) and Energy Conservation and Production Act (PL 94-385), this paper describes the activities to be undertaken by Illinois to meet the mandatory requirements of the Acts and to carry out other activities to encourage energy conservation by energy-consuming sectors in the state. Programs reach the residential, commercial/industrial, agricultural, educational, transportation, and government sectors. The overall goal of the program is to reduce projected energy consumption in 1980 by 5% through information and educational activities.

  18. International Energy: Subject Thesaurus. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

  19. China energy databook. Revision 2, 1992 edition

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Levine, M.D.; Liu, Feng; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1993-06-01

    The Energy Analysis Program at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues, we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US. In order to select appropriate data from what was available we established several criteria. Our primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system. A primary criterion was thus that the data relate to the structure of energy supply and demand in the past and indicate probable developments (e.g., as indicated by patterns of investment). Other standards were accuracy, consistency with other information, and completeness of coverage. This is not to say that all the data presented herein are accurate, consistent, and complete, but where discrepancies and omissions do occur we have tried to note them.

  20. Programme for the Environmental Control at the Swedish Nuclear Facilities, Revision

    International Nuclear Information System (INIS)

    Linden, Ann-Marie

    2004-12-01

    This report contains a revised version of the Environmental Monitoring Programme for the Swedish Nuclear Facilities. The revision is based on earlier experiences and evaluations. Some samples have been excluded. Some have been added, for example spruce cone and the food products apple and currant. The sediment samples of 2 cm length have been completed with samples of 10 cm length every fourth year to follow the migration of radio nuclides down the sediment layers over time. The revised Environmental Monitoring Programme is valid from the 1st of January 2005

  1. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  2. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  3. Mixed Waste Management Facility, revised FY94 Plan

    International Nuclear Information System (INIS)

    Streit, R.

    1994-01-01

    This revision of the FY94 Plan incorporates changes to work during FY94 in response to the DOE request in the DOE KD-1 decision letter of June 28,1994. This letter provided guidance of both scope and budget profile in response to the Conceptual Design Report (CDR) issued by the MWMF Project in April, 1994. This work plan only addresses work for the remainder of FY94. A revised plan for the complete project is in development and will be issued separately. Since February, 1994, the MWMF Project has been operating on DOE guidance directing that work on the CDR be completed, that only other essential work be continued to maintain the project, and that costs be maintained at approximately the January, 1994 spending levels until a KD-1 decision was made. This has formed the basis for monthly reports through June, 1994. The baseline contained in this report will become the basis for reports during the remainder of FY94

  4. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  5. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  6. Bidding strategy for an energy storage facility

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Zareipour, Hamidreza; Rosehart, William D.

    2016-01-01

    to maximize its profit, while the market operator aims at maximizing the social welfare. In this case, the storage facility adapts its strategic behavior to take advantage of market conditions. To model the imperfectly competitive market, a bi-level optimization model is implemented to present......This paper studies operation decisions of energy storage facilities in perfectly and imperfectly competitive markets. In a perfectly competitive market, the storage facility is operated to maximize the social welfare. However, in a imperfectly competitive market, the storage facility operates...

  7. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Haffner, D.R.; Schneider, K.J.; Short, S.M.

    2002-01-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of 3 H-labeled compounds; a laboratory for the manufacture of 14 C-labeled compounds; a laboratory for the manufacture of 123 I-labeled compounds; a laboratory for the manufacture of 137 Cs sealed sources; a laboratory for the manufacture of 241 Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires

  8. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  9. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  10. Hanford facility dangerous waste permit application, general information portion. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  11. Environmental Restoration Disposal Facility waste acceptance criteria. Revision 1

    International Nuclear Information System (INIS)

    Corriveau, C.E.

    1996-01-01

    The Environmental Restoration Disposal Facility (ERDF) is designed to be an isolation structure for low-level radioactive remediation waste, chemically contaminated remediation waste, and remediation waste that contains both chemical and radioactive constituents (i.e., mixed remediation waste) produced during environmental remediation of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) past-practice units at the Hanford Site. Remedial action wastes, which will become a structural component of the ERDF, include bulk soil, demolition debris, and miscellaneous wastes from burial grounds. These wastes may originate from CERCLA past-practice sites (i.e., operable units) in the 100 Areas, the 200 Areas, and the 300 Area of the Hanford Site

  12. Hanford facility dangerous waste permit application, general information portion. Revision 3

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1997-01-01

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy's contractors are identified as ''co-operators'' and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ''operator'' elsewhere in the application is not meant to conflict with the contractors' designation as co-operators but rather is based on the contractors' contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  13. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  15. Waste management facilities cost information for hazardous waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  16. An independent safety assessment of Department of Energy nuclear reactor facilities: Safety overview and management function

    International Nuclear Information System (INIS)

    Booth, M.; Brodsky, R.S.; Frankhouser, W.L.

    1981-02-01

    The Under Secretary of Energy established the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee in October, 1979, in the aftermath of the Three Mile Island (TMI) nuclear accident, to assess the adequacy of training of personnel at DOE nuclear facilities. Subsequently, in February, 1980, the charge to this Committee was modified to assess all implications of the Kemeny Commission report on TMI with regard to DOE nuclear reactors, excluding those in the Division of Naval Reactors. The modified charge was also limited, for the time being, to reactor facilities instead of all nuclear facilities. This report describes the portion of the revised assessment activities that was assigned to the Assessment Support Team

  17. A 'YES' to the partial revision of the law on atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Swiss Atomic Energy Law, dated 23 December 1959, has been reviewed by a National Council and it was agreed on 6 October 1978 that it should be partially revised, with a full revision to be made by the end of 1983. Station construction authorisations previously made for Muehleberg, Beznau I, II, Goesgen and Leibstadt are to be followed in a simplified fashion for Kaiseraugst, Groben and Verbois. Safety precautions, however, must be shown to be met, and this includes storage facilities for spent fuel. Final decision on a new station must be approved by democratic means. The final paragraph of the article states that the economics of nuclear power appear to be favourable and that there is no other apparently acceptable alternative. (G.C.)

  18. Revised

    DEFF Research Database (Denmark)

    Johannsen, Vivian Kvist; Nord-Larsen, Thomas; Riis-Nielsen, Torben

    This report is a revised analysis of the Danish data on CO2 emissions from forest, afforestation and deforestation for the period 1990 - 2008 and a prognosis for the period until 2020. Revision have included measurements from 2009 in the estimations. The report is funded by the Ministry of Climate...

  19. 77 FR 23244 - Atmos Energy Colorado/Kansas Division; Notice of Revised Baseline Filing

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-22-000] Atmos Energy Colorado/Kansas Division; Notice of Revised Baseline Filing Take notice that on April 10, 2012, Atmos Energy Colorado/Kansas Division (Atmos) filed a revised baseline filing of their Statement of Operating...

  20. Programs of the Office of Energy Research: Revision

    International Nuclear Information System (INIS)

    1987-06-01

    In establishing each of the Federal Agencies that have been successively responsible for energy technologies and their development - the Atomic Energy Commission, the Energy Research and Development Administration, and, currently, the US Department of Energy (DOE) - Congress made specific provisions for the conduct of advanced and fundamental research. The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research of this nature, which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the Unites States. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large. 5 figs., 6 tabs

  1. US Department of Energy radiological control manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

  2. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  3. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  4. Environmental assessment for the deactivation of the N Reactor facilities. Revision 1

    International Nuclear Information System (INIS)

    1994-11-01

    This environmental assessment (EA) provides information for the US Department of Energy (DOE) to decide whether the Proposed Action for the N Reactor facilities warrants a Finding of No Significant Impact or requires the preparation of an environmental impact statement (EIS). The EA describes current conditions at the N Reactor facilities, the need to take action at the facilities, the elements of the Proposed Action and alternatives, and the potential environmental impacts. The N Reactor facilities are currently in a surveillance and maintenance program, and will eventually be decontaminated and decommissioned (D and D). Operation and maintenance of the facilities resulted in conditions that could adversely impact human health or the environment if left as is until final D and D. The Proposed Action would deactivate the facilities to remove the conditions that present a potential threat to human health and the environment and to reduce surveillance and maintenance requirements. The action would include surveillance and maintenance after deactivation. Deactivation would take about three years and would involve about 80 facilities. Surveillance and maintenance would continue until final D and D, which is expected to be complete for all facilities except the N Reactor itself by the year 2018

  5. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  6. 15 CFR 923.13 - Energy facility planning process.

    Science.gov (United States)

    2010-01-01

    ... facility planning process. The management program must contain a planning process for energy facilities... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... affected public and private parties will be involved in the planning process. [61 FR 33806, June 28, 1996...

  7. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  8. 78 FR 59661 - Revision of a Currently Approved Information Collection for the State Energy Program

    Science.gov (United States)

    2013-09-27

    ... the final version of the information collection request. The Department of Energy (DOE) invites public... information collection requests a revision and three-year extension of its State Energy Program, OMB Control...

  9. Evaluation of renewable energy alternatives for highway maintenance facilities.

    Science.gov (United States)

    2013-12-01

    A considerable annual energy budget is used for heating, lighting, cooling and operating ODOT : maintenance facilities. Such facilities contain vehicle repair and garage bays, which are large open : spaces with high heating demand in winter. The main...

  10. Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1

    Science.gov (United States)

    1992-07-01

    The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.

  11. Minimizing energy consumption of accelerators and storage ring facilities

    International Nuclear Information System (INIS)

    The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities

  12. Stored energy analysis in the scaled-down test facilities

    International Nuclear Information System (INIS)

    Deng, Chengcheng; Chang, Huajian; Qin, Benke; Wu, Qiao

    2016-01-01

    Highlights: • Three methods are developed to evaluate stored energy in the scaled-down test facilities. • The mechanism behind stored energy distortion in the test facilities is revealed. • The application of stored energy analysis is demonstrated for the ACME facility of China. - Abstract: In the scaled-down test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy release in the metal structures has an important influence on the accuracy and effectiveness of the experimental data. Three methods of stored energy analysis are developed, and the mechanism behind stored energy distortion in the test facilities is revealed. Moreover, the application of stored energy analysis is demonstrated for the ACME test facility newly built in China. The results show that the similarity requirements of three methods analyzing the stored energy release decrease gradually. The physical mechanism of stored energy release process can be characterized by the dimensionless numbers including Stanton number, Fourier number and Biot number. Under the premise of satisfying the overall similarity of natural circulation, the stored energy release process in the scale-down test facilities cannot maintain exact similarity. The results of the application of stored energy analysis illustrate that both the transient release process and integral total stored energy of the reactor pressure vessel wall of CAP1400 power plant can be well reproduced in the ACME test facility.

  13. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  14. Physical Protection of Nuclear Material and Nuclear Facilities (Implementation of INFCIRC/225/Revision 5). Implementing Guide

    International Nuclear Information System (INIS)

    2018-01-01

    This publication is the lead Implementing Guide in a suite of guidance on implementing the Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), IAEA Nuclear Security Series No. 13. It provides guidance and suggestions to assist States and their competent authorities in establishing, strengthening and sustaining their national physical protection regime and implementing the associated systems and measures, including operators’ physical protection systems. The structure of this publication is as follows. After this introduction, Section 2 describes the objectives of physical protection and the overall approach to managing the risks of the unauthorized removal of nuclear material and the sabotage of nuclear facilities. Section 3 provides guidance for the State and its competent authorities on the physical protection elements of the nuclear security regime; this guidance is based on the fundamental principles set out in the Recommendations publication. Section 4 provides guidance on the operator’s physical protection system and describes a systematic, integrated approach. Appendix I gives an annotated outline of the typical contents of an operator’s security plan. Appendix II provides similar guidance for the contingency plan. Appendix III provides a description of nuclear material aggregation that can be used to categorize nuclear material and determine the appropriate level of protection against unauthorized removal. Appendix IV presents a table of paragraph cross-references between the Recommendations publication and this Implementing Guide.

  15. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  16. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  17. Energy efficiency and reliability solutions for rail operations and facilities.

    Science.gov (United States)

    2014-11-01

    The objectives of the study included examining energy consumption of : the facilities comprising the three major rail yards on the New Haven Rail Line as : well as platform stations and identifying energy efficiency and cost savings : opportunities f...

  18. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  19. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  20. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  1. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  2. Super Energy Savings Performance Contracts: Federal Energy Management Program (FEMP) Program Overview (revision)

    International Nuclear Information System (INIS)

    Pitchford, P.

    2001-01-01

    This four-page publication describes the U.S. Department of Energy's (DOE's) streamlined energy savings performance contracting, or ''Super ESPC,'' process, which is managed by DOE's Federal Energy Management Program (FEMP). Under a Super ESPC, a qualifying energy service company (ESCO) from the private sector pays for energy efficiency improvements or advanced renewable energy technologies (e.g., photovoltaic systems, wind turbines, or geothermal heat pumps, among others) for a facility of a government agency. The ESCO is then repaid over time from the agency's resulting energy cost savings. Delivery orders under these contracts specify the level of performance (energy savings) and the repayment schedule; the contract term can be up to 25 years, although many Super ESPCs are for about 10 years or less

  3. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  4. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  5. Groundwater Monitoring Plan for the Z-Area Saltstone Disposal Facility, Revision 3

    International Nuclear Information System (INIS)

    WELLS, DANIEL

    2005-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. At the time of the 1996 permit renewal, it was determined that a more robust monitoring program was needed. The draft permit required new monitoring wells within 25 feet of each active disposal cell. As an alternative, SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC), and was incorporated by reference into the Z-Area Saltstone Industrial Solid Waste Permit, No.025500-1603. The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include specific requirements for groundwater monitoring. SRS's plan for complying with those regulations is discussed below. The plan calls for a return to traditional monitoring with permanent wells. It also proposes a more technically sound monitoring list based on the actual composition of saltstone

  6. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  7. Stored energy analysis in scale-down test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Fang Fangfang; Chang Huajian; Ye Zishen

    2013-01-01

    In the integral test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy in the metal components has a direct influence on the simulation range and the test results of the facilities. Based on the heat transfer theory, three methods analyzing the stored energy were developed, and a thorough study on the stored energy problem in the scale-down test facilities was further carried out. The lumped parameter method and power integration method were applied to analyze the transient process of energy releasing and to evaluate the average total energy stored in the reactor pressure vessel of the ACME (advanced core-cooling mechanism experiment) facility, which is now being built in China. The results show that the similarity requirements for such three methods to analyze the stored energy in the test facilities are reduced gradually. Under the condition of satisfying the integral similarity of natural circulation, the stored energy releasing process in the scale-down test facilities can't maintain exact similarity. The stored energy in the reactor pressure vessel wall of ACME, which is released quickly during the early stage of rapid depressurization of system, will not make a major impact on the long-term behavior of system. And the scaling distortion of integral average total energy of the stored heat is acceptable. (authors)

  8. 75 FR 15949 - Revisions to Form, Procedures, and Criteria for Certification of Qualifying Facility Status for a...

    Science.gov (United States)

    2010-03-30

    ... technologies. \\20\\ Interstate Renewable Energy Council and SolarCity (Interstate Renewable); Sun Edison LLC... being small power production facilities, and 90 percent were made by solar-powered and wind-powered... electric energy solely by the use, as a primary energy source, of solar energy, wind energy, waste...

  9. Permitting of Wind Energy Facilities: A Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Siting Work Group

    2002-08-01

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  10. Energy efficiency assessment methods and tools evaluation. Bolling Air Force Base. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    McMordie, K.L.; Richman, E.E.; Keller, J.M.; Dixon, D.R.

    1995-05-01

    The goal of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools, software, and procedures used to identify and evaluate energy-efficiency technologies and improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy use efficiency. To assist in procurement of energy-efficiency measures, FEMP helps federal agencies devise and implement performance contracting and utility demand-side management strategies. Pacific Northwest Laboratory (PNL) supports the FEMP mission of energy systems modernization. Under this charter, the Laboratory and its contractors work with federal facility energy managers to assess and implement energy-efficiency improvements at federal facilities nationwide.

  11. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  12. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  13. Safety analysis report for the Mixed Waste Storage Facility and portable storage units at the Idaho National Engineering Laboratory. Revision 4

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    This revision contains Section 2 only which gives a description of the Mixed Waste Storage Facility (MWSF) and its operations. Described are the facility location, services and utilities, process description and operation, and safety support systems. The MWSF serves as a storage and repackaging facility for low-level mixed waste

  14. High energy laser facilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Holmes, N.C.

    1981-06-01

    High energy laser facilities at Lawrence Livermore National Laboratory are described, with special emphasis on their use for equation of state investigations using laser-generated shockwaves. Shock wave diagnostics now in use are described. Future Laboratory facilities are also discussed

  15. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  16. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  17. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  18. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  19. Japan revises its long-term energy supply and demand outlook

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    A report, published recently by the Japanese Ministry of International Trade and Industry, revises earlier official views about how the industrial colossus plans to meet its energy needs to the end of century and beyond. A small chapter is devoted to the role of nuclear power in Japans energy supply. (qui)

  20. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  1. Taxes for energy products, electricity and CO2. Consequences of the revision of the Energy Taxation Directive for the Netherlands

    International Nuclear Information System (INIS)

    Blom, M.J.; Schroten, A.; Geurts, F.

    2011-07-01

    Taxes on energy products, electricity and CO2 are compared for a number of EU countries (Germany, Belgium, Denmark, United Kingdom, France, Luxembourg, Spain, Sweden and the Netherlands) with special focus on the fiscal, economic and environmental impacts of the revision of the European Energy Directive for the Netherlands. [nl

  2. Renewable energy for federal facilities serving native Americans: preprint

    International Nuclear Information System (INIS)

    Eiffert, P.; Sprunt Crawley, A.; Bartow, K.

    2000-01-01

    The Federal Energy Management Program (FEMP) in the U.S. Department of Energy (DOE) is targeting Federal facilities serving Native American populations for cost-effective renewable energy projects. These projects not only save energy and money, they also provide economic opportunities for the Native Americans who assist in producing, installing, operating, or maintaining the renewable energy systems obtained for the facilities. The systems include solar heating, solar electric (photovoltaic or PV), wind, biomass, and geothermal energy systems. In fiscal years 1998 and 1999, FEMP co-funded seven such projects, working with the Indian Health Service in the U.S. Department of Health and Human Services, the Bureau of Indian Affairs in the U.S. Department of the Interior, and their project partners. The new renewable energy systems are helping to save money that would otherwise be spent on conventional energy and reduce the greenhouse gases associated with burning fossil fuels

  3. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  4. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory's (ORNL) West End Treatment Facility's (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid

  5. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  6. Energy Storage Facilities | Transportation Research | NREL

    Science.gov (United States)

    , electric, and fuel cell battery and ultracapacitor pack testing. Their voltages range from 0-100 volts component developers and automobile manufacturers improve battery and energy storage system designs by enhancing performance and extending battery life. Sophisticated experimentation, modeling, and analysis

  7. Revised CTUIR Renewable Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Cox; Thomas Bailor; Theodore Repasky; Lisa Breckenridge

    2005-10-31

    This preliminary assessment of renewable energy resources on the Umatilla Indian Reservation (UIR) has been performed by CTUIR Department of Science and Engineering (DOSE). This analysis focused primarily identifying renewable resources that may be applied on or near the Umatilla Indian Reservation. In addition preliminary technical and economic feasibility of developing renewable energy resources have been prepared and initial land use planning issues identified. Renewable energies examined in the course of the investigation included solar thermal, solar photovoltaic, wind, bioethanol, bio-diesel and bio-pellet fuel. All renewable energy options studied were found to have some potential for the CTUIR. These renewable energy options are environmentally friendly, sustainable, and compliment many of the policy goals of the CTUIR. This report seeks to provide an overall review of renewable energy technologies and applications. It tries to identify existing projects near to the CTUIR and the efforts of the federal government, state government and the private sector in the renewable energy arena. It seeks to provide an understanding of the CTUIR as an energy entity. This report intends to provide general information to assist tribal leadership in making decisions related to energy, specifically renewable energy deve lopment.

  8. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  9. International energy: Research organizations, 1988--1992. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, P.; Jordan, S. [eds.] [USDOE Office of Scientific and Technical Information, Oak Ridge, TN (United States)

    1993-06-01

    This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

  10. Facility management and energy efficiency -- analysis and recommendations; Facility Management und Energieeffizienz: Analyse und Handlungsempfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Staub, P.; Weibel, K.; Zaugg, T. [Pom and Consulting Ltd., Zuerich (Switzerland); Lang, R. [Gruenberg and Partner Ltd., Zuerich (Switzerland); Frei, Ch. [Herzog Kull Group, Aarau (Switzerland)

    2001-07-01

    This final report presents the results of a study made on how facility management (FM) is positioned in enterprises and on how energy management can be integrated into the facility management process. Also, recommendations are made on the actions that are considered necessary to improve the understanding of facility management and energy management. The findings of an analysis made of the results of a survey among 200 enterprises, 20 interviews and 5 case studies are presented. The authors state that, in spite of the relatively small sample taken - mostly larger enterprises - trends in facility management and energy management could be shown. The findings of the survey, such as the relative importance of the integration of energy topics in facility management and the need for standardised indicators and benchmarking, are discussed in detail. Also, it is noted that the success of FM is in part due to delegation of responsibility to smaller business units or even to individual employees. The market potential for FM services is examined, with yearly growth rates of up to 20%. The importance of anchoring FM strategies at the top level of management is stressed, as is the need for promotion of the idea of facility management and training concepts for those responsible for its implementation.

  11. An optimization model for energy generation and distribution in a dynamic facility

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  12. Report revision master: an energy analysis of consumer products packaging

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This report serves as a foundation for quantifying the potential for energy conservation in the Canadian consumer products packaging sector. Investigation was made of energy consumption, waste management, and energy conservation potential in the various stages of the packaging and consumption process: raw material acquisition, material and packaging manufacture, package filling and distribution, consumer use, post-consumption options (energy recovery, disposal, recycling), and cleaning and transportation (if applicable) between each stage. The food and beverage industry was singled out as the most important sector because of its large consumption of packaging. Significant opportunities for energy conservation were found, although any savings accomplished through packaging changes appear to be difficult to implement. Packaging energy savings seem to be able to be achieved only through a product-by-product, industry-by-industry initiative by means of product and package standardization. An efficient example of this is the milk distribution system, where refillable plastic jugs require only 1.4 MBtu per 3000 quarts delivered (as compared with, for example, 68.9 MBtu for disposable aluminium soft drink cans). Other conclusions are made concerning the optimization of packaging energy, with respect to types of packaging, energy requirements related to use of packaged products, impact of government policies and of retailing techiques, consumer lifestyles, and the like. 95 refs., 3 figs., 54 tabs.

  13. Energy and ecology. Revision of opinions and strategy. Part 2

    International Nuclear Information System (INIS)

    Sala, A.

    1993-01-01

    The pollution of air by dust sulfur dioxide, nitrogen oxides and carbon dioxide emitted from Polish power plants fuelled by coal is discussed and some technical and economical aspects of environment protection are presented. The influence of nuclear power plants and renewable energy sources on the environment is also considered. Some conclusions important for energy policy are given. 39 refs, 21 figs, 17 tabs

  14. Small Town Energy Program (STEP) Final Report revised

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charles (Chuck) T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  17. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  18. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    International Nuclear Information System (INIS)

    Olsen, P.A.

