WorldWideScience

Sample records for energy end-use efficiency

  1. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  2. Energy sources consumption: end uses, efficiency and productivity

    International Nuclear Information System (INIS)

    Martin, J.M.

    2005-01-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  3. Analysis of energy end-use efficiency policy in Spain

    International Nuclear Information System (INIS)

    Collado, Rocío Román; Díaz, María Teresa Sanz

    2017-01-01

    The implementation of saving measures and energy efficiency entails the need to evaluate achievements in terms of energy saving and spending. This paper aims at analysing the effectiveness and economic efficiency of energy saving measures implemented in the Energy Savings and Efficiency Action Plan (2008–2012) (EAP4+) in Spain for 2010. The lack of assessment related to energy savings achieved and public spending allocated by the EAP4+ justifies the need of this analysis. The results show that the transport and building sectors seem to be the most important, from the energy efficiency perspective. Although they did not reach the direct energy savings that were expected, there is scope for reduction with the appropriate energy measures. For the effectiveness indicator, the best performance are achieved by public service, agricultural and fisheries and building sectors, while in terms of energy efficiency per monetary unit, the best results are achieved by transport, industry and agriculture sectors. Authors conclude that it is necessary that central, regional and local administrations will get involved, in order to get better estimates of the energy savings achieved and thus to affect the design of future energy efficiency measures at the lowest possible cost to the citizens. - Highlights: • Energy end-use efficiency policy is analysed in terms of energy savings and spending. • The energy savings achieved by some measures are not always provided. • The total energy savings achieved by transport and building sectors are large. • Different levels of administration should get involved in estimating energy savings.

  4. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  5. End-Use Efficiency to Lower Carbon Emissions

    International Nuclear Information System (INIS)

    Marnay, Chris; Osborn, Julie; Webber, Carrie

    2001-01-01

    Compelling evidence demonstrating the warming trend in global temperatures and the mechanism behind it, namely the anthropogenic emissions of carbon dioxide and other greenhouse gases (GHG), has spurred an international effort to reduce emissions of these gases. Despite improving efficiency of the U.S. economy in terms of energy cost per dollar of GDP since the signing of the Kyoto Protocol, energy consumption and carbon emissions are continuing to rise as the economy expands. This growing gap further emphasizes the importance of improving energy use efficiency as a component in the U.S. climate change mitigation program. The end-use efficiency research activities at Berkeley Lab incorporate residential, commercial, industrial, and transportation sectors. This paper focuses on two successful U.S. programs that address end-use efficiency in residential and commercial demand: energy efficient performance standards established by the Department of Energy (DOE) and the Environmental Protection Agency's (EPA's) ENERGY STAR(registered trademark) program

  6. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    Science.gov (United States)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  7. Environmental benefits of electrification and end-use efficiency

    International Nuclear Information System (INIS)

    McMenamin, J.S.; Monforte, F.A.; Sioshansi, F.P.

    1997-01-01

    Significant reductions in greenhouse gases and criteria pollutants can be achieved through continued substitution of clean, efficient electrotechnologies for fossil fuel-based technologies. Continued improvements in the efficiency of electrical appliances already in use will further increase the environmental benefits of electricity. Over the last several decades, electricity use in the US has grown strongly. Over a 35 year period 1960-95, electric utility sales increased more than fourfold, from under 700 billion kWh (BkWh) to almost 3,000 BkWh. This increase was due, in part, to a growing economy, but it also reflects the increasingly broad application of electricity to provide comfort, convenience, entertainment, safety and productivity. Reflecting this expanding role, energy used for electricity generation by utilities has nearly doubled, increasing from 19 percent of US primary energy use in 1960 to about 36 percent in 1995. Environmental factors have also provided support to policies that promote improved end-use efficiency. More efficient end-use equipment allows consumers to obtain the same level of end-use services with less electricity. Reduced electricity consumption levels imply reduced generation requirements and therefore, lower levels of emissions associated with generation. Beginning in the mid-1970's, and stimulated by abrupt increases in fossil fuel prices, both government and utility policies began to emphasize end-use efficiency