    1994-01-01

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ''US Department of Energy Radiological Control Manual'' as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ''Hanford Site Radiological Control Manual'' and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms' workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance

  19. Electrical energy and cost for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Pence, G.A.

    1983-01-01

    An operational scenario has been developed for the Mirror Fusion Test Facility (MFTF-B) based on the System Requirements, our experience with existing systems, and discussions with the project engineers and designers who are responsible for the systems. This scenario was used to predict the amount of electrical energy needed for running the facility. A generic type listing is included for the equipment considered in each system

  20. Electrical energy and cost for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Pence, G.A.

    1983-02-01

    An operational scenario for the Mirror Fusion Test Facility has been developed based on System Requirements, experience with existing systems, and discussions with project engineers and designers who are responsible for the systems. This scenario was used to project the electrical energy required for the facility. Each system is listed showing the equipment that has been considered, the amount of power requested, and in most cases, the power that it is now connected

  1. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  2. Environmental restoration disposal facility applicable or relevant and appropriate requirements study report. Revision 00

    International Nuclear Information System (INIS)

    Roeck, F.V.; Vedder, B.L.; Rugg, J.E.

    1995-10-01

    The Environmental Restoration Disposal Facility (ERDF) will be a landfill authorized under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and will comply with the Resource Conservation and Recovery Act of 1976 (RCRA) substantive requirements. The facility will also comply with applicable or relevant and appropriate requirements (ARAR), including portions of the U.S. Environmental Protection Agency (EPA) regulations, Washington Administrative Code (WAC), and to-be-considered (TBC) elements such as U.S. Department of Energy (DOE) Orders. In considering the requirements of CERCLA, a detailed analysis of various alternatives for ERDF was completed using the nine CERCLA criteria, National Environmental Policy Act of 1969 (NEPA), and public comments. The ERDF record of decision (ROD) selected an alternative that includes a RCRA-compliant double-lined trench for the disposal of radioactive, hazardous, and mixed wastes resulting from the remediation of operable units (OU) within the National Priorities List (NPL) sites in the 100, 200, and 300 Areas. Only wastes resulting from the remediation of Hanford NPL sites will be allowed in the ERDF. Of the various siting and design alternatives proposed for ERDF, the selected alternative provides the best combination of features by balancing the nine CERCLA criteria, ARAR compliance, environmentally protective site, and various stakeholder and public recommendations. The ERDF trench design, compliant with RCRA Subtitle C minimum technical requirements (MTR), will be double lined and equipped with a leachate collection system. This design provides a more reliable system to protect groundwater than other proposed alternatives. The ERDF is located on the Hanford Site Central Plateau, southeast of the 200 West Area

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL January 2018 Blockchain concept demonstrated Blockchain to Enable Energy Market in BlockCypher Partnership NREL is partnering with BlockCypher, a blockchain Web services provider, to demonstrate how blockchain technology can support distributed energy markets. For some, the language and

  4. A facility for low energy charged particle induced reaction studies

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Yu, L.D.; Intarasiri, S.; Tippawan, U.

    2000-01-01

    In Chiang Mai, a highly stable low energy ion accelerator (0 - 350 kV) facility is being established. A subnano-second pulsing system will be incorporated into the beam transport line. The detecting system will consist of a time-of-flight charged particle spectrometer and a high resolution gamma-ray system. The new facility will be used in the studies of low energy heavy ion backscattering and charged particle induced cross section measurement in the interests of material characterization and nucleosynthesis. (author)

  5. 75 FR 25121 - Revisions to Energy Efficiency Enforcement Regulations

    Science.gov (United States)

    2010-05-07

    ... the United States comply with DOE's energy conservation standards, the Department has promulgated... this RFI, DOE requests comments, information, and recommendations on the following concepts for the... third party fails to follow through on filing for the manufacturer or labeler? Should that recourse be...

  6. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  7. Replacement Energy Cost Analysis Package (RECAP): User's guide. Revision 1

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Willing, D.L.

    1994-07-01

    A microcomputer program called the Replacement Energy Cost Analysis Package (RECAP) has been developed to assist the US Nuclear Regulatory Commission (NRC) in determining the replacement energy costs associated with short-term shutdowns or deratings of one or more nuclear reactors. The calculations are based on the seasonal, unit-specific cost estimates for 1993--1996 previously published in NRC Report NUREG/CR--4012, Vol. 3 (1992), for all 112 US reactors. Because the RECAP program is menu-driven, the user can define specific case studies in terms of such parameters as the units to be included, the length and timing of the shutdown or derating period, the unit capacity factors, and the reference year for reporting cost results. In addition to simultaneous shutdown cases, more complicated situations, such as overlapping shutdown periods or shutdowns that occur in different years, can be examined through the use of a present-worth calculation option

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    distributed energy resourcessolar panels, wind turbines, microgrids, and battery storagethat use smart ) panels respond to changes in solar conditions. In addition to the design and construction of the new

  9. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  10. Radionuclide air emissions at Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Duvall, K. [Department of Energy, Washington, DC (United States)

    1995-02-01

    Facilities operated by the U.S. Department of Energy (DOE) handle and process radioactive materials in conjunction with their research, nuclear materials production, remediation and waste disposal activities. Radionuclide emissions to the atmosphere from DOE facilities are regulated by the Environmental Protection Agency (EPA) under 40 CFR Part 61, Subpart H for emissions other than radon. Subpart H requires DOE to monitor emissions from stacks and calculate a potential offsite dose to an individual using EPA approved methods and procedures. DOE has applied to EPA for approval to use alternative methods for some of the EPA requirements for continuous monitoring. The use of alternative methods such as single-point sampling with a shrouded probe will have an impact at several major DOE facilities. These facilities are identified.

  11. Energy use in Minnesota state-owned facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E; Eastes, C; Tyler, R

    1981-08-01

    This paper describes and analyzes the contents of a large data base containing infomation on monthly energy use of state-owned facilities in Minnesota are described and analyzed. The data base includes information on 42 community colleges, state universities, hospitals, prisons, and the St. Paul Capitol Complex. The data span a seven year period (1972 - 1978) and include about 3,500 observations. Several data base management issues are discussed. These include errors and their correction, development of simple and consistent definitions for key terms, and collection of information on key determinants of energy use at these facilities. Regression equations were developed to predict monthly heating fuel use and total energy use. These equations show that more than 60% of the variation in energy use per unit floorspace can be explained by a few variables.

  12. Endangered Species Act and energy facility planning: compliance and conflict

    Energy Technology Data Exchange (ETDEWEB)

    Shreeve, D; Calef, C; Nagy, J

    1978-05-01

    New energy facilities such as coal mines, gasification plants, refineries, and power plants--because of their severe environmental impacts--may, if sited haphazardly, jeopardize endangered species. By law, conflicts between energy-facility siting and endangered species occurrence must be minimized. To assess the likelihood of such conflicts arising, the authors used data from the Fish and Wildlife Service, Endangered Species Office, that describe the species' ranges by county. This data set was matched with county-level occurrences of imminent energy developments to find counties of overlap and hence potential conflict. An index was developed to measure the likelihood of actual conflict occurring in such counties. Factors determining the index are: numbers of endangered species inhabiting the county, number of energy-related developments, and to what degree the county remains in a wild or undeveloped state. Maps were prepared showing (1) geographic ranges of endangered species by taxonomic groups (mammals, fish, etc.) and (2) counties of conflict.

  13. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  14. Hazard categorization and baseline documentation for the Sodium Storage Facility. Revision 1

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1995-01-01

    Hazard Categorization evaluation has been performed in accordance with DOE-STD-1027 for the Sodium Storage Facility at FFTF and a determination of less than Category 3 or non-nuclear has been made. Hazard Baseline Documentation has been performed in accordance with DOE-EM-STD-5502 and a determination of ''Radiological Facility'' has been made

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    determine how well a solar photovoltaic (PV) system with battery energy storage can provide backup power to . These analyses will result in a design guide for climate-specific sizing of the system. NREL's Erfan , feasibility, and operational analyses for photovoltaic and concentrating solar power generation projects

  16. Revision of 'JASS 5N reinforced concrete work for nuclear power facilities'

    International Nuclear Information System (INIS)

    Masuda, Yoshihiro; Kitagawa, Takashi

    2013-01-01

    'JASS 5N, Reinforced Concrete Work at Nuclear Power Plants,' is part of the 'Japanese Architectural Standard Specification and Its Interpretation' established by the Architectural Institute of Japan. It is the stipulation to establish the standards for the implementation of reinforced concrete work and quality control for the major buildings of nuclear power plants, and to ensure the safety related to the construction work. The original specification was established in 1985, and its third revised edition was published in February 2013. This 2013 edition is composed of 15 sections and four items of appendices. This paper introduces the major revisions of each section, and explains the newly added section 'Section 14: Small-scale Reinforced Concrete Work.' In addition, this paper describes the newly added 'Appendix: Quality Standards for Heavy Mortal (tentative draft),' and the minor change that part of the appendix related to reinforced concrete was taken into the interpretation of 'Section 10: Reinforced Concrete Work.' (O.A.)

  17. Electric energy savings from new technologies. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-09-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.

  18. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  19. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  20. A probabilistic risk assessment of the LLNL Plutonium Facility's evaluation basis fire operational accident. Revision 1

    International Nuclear Information System (INIS)

    Brumburgh, G.P.

    1995-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous programmatic activities involving plutonium to include device fabrication, development of improved and/or unique fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed in July 1994 to address operational safety and acceptable risk to employees, the public, government property, and the environmental. This paper outlines the PRA analysis of the Evaluation Basis Fire (EBF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  1. 78 FR 72794 - Revisions to Auxiliary Installations, Replacement Facilities, and Siting and Maintenance Regulations

    Science.gov (United States)

    2013-12-04

    ... company's reliance on section 2.55(a) to install an air stabilization unit was unwarranted because the... coolers, a transformer, field inlet separation facilities, and pigging equipment). [[Page 72796

  2. Hazard and operability study of the multi-function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Hughes, M.E.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) East site will be constructed on the west side of the 200E area and the MWTF West site will be constructed in the SW quadrant of the 200W site in the Hanford Area. This is a description of facility hazards that site personnel or the general public could potentially be exposed to during operation. A list of preliminary Design Basis Accidents was developed

  3. Temporary septic holding tank at the 100-D remedial action support facility -- Engineering report. Revision 1

    International Nuclear Information System (INIS)

    Kelty, G.G.

    1996-09-01

    This document provides an engineering evaluation for the temporary septic holding tank that will be installed at the 100-D Remedial Action Support Facility at the 100-DR-1 Operable Unit in the Hanford Site. This support facility will be installed at the 100-DR-1 Operable Unit to provide office and work space for the workers involved in remediation activities of the various waste sites located at the Hanford Site

  4. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  5. HEPA filter testing - Department of Energy Office of Nuclear Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, G.L. Jr. [Department of Energy, Washington, DC (United States)

    1995-02-01

    This paper provides the background of, and some results from, a review of HEPA filter testing during 1993 at selected Department of Energy (DOE) facilities. Recommendations for improvements in standards resulting from the review are also presented.

  6. Final master work plan : environmental investigations at former CCC/USDA facilities in Kansas, 2002 revision.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. C.; Environmental Research

    2003-01-23

    The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at several former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic

  7. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    Storm, S.J.

    1994-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  8. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  9. 10 CFR 451.4 - What is a qualified renewable energy facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false What is a qualified renewable energy facility. 451.4 Section 451.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.4 What is a qualified renewable energy facility. In order to qualify for an incentive payment under...

  10. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  11. Temporary septic holding tank at the 100-C remedial action restroom facility -- Engineering report. Revision 1

    International Nuclear Information System (INIS)

    Jackson, G.J.

    1996-10-01

    The primary mission of the Hanford Site from 1943 to 1990 was to produce nuclear materials for national defense. Waste disposal activities associated with this mission resulted in the creation of more than 1,000 waste sites contaminated with radioactive and chemically hazardous constituents. Investigation and remediation of these waste sites is governed by the Tri-Party Agreement. The 100-C Remedial Action Restroom Trailer Facility will be required near the 105-C Reactor to support the 105-C Interim Storage Project. This project is part of the decommissioning of the eight surplus reactor buildings along the Columbia River in the 100 Area. This facility will be a temporary, modular building sized to provide restroom facilities for the supervisors, engineers, technicians, and raft personnel assigned to the project and engaged in the associated field work. This paper describes the geology and flooding potential, design criteria, operations, and maintenance

  12. 616 Nonradioactive Dangerous Waste Storage Facility -- Essential/support drawing list. Revision 2

    International Nuclear Information System (INIS)

    Busching, K.R.

    1994-01-01

    This document identifies the essential and supporting engineering drawings for the 616 Nonradioactive Dangerous Waste Storage Facility. The purpose of the documents is to describe the criteria used to identify and the plan for updating and maintaining their accuracy. Drawings are designated as essential if they relate to safety systems, environmental monitoring systems, effluents, and facility HVAC, electrical, and plumbing systems. Support drawings are those which are frequently used or describe a greater level of detail for equipment, components, or systems shown on essential drawings. A listing of drawings identified as essential or support is provided in Table A

  13. LAFD: TA-15 DARHT Firefighter Facility Familiarization Tour, OJT 53044, Revision 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Laboratory; Priestley, Terry B. [Los Alamos National Laboratory; Maestas, Marvin Manuel [Los Alamos National Laboratory

    2016-03-17

    The Los Alamos National Laboratory (LANL or the Lab) will conduct familiarization tours for the Los Alamos County Fire Department (LAFD) at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility, TA-15-0312. The purpose of these tours is to orient LAFD firefighters to the DARHT facility layout and hazards. This document provides information and figures to supplement the familiarization tours. The document will be distributed to the trainees at the time of the familiarization tour. A checklist (Attachment A) has also been developed to ensure that all required information is consistently presented to LAFD personnel during the familiarization tours.

  14. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  15. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  16. Rainier Biogas Manure Management and Renewable Energy Generation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, John [King County, WA (United States)

    2017-06-06

    The Rainier Biogas project is a community manure processing and renewable energy generation facility. Construction was completed and operation initiated in 2012. It is owned and operated by Rainier Biogas, LLC in collaboration with local dairy farmers, Washington State University, and the King County Department of Natural Resources and Parks. The project receives manure from three to four partner dairy farms mostly by underground pipe. The project is located at 43218 208th Ave SE; Enumclaw, WA 98022.

  17. 78 FR 679 - Revisions to the Auxiliary Installations, Replacement Facilities, and Siting and Maintenance...

    Science.gov (United States)

    2013-01-04

    ... process, see the Comment Procedures Section of this document. FOR FURTHER INFORMATION CONTACT: Katherine... existing facilities.\\14\\ The Commission reasoned that section 2.55(b) replacements ``should only involve... when an installation can qualify for section 157.203(b) automatic authorization). Further, to alleviate...

  18. Solar energy facility at North Hampton Recreation Center, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    The solar energy facility located at the North Hampton Park Recreation and Health Center, Dallas, Texas is presented. The solar energy system is installed in a single story (two heights), 16,000 sq ft building enclosing a gymnasium, locker area, and health care clinic surrounded by a recreational area and athletic field. The solar energy system is designed to provide 80 percent of the annual space heating, 48 percent of the annual space cooling, and 90 percent of the domestic hot water requirements. The system's operation modes and performance data acquisition system are described. The system's performance during the months of June, July, August, September, and October of 1979 are presented and show a negative savings of energy. Experience to date indicates however that the system concept has promise of acceptable performance. It is concluded that if proper control and sequencing components was maintained, then the system performance would improve to an acceptable level.

  19. Effects of wind-energy facilities on grassland bird distributions

    Science.gov (United States)

    Shaffer, Jill A.; Buhl, Deb

    2016-01-01

    The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003–2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios.

  20. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    Energy Technology Data Exchange (ETDEWEB)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  1. Revision of the energy conservation requirements in the manufactured home construction and safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C C; Lee, A D; Lucas, R G; Taylor, Z T

    1992-02-01

    Thermal requirements were developed for manufactured (mobile) homes in response to legislation requiring the US Department of Housing and Urban Development (HUD) to revise its thermal standards for manufactured homes. A life-cycle cost minimization from the home owner's perspecetive was used to establish an optimum in a large number of cities for several prototype homes. The development of the economic, financial, and energy conservation measure parameters input into the life-cycle cost analysis was documented. The optimization results were aggregated to zones which were expressed as a maximum overall home U-value (thermal transmittance) requirement. The revised standard's costs, benefits, and net value to the consumer were quantified. 50 refs.

  2. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  3. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 2, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is Volume 2 in a two-volume series that comprise the site characterization report, the Preoperational Baseline and Site Characterization Report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; preoperational baseline chemical data and aquifer test data. Five groundwater monitoring wells, six deep characterization boreholes, and two shallow characterization boreholes were drilled at the Environmental Restoration Disposal Facility (ERDF) site to directly investigate site-specific hydrogeologic conditions

  4. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    International Nuclear Information System (INIS)

    Hall, L.R.

    1995-01-01

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1

  5. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  6. 120-D-1 (100-D) Ponds supplemental information to the Hanford Facility Contingency Plan. Revision 2

    International Nuclear Information System (INIS)

    Petersen, S.W.; Zoric, J.P.

    1997-06-01

    This document is a supplement to the Hanford Facility Contingency Plan and provides the unit-specific information needed to fully comply with the Washington Administrative Code 173-303 for contingency plans. The 100-D ponds are unlined surface impoundments that were mainly used to dispose of nondangerous wastewater, The ponds are designated as a single treatment, storage, and/or disposal unit because of potential corrosive characteristics of the wastewater. No waste is currently present at the 100-D Ponds

  7. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  8. A Study of Facilities and Infrastructure Planning, Prioritization, and Assessment at Federal Security Laboratories (Revised)

    Science.gov (United States)

    2013-02-01

    Engineer Support Agency Air Force Real Property Agency Wright-Patterson Air Force Base (AFB), OH; Kirtland AFB, New Mexico ; Eglin AFB, Florida...emergency response to their site. • Sandia works with the State of New Mexico Finance Authority to finance the development of a new facility...algorithms specific to an F&I type to generate the modernization requirement based on Replacement Plant Value, depreciation , expected service life, and

  9. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  10. Temporary septic holding tank at the 100-D remedial action support facility -- Engineering report. Revision 2

    International Nuclear Information System (INIS)

    Kelty, G.G.

    1996-10-01

    The primary mission of the Hanford Site from 1943 to 1990 was to produce nuclear materials for the national defense. Waste disposal activities associated with this mission resulted in the creation of more than 1,000 waste sites contaminated with radioactive and chemical constituents. Investigation and remediation of the wastes sites is governed by the Tri-Party Agreement. This agreement grouped the waste sites into 78 operable units, each of which was to be investigated and remediated separately. Once actual remediation activities begin at the waste sites, a central support facility will be required at each of the reactor areas (100-B/C, 100-D, and 100-H). These facilities will provide office and work space for the supervisors, engineers, and technicians engaged in the field work. The central facilities will be temporary, modular buildings sized to accommodate the anticipated staff, which in turn is determined by the scope of the planned remediation activities. The paper describes the project location, geology and flooding potential, design criteria, operation, and maintenance

  11. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  12. Electrical energy and cost for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Pence, G.

    1983-01-01

    An operational scenario has been developed for the Mirror Fusion Test Facility (MFTF-B) based on the System Requirements, our experience with existing systems, and discussions with the project engineers and designers who are responsible for the systems. This scenario was used to predict the amount of electrical energy needed for running the facility. A generic type listing is included for the equipment considered in each system. A figure shows the anticipated power drain during a five-minute shot sequence from the 115-kV substation, and from the 230-kV and direct feed substations. At this time, the three major substations that will be used for the MFTF-B are billed under three different rate schedules. A table lists these schedules and what they are anticipated as being when the facility becomes operational. The system availability, which is expected to be 0.7 or better, has not been factored into these calculations. This gives a worst case cost for the MFTF-B. Based on this study, it appears that our energy bill will be over $500 000 per month, on the average. This expenditure will constitute a significant portion of the budget needed to operate the MFTF-B. As the systems are refined, and a more accurate picture is obtained as to the size and operational cycles of the equipment, this report will be updated

  13. Multicriteria analysis of thermal and energy systems for tourist facilities

    International Nuclear Information System (INIS)

    Raguzin, I.

    1999-01-01

    The introductory part of the paper briefly presents the technological, economic and environmental optimisation procedure of thermal and energy systems for tourist facilities with the multicriteria ranging method when choosing an optimum solution. The procedure described includes a systematic analysis of the system's structure, energy-mass balance, balance of costs, environmental impact analysis and the choice of an optimum solution. Special attention was paid to criteria quantification for the choice of solution and the most appropriate ranging method.The procedure's application has been illustrated on an example of a potential tourist facility on the Island of Loinj, i.e. the locality with a potential highest category tourist development. This example includes (a) consumers (heating of rooms, preparation of hot water, heating of swimming pool water and cooling of rooms), and (b) producers (boiler room, cooling engine-rooms, a cogeneration plant and heat pumps). The data have been supplied from the project documentation for the reconstruction of the existing facilities mainly preliminary designs. The multicriteria ranging was conducted based on an appropriate computer programme for problem solution. (author)

  14. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  15. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems; water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.

  16. Fire criticality probability analysis for 300 Area N Reactor fuel fabrication and storage facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.E.

    1995-02-08

    Uranium fuel assemblies and other uranium associated with the shutdown N Reactor are stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility). The 3712 Building, where the majority of the fuel assemblies and other uranium is stored, is where there could be a potential for a criticality bounding case. The purpose of this study is to evaluate the probability of potential fires in the Facility 3712 Building that could lead to criticality. This study has been done to support the criticality update. For criticality to occur, the wooden fuel assembly containers would have to burn such that the fuel inside would slump into a critical geometry configuration, a sufficient number of containers burn to form an infinite wide configuration, and sufficient water (about a 17 inch depth) be placed onto the slump. To obtain the appropriate geometric configuration, enough fuel assembly containers to form an infinite array on the floor would have to be stacked at least three high. Administrative controls require the stacks to be limited to two high for 1.25 wt% enriched finished fuel. This is not sufficient to allow for a critical mass regardless of the fire and accompanying water moderation. It should be noted that 0.95 wt% enriched fuel and billets are stacked higher than only two high. In this analysis, two initiating events will be considered. The first is a random fire that is hot enough and sufficiently long enough to burn away the containers and fuel separators such that the fuel can establish a critical mass. The second is a seismically induced fire with the same results.

  17. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  18. RCRA facility investigation report for the 200-PO-1 operable unit. Revision 1

    International Nuclear Information System (INIS)

    1997-05-01

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) report is prepared in support of the RFI/corrective measures study process for the 200-PO-1 Groundwater Operable Unit in the 200 East Area of the Hanford Site. This report summarizes existing information on this operable unit presented in the 200 East and PUREX Aggregate Area Management Study Reports, contaminant specific studies, available modeling data, and groundwater monitoring data summary reports. Existing contaminant data are screened against current regulatory limits to determine contaminants of potential concern (COPC). Each identified COPC is evaluated using well-specific and plume trend analyses

  19. Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)

    Science.gov (United States)

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.

  20. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability

  1. Integrated O&M for energy generation and exchange facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Ingeteam Service, part of the Ingeteam Group, is a leading company in the provision of integrated O&M services at energy generation and exchange facilities worldwide. From its head office in the Albacete Science and Technology Park, it manages the work of the 1,300 employees that make up its global workforce, rendering services to wind farms, PV installations and power generation plants. In addition, it maintains an active participation strategy in a range of R&D+i programmes that improve the existing technologies and are geared towards new production systems and new diagnostic techniques, applied to renewables installation maintenance. (Author)

  2. Qt based control system software for Low Energy Accelerator Facility

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.; Nagraju, S.B.V.; Gupta, S.; Singh, P.

    2012-01-01

    Qt based control system software for Low Energy Accelerating Facility (LEAF) is operational at Bhabha Atomic Research Centre (BARC), Trombay, Mumbai. LEAF is a 50 keV negative ion electrostatic accelerator based on SNICS ion source. Control system uses Nokia Trolltech's QT 4.x API for control system software. Ni 6008 USB based multifunction cards has been used for control and read back field equipments such as power supplies, pumps, valves etc. Control system architecture is designed to be client server. Qt is chosen for its excellent GUI capability and platform independent nature. Control system follows client server architecture. The paper will describe the control system. (author)

  3. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  4. Reducing cooling energy consumption in data centres and critical facilities

    Science.gov (United States)

    Cross, Gareth

    Given the rise of our everyday reliance on computers in all walks of life, from checking the train times to paying our credit card bills online, the need for computational power is ever increasing. Other than the ever-increasing performance of home Personal Computers (PC's) this reliance has given rise to a new phenomenon in the last 10 years ago. The data centre. Data centres contain vast arrays of IT cabinets loaded with servers that perform millions of computational equations every second. It is these data centres that allow us to continue with our reliance on the internet and the PC. As more and more data centres become necessary due to the increase in computing processing power required for the everyday activities we all take for granted so the energy consumed by these data centres rises. Not only are more and more data centres being constructed daily, but operators are also looking at ways to squeeze more processing from their existing data centres. This in turn leads to greater heat outputs and therefore requires more cooling. Cooling data centres requires a sizeable energy input, indeed to many megawatts per data centre site. Given the large amounts of money dependant on the successful operation of data centres, in particular for data centres operated by financial institutions, the onus is predominantly on ensuring the data centres operate with no technical glitches rather than in an energy conscious fashion. This report aims to investigate the ways and means of reducing energy consumption within data centres without compromising the technology the data centres are designed to house. As well as discussing the individual merits of the technologies and their implementation technical calculations will be undertaken where necessary to determine the levels of energy saving, if any, from each proposal. To enable comparison between each proposal any design calculations within this report will be undertaken against a notional data facility. This data facility will

  5. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  6. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  7. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  8. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  9. Proposed plan for the Tank 105-C Hazardous Waste Management Facility. Revision 1

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.

    1994-01-01

    This Proposed Plan was developed to describe the remedial action selected at the Tank 105-C Hazardous Waste Management Facility (HWMF) source-specific unit within the C-Area Fundamental Study Area (FSA) at the Savannah River Site (SRS) and to fulfill Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. This 8,400 gallon capacity tank was certified and accepted closed according to a closure plan approved by the state of South Carolina under the Resource Conservation and Recovery Act (RCRA) authority in January 1991. As a result of the closure, previously performed under RCRA, the unit poses no current or potential threat to human health or the environment. Accordingly, no further remedial action is necessary under CERCLA

  10. Discussion paper : offshore wind facilities renewable energy approval requirements

    International Nuclear Information System (INIS)

    2010-06-01

    This paper discussed a proposed shoreline exclusion zone for offshore wind projects in Ontario. Considerations relevant to offshore wind projects and the protection of human health, cultural heritage, and the environment were also discussed. The paper was prepared in order to provide greater clarity to renewable energy developers and to Ontario residents about the offshore wind policy that is currently being considered by the Ontario Government. Feedback received from the discussion paper will be used to propose policy and associated regulatory amendments. A 5 km shoreline exclusion zone for all offshore wind facilities was proposed. Some projects may be required to be located beyond the proposed exclusion zone. Proposed developments within the exclusion zone must meet all applicable requirements, including those related to cultural and natural heritage. The zone will establish a distance between drinking water intakes, and ensure that sediment dredging and other construction-related activities do not impact drinking water quality, and ensure that potential noise levels are within acceptable levels. The zone will establish a distance between near-shore activities and wind facilities, and also help to maintain the ecological health of inland waters. Guidelines and technical requirements for wind facility operators were also included.

  11. The Study on Policy Options for Siting Hazardous Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Oh [Korea Energy Economics Institute, Euiwang (Korea)

    2000-10-01

    The problem of site allocation on locally unwanted land uses related to energy utilities that extended most recently is becoming a new energy policy issue due to the improvement of national standard of living and livelihood quality. Residents do not generally agree on establishing the construction of public energy utilities in their village due to NIMBY syndrome while they basically agree to have them. These circumstances made a big problem against mass production of industry society and the improvement of the national welfare. Locally unwanted land use related to energy utilities includes waste incineration system, nuclear power plant, coal fired power plant, oil and Gas storage tank, briquette manufacturing plant and etc. Opportunity for SOC projects carried out by central and local government is lost because of the regional egoism. The site dispute between government and residents obstructs optimal energy supply to be necessary for industry growth and the national welfare. The main objective of this study is to propose the policy option for finding a solution after surveying theory and background of site troubles and dispute factors. Final results of this study propose a solution on structural and institutional dispute. The former introduces three kinds of approaches such as tradition, compensation and negotiation. The transition of an environmentally sound energy consumption pattern and the improvement of energy efficiency could be carried out by traditional approaches. To claim the damage and offer the accommodation facilities could be settled by compensational approaches. The establishment of regional decentralization on NIMBY facilities could be settled by negotiatory approaches through fair share criteria. The latter proposes 1) 'polluter pays principle', 2) internalization of social cost and benefit on air or water pollution, 3) the behind - the - scene negotiation in a bid to settle a site dispute, 4) and supporting system for peripheral areas

  12. Strategic sizing of energy storage facilities in electricity markets

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Seyyedjalal; Zareipour, Hamidreza

    2016-01-01

    This paper proposes a model to determine the optimasize of an energy storage facility from a strategic investor’s perspective. This investor seeks to maximize its profit through making strategic planning, i.e., storage sizing, and strategic operational, i.e., offering and bidding, decisions. We...... consider the uncertainties associated with rival generators’ offering strategies and future load levels in the proposed model. The strategic investment decisions include the sizes of charging device, discharging device and energy reservoir. The proposed model is a stochastic bi-level optimization problem......; the planning and operation decisions are made in the upper-level, and market clearing is modeled in the lower-level under different operating scenarios. To make the proposed model computationally tractable, an iterative solution technique based on Benders’ decomposition is implemented. This provides a master...

  13. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  14. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-02-01

    Multigroup cross sections (66 neutron groups and 22 photon groups) are described for neutron energies from thermal to 400 MeV. The elements considered are hydrogen, 10 B, 11 B, carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, sulfur, potassium, calcium, chromium, iron, nickel, tungsten, and lead. The cross section data presented are a revision of similar data presented previously. In the case of iron, transport calculations using the earlier and the revised cross sections are presented and compared, and significant differences are found. The revised cross sections are available from the Radiation Shielding information Center of the Oak Ridge National Laboratory. 32 refs., 5 figs., 3 tabs

  15. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  16. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  17. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 1, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is the first in a two-volume series that comprise the site characterization report. Volume 1 contains data interpretation and information supporting the conclusions in the text (Appendices A through G). Volume 2 provides raw data. A site located between 200 East and 200 West Areas, in the central portion of the Hanford Site, was selected as the prime location for the ERDF. Modifications to the facility design minimize the footprint and have resulted in a significant reduction in the areal size. This change was initiated in part as a response to recommendations of the Hanford Future Site Uses Working Group to limit waste management activities to an exclusive zone within the squared-off boundary of the 200 Areas. Additionally, the reduction in size of the footprint was initiated to minimize impacts to ecology. The ERDF is designed for disposal of remediation wastes generated during the cleanup of Hanford Site and could be expanded to hold as much as 28 million yd 3 (21.4 million m 3 ) of solid waste

  18. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-01-01

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee's evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable

  19. Draft At-Depth Study Plan for an exploratory shaft facility in salt: Revision 1

    International Nuclear Information System (INIS)

    1988-03-01

    This draft At-Depth Study Plan describes a program of at-depth monitoring and testing in the bedded salt deposits of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The test program will be undertaken within an At-Depth Facility (ADF) constructed at the candidate repository horizon. The purpose of the program is to assist with site characterization in support of determination of site suitability for development as a repository and for preparation of licensing documentation, and to provide information in support of repository design and performance assessment evaluation. The program includes a variety of geological, geophysical, geomechanical, thermochemical, and geohydrological monitoring and testing. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the ADF. The various studies, and associated test or monitoring methods, are included. Specific large-scale tests concerned with evaluating the performance of engineered components of the repository system (i.e., rooms, waste package, bulkhead and backfill seals) will be performed in the ADF but are described separately in individual Study Plan. 53 refs., 54 figs., 24 tabs

  20. Derivation of integral energy balance for the manotea facility

    Energy Technology Data Exchange (ETDEWEB)

    Pollman, Anthony, E-mail: pollman@nps.edu [Mechanical and Aeronautical Engineering Department, United States Naval Postgraduate School, Monterey, CA 93943 (United States); Marzo, Marino di [Fire Protection Engineering Department, University of Maryland, College Park, MD 20742 (United States)

    2013-12-15

    Highlights: • An integral energy balance was derived for the MANOTEA facility. • A second equation was derived which frames transients in terms of inventory alone. • Both equations were implemented and showed good agreement with experimental data. • The equations capture the physical mechanisms behind MANOTEA transients. • Physical understanding is required in order to properly model these transients with TRACE. - Abstract: Rapid-condensation-induced fluid motion occurs in several nuclear reactor accident sequences, as well as during normal operation. Modeling these events is central to our ability to regulate and ensure safe reactor operations. The UMD-USNA Near One-dimensional Transient Experimental Apparatus (MANOTEA) was constructed in order to create a rapid-condensation dataset for subsequent comparison to TRACE output. This paper outlines a derivation of the energy balance for the facility. A path integral based on mass and energy, rather than fluid mechanical, considerations is derived in order to characterize the physical mechanisms governing MANOTEA transients. This equation is further simplified to obtain an expression that frames transients in term of liquid inventory alone. Using data obtained from an actual transient, the path integral is implemented using three variables (change in liquid inventory, liquid inventory as a function of time, and change in metal temperature) to predict the outcome of a fourth independently measured variable (condenser pressure as a function of time). The implementation yields a very good approximation of the actual data. The inventory equation is also implemented and shows reasonable agreement. These equations, and the physical intuition that they yield, are key to properly characterizing MANOTEA transients and any subsequent modeling efforts.

  1. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  2. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  3. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF ENERGY Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2 AGENCY: Department of Energy. ACTION: Notice. SUMMARY: The...: The Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  4. 77 FR 18272 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Louisiana Energy Services (LES), LLC, National enrichment Facility in Eunice, New Mexico, and has verified...

  5. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  6. Carlsbad Area Office strategic plan, March 1995. Revision 1

    International Nuclear Information System (INIS)

    1995-03-01

    This edition of the Carlsbad Area Office Strategic Plan captures the US Department of Energy's (DOE's) new focus, and supersedes the edition issued previously (DOE, 1993a). This revision reflects: a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on establishment of standardized transuranic waste characterization and acceptance criteria for disposal facilities

  7. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  8. Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document

  9. Phenomenological analyses and their application to the Defense Waste Processing Facility probabilistic safety analysis accident progression event tree. Revision 1

    International Nuclear Information System (INIS)

    Kalinich, D.A.; Thomas, J.K.; Gough, S.T.; Bailey, R.T.; Kearnaghan, D.P.

    1995-01-01

    In the Defense Waste Processing Facility (DWPF) Safety Analysis Reports (SARs) for the Savannah River Site (SRS), risk-based perspectives have been included per US Department of Energy (DOE) Order 5480.23. The NUREG-1150 Level 2/3 Probabilistic Risk Assessment (PRA) methodology was selected as the basis for calculating facility risk. The backbone of this methodology is the generation of an Accident Progression Event Tree (APET), which is solved using the EVNTRE computer code. To support the development of the DWPF APET, deterministic modeling of accident phenomena was necessary. From these analyses, (1) accident progressions were identified for inclusion into the APET; (2) branch point probabilities and any attendant parameters were quantified; and (3) the radionuclide releases to the environment from accidents were determined. The phenomena of interest for accident progressions included explosions, fires, a molten glass spill, and the response of the facility confinement system during such challenges. A variety of methodologies, from hand calculations to large system-model codes, were used in the evaluation of these phenomena

  10. Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carolyn Stewart; Tracey LeBeau

    2008-01-31

    DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing of the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.

  11. Ventilation design for new plutonium recovery facility

    International Nuclear Information System (INIS)

    Oliver, A.J.; Amos, C.L.

    1975-01-01

    In 1972 the Atomic Energy Commission (AEC) issued revised guidelines on ''Minimum Design Criteria for New Plutonium Facilities.'' With these criteria as guidelines, a new Plutonium Recovery Facility is being designed and constructed at the AEC Rocky Flats Plant. The methods by which the confinement of contamination and air treatment are being handled in this facility are described. (U.S.)

  12. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  13. Economic Feasibility Analysis of the Application of Geothermal Energy Facilities to Public Building Structures

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2014-03-01

    Full Text Available This study aims to present an efficient plan for the application of a geothermal energy facility at the building structure planning phase. Energy consumption, energy cost and the primary energy consumption of buildings were calculated to enable a comparison of buildings prior to the application of a geothermal energy facility. The capacity for energy savings and the costs related to the installation of such a facility were estimated. To obtain more reliable criteria for economic feasibility, the lifecycle cost (LCC analysis incorporated maintenance costs (reflecting repair and replacement cycles based on construction work specifications of a new renewable energy facility and initial construction costs (calculated based on design drawings for its practical installation. It is expected that the findings of this study will help in the selection of an economically viable geothermal energy facility at the building construction planning phase.

  14. Ministry of ordinance determining the technical standard concerning atomic energy facilities for power generation

    International Nuclear Information System (INIS)

    1985-01-01

    The ministerial ordinance provides for the technical standards for the power generation of nuclear facilities; i.e., electric power facilities generating electricity with nuclear energy for motive power, according to the Electricity Enterprises Act. The contents are as follows: protection against fires, aseismatic design, radiation protective barriers, structural protection for sitings, reactor installation, safety measures, materials and structures, safety valves, pressure resistance tests, reactor core, radiation shields, reactor cooling, emergency core cooling system, facility equipment, alarm system, reactor control system, reactor control room, fuel storage facility, fuel handling facility, ventilation equipment, radioactive contamination prevention, radioactive waste management facility, reactor containment facility, and so on. (Kubozono, M.)

  15. History of United States Energy. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Intended as a supplement to the units "Oil: Fuel of the Past" and "Coal: Fuel of the Past, Hope of the Future," this 3-4 day unit contains three activities which briefly explain the chronological development of energy resources and the formation and development of the Organization of Petroleum Exporting Countries (OPEC). The…

  16. Assessing the Atmospheric Pollution of Energy Facilities for Supporting Energy Policy Decisions

    International Nuclear Information System (INIS)

    Meneses Ruiz, E.; Alonso García, D.; Pérez Zayas, G.; Piñera Hernández, I.; Martinez Varona, M.; Molina Esquivel, E.

    2015-01-01

    The impacts of different energy facilities on the environment and human health are a matter of interest and concern throughout the world. For example, fossil fuels are one of the energy sources of more undesirable effects on the environment, but this energy is still one of the most competitive at the market, especially for the developing countries. However, it is necessary to find out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost. With a view to solving the current deficit in energy production (mainly in electricity generation) in the light of major transformations in the energy sector, the Cuban Government is evaluating ways of incorporating new sources and technologies and the expansion of existing capabilities. In this context non-fossil energy sources will play an increasingly important role. The present work shows the results obtained in the frame of the IAEA Technical Cooperation Project CUB7007. The project integrated several tools and methodologies in the field of air quality modelling and its assessment, emissions measurement and nuclear techniques. The main objective was to assess atmospheric pollution from various energy facilities for supporting energy policy decisions by incorporating nuclear techniques (proton-induced X–ray emission, neutron activation and X–ray fluorescence) for estimating the elementary composition of particulate matter. As results were consolidated national laboratories in the application of nuclear and nonnuclear techniques to support environmental studies, especially for the analysis of emissions in chimneys and ambient air sampling. Moreover, all energy technologies considered in the national strategy of development were assessed. (author)

  17. Talisman Energy Inc. progress on reducing greenhouse gas emissions. Revised ed.

    International Nuclear Information System (INIS)

    2001-01-01

    Talisman Energy Inc., as the largest independent Canadian oil and gas producer, is committed to supporting the Voluntary Challenge and Registry (VCR) Program. To this effect, voluntary measures have been implemented for achieving energy efficiency and greenhouse gas emissions reductions. Some of those measures include a yearly electrical audit in each field, the establishment of facility design and equipment procurement practices, gas well deliverability testing, gas conservation and flare reduction, a new energy data management system, senior management monitoring of greenhouse gas emissions reductions, and several others. Each of these measures was briefly described, and the base year quantification was included along with projections and target setting. Section 6 of the document introduced the measures to achieve targets, followed by section 7 containing results achieved. In section 8, the topic of education, training and awareness was discussed. A brief acknowledgements section was included at the end of the document. 10 tabs., 6 figs

  18. Energy management: a program of energy conservation for the community college facility. [Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Various Authors

    1978-01-01

    This handbook developes helps for assessing and improving the energy efficiency of the community-college facility. The TEEM approach (Total Educational Energy Management) is a labor-intensive approach which requires the commitment and participation of all segments of the college community. The TEEM program presented here defines a series of tasks selected, ordered, and implemented in such a way as to achieve two basic objectives: (1) reducing campus energy requirements, and (2) meeting those reduced energy requirements more efficiently without adversely affecting the quality of educational programs. This guide to large-scale energy conservation on college campuses includes step-by-step procedures for establishing a program task force, defining specific tasks, and assigning responsibilities. Action plans are developed, energy consumption monitored, goals set, and conservation measures implemented. A series of appendices provides more detailed information, charts, and worksheets related to all aspects of energy use. The TEEM program provides the basic structure for achieving a significant reduction in campus energy costs.

  19. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  20. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Decontamination Pond Facility. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes

  1. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has verified that cascades...

  2. Impact of revised 10 CFR 20 on existing performance assessment computer codes used for LLW disposal facilities

    International Nuclear Information System (INIS)

    Leonard, P.R.; Seitz, R.R.

    1992-04-01

    The US Nuclear Regulatory Commission (NRC) recently announced a revision to Chapter 10 of the Code of Federal Regulations, Part 20 (10 CFR 20) ''Standards for Protection Against Radiation,'' which incorporates recommendations contained in Publications 26 and 30 of the International Commission on Radiological Protection (ICRP), issued in 1977 and 1979, respectively. The revision to 10 CFR 20 was also developed in parallel with Presidential Guidance on occupational radiation protection published in the Federal Register. Thus, this study concludes that the issuance of the revised 10 CFR 20 will not affect calculations using the computer codes considered in this report. In general, the computer codes and EPA and DOE guidance on which computer codes are based were developed in a manner consistent with the guidance provided in ICRP 26/30, well before the revision of 10 CFR 20

  3. Revision of the law governing the energy industry; Neuregelung des Energierechts

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1993-11-03

    In its report on measures for safeguarding the competitiveness of the German industry, the Federal Government announced a number of reforms covering among others a revision of the regulatory framework governing the electricity and gas industry. Major goals in this context are deregulation and an enhancement of competition. The Federal Ministry of Economics prepared a draft plan for action addressing the need for an amendment of the Energy Management Act and the Act Against Restraints on Competition. Implementation of the measures given in the draft plan would create completely new conditions for the pipeline energy supply industry. (orig./HSCH) [Deutsch] Die Bundesregierung hat in ihrem Bericht zur Zukunftssicherung des Wirtschaftsstandorts Deutschland auch die Reform des Ordnungsrahmens fuer Strom und Gas angekuendigt. Ziel dieser Reform sollen Wettbewerb und Deregulierung sein. Das Bundeswirtschaftsministerium hat dazu auf Fachebene ein Konzept erarbeitet, das ein neues Energiewirtschaftsgesetz sowie eine Aenderung des Gesetzes gegen Wettbewerbsbeschraenkungen umfasst. Das Konzept wuerde die leitungsgebundene Versorgungswirtschaft auf eine voellig neue Grundlage stellen. (orig./HSCH)

  4. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  5. A simple irradiation facility for radiobiological experiments with low energy protons from a cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1982-01-01

    An experimental facility for irradiation of small biological targets with low-energy protons has been developed. The depth-dose distribution in soft-tissue is calculated from the proton energy spectrum. (orig.)

  6. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Environmental protection appraisals: a suggested guide for US Department of Energy field organization. Revision 1

    International Nuclear Information System (INIS)

    Barisas, S.; Polich, J.; Surles, T.; Habegger, L.; Anderson, D.; Opelka, J.; Frangos, T.

    1985-03-01

    This manual has been prepared to assist DOE field organizations in conducting environmental protection appraisals of activities at DOE operating-level facilities. Its primary use will be by DOE operations offices in their appraisal of facilities operating under the authority of the Atomic Energy Act. However, the manual can also be used by other DOE field organizations. This manual is organized in modules that parallel those in the internal environmental audit checklist. It is assumed that the contractor is using the guide previously described (Internal Environmental Protection Audits) and that operations office staff members will have the opportunity to review or be cognizant of the contractor's completed internal audit, and other material generated within the facility, in preparation for the appraisal. This manual was developed to facilitate the appraisal process by providing operations office staff with a choice of modules that can be used independently or as a unit. The manual gives guidelines for reviewing information submitted to the operations office before the site visit and for conducting an on-site operating-level appraisal

  8. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  9. Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-10

    This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

  10. Energy use in selected metal casting facilities - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  11. Coastal Energy Facilities in the United States for 2012.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data depict the location of facilities that generate electricity. The locations are created from the Environmental Protection Agency Emissions & Generation...

  12. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov (United States)

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  13. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  14. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Appendix A-Form of nuclear energy liability policy for facilities. 140.91 Section 140.91 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION... other matter not within the Commission's statutory jurisdiction under the Atomic Energy Act. Nuclear...

  15. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  16. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  17. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  18. The CERN-EU high-energy Reference Field (CERF) facility: applications and latest developments

    Science.gov (United States)

    Silari, Marco; Pozzi, Fabio

    2017-09-01

    The CERF facility at CERN provides an almost unique high-energy workplace reference radiation field for the calibration and test of radiation protection instrumentation employed at high-energy accelerator facilities and for aircraft and space dosimetry. This paper describes the main features of the facility and supplies a non-exhaustive list of recent (as of 2005) applications for which CERF is used. Upgrade work started in 2015 to provide the scientific and industrial communities with a state-of-the-art reference facility is also discussed.

  19. Decommissioning of nuclear facilities by the United States Department of Energy Oak Ridge Field Office

    International Nuclear Information System (INIS)

    DeLozier, M.F.P.

    1992-01-01

    The Oak Ridge Field Office of the United States Department of Energy is projecting one of the largest decommissioning efforts in the nation during the next ten to twenty years. The nuclear facilities are varied with respect to the types of contaminants and types of structures and equipment involved. The facilities planned for decommissioning include 26 ORNL facilities (e.g., OGR, HRE, MSRE), 70 facilities at Oak Ridge K25 site, and the Y-12 plant at Oak Ridge. Innovative technologies are required to decommission the facilities and dispose of the waste generated. (R.P.)

  20. Energy conservation progress in building equipment. Energy conservation on the sports facilities; Kenchiku setsubi ni okeru sho energy no shiten. Supotsu reja shisetsu no sho energy

    Energy Technology Data Exchange (ETDEWEB)

    Sakura, I.; Kayo, M. [Kajima Corp., Tokyo (Japan)

    1996-06-05

    There are various kinds of sports and leisure facilities. Due to their classes, aims, operation styles and so forth, the grades of aimed environments and facilities change. For example, like a baseball, swimming and skating, quantity of motion and grade of sportswear are different due to their classes and a target environment is also differs. On the other hand, public facility for citizen use is required its cheaper fee, but private facility on commercial base is required its user-collecting capability with added-value. In order to content individual needs of each facility, it is important to combine properly its target environment and its equipment system. The sports and leisure facilities have often large space on their characteristics, and are necessary to maintain their target environments as well as to treat their thermal emission in closed space and to supply their required air. Therefore, it is an extremely meaningful to conduct the energy saving in the facility apt to consume a lot of energy, which is described in this paper mainly on in-door large space facilities. 17 refs., 1 tab.

  1. Design of the energy storage system for the High Energy Gas Laser Facility at LASL

    International Nuclear Information System (INIS)

    Riepe, K.B.; Kircher, M.J.

    1977-01-01

    The Antares laser is being built in the High Energy Gas Laser Facility (HEGLF) at Los Alamos to continue laser fusion experiments at very high power. The laser medium will be pumped by an electrical discharge, which requires an energy input of about 5 MJ in a few microseconds at about 500 kV. The energy storage system which will provide the pulsed power will be a bank of high-voltage pulse-forming networks. Tradeoff studies have been performed comparing the performance of multi-mesh networks with single-mesh networks. The single-mesh network requires about 20% more energy than a two-mesh network, but will tolerate three times the inductance of a two-mesh network. Analysis also shows that amplifier gain is not sensitive to impedance mismatch among the pulse-forming network, the transmission cables, and the gas discharge. A prototype pulse-forming network is being built to test components and trigger performance. It is a Marx generator storing 300 kJ at 1.2 MV open circuit, with 3 μH internal inductance

  2. Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2

    International Nuclear Information System (INIS)

    1997-01-01

    This Environmental Monitoring Plan was prepared for the US Department of Energy's (DOE's) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan's purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner

  3. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  4. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The intense neutron source is based on the ability of a supersonic flow of gas to dissipate an enormous quantity of heat generated in the neutron-producing target by multiple Coulomb collisions. A description is given of the principles involved in forming the supersonic jet, in forming the intense tritium-ion beam, in the vacuum systems, and in the tritium handling systems. An overview of the entire facility is included. It is believed that the facility can be operated with high reliability, ensuring a productive radiation damage program. (U.S.)

  5. Improving regulatory effectiveness in Federal/State siting actions. State perspectives on energy facility siting

    International Nuclear Information System (INIS)

    Stevens, D.W.; Helminski, E.L.

    1978-03-01

    The National Governors' Association, through its Committee on Natural Resources and Environmental Management, has been concerned with the growing administrative difficulties, both at the federal and state levels, of certifying sites for new major energy facilities. This concern led, early in 1977, to the creation of a Subcommittee on Energy Facility Siting to comprehensively analyze current conditions and determine how basic improvements might be made to the process. The report is meant to further clarify the issues that confront States and the Federal government in the siting of energy facilities

  6. Prospect of floating desalination facilities using nuclear energy in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Rina, G.; Gunandjar; Subki, I.R.

    1997-01-01

    This paper summarizes studies on the water demand and supply problems in Indonesia in the last few years. During the dry season in 1990, it was reported that lack of fresh drinking water in Java and Bali amounted to 2.4 x 10 6 ton/month. Since Indonesia consists of more than 13,000 islands, more problems are faced by other islands. The studies are focused on certain regions (groups of islands) which may have a potential for using a floating desalination facility. Water reservoirs in each island and delivery systems from the floating desalination facilities need to be assessed to see the prospective uses of the systems. Cheap, self-forgiving and easily operated systems, using transportable ship mounted desalination facilities, may be required as a solution to the water supply shortages for these islands. Conclusions based on current problems in water demand and supply and comments on the prospective future market using floating desalination facilities in Indonesia are also given. (author). 9 refs, 10 tabs

  7. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Science.gov (United States)

    2010-07-01

    ... policy must Federal agencies follow in the management of facilities? 102-74.155 Section 102-74.155 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of facilities...

  8. Public's right to information: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Stokely, E.

    1981-02-01

    The events at TMI prompted the Under Secretary of the Department of Energy (DOE) to establish the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. This Committee was assigned the task of assessing the adequacy of nuclear facility personnel qualification and training at DOE-owned reactors in light of the Three Mile Island accident. The Committee was also asked to review recommendations and identify possible implications for DOE's nuclear facilities

  9. Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4

    International Nuclear Information System (INIS)

    1994-06-01

    One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report

  10. Impacts of ramping inflexibility of conventional generators on strategic operation of energy storage facilities

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Jalal; Zareipour, Hamidreza

    2016-01-01

    This paper proposes an approach to assist a pricemaker merchant energy storage facility in making its optimal operation decisions. The facility operates in a pool-based electricity market, where the ramping capability of other resources is limited. Also, wind power resources exist in the system...

  11. A review of existing renewable energy facilities in Canada

    International Nuclear Information System (INIS)

    Nyboer, J.; Pape-Salmon, A.

    2003-05-01

    This first annual report on renewable energy in the Canadian electricity sector includes records from 629 power plants across Canada. Renewable energy sources include wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 629 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. The majority (64 per cent) of Canada's total installed power capacity comes from renewable energy sources, with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy at almost 98 per cent of its installed electrical capacity. Nearly half of Canada's renewable power capacity is in Quebec, followed by 18 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Approximately 80 per cent of the total installed renewable energy power capacity in Canada is owned by integrated electric utilities. Eleven per cent is owned by renewable electricity generating companies, 5 per cent is owned by aluminium companies, and 3 per cent is owned by pulp and paper companies. The rest is owned by diversified electricity generators. It is expected that with the ratification of the Kyoto Protocol interest in renewable energy will grow. 6 refs., 3 tabs., 2 figs., 1 appendix

  12. Designing for Optimal Energy Use in Production Facilities

    National Research Council Canada - National Science Library

    2004-01-01

    These briefing charts accompany a presentation on how Albert Kahn Associate saves its clients energy costs through building structure, design of HVAC systems, lighting systems, process related systems...

  13. Department of Defense Facilities Energy Conservation Policies and Spending

    National Research Council Canada - National Science Library

    Andrews, Anthony

    2008-01-01

    .... This report reviews energy conservation legislation and Executive Orders that apply to the Department of Defense, directives and instructions to the military departments and agencies on implementing...

  14. Extremity dosimetry at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Harty, R.; Reece, W.D.; MacLellan, J.A.

    1986-05-01

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire

  15. The SWARF high energy flash X-ray facility

    International Nuclear Information System (INIS)

    Gilbert, J.F.; Dove, E.W.D.

    1976-06-01

    A description is presented of the SWARF flash radiography facility at AWRE Foulness, which is stated to be the most powerful flash x-ray system available, in the U.K. The machine consists essentially of a Marx generator, a coaxial Blumlein system and an x-ray tube. The voltage output from the Marx generator (about 2.5 MV from an 80 kV input) is applied to a large re-entrant Blumlein pulse-forming line. Near maximum voltage, an adjustable oil switch short-circuits one end of the Blumlein generator and so applies a square voltage pulse of 65 ns duration to the x-ray tube. The x-rays are produced from a tantalum target which forms the anode of a vacuum field emission diode. The facility consists of two field machines positioned so that radiographs can be obtained from different angles. The description is given under the following heads: modus operandi; constructional details; oil installation; electrical details; commissioning, calibration and electrical data; flash radiography in explosives research; operational control of facility, film packs; radiographic results; further developments; overall performance. (U.K.)

  16. Impact of the resource conservation and recovery act on energy facility siting

    International Nuclear Information System (INIS)

    Tevepaugh, C.W.

    1982-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 is a multifaceted approach to the management of both solid and hazardous waste. The focus of this research is on the RCRA mandated proposed regulations for the siting of hazardous waste disposal facilities. This research is an analysis of the interactions among hazardous waste disposal facilities, energy supply technologies and land use issues. This study addresses the impact of RCRA hazardous waste regulations in a descriptive and exploratory manner. A literature and legislative review, interviews and letters of inquiry were synthesized to identify the relationship between RCRA hazardous waste regulations and the siting of selected energy supply technologies. The results of this synthesis were used to determine if and how RCRA influences national land use issues. It was found that the interaction between RCRA and the siting of hazardous waste disposal facilities required by energy supply technologies will impact national land use issues. All energy supply technologies reviewed generate hazardous waste. The siting of industrial functions such as energy supply facilities and hazardous waste disposal facilities will influence future development patterns. The micro-level impacts from the siting of hazardous waste disposal facilities will produce a ripple effect on land use with successive buffer zones developing around the facilities due to the interactive growth of the land use sectors

  17. Solar energy applications in transportation facilities : a literature review.

    Science.gov (United States)

    1978-01-01

    This report presents the results of a survey of the literature and other sources to determine the types of application that have been made of solar energy in the transportation field. The use of solar energy for powering automatic traffic counters, v...

  18. A decision support model for reducing electric energy consumption in elementary school facilities

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok

    2012-01-01

    Highlights: ► Decision support model is developed to reduce CO 2 emission in elementary schools. ► The model can select the school to be the most effective in energy savings. ► Decision tree improved the prediction accuracy by 1.83–3.88%. ► Using the model, decision-maker can save the electric-energy consumption by 16.58%. ► The model can make the educational-facility improvement program more effective. -- Abstract: The South Korean government has been actively promoting an educational-facility improvement program as part of its energy-saving efforts. This research seeks to develop a decision support model for selecting the facility expected to be effective in generating energy savings and making the facility improvement program more effective. In this research, project characteristics and electric-energy consumption data for the year 2009 were collected from 6282 elementary schools located in seven metropolitan cities in South Korea. In this research, the following were carried out: (i) a group of educational facilities was established based on electric-energy consumption, using a decision tree; (ii) a number of similar projects were retrieved from the same group of facilities, using case-based reasoning; and (iii) the accuracy of prediction was improved, using the combination of genetic algorithms, the artificial neural network, and multiple regression analysis. The results of this research can be useful for the following purposes: (i) preliminary research on the systematic and continuous management of educational facilities’ electric-energy consumption; (ii) basic research on electric-energy consumption prediction based on the project characteristics; and (iii) practical research for selecting an optimum facility that can more effectively apply an educational-facility improvement program as a decision support model.

  19. Present status of ESNIT (energy selective neutron irradiation test facility) program

    International Nuclear Information System (INIS)

    Noda, K.; Ohno, H.; Sugimoto, M.; Kato, Y.; Matsuo, H.; Watanabe, K.; Kikuchi, T.; Sawai, T.; Usui, T.; Oyama, Y.; Kondo, T.

    1994-01-01

    The present status of technical studies of a high energy neutron irradiation facility, ESNIT (energy selective neutron irradiation test facility), is summarized. Technological survey and feasibility studies of ESNIT have continued since 1988. The results of technical studies of the accelerator, the target and the experimental systems in ESNIT program were reviewed by an International Advisory Committee in February 1993. Recommendations for future R and D on ESNIT program are also summarized in this paper. ((orig.))

  20. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  1. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  2. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice

  3. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2010-04-01

    With an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little research exists on the subject. The present research investigates roughly 7,500 sales of single-family homes surrounding 24 existing U.S. wind facilities. Across four different hedonic models the results are consistent: neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  4. Integrating industry nuclear codes and standards into United States Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    Recently the United States Department of Energy (DOE) has mandated facilities under their jurisdiction use various industry Codes and Standards developed for civilian power reactors that operate under U.S. Nuclear Regulatory Commission License. While this is a major step forward in putting all our nuclear facilities under common technical standards there are always problems associated with implementing such advances. This paper will discuss some of the advantages and problems experienced to date. These include the universal challenge of educating new users of any technical documents, repeating errors made by the NRC licensed facilities over the years and some unique problems specific to DOE facilities.

  5. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  6. Facility Energy Performance Benchmarking in a Data-Scarce Environment

    Science.gov (United States)

    2017-08-01

    0.10 0.43 Commercial Studies Barracks Dining Facilities Vehicle Maintenance CBECS - 2003 •Dormitory •Fraternity •Sorority • Restaurant •Cafeteria...Vehicle service/repair shop CTS •Residence Hall/Dormitory •Food service • Restaurant /cafeteria •Vehicle service/repair •Vehicle DC - 2013 •Residence...Hall/Dormitory N/A N/A NYC - 2013 •Residence Hall/Dormitory • Restaurant •Food service •Automobile dealership CEUS •Lodging • Restaurant N/A CEC

  7. Effective use of electric power facilities and promotion of energy conservation

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao

    1999-01-01

    The capacity of Japan's commercial electric power facilities has been increased to more than 200 million kw. In order to provide a stable supply of electric power to meet constantly fluctuaring electric power demands, Japan's power plants generate electricity using an optimal combination of facilities, with nuclear power and coal-fired thermoelectric power providing the base load supply. In the use of electric power, moreover, measures are being implemented to reduce generation costs, conserve energy, and cut carbon dioxide emissions by reducing maximum output and equalizing the load. This report presents information concerning measures for improving the efficiency of electric power facilities operation, equalizing the load and promoting energy conservation. (author)

  8. Code of a Tokamak Fusion Energy Facility ITER

    International Nuclear Information System (INIS)

    Yasuhide Asada; Kenzo Miya; Kazuhiko Hada; Eisuke Tada

    2002-01-01

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of s ystem-based code for integrity . The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  9. The Marshall Space Flight Center Low-Energy Ion Facility: a preliminary report

    International Nuclear Information System (INIS)

    Biddle, A.P.; Reynolds, J.W.; Chisholm, W.L. Jr.; Hunt, R.D.

    1983-10-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently

  10. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  11. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    Science.gov (United States)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  12. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  13. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  14. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  15. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  16. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  17. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  18. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  19. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  20. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The Intense Neutron Source Facility, INS, has been proposed to provide a neutronic environment similar to that anticipated in a fully operational fusion-power reactor. The neutron generator will produce an intense flux of 14-MeV neutrons greater than 10 14 neutrons per cm 2 /sec from the collision of two intersecting beams, one of 1.1 A of 270 keV tritium ions and the other of a supersonic jet of deuterium gas. Using either the pure 14-MeV primary neutron spectrum or by tailoring the spectrum with appropriate moderators, crucial radiation-damage effects which are likely to occur in fusion reactors can be thoroughly explored and better understood

  1. Intelligent structures and design of energy related facilities

    International Nuclear Information System (INIS)

    Namba, Haruyuki

    1994-01-01

    Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)

  2. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  3. Cost considerations for an ionising energy treatment facility

    International Nuclear Information System (INIS)

    Culpitt, R.A.

    1985-01-01

    Variables influencing the cost of food irradiation can be included under three broad headings: the physical characteristics of products to be treated; the operational characteristics of the plant to be used; costs of establishment and operation of an ionising energy treatment

  4. Smart Grid Educational Series | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    , 2016. Download Presentation PDF Role of Software Defined Networking and WAN Virtualization in Securing (ISO), hosted a webinar on April 27, 2016, on the role of software defined networking and WAN presentation PDF IoT/PowerMatcher Transactive Energy for Smart Cities William J. Miller, President of MaCT USA

  5. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  6. Operation and maintenance manual for the temporary septic holding tank at the 100-D remedial action support facility. Revision 2

    International Nuclear Information System (INIS)

    Kelty, G.G.

    1996-10-01

    This manual was prepared to provide detailed information for the operation and maintenance of the sanitary wastewater holding system at the 100-D Remedial Action Support Facility located in the 100-DR-1 Operable Unit at the Hanford Site. This document describes operations, including the type and frequency of required maintenance, and system failure response procedures

  7. Operation and maintenance manual for the temporary septic holding tank at the 100-D remedial action support facility. Revision 1

    International Nuclear Information System (INIS)

    Kelty, G.G.

    1996-09-01

    This manual provides detailed information for the operation and maintenance of the sanitary wastewater holding system at the 100-D Remedial Action Support Facility located in the 100-DR-1 Operable Unit of the Hanford Site. This document describes operations, including the type and frequency of required maintenance, and system failure response procedures

  8. High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh

    International Nuclear Information System (INIS)

    McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.

    1975-01-01

    The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported

  9. Less is More: DoD’s Strategy for Facility Energy Security and Environmental Sustainability

    Science.gov (United States)

    2012-05-22

    Acquisition, Technology and Logistics NAWS China Lake Geothermal Ford Island Runway PV Project Joint Expeditionary Base Little Creek Facility Energy...GovEnergy Conference, August 10, 2011 Acquisition, Technology and Logistics Army: 1 Fort Irwin Navy: 2 NAWS China Lake NAF El Centro Air

  10. Energy-efficient architecture of industrial facilities associated with the desalination of sea water

    Directory of Open Access Journals (Sweden)

    Gazizov Timur

    2016-01-01

    Full Text Available The article offers an actual solution of a problem of drinking water shortage in the territory of the Crimean coast, in the city of Sudak, Autonomous Republic of Crimea, Russia. The project includes a development of energy-efficient architecture, its implementation in industrial facilities, such as stations for seawater desalination and an active use of alternative energy sources.

  11. Energy efficiency in U.S. Forest Service facilities: a multiregion review

    Science.gov (United States)

    Rachelle S. Meyer; David L. Nicholls; Trista M. Patterson; Rachel E. White

    2013-01-01

    We reviewed energy efficiency measures in facilities across the U.S. Department of Agriculture Forest Service, examining opportunities and obstacles, and identifying factors of project success. The adoption of energy efficiency measures at Forest Service sites was seen to be most likely when decision control was local to the site and when budget timing and structures...

  12. Potential of mediation for resolving environmental disputes related to energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This study assesses the potential of mediation as a tool for resolving disputes related to the environmental regulation of new energy facilities and identifies possible roles the Federal government might play in promoting the use of mediation. These disputes result when parties challenge an energy project on the basis of its potential environmental impacts. The paper reviews the basic theory of mediation, evaluates specific applications of mediation to recent environmental disputes, discusses the views of environmental public-interest groups towards mediation, and identifies types of energy facility-related disputes where mediation could have a significant impact. Finally, potential avenues for the Federal government to encourage use of this tool are identified.

  13. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig

  14. Approach and strategy for performing ecological risk assessments for the US Department of Energy's Oak Ridge Reservation: 1995 revision

    International Nuclear Information System (INIS)

    Suter, G.W. II; Sample, B.E.; Jones, D.S.; Ashwood, T.L.; Loar, J.M.

    1995-09-01

    The purpose of this document is to provide guidance for planning and performing ecological risk assessments (ERAs) on the Oak Ridge Reservation (ORR). It is the third such document prepared for this purpose. The first ecorisk strategy document described the ERA process and presented a tiered approach to ERAs appropriate to complex sites. The first revision was necessitated by the considerable progress that has been made by the parties to the Federal Facilities Agreement (FFA) for the ORR in resolving specific issues relating to ERA as a result of a series of data quality objectives (DQOs) meetings. The tiered approach to ERAs as recommended in the first document was implemented, generic conceptual models were developed, and a general approach for developing ecological assessment endpoints and measurement endpoints was agreed upon. This revision is necessitated by comments from the US Environmental Protection Agency's Region IV and the Tennessee Department of Environment and Conservation (TDEC) which clarified and modified the positions taken during the DQO process. In particular, support for the collection of data that would support ERAs for all OUs on the ORR have been withdrawn. Therefore, the work plan developed to fill the reservation-wide data needs identified in the DQO process has also been withdrawn, and portions that are still relevant have been incorporated into this document. The reader should be aware that this guidance is complex and lengthy because it attempts to cover all the reasonable contingencies that were considered to be potentially important to the FFA parties

  15. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    Science.gov (United States)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  16. Making renewable energy competitive in India: Reducing financing costs via a government-sponsored hedging facility

    International Nuclear Information System (INIS)

    Farooquee, Arsalan Ali; Shrimali, Gireesh

    2016-01-01

    In India, a significant barrier to market-competitiveness of renewable energy is a shortage of attractive debt. Domestic debt has high cost, short tenors, and variable interest rates, adding 30% to the cost of renewable energy compared to renewable energy projects elsewhere. Foreign debt is as expensive as domestic debt because it requires costly market-based currency hedging solutions. We investigate a government-sponsored foreign exchange facility as an alternative to reducing hedging costs. Using the geometric Brownian motion (GBM) as a representative stochastic model of the INR–USD foreign exchange rate, we find that the expected cost of providing a currency hedge via this facility is 3.5 percentage points, 50% lower than market. This leads to an up to 9% reduction in the per unit cost of renewable energy. However, this requires the government to manage the risks related to unexpected currency movements appropriately. One option to manage these risks is via a capital buffer; for the facility to obtain India's sovereign rating, the capital buffer would need to be almost 30% of the underlying loan. Our findings have significant policy implications given that the Indian government can use this facility to make renewable energy more competitive and, therefore, hasten its deployment. - Highlights: • We analyze a government-sponsored foreign exchange facility in India. •We use geometric Brownian motion to represent the INR–USD exchange rate. •This facility can reduce the currency hedging costs by 50%. •This facility can reduce the levelized cost of renewable energy by 9%. •The capital buffer to reach India's sovereign rating is 30% of the original loan.

  17. Strategies for energy benchmarking in cleanrooms and laboratory-type facilities

    International Nuclear Information System (INIS)

    Sartor, Dale; Piette, Mary Ann; Tschudi, William; Fok, Stephen

    2000-01-01

    Buildings with cleanrooms and laboratories are growing in terms of total floor area and energy intensity. This building type is common in institutions such as universities and in many industries such as microelectronics and biotechnology. These buildings, with high ventilation rates and special environmental considerations, consume from 4 to 100 times more energy per square foot than conventional commercial buildings. Owners and operators of such facilities know they are expensive to operate, but have little way of knowing if their facilities are efficient or inefficient. A simple comparison of energy consumption per square foot is of little value. A growing interest in benchmarking is also fueled by: A new U.S. Executive Order removing the exemption of federal laboratories from energy efficiency goals, setting a 25% savings target, and calling for baseline guidance to measure progress; A new U.S. EPA and U.S. DOE initiative, Laboratories for the 21st Century, establishing voluntary performance goals and criteria for recognition; and A new PG and E market transformation program to improve energy efficiency in high tech facilities, including a cleanroom energy use benchmarking project. This paper identifies the unique issues associated with benchmarking energy use in high-tech facilities. Specific options discussed include statistical comparisons, point-based rating systems, model-based techniques, and hierarchical end-use and performance-metrics evaluations

  18. Factors associated with bat mortality at wind energy facilities in the United States

    Science.gov (United States)

    Thompson, Maureen; Beston, Julie A.; Etterson, Matthew A.; Diffendorfer, James E.; Loss, Scott R.

    2017-01-01

    Hundreds of thousands of bats are killed annually by colliding with wind turbines in the U.S., yet little is known about factors causing variation in mortality across wind energy facilities. We conducted a quantitative synthesis of bat collision mortality with wind turbines by reviewing 218 North American studies representing 100 wind energy facilities. This data set, the largest compiled for bats to date, provides further evidence that collision mortality is greatest for migratory tree-roosting species (Hoary Bat [Lasiurus cinereus], Eastern Red Bat [Lasiurus borealis], Silver-haired Bat [Lasionycteris noctivagans]) and from July to October. Based on 40 U.S. studies meeting inclusion criteria and analyzed under a common statistical framework to account for methodological variation, we found support for an inverse relationship between bat mortality and percent grassland cover surrounding wind energy facilities. At a national scale, grassland cover may best reflect openness of the landscape, a factor generally associated with reduced activity and abundance of tree-roosting species that may also reduce turbine collisions. Further representative sampling of wind energy facilities is required to validate this pattern. Ecologically informed placement of wind energy facilities involves multiple considerations, including not only factors associated with bat mortality, but also factors associated with bird collision mortality, indirect habitat-related impacts to all species, and overall ecosystem impacts.

  19. Maintaining Department of Energy facilities general design criteria

    International Nuclear Information System (INIS)

    Metzler, J.F.

    1985-01-01

    A General Design Criteria (GDC) Planning Board has been established in the Department of Energy to streamline the improvement and maintenance of the GDC Manual. This Planning Board, composed of a membership from field organizations and Headquarters programmatic offices, started work on 15 enhancements to the GDC Manual. One of those enhancements details natural phenomena hazards criteria. In the past year the Planning Board submitted a major recommendation which has been implemented into what is known as the GDC Improvements project. The result of this project pledges to dramatically increase the GDC Manual's utilization and effectiveness

  20. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  1. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2010-04-01

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little existing research exists on the subject. The present research is based on almost 7,500 sales of single-family homes situated within ten miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from four different hedonic pricing models. The model results are consistent in that neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  2. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  3. Summary of radionuclide air emissions from Department of Energy facilities for CY 1991

    International Nuclear Information System (INIS)

    1992-12-01

    The U. S. Department of Energy (DOE) operates a number of facilities that handle radioactive materials in conjunction with its research and nuclear materials production activities. These include laboratories for research, production facilities for nuclear materials and weapons, and facilities for storage and disposal of radioactive wastes. During normal operations, some of these facilities have the potential to release small quantities of radionuclides to the atmosphere which the U. S. Environmental Protection Agency (EPA) regulates under the authority of Section 112 of the Clean Air Act. The regulations are specifiedin the National Emission Standards for Hazardous Air Pollutants (NESHAP), in 40 CFR Part 61. Subpart H of the NESHAP sets standards for public exposure to airborne radioactive materials (other than radon) released by DOE facilities

  4. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  5. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    Science.gov (United States)

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  6. Marine Planning for Potential Wave Energy Facility Placement Amongst a Crowded Sea of Existing Resource Uses

    Science.gov (United States)

    Feist, B. E.; Fuller, E.; Plummer, M. L.

    2016-12-01

    Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs

  7. Development of a medium energy polarized neutron facility

    International Nuclear Information System (INIS)

    Burzynski, S.; Gysin, C.; Henneck, R.; Jourdan, J.; Kohler, D.; Pickar, M.A.; Plattner, G.R.; Sick, I.; Berdoz, A.; Foroughi, F.; Nussbaum, Ch.; Stammbach, Th.

    1984-01-01

    By the end of 1983 the major construction work for the new polarized neutron source was completed. The source will provide an essentially monoenergetic beam of both polarized and unpolarized neutrons in the energy range from 20 MeV to 70 MeV. Intensities are expected to be approx. 2 x 10 5 neutrons/s.cm 2 per μA of incident proton beam. The polarization is expected to be approx. 0.2 and can be chosen to be either longitudinal or transverse. Protons from the Philips injector cyclotron are focussed onto a liquid deuterium target and produce neutrons via the 2 H(p,n)2p reaction at 0 0 . This process provides essentially monoenergetic neutrons of almost the same energy as the incoming protons. The zero production angle implies that the neutron polarization comes from the polarization of the proton beam only. This allows an easy and fast change of the neutron spin direction by selecting proton spin states in the polarized ion source (atomic beam type). (Auth.)

  8. 25 Years of the Netherlands Joint Nuclear Energy Facility (GKN)

    International Nuclear Information System (INIS)

    Arnold, H.; Loon, A.J. van

    1990-01-01

    This book starts with a review on the twenty years in which 'Dodewaard' has been in operation. A survey is given of the most important new developments which will enlarge the safety and reliability of future generations of nuclear power plants. In order to be able to make a reliable consideration of the pro's and contra's of nuclear power, it is considered what the risks are of large-scale generation of electricity in general for man and environment. The treatment of this question is limited to the use of fossil fuel at one, and nuclear power at the other hand. Recurrent energy sources like the sun and wind are not taken into consideration. These are important energy sources, but the planned further application of these sources will not render the contributions of large power plants to the Dutch electricity need in the near future. The Dutch government had decided, a few months before the Chernobylsk accident, to build new nuclear power plants. This decision has been reconsidered after the accident. Therefore the government had performed a study into the possibility for a disturbance in a new nuclear power plant causing an effluence of radioactive materials into the environment. The effects of such an effluence for man, environment and economy were also taken into consideration. The background and conclusions of this study are elucidated in this book. (author). figs

  9. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    International Nuclear Information System (INIS)

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23

  10. The DFVLR wind-energy test facility 'Ulrich Huetter' on Schnittlinger Berg

    Science.gov (United States)

    Kussmann, Alfred

    1986-11-01

    The DFVLR test facility for wind-energy systems (named after Ulrich Huetter, the designer of the 100-kW GFRP-rotor W 34 wind turbine first manufactured and tested in the 1950s) is described and illustrated with photographs. The history of the facility is traced, and current operations in gathering, archiving, processing, interpreting, and documenting performance-test data are outlined. The facility includes instrumentation for rotor telemetry, gondola motion measurements, and ground measurements and provides testing services to private users on both contract and leasing bases.

  11. Economies of using seismic experience data qualification methods at Department of Energy facilities

    International Nuclear Information System (INIS)

    Loceff, F.; Antaki, G.; Goen, L.

    1995-01-01

    This paper summarizes the implementation of the seismic qualification of existing equipment using experience data techniques. The emphasis is on the economies of this approach compared with standard qualification methods of analysis and testing or replacement with qualified equipment. Seismic qualification of existing equipment using experience data is a technical necessity and is the most economically attractive of the options. Representative costs for seismic qualification at two facilities show costs are substantially lower than the costs for qualification using conventional methods. Because of the experience to date, the authors recommend that the Department of Energy continue to sponsor the Existing Facilities Program for applying qualification using experience data techniques at DOE facilities

  12. Analysis of Blade Fragment Risk at a Wind Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simms, David A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Larwood, Scott [University of the Pacific

    2018-04-06

    An analysis was performed to determine the risk posed by wind turbine fragments on roads and buildings at the National Wind Technology Center at the National Renewable Energy Laboratory. The authors used a previously developed model of fragment trajectory and took into account the wind speed/direction distribution at the site and the probability of rotor failure. The risk was assessed by determining the likelihood of impact and related consequences. For both the roads and buildings, the risk varied from low to routine, which was considered acceptable. The analysis was compared with previous recommendations on wind turbine setback distances. The results showed that a setback to property lines of 2 times the overall turbine height would be acceptable. However, the setback to dwellings should probably be increased from 3 to 3.5 times the overall turbine height for an acceptable risk.

  13. Natural radionuclides in facilities of deep geothermal energy in Germany. Origin and occurrence

    International Nuclear Information System (INIS)

    Degering, Detlev; Koehler, Matthias

    2014-01-01

    Geothermal energy facilities use two inexhaustible energy reservoirs, the heat flux from the earth crust and earth core, originating from the gravitational process of the planet development 4.7 billion years ago, and on the other hand the continuous heat production as a consequence of the decay processes of natural radionuclides in the earth crust. The heat flux through the earth surface is in the range of 10 13 W, 50 to 70% originating from the radioactive decay. The constancy of this heat flux causes the attractiveness of the geothermal energy as base load energy production in comparison with other renewable energy sources.

  14. Optimal number of energy generators for biogas utilization in wastewater treatment facility

    International Nuclear Information System (INIS)

    Tsagarakis, Konstantinos P.

    2007-01-01

    A technoeconomic analysis has been undertaken considering the optimum number of energy producing generators using biogas coming from anaerobic digestion. Inputs for this analysis originate from available data on the first generator for energy production from biogas, installed in Greece at the wastewater treatment facility of Iraklio city. The data spans a period of 5.5 years of operation. It is concluded that the cost per kWh produced is 0.0876 Euro /kWh if one generator is used covering 15.9% of the facility's needs. If two generators are used, more biogas is utilized contributing 32.6% of the facility's needs at a marginal production cost of 0.0886 Euro /kWh. Similar estimations have been made for scenarios involving up to six generators. In contrast, the marginal cost of conventionally produced energy is 0.1383-0.2483 Euro /kWh

  15. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  16. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    International Nuclear Information System (INIS)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown

  17. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  18. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  19. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  20. Analysis of the electrical energy requirements of the GSI facility

    CERN Document Server

    Ripp, Christopher

    2013-01-01

    Die Veränderung auf dem deutschen Energiemarkt durch die Energiewende bringt eine Viel-zahl von Problemen mit sich. Der stetig ansteigende Ausbau von erneuerbaren Energien und die daraus resultierende starke Schwankung der eingespeisten Energiemengen zwingen die Netzbetreiber zum Ausbau der Stromnetze [1]. Die dadurch verursachten Kosten lassen die Netznutzungsgebühren steigen, welche an die Endkunden weitergegeben werden. Ebenfalls stieg die EEG-Umlage (Erneuerbare-Energie-Gesetz) von 3,6ct/kWh im Jahr 2012 über 5,3ct/kWh im Jahr 2013 auf 6,3ct/kWh für das Jahr 2014 [2], [3], [4]. Die extrem schnell steigenden Energiekosten zwingen die Verbraucher zur Erhöhung ihrer Energieeffizienz, um die laufenden Kosten so niedrig wie möglich zu halten [3]. Dies verlangt nach innovativen Ansätzen und Lösungen im unternehmenseigenen Energiemanagement. Besonders For-schungseinrichtungen mit großem Energiebedarf müssen eine höhere Energieeffizienz reali-sieren, um bei knappen Budgets ihrem Forschungsauftrag gerec...

  1. Call for information on coastal energy facility siting: an analysis of responses

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Call for Information issued by the New Jersey Department of Environmental Protection in December 1975 consisted of an eight page questionnaire which was sent to industries, government agencies, and private organizations. Its objective was to seek the help of these groups in plans for the siting of energy facilities in the coastal zone. Potential development of oil and gas from the Baltimore Canyon region adjacent to New Jersey has made planning for energy facilities a priority issue both at the state and federal level. The Call for Information invited government and the energy industry to submit (a) suggested criteria for locating energy and energy-related facilities within the New Jersey coastal zone, (b) analyses by governmental and private agencies or groups of the need to locate energy facilities in specific sites within New Jersey's coastal zone, or in generalized portions thereof, and (c) identification of the land-use parameters, appropriate to the various types of facilities which may be proposed, now or later, for coastal siting. The findings obtained from the draft call and the final call issued seven months later are presented. The results of the industries' responses show that the electric and gas utilities gave some useful information while this was true of only a few of the oil companies. The reluctance to give informatign was perhaps aggravated by lack of clear state and federal policies. The appendices illustrate specific information on manpower, cost and facility requirements to develop oil refineries, establish a gas processing plant as well as information from the US Coast Guard and the Environmental Protection Agency. There is also a listing of the companies that bid in the August 1976 lease sale indicating which bids were accepted, a map of the offshore tracts, and a list of which companies responded to the Call for Information

  2. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  3. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

  4. Energy use and engineering audits at state-owned facilities in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1980-01-01

    The contents and results of two large computerized data bases maintained by the Minnesota Department of Administration are described and analyzed. One contains information on monthly fuel use from 1972 through 1978 for 42 large state facilities: community colleges, state universities, hospitals, prisons, and office buildings. The second contains the results of detailed engineering audits performed at 41 such institutions. The audits cover 270 buildings and include 2010 individual energy conservation recommendations. Several data base management issues are discussed. These include errors and their identification, development of simple and consistent definitions for key terms, and collection of information on the major determinants of energy use and conservation potentials at these facilities.

  5. Energy conservation indicators cold and heat storage. Revision factsheet cold and heat storage 2009; Besparingskentallen koude- en warmteopslag. Herziening factsheet koude- en warmteopslag 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bosselaar, L. [SenterNovem, Utrecht (Netherlands); Koenders, M.J.B.; Van Helden, M.J.C.; Kleinlugtenbelt, J.H. [IF Technology, Arnhem (Netherlands)

    2009-08-15

    The aim of the title revision is to update the existing indicators for cold and heat storage as given in the Protocol Monitoring Sustainable Energy [Dutch] Het doel van het onderzoek is om de bestaande set van kentallen voor koude- en warmteopslag uit het Protocol Monitoring Duurzame Energie te actualiseren.

  6. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5). Recommendations (Spanish Edition); Recomendaciones de Seguridad Fisica Nuclear sobre la Proteccion Fisica de los Materiales y las Instalaciones Nucleares (INFCIRC/225/Rev.5). Recomendaciones

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  7. Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities

    International Nuclear Information System (INIS)

    Borge-Diez, David; Colmenar-Santos, Antonio; Pérez-Molina, Clara; López-Rey, África

    2015-01-01

    In Europe energy services are underutilized in terms of their potential to improve energy efficiency and reduce external energy dependence. Agricultural and stockbreeding sectors have high potential to improve their energy efficiency. This paper presents an energy model for geothermal source heat pumps in stockbreeding facilities and an analysis of an energy services business case. The proposed solution combines both energy cost reduction and productivity increases and improves energy services company financing scheme. CO 2 emissions drop by 89%, reducing carbon footprint and improving added value for the product. For the two different evaluated scenarios, one including winter heating and one including heating and cooling, high IRR (internal return rate) values are obtained. A sensitivity analysis reveals that the IRR ranges from 10.25% to 22.02%, making the investment attractive. To make the research highly extensible, a sensitivity analysis for different locations and climatic conditions is presented, showing a direct relationship between financial parameters and climatic conditions. A Monte Carlo simulation is performed showing that initial fuel cost and initial investment are the most decisive in the financial results. This work proves that energy services based on geothermal energy can be profitable in these sectors and can increase sustainability, reduce CO 2 emissions and improve carbon footprint. - Highlights: • Geothermal heat pumps are studied to promote industrial energy services. • Geothermal energy in farming facilities improves global competitiveness. • Research shows profitability of low enthalpy geothermal energy services. • Climatic conditions sensitivity analysis reveals IRR ranges from 10.25% to 22.02%. • Added market value for the product as carbon footprint reduction, are achieved

  8. Approach and strategy for performing ecological risk assessments for the US Department of Energy`s Oak Ridge Reservation: 1995 revision

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II; Sample, B.E.; Jones, D.S.; Ashwood, T.L.; Loar, J.M.

    1995-09-01

    The purpose of this document is to provide guidance for planning and performing ecological risk assessments (ERAs) on the Oak Ridge Reservation (ORR). It is the third such document prepared for this purpose. The first ecorisk strategy document described the ERA process and presented a tiered approach to ERAs appropriate to complex sites. The first revision was necessitated by the considerable progress that has been made by the parties to the Federal Facilities Agreement (FFA) for the ORR in resolving specific issues relating to ERA as a result of a series of data quality objectives (DQOs) meetings. The tiered approach to ERAs as recommended in the first document was implemented, generic conceptual models were developed, and a general approach for developing ecological assessment endpoints and measurement endpoints was agreed upon. This revision is necessitated by comments from the US Environmental Protection Agency`s Region IV and the Tennessee Department of Environment and Conservation (TDEC) which clarified and modified the positions taken during the DQO process. In particular, support for the collection of data that would support ERAs for all OUs on the ORR have been withdrawn. Therefore, the work plan developed to fill the reservation-wide data needs identified in the DQO process has also been withdrawn, and portions that are still relevant have been incorporated into this document. The reader should be aware that this guidance is complex and lengthy because it attempts to cover all the reasonable contingencies that were considered to be potentially important to the FFA parties.

  9. Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Mark Burmeister

    2007-01-01

    This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs)

  10. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  11. Summary of Information and Resources Related to Energy Use in Healthcare Facilities - Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Coughlin, Jennifer L.; Mathew, Paul A.

    2009-09-08

    This document presents the results of a review of publicly available information on energy use in health care facilities. The information contained in this document and in the sources cited herein provides the background and context for efforts to reduce energy use and costs in health care. Recognizing the breadth and diversity of relevant information, the author acknowledges that the report is likely not comprehensive. It is intended only to present a broad picture of what is currently known about health care energy use. This review was conducted as part of a 'High Performance Health Care Buildings' research study funded by the California Energy Commission. The study was motivated by the recognition that health care facilities collectively account for a substantial fraction of total commercial building energy use, due in large part to the very high energy intensity of hospitals and other inpatient care facilities. The goal of the study was to develop a roadmap of research, development and deployment (RD&D) needs for the health care industry. In addition to this information review, the road map development process included interviews with industry experts and a full-day workshop at LBNL in March 2009. This report is described as 'Version 1' with the intent that it will be expanded and updated as part of an ongoing LBNL program in healthcare energy efficiency. The document is being released in this form with the hope that it can assist others in finding and accessing the resources described within.

  12. Economic feasibility of artificial islands for cluster-siting of offshore energy facilities

    International Nuclear Information System (INIS)

    Baram, M.S.; Spencer, J.; Munson, J.S.

    1977-04-01

    The study presents a general first-order cost feasibility analysis of the artificial island concept and its usefulness for the offshore siting of multiple energy facilities. The results of the study include a recommended method of cost-feasibility assessment; the collection and organization of the most useful information presently available; and a series of conclusions on feasibility for generic comparison purposes. These conclusions can be summarized as follows: (1) artificial islands to the outer bound of the continental shelf are technologically feasible; (2) offshore nuclear power plants appear to be competitive with onshore plants from a cost standpoint; (3) offshore deepwater ports appear to be more economical than proposed onshore deepwater ports, existing facilities or facilities presently under construction; (4) offshore oil refineries, except under special circumstantces, will probably be more costly than onshore counterparts; (5) the cluster-siting of facilities on an artificial island has definite cost-effectiveness potential; (6) a joint public-private financial venture with a strong federal agency lead role appears essential for the multi-facility island concept to be realized; and (7) artificial island siting of energy complexes appears to be a concept worth pursuing in terms of further site and facility-specific research, and possibly in terms of a demonstration project

  13. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  14. 75 FR 19467 - Approval and Promulgation of Implementation Plans; Texas; Revisions to the New Source Review (NSR...

    Science.gov (United States)

    2010-04-14

    ... Rules Revisions; 112(g) Revisions (Rule Project No. 98001-116-AI). Under the Settlement Agreement in... provisions that either prohibit future increases at the Qualified Facility, or ensure that any future... commenters do not want coal to stand in the way of a clean energy future in Texas. Strong rules are needed to...

  15. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG ampersand G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report

  16. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  17. Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-09

    This report describes environmental monitoring activities at Hanford Reservation. Attention is focused on effluent monitoring and environmental surveillance. All Hanford contractors reviewed potential sources of contamination. A facility effluent monitoring plan was written for each facility with the potential to release significant quantities of hazardous materials, addressing both radiological and nonradiological effluent monitoring. The environmental surveillance program assesses onsite and offsite environmental impacts and offsite human health exposures. The program monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife. In addition, independent onsite surveillance is conducted to evaluate the effectiveness of Hanford Site effluent controls in order to comply with applicable environmental standards and regulations.

  18. Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office. Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    This report describes environmental monitoring activities at Hanford Reservation. Attention is focused on effluent monitoring and environmental surveillance. All Hanford contractors reviewed potential sources of contamination. A facility effluent monitoring plan was written for each facility with the potential to release significant quantities of hazardous materials, addressing both radiological and nonradiological effluent monitoring. The environmental surveillance program assesses onsite and offsite environmental impacts and offsite human health exposures. The program monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife. In addition, independent onsite surveillance is conducted to evaluate the effectiveness of Hanford Site effluent controls in order to comply with applicable environmental standards and regulations

  19. FEASIBILITY OF CONSTRUCTION OF SOLAR ENERGY FACILITIES ON THE TERRITORY OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Виталий Игоревич Беляев

    2017-11-01

    Full Text Available The article shows the energy problems that could solve the construction of solar energy facilities in Russia. From various points of view, it is considered how rational is the placement of solar stations in Russia. A number of problems experienced by solar energy are presented directly on the territory of Russia. A comparison of Russia with Western states with respect to the construction of solar stations is shown. A new branch of "green" energy in the world is presented - bio photovoltaic systems

  20. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  1. Performance indicator program for U.S. Department of Energy reactors and facilities

    International Nuclear Information System (INIS)

    Sastry, R.; Fielding, J.R.; Snyder, B.J.; Usher, J.; Boccio, J.

    1990-01-01

    The U.S. Department of Energy (DOE) is developing a Performance Indicator (PI) Program for all facilities. The objective is to periodically collect, statistically analyze and present performance-related information in a concise and consistent format for DOE and safety of facility operations. A set of 14 DOE-Hq. defined PI's has been established after review of programs used by other organizations. Since July 1989, these PI's have been used in a trial program for eight diverse DOE facilities. Electronic reporting is directly to the DOE Safety Performance Measurement System computer. This paper reports on results demonstrated for the feasibility and usefulness of a DOE-wide PI Program and steps being taken to include all DOE facilities

  2. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  3. Overview of new, upgraded, or proposed high energy physics facilities in the United States and Canada

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1994-01-01

    This article reviews six new, proposed, or upgraded accelerator facilities in the United States and Canada. All of the accelerators that are presented here in one form or fashion challenge the validity of the Standard Model of high energy physics which ''currently explains'' all experimentally know phenomena. These facilities include the Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, the Kaon Factory at TRIUMF in Vancouver, British Columbia, Canada, the Asymmetric B Factory at the Stanford Linear Accelerator Center (SLAC) in Palo Alto, California, the Relativistic Heavy Ion Collider (RHIC) facility at Brookhaven National Laboratory in Upton, New York, the injector upgrade project at the Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, and the Superconducting Super Collider Laboratory (SSCL) in Waxachachie, Texas

  4. Consistent natural phenomena design and evaluation guidelines for U.S. Department of Energy facilities

    International Nuclear Information System (INIS)

    Murray, R.C.; Short, S.A.

    1989-01-01

    Uniform design and evaluation guidelines for protection against natural phenomena hazards such as earthquakes, extreme winds, and flooding for facilities at Department of Energy (DOE) sites throughout the United States have been developed. The guidelines apply to design of new facilities and to evaluation or modification of existing facilities. These guidelines are an approach for design or evaluation for mitigating the effects of natural phenomena hazards. These guidelines are intended to control the level of conservatism introduced in the design/evaluation process such that all hazards are treated on a reasonably consistent and uniform basis and such that the level of conservatism is appropriate for facility characteristics such as importance, cost, and hazards to on-site personnel, the general public, and the environment. The philosophy and goals of these guidelines are covered by this paper

  5. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables

  6. Recent results from the TwinSol low-energy RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, F.D. [U. Michigan, Ann Arbor, MI 48109 (United States); Kolata, J.J. [U. Notre Dame, Notre Dame, IN 46556 (United States)

    2016-06-01

    We report on some of the recent developments and experimental work done at the twin-solenoid low-energy radioactive-ion-beam (RIB) facility TwinSol installed at the U Notre Dame 10 MV FN tandem accelerator. The TwinSol facility is a joint project of the University of Michigan (UM) and the University of Notre Dame (UND), and includes several U.S. and foreign collaborators. A number of significant experiments including RIB-induced transfer reactions, elastic scattering, resonant scattering, and fusion at energies near and well below the Coulomb barrier have been performed with this facility. Several of these as well as future work and upgrades planned will be described.

  7. Revision of the recommended international general standard for irradiated foods and of the recommended international code of practice for the operation of radiation facilities used for the treatment of foods

    International Nuclear Information System (INIS)

    1981-11-01

    In view of the findings and statements of the Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food, convened in Geneva from 27 October to 3 November 1980, a Consultation Group, convened in Geneva from 1 to 3 July 1981 suggested the revision of the Recommended International General Standard for Irradiated Foods and of the Recommended International Code of Practice for the Operation of Radiation Facilities. The proposed changes are given and justified and the revised wording of the documents presented

  8. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  9. Energy Savings Analysis of the Proposed Revision of the Washington D.C. Non-Residential Energy Code

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Athalye, Rahul A.; Hart, Philip R.

    2017-12-01

    This report presents the results of an assessment of savings for the proposed Washington D.C. energy code relative to ASHRAE Standard 90.1-2010. It includes annual and life cycle savings for site energy, source energy, energy cost, and carbon dioxide emissions that would result from adoption and enforcement of the proposed code for newly constructed buildings in Washington D.C. over a five year period.

  10. The Inter Facility Testing of a Standard Oscillating Water Column (OWC) Type Wave Energy Converter (WEC)

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Thomsen, Jonas Bjerg

    This report describes the behavior and preliminary performance of a simplified standard oscillating water column (OWC) wave energy converter (WEC). The same tests will be conducted at different scales at 6 different test facilities and the results obtained will be used for comparison. This project...

  11. 76 FR 61735 - Incidental Take Permit; Auwahi Wind Energy Generation Facility, Maui, HI; Draft Habitat...

    Science.gov (United States)

    2011-10-05

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R1-ES-2011-N161; 10120-1112-0000-F2] Incidental Take Permit; Auwahi Wind Energy Generation Facility, Maui, HI; Draft Habitat Conservation Plan and..., HI 96850. You may also send comments by facsimile to (808) 792-9580. FOR FURTHER INFORMATION CONTACT...

  12. Refresher training as an important factor affecting safety of atomic energy utilization facilities

    International Nuclear Information System (INIS)

    Kapralov, E.

    2005-01-01

    Refresher training appears to be one of the most important factors, affecting safety of atomic energy utilization facilities. To provide up-to-date refresher training programs and courses TC NRS implements best training practice based on the actual and perspective Russian national and international norms, regulations, standards and recommendations. (author)

  13. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  14. Development tendencies of energy facilities in Central and Eastern European countries in transition

    International Nuclear Information System (INIS)

    Riesner, W.; Stuits, I.; Zeltins, N.

    1999-01-01

    The present work considers development problems of energy facilities in Central and Eastern European countries being in transition in the period from 1990 to 1997. It outlines the changes in economical situation during this period. The paper also shows the development dynamics for economic indicators in 11 countries and analyses them for each country taken separately. (author)

  15. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  16. Factors associated with bat mortality at wind energy facilities in the United States

    Science.gov (United States)

    Hundreds of thousands of bats are killed annually by colliding with wind turbines in the U.S., yet little is known about factors causing variation in mortality across wind energy facilities. We conducted a quantitative synthesis of bat collision mortality with wind turbines by re...

  17. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  18. Caught in the middle: The role of the Facilities Manager in organisational energy use

    International Nuclear Information System (INIS)

    Goulden, Murray; Spence, Alexa

    2015-01-01

    This study analyses the role of the Facilities Manager [FM] as a key actor in organisational energy management. This builds on the idea that ‘middle’ agents in networks can be an important lever for socio-technical change. The study demonstrates the considerable impact the FM can have on workplace energy consumption, whilst identifying a number of factors that constrain their agency and capacity to act. These include demands to meet workforce expectations of comfort; a lack of support from senior management; and a shortage of resources. Underlying these challenges, the study identifies three different energy rationales – that is to say conceptual frameworks – which are deployed by different groups of organisational actors. The challenges of reconciling these at-times-contradictory rationales results in a picture of energy management which to the outsider can appear highly irrational. The paper concludes with a consideration of how policy makers can apply these insights to support energy reduction in workplaces. -- Highlights: •Facilities Managers are increasingly critical node in organisational use of energy. •Potential for FMs to make significant reductions to organisational energy use. •Their ability to do so is constrained by the organisational environment. •Three ‘energy rationales’ which the shape organisational context are identified. •Opportunities exist for policy makers to improve organisational energy management

  19. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    International Nuclear Information System (INIS)

    Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

    2009-01-01

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li + ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the

  20. A study on building performance analysis for energy retrofit of existing industrial facilities

    International Nuclear Information System (INIS)

    Gourlis, Georgios; Kovacic, Iva

    2016-01-01

    Highlights: • Thermal simulation of a historical industrial hall with limited data availability. • Considering waste heat from machinery after measuring production fluctuations. • Test of retrofit alternatives for roof and skylights. • Results indicate a significant reduction in heating energy demand up to 52%. • After retrofit naturally ventilated hall can achieve thermal comfort in summer. - Abstract: Due to the strengthening of regulations and codes on building energy performance, as well as with the application of national legislations regarding energy management and efficiency, existing industrial facilities are using thermal refurbishment and renovation as impetus for increasing their overall energy efficiency. This paper analyzes a building envelope refurbishment for a case study of an existing historical industrial facility. Critical parameters affecting energy performance of industrial buildings were identified by reviewing relevant literate. Two retrofit scenarios were developed and dynamic thermal simulation using EnergyPlus was implemented to evaluate the potential for improvement. Thereby the impact of interior loads was considered, determined by measurements conducted on factory machines, occupancy and lighting operation patterns. However, information regarding constructions of the existing facility and installed technical building services is limited. There is also uncertainty in the quantification of natural ventilation air change rate for such buildings. To overcome these limitations a study of various material databases was carried out, in order to assess data for building envelope composition. Input values for missing data were provided based on literature, allowing a fair comparison between refurbishment alternatives. Simulation results showed that the heating demand of the facility could be reduced up to 52%, indicating a significant potential for energy savings. Beyond that, thermal performance against summer overheating also

  1. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates (Revision)

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  2. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  3. Revision and extension of Eco-LCA metrics for sustainability assessment of the energy and chemical processes.

    Science.gov (United States)

    Yang, Shiying; Yang, Siyu; Kraslawski, Andrzej; Qian, Yu

    2013-12-17

    Ecologically based life cycle assessment (Eco-LCA) is an appealing approach for the evaluation of resources utilization and environmental impacts of the process industries from an ecological scale. However, the aggregated metrics of Eco-LCA suffer from some drawbacks: the environmental impact metric has limited applicability; the resource utilization metric ignores indirect consumption; the renewability metric fails to address the quantitative distinction of resources availability; the productivity metric seems self-contradictory. In this paper, the existing Eco-LCA metrics are revised and extended for sustainability assessment of the energy and chemical processes. A new Eco-LCA metrics system is proposed, including four independent dimensions: environmental impact, resource utilization, resource availability, and economic effectiveness. An illustrative example of comparing assessment between a gas boiler and a solar boiler process provides insight into the features of the proposed approach.

  4. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  5. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  6. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; McDonald, J.R.; McCann, M.W. Jr.; Murray, R.C.; Hill, J.R.

    1990-06-01

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs

  7. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  8. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    International Nuclear Information System (INIS)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas

  9. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P. (Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA)); Short, S.A. (ABB Impell Corp., Mission Viejo, CA (USA)); McDonald, J.R. (Texas Tech Univ., Lubbock, TX (USA)); McCann, M.W. Jr. (Benjamin (J.R.) and Associates, Inc., Mountain View, CA (USA)); Murray, R.C. (Lawrence Livermore National Lab., CA (USA)); Hill, J.R. (USDOE Assistant Secretary for Environment, Safety, and He

    1990-06-01

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.

  10. 78 FR 20950 - Department of Energy Facilities Covered Under the Energy Employees Occupational Illness...

    Science.gov (United States)

    2013-04-08

    ... 1946-1962. Enewetak Atolls (now part of the Republic of the Marshall Islands), Johnston Island and... Exclusively Facility name Location Dates Amchitka Island Nuclear Amchitka Island... 1965-9/1973; 5/25... Nuclear Rifle 1973-1976. Explosion Site. Project Rulison Nuclear Grand Valley...... 1969-1971; 1972...

  11. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  12. Laboratories for the 21st Century: An Introduction to Low-Energy Design (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-01

    This booklet is an introduction to several new strategies for designing, developing, and retrofitting energy-efficient laboratories. It is the result of a collaboration among staff at the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP), several national laboratories, and their contractors. They are collaborating to meet the goals of a joint EPA-DOE initiative, 'Laboratories for the 21st Century,' which was established to help government and private-sector laboratory designers, engineers, owners, and operators work together to increase operating efficiency and reduce costs. This booklet describes many energy-efficient strategies that can be done during laboratory planning and programming; design; engineering; and commissioning, operation, and maintenance. There is also a discussion of on-site power generation and clean sources of electricity from renewable energy.

  13. Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-01

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery. IT system energy efficiency and environmental conditions are presented first because measures taken in these areas have a cascading effect of secondary energy savings for the mechanical and electrical systems. This guide concludes with a section on metrics and benchmarking values by which a data center and its systems energy efficiency can be evaluated. No design guide can offer 'the most energy-efficient' data center design but the guidelines that follow offer suggestions that provide efficiency benefits for a wide variety of data center scenarios.

  14. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    Science.gov (United States)

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  15. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    CERN Document Server

    Pomp, S; Mayer, S; Reitz, G; Rottger, S; Silari, M; Smit, F D; Vincke, H; Yasuda, H

    2014-01-01

    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europe.

  16. Study on High energy efficiency photovoltaic facility agricultural system in tropical area of China

    Directory of Open Access Journals (Sweden)

    Ge Zhiwu

    2018-01-01

    Full Text Available The photovoltaic facility agriculture is developing rapidly in recent years, but there are many problems brought out, even in some important demonstration projects, due to the lack of standards. In order to solve some of these problems, we set up a photovoltaic facilities agricultural system in Guilinyang University City, Haikou, China and make an in-depth study on the photovoltaic facility agricultural system and its related problems. In this paper we disclose some of the experimental results. We plant corianders under two kinds of solar cell panels and general double glass assembly already sold on the market. Experiments showed that the square format cell panels are much better than row type, and the next one is general double glass assembly sold on the market, the last is the case without any shelter. 30 days after planting, the height of coriander plants are 50mm, 30mm, 23mm and 20mm correspondingly. The two typical solar cell panels have gaps between cells, and can save much more energy and improve power generation efficiency, we arrange the panels at optimum tilted angle, and design the system as open structure to save more energy. The photovoltaic facilities agricultural system we set up in Guilinyang University City can achieve much high solar energy efficiency than others and has broad application prospects.

  17. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    International Nuclear Information System (INIS)

    Zachman, W.; Carlisle, N.

    2001-01-01

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook

  18. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zachman, W.; Carlisle, N.

    2001-07-19

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook.

  19. Air pollution control systems and technologies for waste-to-energy facilities

    International Nuclear Information System (INIS)

    Getz, N.P.; Amos, C.K. Jr.; Siebert, P.C.

    1991-01-01

    One of the primary topics of concern to those planning, developing, and operating waste-to-energy (W-T-E) [also known as municipal waste combustors (MWCs)] facilities is air emissions. This paper presents a description of the state-of-the-art air pollution control (APC) systems and technology for particulate, heavy metals, organics, and acid gases control for W-T-E facilities. Items covered include regulations, guidelines, and control techniques as applied in the W-T-E industry. Available APC technologies are viewed in detail on the basis of their potential removal efficiencies, design considerations, operations, and maintenance costs

  20. A new energy-dispersive powder diffraction facility at the SRS

    International Nuclear Information System (INIS)

    Clark, S.M.

    1996-01-01

    A new energy-dispersive powder diffraction facility has been constructed on the 6 T wiggler beam line of the Daresbury Laboratory Synchrotron Radiation Source. This paper describes the facility, in particular the beam definition apparatus (front end), the detector positioning system (back end), a 10 000 kN loading frame and high pressure cell and the counting and control electronics. Some recent results are presented including a study of the compressibility of talc and the phase I→II transition of ammonium chloride. (orig.)

  1. Status of the low-energy super-heavy element facility at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Schury, P., E-mail: schury@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M.; Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Kimura, S. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Morimoto, K.; Haba, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Jeong, S. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Koura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Miyatake, H. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Morita, K.; Reponen, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Sonoda, T.; Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Dept. Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States)

    2016-06-01

    In order to investigate nuclei produced via fusion–evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion–evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.

  2. An independent safety assessment of Department of Energy nuclear reactor facilities: Procedures, operations and maintenance

    International Nuclear Information System (INIS)

    Toto, G.; Lindgren, A.J.

    1981-02-01

    The 1979 accident at the Three Mile Island commercial nuclear power plant has led to a number of studies of nuclear reactors, in both the public and private sectors. One of these is that of the Department of Energy's (DOE) Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, which has outlined tasks for assessment of 13 reactors owned by DOE and operated by contractors. This report covers one of the tasks, the assessment of procedures, operations, and maintenance at the DOE reactor facilities, based on a review of actual documents used at the reactor sites

  3. Moving from self-regulation to external regulation of Department of Energy facilities

    International Nuclear Information System (INIS)

    Wishau, R.J.; Dawson, J.; Lee, D.W.

    1999-01-01

    This paper discusses the initiative to transfer the regulation of Department of Energy (DOE) nuclear facilities to the US Nuclear Regulatory Commission (NRC). The paper gives an overview of some of the major technical, policy and legal issues that accompany this initiative. The paper focuses on specific issues and how they may be affected by external regulation of occupational radiation protection at DOE facilities. Differences between the NRC and the DOE approach to regulating nuclear safety are compared and contrasted. Some projected impacts from this transition are examined. Finally, recommendations are provided that may enhance the transition, increasing the likelihood of successful external NRC regulation

  4. Risk management for existing energy facilities. A global approach to numerical safety goals

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1993-01-01

    This paper presents a structured set of numerical safety goals for risk management of existing energy facilities. The rationale behind these safety goals is based on principles of equity and economic efficiency. Some of the issues involved when using probabilistic risk analyses results for safety decisions are discussed. A brief review of existing safety targets and open-quotes floating numbersclose quotes is presented, and a set of safety goals for industrial risk management is proposed. Relaxation of these standards for existing facilities, the relevance of the lifetime of the plant, the treatment of uncertainties, and problems of failure dependencies are discussed briefly. 17 refs., 1 fig

  5. Atomic Energy Control Regulations: interpretation of revisions relating to industrial radiography

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of this document is to provide assistance to those affected by section 18 to 18.23 of the Canadian Atomic Energy Control Regulations. Words, phrases, and concepts that are specific to these Regulations are explained herein. However, the corresponding sections of the Regulations should be examined to obtain the exact wording. Although sections 18 to 18.23 of the Canadian Atomic Energy Control Regulations apply to both neutron and gamma radiography, this guide has been written for only the latter. Persons engaged in neutron radiography should consult the Atomic Energy Control Board (AECB)

  6. Energy-efficient cooking systems, food-preparation facilities, and human diets

    Energy Technology Data Exchange (ETDEWEB)

    Newborough, M.

    1987-01-01

    This thesis aims at identifying the opportunities for saving energy, which are available to those working within the final link of the UK food system (i.e., at, or in relation to, the points of consumption). Substantial prospective savings exist, because relatively little attention has, as yet, been given to energy-thrift in food-preparation facilities. Within the food-service industry, cooking systems are characterized by high thermal capacities, excessive external surface temperatures and poorly-designed control systems. Catering staff, who use such appliances, are rarely trained to use energy wisely when preparing foods, and kitchens (and their associated dining facilities) tend to be designed without sufficient regard to energy-thrift. Similar problems prevail in domestic kitchens, but to a lesser extent because the cooks there usually pay (or contribute towards) the fuel bills. However, manufacturers still provide household appliances, which are unnecessarily energy-profligate. Furthermore most people have insufficient knowledge of the nutritional suitabilities and the primary-energy costs of their diets. Thus a major educational need exists, which must be satisfied if industrialized food systems are to become more energy efficient.

  7. Energy Upgrades at City-Owned Facilities: Understanding Accounting for Energy Efficiency Financing Options. City of Dubuque Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Markets and Policy Group; Schiller, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Markets and Policy Group; Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Futures Group; Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Markets and Policy Group

    2017-06-30

    The city of Dubuque, Iowa, aimed for a twofer — lower energy costs for public facilities and reduced air emissions. To achieve that goal, the city partnered with the Iowa Economic Development Authority to establish a revolving loan fund to finance energy efficiency and other energy projects at city facilities. But the city needed to understand approaches for financing energy projects to achieve both of their goals in a manner that would not be considered debt — in this case, obligations booked as a liability on the city’s balance sheet. With funding from the U.S. Department of Energy’s Climate Action Champions Initiative, Lawrence Berkeley National Laboratory (Berkeley Lab) provided technical assistance to the city to identify strategies to achieve these goals. Revolving loans use a source of money to fund initial cost-saving projects, such as energy efficiency investments, then use the repayments and interest from these loans to support subsequent projects. Berkeley Lab and the city examined two approaches to explore whether revolving loans could potentially be treated as non-debt: 1) financing arrangements containing a non-appropriation clause and 2) shared savings agreements. This fact sheet discusses both, including considerations that may factor into their treatment as debt from an accounting perspective.

  8. Relativistic configuration-interaction calculation of the correlation energies of heliumlike ions. Revision 1

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.; Johnson, W.R.

    1994-04-01

    A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table

  9. Nuclear Power and Resource Efficiency—A Proposal for a Revised Primary Energy Factor

    Directory of Open Access Journals (Sweden)

    Ola Eriksson

    2017-06-01

    Full Text Available Measuring resource efficiency can be achieved using different methods, of which primary energy demand is commonly used. The primary energy factor (PEF is a figure describing how much energy from primary resources is being used per unit of energy delivered. The PEF for nuclear power is typically 3, which refers to thermal energy released from fission in relation to electricity generated. Fuel losses are not accounted for. However; nuclear waste represents an energy loss, as current plans for nuclear waste management mostly include final disposal. Based on a literature review and mathematical calculations of the power-to-fuel ratio for nuclear power, PEF values for the open nuclear fuel cycle (NFC option of nuclear power and different power mixes are calculated. These calculations indicate that a more correct PEF for nuclear power would be 60 (range 32–88; for electricity in Sweden (41% nuclear power PEF would change from 1.8 to 25.5, and the average PEF for electricity in the European Union (EU would change from 2.5 to 18. The results illustrate the poor resource efficiency of nuclear power, which paves the way for the fourth generation of nuclear power and illustrates the policy implication of using PEFs which are inconsistent with current waste management plans.

  10. Application of demography to energy facility development projects. Working Paper No. 39

    International Nuclear Information System (INIS)

    Krannich, R.S.; Stanfield, G.G.

    1977-01-01

    The emergence of concern regarding socioeconomic consequences of large-scale development projects has resulted in a growing literature directed as estimating the types and levels of various impact dimensions which can be expected to result in human communities experiencing such development. Among these dimensions, a focus on population change has been prevalent. Accurate demographic predictions may be viewed as critical for the adequate comprehension of and preparation for impacts deriving from projects such as energy facility developments. Unfortunately, the state of the art in projecting demographic consequences of energy projects has been generally inadequate. Several of the more influential prior methods for estimating local demographic effects of developing energy facilities are critiqued, although their specific prediction figures are not summarized. The studies reviewed were found to be of dubious practical utility, probably due in part to the failure of basic demography to provide a base of support for applied demographic research. This report sets forth recommendations for the development of a theoretical perspective which would more adequately serve the needs of practitioners attempting to predict local demographic effects of energy facility development

  11. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response

  12. Development of a low-energy radioactive ion beam facility for the MARA separator

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Philippos, E-mail: philippos.papadakis@jyu.fi; Moore, Iain; Pohjalainen, Ilkka; Sarén, Jan; Uusitalo, Juha [University of Jyväskylä, Department of Physics (Finland)

    2016-12-15

    A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyväskylä, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

  13. Facility accident considerations in the US Department of Energy Waste Management Program

    International Nuclear Information System (INIS)

    Mueller, C.

    1994-01-01

    A principal consideration in developing waste management strategies is the relative importance of Potential radiological and hazardous releases to the environment during postulated facility accidents with respect to protection of human health and the environment. The Office of Environmental Management (EM) within the US Department of Energy (DOE) is currently formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental impact Statement (PEIS) is being prepared to evaluate different waste management alternatives. This paper reviews analyses that have been Performed to characterize, screen, and develop source terms for accidents that may occur in facilities used to store and treat the waste streams considered in these alternatives. Preliminary results of these analyses are discussed with respect to the comparative potential for significant releases due to accidents affecting various treatment processes and facility configurations. Key assumptions and sensitivities are described

  14. Energy efficient cooking systems, food-preparation facilities, and human diets

    Energy Technology Data Exchange (ETDEWEB)

    Newborough, M.

    1987-07-01

    The opportunities for saving energy, which are available to those working within the final link of the UK food system, i.e. at, or in relation to, the points of consumption are identified. Substantial prospective savings exist, because relatively little attention has, as yet, been given to energy-thrift in food-preparation facilities. Within the food-service industry, cooking systems are characterised by high thermal capacities, excessive external surface temperatures and poorly-designed control systems. Catering staff, who use such appliances, are rarely trained to use energy wisely when preparing foods, and kitchens tend to be designed without sufficient regard to energy-thrift. Similar problems prevail in domestic kitchens. However, manufacturers still provide household appliances, which are unnecessarily energy-profligate. (author).

  15. Get Smart About Energy: Office of Building Technology, State and Community Programs (OBT) EnergySmart Schools Program Folder (Revision)

    Energy Technology Data Exchange (ETDEWEB)

    2002-02-01

    While improving their energy use in buildings and bus fleets, schools are likely to create better places for teaching and learning with better lighting, temperature control, acoustics, and air quality. Smart districts also realize benefits in student performance.

  16. Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, R.U.; Ayres, L.W.

    1980-03-01

    The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

  17. High-energy, twelve-channel laser facility (DEFIN) for spherical irradiation of thermonuclear targets

    International Nuclear Information System (INIS)

    Basov, N.G.; Danilov, A.E.; Krokhin, O.N.; Kruglov, B.V.; Mikhailov, Yu.A.; Sklizkov, G.V.; Fedotov, S.I.; Fedorov, A.N.

    This paper describes a high-energy, twelve-channel laser facility (DELFIN) intended for high-temperature heating of thermonuclear targets with spherical symmetry. The facility includes a neodymium-glass laser with the ultimate radiation energy of 10 kJ, a pulse length of approximately 10 -10 to 10 -9 s, beam divergence of 5 x 10 -4 radians, a vacuum chamber in which laser radiation interacts with the plasma, and a system of diagnostic instrumentation for the observation of laser beam and plasma parameters. Described are the optical scheme and construction details of the laser facility. Presented is an analysis of focusing schemes for target irradiation and described is the focusing scheme of the DELFIN facility, which is capable of attaining a high degree of spherical symmetry in irradiating targets with maximum beam intensity at the target surface of approximately 10 15 W/cm 2 . This paper examines the most important problems connected with the physical investigations of thermonuclear laser plasma and the basic diagnostic problems involved in their solution

  18. Reports and operational engineering: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Rochman, A.; Washburn, B.W.

    1981-02-01

    The Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, established via an October 24, 1979 memorandum from the Department of Energy (DOE) Under Secretary, was instructed to review the ''Kemeny Commission'' recommendations and to identify possible implications for DOE's nuclear facilities. As a result of this review, the Committee recommended that DOE carry out assessments in seven categories. The assessments would address specific topics identified for each category as delineated in the NFPQT ''Guidelines for Assessing the Safe Operation of DOE-Owned Reactors,'' dated May 7, 1980. The Committee recognized that similar assessments had been ongoing in the DOE program and safety overview organizations since the Three Mile Island nuclear accident and it was the Committee's intent to use the results of those ongoing assessments as an input to their evaluations. This information would be supplemented by additional studies consisting of the subject-related documents used at each reactor facility studied, and an on-site review of these reactor facilities by professional personnel within the Department of Energy, its operating contractors and independent consultants. 1 tab

  19. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  20. Destruction of nuclear energy facilities in war: the problem and the implications

    International Nuclear Information System (INIS)

    Ramberg, B.

    1980-01-01

    This book examines current practices, policies, and regulations concerning nuclear energy in the light of potential sabotage. Dr. Ramberg explains clearly, for both the lay reader and the technical community, the vulnerabilities of different sorts of nuclear facilities. In a case-by-case analysis of countries using or building nuclear power plants, he outlines the strategic hazards of these facilities. The safety of thousands could depend on such volatile factors as the psychological sensitivity of national leaders and the direction of the wind. A combination of engineering changes, use of alternative forms of energy to limit nuclear proliferation, and changes in international law could lessen these risks. Finally, Dr. Ramberg suggests specific national and international guidelines for monitoring nuclear exports

  1. Golden Eagle mortality at a utility-scale wind energy facility near Palm Springs, California

    Science.gov (United States)

    Lovich, Jeffrey E.

    2015-01-01

    Golden Eagle (Aquila chrysaetos) mortality associated with wind energy turbines and infrastructure is under-reported and weakly substantiated in the published literature. I report two cases of mortality at a utility-scale renewable energy facility near Palm Springs, California. The facility has been in operation since 1984 and included 460 65KW turbines mounted on 24.4 m or 42.7 m lattice-style towers with 8 m rotor diameters. One mortality event involved a juvenile eagle that was struck and killed by a spinning turbine blade on 31 August, 1995. The tower was 24.4 m high. The other involved an immature female that was struck by a spinning blade on another 24.4 m tower on 17 April, 1997 and was later euthanized due to the extent of internal injuries. Other raptor mortalities incidentally observed at the site, and likely attributable to turbines, included three Red-tailed Hawks (Buteo jamaicensis) found near turbines.

  2. Marketing energy conservation options to Northwest manufactured home buyers. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-10-01

    Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

  3. 78 FR 34089 - Revision of a Currently Approved Information Collection for the Energy Efficiency and...

    Science.gov (United States)

    2013-06-06

    ... results, to ensure that program funds are being used appropriately, effectively and expeditiously (especially important for Recovery Act funds); (5) Annual Estimated Number of Respondents: 2,404; (6) Annual... E of the Energy Independence and Security Act (EISA), Pub. L. 110-140 as amended (42 U.S.C. 17151 et...

  4. 78 FR 72874 - Revision of a Currently Approved Information Collection for the Energy Efficiency and...

    Science.gov (United States)

    2013-12-04

    ... grantee activities, expenditures, and results, to ensure that program funds are being used appropriately, effectively and expeditiously (especially important for Recovery Act funds); (5) Annual [[Page 72875...,960. Statutory Authority: Title V, Subtitle E of the Energy Independence and Security Act (EISA), Pub...

  5. Refined Dummy Atom Model of Mg(2+) by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy.

    Science.gov (United States)

    Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei

    2015-12-28

    Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.

  6. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  7. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  8. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  9. Control of the radiation environment and the worker in high-energy facilities

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    1993-01-01

    The philosophy behind the prediction, measurement, monitoring and limitation by access control of the radiation hazard in high-energy accelerator facilities is compared with that which could be employed for controlling similar hazards due to cosmic radiation in civil aircraft flights. Special mention is made of computer simulations of the radiation environment as a means of predicting necessary control measures, of the reliability and integration of radiation measuring devices into control procedures and of the relevance of different access control procedures. (author)

  10. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate

  11. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  12. SITE: a methodology for assessment of energy facility siting patterns. Regional studies program

    International Nuclear Information System (INIS)

    Frigerio, N.A.; Habegger, L.J.; King, R.F.; Hoover, L.J.; Clark, N.A.; Cobian, J.M.

    1975-08-01

    The timely development of the nation's energy production capacity in a manner that minimizes potential adverse local and regional impacts associated with energy facilities requires the use of sophisticated techniques for evaluation of siting alternatives and fuel cycle options. This report is a documentation of the computerized SITE methodology that has been developed for evaluating health, environmental, and socioeconomic impacts related to utilization of alternate sites for energy production within a region of interest. The cost, impact, and attribute vectors, which are generated and displayed on density maps, can be used in a multiparameter overlay process to identify preferable siting areas. The assessment of clustered facilities in energy centers is also possible within the SITE analysis framework. An application of the SITE methodology to Northern Illinois is presented. Also included is a description of the ongoing extension of SITE for the accumulative evaluation of alternative regional energy siting patterns and fuel cycle options. An appendix provides documentation and user information for the SITE computer program

  13. Revision of the high energy hadronic interaction models PHOJET/DPMJET-III

    CERN Document Server

    Fedynitch, A

    2015-01-01

    The high-energy hadronic interaction model DPMJET-III is responsible for simulating nuclear interactions in the particle simulation package FLUKA. On the level of individual nucleon interactions it employs PHOJET, which provides sophisticated forward physics and diffraction models. This paper summarizes some of the recent developments, in particular regarding minimum-bias physics at the LHC, which apply to DPMJET-III and PHOJET at the same time.

  14. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  15. The continuous review and periodic revision process for the International Atomic Energy Agencies regulations for the safe transport of radioactive materials - A status report

    International Nuclear Information System (INIS)

    O'Sullivan, R.A.; Pettersson, B.G.; Pope, R.B.

    1989-01-01

    The International Atomic Energy Agencies (IAEA) Regulations for the Safe Transport of Radioactive Material, Safety Series No.6 (hereinafter denoted as the Regulations) have developed into the model for international modal organization and individual country regulations (and other regulatory-related documentation) controlling the packaging and transportation of radioactive materials. The Regulations were initially developed in 1961 and have been periodically revised since then. Revised editions of the Regulations, accounting for developments in technology and shipping practices, were issued in 1965, 1967, 1973 (also, an amended 1973 Edition was issued in 1979), and in 1985. The process of developing these documents has been performed on a cooperative basis utilizing inputs from various member states of the IAEA and from other interested international organizations. The latest comprehensive revision of the Regulations and its supportive documents was initiated in 1979, and culminated in the 1985 Edition of the Regulations. This was the first complete revision to be published since 1973 (except for the amended Edition thereto being issued in 1979). During the process which led to the 1985 Edition of the Regulations and its supportive documents, it became apparent that changes needed to be made in this process. Not addressing issues related to transportation regulations on a continuing basis created many difficulties in trying to efficiently and acceptably review and revise these documents in a short period of time. The purpose of this paper is to outline the review/revision process which was established, to summarize the results from that process so far (in terms of changes that have been made to the 1985 Edition through supplements thereto), and to discuss current plans for carrying on with the review/revision process with slight modifications

  16. Effects of wind-energy facilities on breeding grassland bird distributions.

    Science.gov (United States)

    Shaffer, Jill A; Buhl, Deborah A

    2016-02-01

    The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003-2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2-5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  18. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  19. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  20. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.

  1. Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers

    International Nuclear Information System (INIS)

    Wang, Tao; Li, Xiaodong; Liao, Pin-Chao; Fang, Dongping

    2016-01-01

    Maximizing energy efficiency within HHFs (hospitals and healthcare facilities) is a major challenge in the field of energy conservation. This paper studies the key barriers to the implementation of energy-efficient technologies in China's public HHFs. For this purpose, a preliminary survey was conducted at the Beijing Municipal Health Bureau in order to assess the energy conservation efforts being made at 20 public HHFs. In the survey, a list of specific barriers to energy efficiency was created and HHF staffs were asked to rank these barriers in the order of importance. The results show that the economic incentives, appropriate technology, as well as enforceable laws and regulations are insufficiently supported by the government, have become the most significant obstacles to the improvement of energy efficiency. To remedy this, policymakers should take a multipronged approach which addresses the hospitals, projects, and technical and operating procedures in order to encourage the full participation and support of all stakeholders involved. Specifically, the government should offer multilevel economic incentives and reward policies; establish practical mandatory targets for building energy efficiency; provide demonstrable best practices in terms of the project, techniques, and operating procedures; and promote awareness of the importance of property risk management. - Highlights: • We developed a checklist of building energy efficiency barriers of HHFs in China. • We took a survey to prioritize the barriers by the staff from 20 public HHFs. • Policy makers should provide multiple-level solutions to all the stakeholders. • Economic incentives, mandatory target, technique supports are critical drivers.

  2. Health risks in perspective: Judging health risks of energy technologies. Revision 5/94

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.D.

    1992-09-01

    The purpose of this report is to provide perspective on the various risks to which man is routinely exposed. It serves as a basis for understanding the meaning of quantitative risk estimates and for comparing new or newly-discovered risks with other, better-understood risks. Specific emphasis is placed on health risks of energy technologies. This report is not a risk assessment; nor does it contain instructions on how to do a risk assessment. Rather, it provides background information on how most of us think about risks and why it is difficult to do it rationally, it provides a philosophy and data with which to do a better job of judging risks more rationally, and it provides an overview of where risks of energy technologies fit within the spectrum of all risks. Much of the quantitative information provided here is on relative risk of dying of various causes. This is not because risk of dying is seen as the most important kind of risk, but because the statistics on mortality rates by cause are the highest quality data available on health risks in the general population.

  3. Simulation of shock-induced energy flux in molecular solids. Revision 1

    International Nuclear Information System (INIS)

    Karo, A.M.; Walker, F.E.; DeBoni, T.M.; Hardy, J.R.

    1984-01-01

    Computer molecular dynamics has been used to study the time evolution of the energy of diatomic molecules embedded in a monatomic host lattice when the system is shock loaded. Center-of-mass, rotational, and internal energies were each monitored. For H 2 and CH groups in an iron host, the results demonstrate rapid and violent internal excitation of a totally athermal nature. The origins of this are discussed as are the reasons for the absence of a similar effect for a CH group in a carbon lattice. From these results for diatomic systems it is argued that large molecules, similarly treated, may easily be excited to the point of rupture. If they are so situated (e.g., at or near a surface) that during, or shortly after, excitation they escape from the lattice, they will rupture rather than de-excite and thus generate molecular fragments (e.g., free radicals) which could, in the case of an explosive system, serve to initiate detonation

  4. ALARA engineering at Department of Energy facilities: Bibliography of selected readings in radiation protection and ALARA

    International Nuclear Information System (INIS)

    Dionne, B.J.; Khan, T.A.; Lane, S.G.; Baum, J.W.

    1991-05-01

    Promoting the exchange of information related to implementation of the As Low As Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report, prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health, is the second in a series of bibliographies on dose reduction at DOE facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a specific focus towards DOE facilities. Facility types and activities covered in the scope of this report include: radioactive waste; uranium enrichment; fuel fabrication, storage, and reprocessing; facility decommissioning; hot laboratories; tritium production; research, test and production reactors; weapons fabrication and testing; and accelerators. Material on improved shielding design, decontamination, containments, robotics, job planning, improved operational techniques, and other topics has also been included. This volume (Volume 2 of the series) contains 127 abstracts numbered from 69 through 195, as well as author and subject indices. The subject index contains the abstract numbers from both the previous volume and the current volume, the latter being indicated in boldface. Information that the reader feels should be included in the next volume of this bibliography should be submitted to the BNL ALARA Center

  5. Occupational dose reduction at Department of Energy contractor facilities: Study of ALARA programs

    International Nuclear Information System (INIS)

    Dionne, B.J.; Meinhold, C.B.; Khan, T.A.; Baum, J.W.

    1992-03-01

    This report provides the US Department of Energy (DOE) and its contractors with information that will be useful for reducing occupational radiation doses at DOE's nuclear facilities. In 1989 and 1990, health physicists from the Brookhaven National Laboratory's (BNL) ALARA Center visited twelve DOE contractor facilities with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). The health physicists interviewed radiological safety staff, engineers, and training personnel who were responsible for dose control. The status of ALARA practices at the major contractor facilities was compared with the requirements and recommendation in DOE Order 5480.11 ''Radiation Protection for Occupational Workers'' and PNL-6577 ''Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are as Low as Reasonably Achievable.'' The information and data collected are described and examples of successful practices are presented. The findings on the status of the DOE Contractor ALARA Programs are summarized and evaluated. In addition, the supplement to this report contains examples of good-practice documents associated with implementing the major elements of a formally documented ALARA program for a major DOE contractor facility

  6. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    Science.gov (United States)

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  7. Best Available Technology (BAT) guidance for radiological liquid effluents at US Department of Energy Facilities

    International Nuclear Information System (INIS)

    Wallo, A. III; Peterson, H.T. Jr.; Ikenberry, T.A.; Baker, R.E.

    1993-01-01

    The US Department of Energy (DOE), in DOE Order 5400.5 (1990), directs operators of DOE facilities to apply the Best Available Technology (BAT) to control radiological liquid effluents from these facilities when specific conditions are present. DOE has published interim guidance to assist facility operators in knowing when a BAT analysis is needed and how such an analysis should be performed and documented. The purpose of the guidance is to provide a uniform basis in determining BAT throughout DOE and to assist in evaluating BAT determinations during programmatic audits. The BAT analysis process involves characterizing the effluent source; identifying and selecting candidate control technologies; evaluating the potential environmental, operational, resource, and economic impacts of the control technologies; developing an evaluation matrix for comparing the technologies; selecting the BAT; and documenting the evaluation process. The BAT analysis process provides a basis for consistent evaluation of liquid effluent releases, yet allows an individual site or facility the flexibility to address site-specific issues or concerns in the most appropriate manner

  8. Improving energy efficiency in buildings under the framework of facility management and leasing financing

    Energy Technology Data Exchange (ETDEWEB)

    Leutgoeb, Klemens [Austrian Energy Agency (Austria)

    2007-07-01

    Non-residential buildings see a big variety of building management and financing schemes. Two approaches quickly gain shares in the European real estate market: Leasing Financing (LF) and Facility Management (FM). They change the framework for the implementation of energy efficiency measures: LF influences the decision criteria in new construction and refurbishment; FM plays a crucial role during the operation phase.Although LF and FM introduce new parties and thus an additional set of interests, they must not be perceived as obstacles per se: They also offer new ways towards energy efficiency. Pilot activities in Austria demonstrate the successful integration of advanced energy services into the framework of LF and FM: At the end of the contract duration, leasing-financed buildings may be confronted with a need for comprehensive refurbishment. Here, leasing can become an important catalyst in preparing the refurbishment project. Integrating energy efficiency measures to the refurbishment activity and guaranteeing thermal-energetic qualities, provide the lessor with the opportunity to prolong and enlarge a running contract. Furthermore, this service reduces his credit risk, due to reduced running (i.e. energy) cost for the lessee. FM means outsourcing of selected building management functions to an external specialist. The list of requested services can be extended by the identification, implementation, operation and potentially also financing of cost-effective energy saving measures, and by a guarantee on energy cost savings - in other words by integrating elements of EPC-contracts into FM.

  9. A retrospective tiered environmental assessment of the Mount Storm Wind Energy Facility, West Virginia,USA

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, Rebecca Ann [ORNL; Day, Robin [No Affiliation; Strickland, M. Dale [Western EcoSystems Technology

    2012-11-01

    Bird and bat fatalities from wind energy projects are an environmental and public concern, with post-construction fatalities sometimes differing from predictions. Siting facilities in this context can be a challenge. In March 2012 the U.S. Fish and Wildlife Service (USFWS) released Land-based Wind Energy Guidelines to assess collision fatalities and other potential impacts to species of concern and their habitats to aid in siting and management. The Guidelines recommend a tiered approach for assessing risk to wildlife, including a preliminary site evaluation that may evaluate alternative sites, a site characterization, field studies to document wildlife and habitat and to predict project impacts, post construction studies to estimate impacts, and other post construction studies. We applied the tiered assessment framework to a case study site, the Mount Storm Wind Energy Facility in Grant County, West Virginia, USA, to demonstrate the use of the USFWS assessment approach, to indicate how the use of a tiered assessment framework might have altered outputs of wildlife assessments previously undertaken for the case study site, and to assess benefits of a tiered ecological assessment framework for siting wind energy facilities. The conclusions of this tiered assessment for birds are similar to those of previous environmental assessments for Mount Storm. This assessment found risk to individual migratory tree-roosting bats that was not emphasized in previous preconstruction assessments. Differences compared to previous environmental assessments are more related to knowledge accrued in the past 10 years rather than to the tiered structure of the Guidelines. Benefits of the tiered assessment framework include good communication among stakeholders, clear decision points, a standard assessment trajectory, narrowing the list of species of concern, improving study protocols, promoting consideration of population-level effects, promoting adaptive management through post

  10. The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy

    Science.gov (United States)

    McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

    2012-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

  11. Development of a test facility for PV-Wind hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Mustafa [Ege Univ., Izmir (Turkey). Ege Tech., Electronics Technolgy; Ege Univ., Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    To quantify the potential for performance improvements of photovoltaic-wind hybrid energy systems, a test facility has been installed at the Solar Energy Institute, Ege University. Hybrid system consist of a wind turbine, PV array, battery, AC and DC loads, inverters, charge regulators and a data logging and control unit. The collected data are first conditioned using precision electronic circuits and then interfaced to a PC using a data logging unit. The LABVIEW program is used to further process, display and store the collected data in the PC disk. The proposed data logging and control unit permits the rapid system development and has the advantage of flexibility in the case of changes, while it can be easily extended for controlling the of photovoltaic-wind hybrid energy system operation. (orig.)

  12. Co-60 irradation facility for hens eggs, radiation field parameters and energy absorption in the egg

    International Nuclear Information System (INIS)

    Giese, W.; Mueller-Buder, A.

    1981-01-01

    For irradiation experiments with 33 530 hens eggs to test the effect of γ-rays on the hatchability of chicken a 60 Co irradiation facility was constructed, which is described in this article. Physical parameters of the radiation field as the dose rate caused by a 60 Co point source in a distance r, the flux of γ-quantae and energy towards an egg and the role of 60 Co betarays are quantitatively described. The intensity decrease, the dose build-up factor and energy absorption due to the interaction of γ-rays with atoms of the eggs content were calculated. Thus this contribution should give an impression of the physical processes involved in the γ-irradiation of eggs and on the magnitude of energy absorbed therein. (orig.) [de

  13. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    International Nuclear Information System (INIS)

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs

  14. Impact of Distributed Energy Resources on the Reliability of Critical Telecommunications Facilities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D. G.; Arent, D. J.; Johnson, L.

    2006-06-01

    This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  15. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  16. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a ≥ 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of ∼50 separated in time by ∼0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments

  17. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  18. 77 FR 1019 - Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental Shelf-Acquire a...

    Science.gov (United States)

    2012-01-09

    ...-0045] RIN 1010-AD79 Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental... rule related to acquiring a lease non-competitively for offshore renewable energy projects. DATES... or Timothy Redding, Renewable Energy, BOEM, at (703) 787-1219 or email [email protected

  19. Additional Energy Losses from Asymmetric and Non-Sinusoidal Current in an Electrical Facility and Methods of their Reduction

    OpenAIRE

    Tarasov, Evgeny Vladimirovich; Bulyga, Leonid Leonidovich; Ushakov, Vasily Yakovlevich; Kharlov, Nikolay Nikolaevich

    2015-01-01

    Influence of the asymmetry and higher harmonics of current on the operation of an electrical facility is analyzed. The level of additional losses from the asymmetric and non-sinusoidal currents is evaluated for a 110 kV electrical network in the Siberian Region of the Russian Federation. Methods for reducing the additional energy losses in the electrical facility are suggested.

  20. An independent safety assessment of Department of Energy nuclear reactor facilities: Training of operating personnel and personnel selection

    International Nuclear Information System (INIS)

    Drain, J.F.

    1981-02-01

    This study has been prepared for the Department of Energy's Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. Its purpose is to provide the Committee with background information on, and assessment of, the selection, training, and qualification of nuclear reactor operating personnel at DOE-owned facilities

  1. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  2. Enhancements to the Low-Energy Ion Facility at SUNY Geneseo

    Science.gov (United States)

    Barfield, Zachariah; Kostick, Steven; Nagasing, Ethan; Fletcher, Kurt; Padalino, Stephen

    2017-10-01

    The Low Energy Ion Facility at SUNY Geneseo is used for detector development and characterization for inertial confinement fusion diagnostics. The system has been upgraded to improve the ion beam quality by reducing contaminant ions. In the new configuration, ions produced by the Peabody Scientific duoplasmatron ion source are accelerated through a potential, focused into a new NEC analyzing magnet and directed to an angle of 30°. A new einzel lens on the output of the magnet chamber focuses the beam into a scattering chamber with a water-cooled target mount and rotatable detector mount plates. The analyzing magnet has been calibrated for deuteron, 4He+, and 4He2+ ion beams at a range of energies, and no significant hysteresis has been observed. The system can accelerate deuterons to energies up to 25 keV to initiate d-d fusion using a deuterated polymer target. Charged particle spectra with protons, tritons, and 3He ions from d-d fusion have been measured at scattering angles ranging from 55° to 135°. A time-of-flight beamline has been designed to measure the energies of ions elastically scattered at 135°. CEM detectors initiate start and stop signals from secondary electrons produced when low energy ions pass through very thin carbon foils. Funded in part by the U.S. Department of Energy through the Laboratory for Laser Energetics.

  3. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1

    International Nuclear Information System (INIS)

    2008-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post

  4. Geographic origins and population genetics of bats killed at wind-energy facilities.

    Science.gov (United States)

    Pylant, Cortney L; Nelson, David M; Fitzpatrick, Matthew C; Gates, J Edward; Keller, Stephen R

    2016-07-01

    An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ 2 H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (N e ) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger N e that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger N e . Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development. © 2016 by the Ecological Society of America.

  5. Avian fatalities at wind energy facilities in North America: A comparison of recent approaches

    Science.gov (United States)

    Johnson, Douglas H.; Loss, Scott R.; Smallwood, K. Shawn; Erickson, Wallace P.

    2016-01-01

    Three recent publications have estimated the number of birds killed each year by wind energy facilities at 2012 build-out levels in the United States. The 3 publications differ in scope, methodology, and resulting estimates. We compare and contrast characteristics of the approaches used in the publications. In addition, we describe decisions made in obtaining the estimates that were produced. Despite variation in the 3 approaches, resulting estimates were reasonably similar; about a quarter- to a half-million birds are killed per year by colliding with wind turbines.

  6. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...... conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting....

  7. Software systems for processing and analysis at the NOVA high-energy laser facility

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Montgomery, D.S.; McCauley, E.W.; Stone, G.F.

    1986-01-01

    A typical laser interaction experiment at the NOVA high-energy laser facility produces in excess of 20 Mbytes of digitized data. Extensive processing and analysis of this raw data from a wide variety of instruments is necessary to produce results that can be readily used to interpret the experiment. Using VAX-based computer hardware, software systems have been set up to convert the digitized instrument output to physics quantities describing the experiment. A relational data-base management system is used to coordinate all levels of processing and analysis. Software development emphasizes structured design, flexibility, automation, and ease of use

  8. Differential current measurement in the BNL energy recovery linac test facility

    International Nuclear Information System (INIS)

    Cameron, Peter

    2006-01-01

    An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine

  9. The low energy (140 MeV) chemistry facility at the 500 MeV electron accelerator MEA at Amsterdam

    International Nuclear Information System (INIS)

    Brinkman, G.A.; Kapteyn, J.C.; Louwrier, P.W.F.; Lindner, L.; Peelen, B.; Polak, P.; Schimmel, A.; Stock, F.R.; Veenboer, J.T.; Visser, J.

    1980-01-01

    The facility includes the Low Energy Chemistry (LECH) hall equipped with a beam-line for pulse-radiolysis and a second one for the production of radioisotopes and for experiments with electron-free photon beams. It also includes the Low Energy Laboratory (LELAB) containing two chemistry laboratories and a control room. These facilities are also available to outside research groups. (orig./HP)

  10. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations - results

    Science.gov (United States)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  11. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    International Nuclear Information System (INIS)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-01-01

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view

  12. Indicators System Creation For The Energy Efficiency Benchmarking Of Municipal Power System Facilities

    Directory of Open Access Journals (Sweden)

    Davydenko L.V.

    2015-04-01

    Full Text Available The issues of the dataware of the comparative analysis procedure (benchmarking for municipal power system facilities energy efficiency level estimation with a view of the hierarchical structure of the heat supply system are considered. The aim of the paper is the system of indicators formation for characterizing the efficiency of energy usage as on objects on lowest so on highest levels of power systems, proceeding from features of their functioning. Benchmarking methodology allows carrying out the estimation of energy efficiency level on the base of a plurality of parameters without their generalization in one indicator, but requires ensuring their comparability. Using the methodology of available statistical information that did not require deep specification and additional inspection structuring objectives and tasks of energy efficiency estimation problem has been proposed for ensuring the opportunity of benchmarking procedure implementation. This makes it possible to form the subset of indicators that ensure enough specification of the object of study, taking into account the degree of abstraction for every hierarchical level or sub problem. For a comparative analysis of energy using efficiency in municipal power systems at the highest levels of the hierarchy a plurality of indicators of the energy efficiency has been formed. Indicators have been determined with consideration of the structural elements of heat supply systems, but allowing taking into account the efficiency of the initial state of the objects, their functioning, and the questions of energy resources accounting organization. Usage of the proposed indicators provides implementation of energy using efficiency monitoring in the municipal power system and allows getting complete overview of the problem.

  13. Impact of Distributed Energy Resources on the Reliability of a Critical Telecommunications Facility

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.; Atcitty, C.; Zuffranieri, J.; Arent, D.

    2006-03-01

    Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages, as documented by analyses of Federal Communications Commission (FCC) outage reports by the National Reliability Steering Committee (under auspices of the Alliance for Telecommunications Industry Solutions). There are two major issues that are having increasing impact on the sensitivity of the power distribution to telecommunication facilities: deregulation of the power industry, and changing weather patterns. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. But does the diversity in power sources actually increase the reliability of offered power to the office equipment, or does the complexity of installing and managing the extended power system induce more potential faults and higher failure rates? This report analyzes a system involving a telecommunications facility consisting of two switch-bays and a satellite reception system.

  14. Aerial radiological survey of the US Department of Energy's Mound Facility, Miamisburg, Ohio

    International Nuclear Information System (INIS)

    1978-03-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out by helicopter over an area centered on Mound Facility, a 180 acre area adjacent to the southern edge of the city of Miamisburg, Ohio. This survey was part of an effort to document background radiation levels around nuclear processing and handling facilities owned or contracted by the United States Department of Energy (DOE). Survey activities were conducted and performed by EG and G for the DOE. Wright-Patterson Air Force Base served as the survey base of operations. During the survey, gamma ray data were collected over a 12.3 km 2 area by flying an east-west grid of lines spaced 61 m apart, flying slowly over several selected areas, and hovering over several spots of interest. The processed data indicated that the on-site radioactivity was primarily due to radionuclides currently being handled or processed at the Facility, and that lesser activity could be attributed to previously handled or processed nuclear materials. Off-site data showed the radioactivity to be that only due to naturally occurring radionuclides

  15. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  16. Facility Interface Capability Assessment (FICA) project report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  17. Conceptual provisions of the implementation of energy saving measures in the residential facilities

    Directory of Open Access Journals (Sweden)

    Meshcheryakova Tatiana

    2017-01-01

    Full Text Available Research purpose is identification of sales problems of energy saving actions for residential sector of economy, including with use of the power service contract. The choice of the object of the study is related to the general issues on energy saving of residential facilities and increasing the number of unresolved problems. Unfortunately, the efficiency of energy consumption of housing stock is extremely low that directly leads to an increase in citizens’ payments for public utilities (housing and communal services. There are many problems associated with the aging of fixed assets: it becomes especially evident in winter seasons. The level of quality of delivery, distribution and consumption of expensive heat resources that has the greatest impact on a residence comfort and sometimes human life and health, is very low. Our population faces to year overheating or freezing, to leakages through worn pipes and the subsequent disconnection of water and heat. Despite the public declaration of the of the active processes of modernization of the housing municipal economy in the Russian Federation, the implementation of the necessary energy-saving elements in the housing sector is evolving very slowly. The article presents conceptual positions, which will bring the issues related to energy saving and efficiency to a new level.

  18. The National Ignition Facility: Ushering in a new age for high energy density science

    International Nuclear Information System (INIS)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-01-01

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  19. Selection of possible candidate area for nuclear energy facility in Johor, Malaysia

    International Nuclear Information System (INIS)

    Nor Afifah Basri; Ahmad Termizi Ramli

    2012-01-01

    Nuclear power is considered as one of the best option for future energy development in Malaysia. Since Malaysia has no experience in nuclear energy generation, commissioning the first nuclear power plant needs tremendous effort in various aspects. Site selection is one of important step in nuclear power plant commissioning process. This paper proposes candidate sites for nuclear power plant in Mersing, Kota Tinggi, Muar and Batu Pahat district in Johor, Malaysia. The candidate selection process uses the IAEA document and AELB guideline as main reference, supported by site selection procedure by various countries. MapInfo Professional software was used to stimulate the selection process for candidate areas for the nuclear power plant. This paper concluded that Tenggaroh and Jemaluang area are the most suitable area for nuclear power plant facilities in Johor, Malaysia. (Author)

  20. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  1. Performance testing of beta dosimeters used at Department of Energy facilities

    International Nuclear Information System (INIS)

    Roberson, P.L.; Holbrook, K.L.; Pappin, J.L.

    1983-01-01

    A performance test based on the American national draft standard N13.11 was conducted for dosimeter systems in use at Department of Energy facilities. The large differences in dosimeter response found were due to use of different calibration source standards and different dosimeter designs. Differences in 90 Sr/ 90 Y calibrations were approximately 20% or less for all but one participant. The differences observed were attributed to variable thicknesses of dosimeter elements and variable source irradiation geometries. Improved beta calibration standards will result if irradiation specifications include acceptable ranges from the depth-dose characteristics. The low-energy beta responses observed were consistent with the thicknesses of dosimeter sensitive elements and overlying filtration

  2. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume I: Report

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

    1996-04-01

    To help lower the cost of compliance for waste-to-energy facilities, a retrofit technology using water spray temperature reduction combined with dry acid gas control reagent and powdered activated carbon [PAC] injection was tested in November, 1995 as part of an American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] effort supported in part by the Department of Energy's National Renewable Energy Laboratory [NREL] and directed by the ASME Research Committee on Industrial and Municipal Waste. 2,000 mg/dsm{sup 3} @ 7% O{sub 2} (150 lb/hr) of trona (a natural sodium sesquicarbonate ore) injected through a rapid dispersion lance successfully controlled more than 50 percent of the acid gases. This should let facilities under 250 TPD meet the small plant guidelines for acid gas control. Various levels of PAC were injected along with the trona. 300 mg/dsm{sup 3} 7% O{sub 2} of PAC provides a comfortable margin between the emissions limitations achieved and both large and small plant regulatory guidelines for tetra- through octachlorinated dibenzo-p-dioxins and dibenzofurans [PCDD/F] and mercury when the ESP is operated below 350 F. Bi-fluid nozzles were used to spray finely atomized water between the economizer outlet and ESP inlet to maintain temperatures in the desired 300-350 F range. Particulate and metals emissions limitations were met by this 400 ft{sup 2}/1,000 acft{sup 2} specific collector area [SCA], 3-field ESP. Both the water sprays and PAC improved ESP performance. The demonstration was successful. With dry PAC, acid gas reagent injection, and temperature reduction, MWC emissions guidelines for facilities smaller than 250 TPD can be reliably met. Everything except the large facilities SO{sub 2} and HCl guideline emissions limitations was achieved. Better acid gas control should be achievable with more reagent addition if the ESP is efficient enough to avoid violating particulate limits.

  3. Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money

    International Nuclear Information System (INIS)

    Energy Smart Schools Team

    2001-01-01

    Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is$6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school facilities managers and business officials, describes how schools can become more energy efficient

  4. Fourth intercomparison of personal dosemeters used in US Department of Energy accelerator facilities

    CERN Document Server

    Stewart, R D; Otto, T; Loesch, R M

    2000-01-01

    Personal neutron dosemeters from seven US Department of Energy (DOE) laboratories were mailed to the European Laboratory for Particle Physics (CERN) and irradiated using the well-characterised CERN reference radiation facility (CERF). Neutron dose equivalents determined using the DOE personal dosemeters have been compared to the reference dose equivalent as determined using a tissue-equivalent proportional counter (TEPC). In the 0.5 to 5 mSv dose equivalent range, the comparison of results suggests that the neutron personal dosemeters in use at DOE facilities are capable of estimating dose equivalents for high energy neutrons to within a factor of at least 2 or 3. If a field-specific calibration factor is used to correct the dose equivalent responses, the agreement with the reference dose equivalent for these dosemeters can be improved to better than about 25 to 65at is decoupled from the core in /sup 183,185/Au, becomes the 3/2[532] state (h9/2 parentage) strongly coupled in the doubly-odd /sup 184/Au nucleu...

  5. ALARA engineering at Department of Energy facilities: Bibliography of selected readings in radiation protection and ALARA

    International Nuclear Information System (INIS)

    Dionne, B.J.; Khan, T.A.; Lane, S.G.; Baum, J.W.

    1991-03-01

    This report is the second in the series of bibliographies supporting the efforts at the Brookhaven National Laboratory ALARA Center on dose reduction at US Department of Energy (DOE) facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the US Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE's Office of Environment, Safety and Health to include DOE nuclear facilities. Abstracts for this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy Data Base, and reprints of published articles provided by the authors. Information that the reader feels should be included in the next volume of this bibliography may be submitted to the BNL ALARA Center. These abstracts, which have a bearing on dose reduction, consolidates information from publications pertinent to Radiological Engineers and Operational Health Physicists. Volume 2 contains 127 abstracts numbered from 69 through 195 as well as author and subject indices. The subject index contains the abstract numbers from both the previous volume and the current volume, the latter being indicated in boldface

  6. Characteristics of beta detection and dose measurement at Department of Energy facilities

    International Nuclear Information System (INIS)

    Mulvehill, J.M.; Brackenbush, L.W.

    1987-02-01

    This report considers the current state of the art of beta dosimetry practices and beta detection methods used by health physicists at US Department of Energy facilities. This information is based on a survey of DOE facilities. Beta measurements are technically difficult and innovative efforts must be expended to improve their accuracy. Perhaps the most pronounced problem is that beta dosimetry and instrumentation in use are highly energy and angular dependent. Many believe that beta exposures are adequately controlled because beta to photon ratios are assumed to be low. This assumption is not always valid as demonstrated by the accident at Three Mile Island (TMI). Significant beta doses exist where personnel are exposed to mixed fission products; for example, chemical reprocessing plants, reactor accidents, or where uranium metals are processed. This report is part of an effort to increase the DOE response to this technically difficult area of health protection. Problem areas are addressed and methods recommended to improve beta dosimetry through a cooperative effort among the various DOE contractors. 34 refs., 2 figs., 16 tabs

  7. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  8. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  9. Integrating innovative technology into remedial action at a US Department of Energy facility

    International Nuclear Information System (INIS)

    Diggs, I.W.

    1992-01-01

    The US Atomic Energy Commission (AEC), predecessor to the US Department Energy (DOE), established a production complex in the early 1950's for processing uranium and its compounds from natural uranium ore concentrates for the purpose of producing high purity uranium metal for various uses in defense reactor and nuclear weapons programs. This complex, previously known as the Feed Materials Production Center (FMPC), is now known as the Fernald Environmental Management Project (FEMP). In 1989, production was stopped at the feed materials facility due to a decision by the DOE. In December of 1989, the site was placed on the US EPA's National Priorities List (NPL) of sites requiring environmental cleanup. As a result, in April of 1990 the DOE and the US EPA signed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Consent Agreement which augmented the FFCA. The DOE recently decided that production at the facility would not be resumed, and therefore, the main scope of work would change to remediation and closure of the site. In response to the FFCA and consistent with the modifications agreed to in the amended Consent Agreement, a Remedial Investigation/Feasibility Study (RI/FS) is in progress pursuant to CERCLA, as amended by the Superfund Amendments and Reauthorization Act (SARA). A RI/FS is a comprehensive environmental investigation systematically conducted according to US EPA regulations and guidelines used to identify and select an action plan for the cleanup of CERCLA sites. The RI phase incorporates a broad-based study to evaluate as completely as possible existing environmental and public health risks associated with past or existing facility operations. The FS phase develops and evaluates corrective action alternatives to mitigate identified environmental concerns

  10. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  11. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  12. A suite of standards for radiation monitors and their revisions

    International Nuclear Information System (INIS)

    Noda, Kimio

    1991-01-01

    A suite of standards for radiation monitors applied in nuclear facilities in Japan was compiled mainly by Health Physicists in Power Reactor and Nuclear Fuel Development (PNC) and Japan Atomic Energy Research Institute (JAERI), and issued in 1971 as 'The Standard for Radiation Monitors'. PNC facilities such as Reprocessing Plant and Plutonium Fuel Fabrication Facility, as well as other nuclear industries have applied the standard, and contributed improvement of practical maintenability and availability of the radiation monitors. Meanwhile, the radiation monitors have remarkably progressed in its application and size of the monitors is growing. Furthermore, manufacturing techniques have significantly progressed especially in the field of system concepts and electronics elements. These progresses require revision of the standards. 'The Standard for Radiation Monitors' has been revised considering the problems in practical application and data processing capability. Considerations are given to keep compatibility of old and new modules. (author)

  13. Licensing of nuclear facilities according to the Bulgarian Act on the Safe Use of Nuclear Energy

    International Nuclear Information System (INIS)

    Stoyanova-Todorova, P.

    2004-01-01

    The new Bulgarian Act on the Safe Use of Nuclear Energy /Nuclear Act/ has replaced the former Act on the Use of Nuclear Energy for Peaceful Purposes. The new Nuclear Act covers the activities involving nuclear energy and sources of ionising radiation mainly by establishing a consistent licensing regime. About 13 regulations specifying the provisions of the Nuclear Act have been recently adopted by the Council of Ministers, the most important one being the Regulation on the Procedure for Issue of Licenses and Permits for the Safe Use of Nuclear Energy. The Chairman of the Nuclear Regulatory Agency (NRA) is authorised by the law to consider any application for issue of a license or a permit under the Bulgarian Nuclear Act. The procedure starts with an application, filed with the NRA, and continues about nine months. The final decision could be for issuing of the license or permit or a refusal for issuing the claimed document. The denial must be grounded and is subject to appeal. The Nuclear Act prescribes the conditions for issuing of two types of licensing documents (authorisations): licenses and permits. From a legal point of view the two types of licensing documents have one and the same nature - they are individual administrative acts according to the Bulgarian law. That is why there is no difference between them in terms of the issuing procedure. The difference between licenses and permits could be explained as follows: while a license is issued for reiterated activities, a permit is issued for non-reoccurring activities, this division being a specific feature of the Bulgarian Nuclear Act. In the field of nuclear facilities usage only one type of license is provided for by the Nuclear Act - a license for operation of a nuclear facility unit. For the rest of the activities issuing of permits is envisaged, those permits being in compliance with the main stages of the authorisation process formulated by the IAEA, following the step-by-step approach - siting, design

  14. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Building 221-H, B-Line, Scrap Recovery Facility (Supplement 2A): Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-07-01

    The now HB-Line is located an top of the 221-H Building on the fifth and sixth levels and is designed to replace the aging existing HB-Line production facility. The new HB-Line consists of three separate facilities: the Scrap Recovery Facility, Neptunium Facility, and Plutonium Oxide Facility. The Scrap Recovery Facility is designed to routinely generate nitrate solutions of {sup 235}U{sup 239}Pu and Pu-238 fromscrap for purification by anion exchange or by solvent extraction in the canyon. The now facility incorporates improvements in: (1) engineered controls for nuclear criticality, (2) cabinet integrity and engineered barriers to contain contamination and minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

  15. Revising Translations

    DEFF Research Database (Denmark)

    Rasmussen, Kirsten Wølch; Schjoldager, Anne

    2011-01-01

    The paper explains the theoretical background and findings of an empirical study of revision policies, using Denmark as a case in point. After an overview of important definitions, types and parameters, the paper explains the methods and data gathered from a questionnaire survey and an interview...... survey. Results clearly show that most translation companies regard both unilingual and comparative revisions as essential components of professional quality assurance. Data indicate that revision is rarely fully comparative, as the preferred procedure seems to be a unilingual revision followed by a more...... or less comparative rereading. Though questionnaire data seem to indicate that translation companies use linguistic correctness and presentation as the only revision parameters, interview data reveal that textual and communicative aspects are also considered. Generally speaking, revision is not carried...

  16. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  17. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  18. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.

    Directory of Open Access Journals (Sweden)

    Wallace P Erickson

    Full Text Available Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW] for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows], and domestic cats have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top

  19. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.

    Science.gov (United States)

    Erickson, Wallace P; Wolfe, Melissa M; Bay, Kimberly J; Johnson, Douglas H; Gehring, Joelle L

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  20. A comprehensive analysis of small-passerine fatalities from collisions with turbines at wind energy facilities

    Science.gov (United States)

    Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 39 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  1. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Science.gov (United States)

    Cao, Zeyuan; Wei, Bingqing

    2015-05-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni))/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  2. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010

    International Nuclear Information System (INIS)

    Stoltenberg, B.; Partyka, E.

    2010-01-01

    This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

  3. Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Stoltenberg, B.; Partyka, E.

    2010-09-01

    This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

  4. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  5. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  6. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  7. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

    1996-04-01

    The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

  8. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Griffith, Andrew

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  9. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    International Nuclear Information System (INIS)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended

  10. Impact of distributed energy resources on the reliability of a critical telecommunications facility.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.; Arent, Douglas (National Renewable Energy Laboratory, Golden, CO)

    2006-03-01

    This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  11. Facility Interface Capability Assessment (FICA) project report

    International Nuclear Information System (INIS)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified

  12. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    Complete text of publication follows. The National Ignition Facility (NIF), the world's largest and most energetic laser system built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF's 192 beams are capable of producing 1.8 MJ and 500 TW of ultraviolet light and are configured to create pressures as high as 100 GB, matter temperatures approaching 10 9 and densities over 1000 g/cm 3 . With these capabis70lities, the NIF will enable exploring scientific problems in strategic defense, basic science and fusion energy. One of the early NIF campaigns is focusing on demonstrating laboratory-scale thermonuclear ignition and burn to produce net fusion energy gains of 10-20 with 1.2 to 1.4 MJ of 0.35 μm light. NIF ignition experiments began late in FY2009 as part of the National Ignition Campaign (NIC). Participants of NIC include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE) as well as variety of national and international collaborators. The results from these initial experiments show great promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with low overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. The goal for NIC is to demonstrate a predictable fusion experimental platform by the end of 2012. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and

  13. Danish Atomic Energy Commission 1974/75

    International Nuclear Information System (INIS)

    1975-11-01

    Activities of the Danish Atomic Energy Commission and the Risoe eesearch Establishment for the period April1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, a selected list of staff publications is given, and the design data on research facilities are presented. (B.P.)

  14. Review of fire protection in the nuclear facilities of the Atomic Energy Commission, 1947--1975

    International Nuclear Information System (INIS)

    Maybee, W.W.

    1979-01-01

    In the 28 years in which it grew from a temporary wartime bomb development program to a federal agency with over $30 billion worth of facilities housing much of the nation's advanced research efforts, the Atomic Energy Commission set many records for safety. Among the best was a cumulative fire loss ratio of 12 cents per $100 of value. A 1969 fire--one of four in its history that exceeded $1 million in loss--incurred damages totaling $26 million and prompted major additions to its fire protection programs. The added programs, encompassing additional fire protection engineers, new protection systems, independent inspection programs, and new performance-based goals, resulted in an order-of-magnitude improvement. The cumulative fire loss ratio after 1969 was 0.06 cents per $100 of value, a record few industries have ever achieved

  15. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  16. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    Science.gov (United States)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  17. Corrections on energy spectrum and scattering for fast neutron radiography at NECTAR facility

    International Nuclear Information System (INIS)

    Liu Shuquan; Thomas, Boucherl; Li Hang; Zou Yubin; Lu Yuanrong; Guo Zhiyu

    2013-01-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM-Ⅱ in Technische Universitaet Mounchen (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections. (authors)

  18. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    Science.gov (United States)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  19. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  20. Material-related issues at high-power and high-energy ion beam facilities

    CERN Document Server

    Bender, M.; Tomut, M.; Trautmann, C.

    2015-01-01

    When solids are exposed to energetic ions (MeV-GeV), their physical and chemical structure can be severely modified. The change is governed by ultrafast dynamical processes starting from the deposition of large energy densities, electronic excitation and ionization processes, and finally damage creation in the atomic lattice system. In many materials, each projectile creates a cylindrical track with a few nanometers in diameter and up to many μm in length. To study and monitor the creation of damage, the GSI irradiation facility dedicated to materials science provides different in-situ and on-line techniques such as high resolution microscopy, X-ray diffraction, optical absorption spectroscopy, thermal imaging and residual gas analysis. The irradiation experiments can be performed under various gas atmospheres and under cryogenic or elevated temperature.