  8. Energy sources consumption: end uses, efficiency and productivity; La consommation des sources d'energie: utilisations finales, efficacite et productivite

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.M. [Institut d' Economie et de Politique de l' Energie (CNRS- UPMF), 38 - Grenoble (France)

    2005-07-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  9. Using Sankey diagrams to map energy flow from primary fuel to end use

    International Nuclear Information System (INIS)

    Subramanyam, Veena; Paramshivan, Deepak; Kumar, Amit; Mondal, Md. Alam Hossain

    2015-01-01

    Highlights: • Energy flows from both supply and demand sides shown through Sankey diagrams. • Energy flows from reserves to energy end uses for primary and secondary fuels shown. • Five main energy demand sectors in Alberta are analyzed. • In residential/commercial sectors, highest energy consumption is in space heating. • In the industrial sector, highest energy use is in the mining subsector. - Abstract: The energy sector is the largest contributor to gross domestic product (GDP), income, employment, and government revenue in both developing and developed nations. But the energy sector has a significant environmental footprint due to greenhouse gas (GHG) emissions. Efficient production, conversion, and use of energy resources are key factors for reducing the environmental footprint. Hence it is necessary to understand energy flows from both the supply and the demand sides. Most energy analyses focus on improving energy efficiency broadly without considering the aggregate energy flow. We developed Sankey diagrams that map energy flow for both the demand and supply sides for the province of Alberta, Canada. The diagrams will help policy/decision makers, researchers, and others to understand energy flow from reserves through to final energy end uses for primary and secondary fuels in the five main energy demand sectors in Alberta: residential, commercial, industrial, agricultural, and transportation. The Sankey diagrams created for this study show total energy consumption, useful energy, and energy intensities of various end-use devices. The Long-range Energy Alternatives Planning System (LEAP) model is used in this study. The model showed that Alberta’s total input energy in the five demand sectors was 189 PJ, 186 PJ, 828.5PJ, 398 PJ, and 50.83 PJ, respectively. On the supply side, the total energy input and output were found to be 644.84 PJ and 239 PJ, respectively. These results, along with the associated energy flows were depicted pictorially using

  10. Marginalization of end-use technologies in energy innovation for climate protection

    Science.gov (United States)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  11. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    Science.gov (United States)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  12. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  13. Energy conservation: policy issues and end-use scenarios of savings potential

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The enclosed work is based on previous research during this fiscal year, contained in Construction of Energy Conservation Scenarios: Interim Report of Work in Progress, June 1978. Five subjects were investigated and summaries were published for each subject in separate publications. This publication summarizes policy issues on the five subjects: tradeoffs of municipal solid-waste-processing alternatives (economics of garbage collection; mechanical versus home separation of recyclables); policy barriers and investment decisions in industry (methodology for identification of potential barriers to industrial energy conservation; process of industrial investment decision making); energy-efficient recreational travel (information system to promote energy-efficient recreational travel; recreational travel; national importance and individual decision making); energy-efficient buildings (causes of litigation against energy-conservation building codes; description of the building process); and end-use energy-conservation data base and scenaerios (residential; commercial; transportation; and industrial).

  14. A new NAMA framework for dispersed energy end-use sectors

    International Nuclear Information System (INIS)

    Cheng, C.-C.

    2010-01-01

    This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two sectors make up the largest portions of energy consumption in developing countries. However, due to multiple barriers and lack of effective polices, energy efficiency in dispersed energy end-use sectors has not been effectively put into practice. The new NAMA framework described in this paper is designed to fulfill the demand for public policies and public sector investment in developing countries and thereby boost private sector investment through project based market mechanisms, such as CDM. The new NAMA framework is designed as a need-based mechanism which effectively considers the conditions of each developing country. The building sector is used as an example to demonstrate how NAMA measures can be registered and implemented. The described new NAMA framework has the ability to interface efficiently with Kyoto Protocol mechanisms and to facilitate a systematic uptake for GHG emission reduction investment projects. This is an essential step to achieve the global climate change mitigation target and support sustainable development in developing countries.

  15. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  16. A calibrated energy end-use model for the U.S. chemical industry

    International Nuclear Information System (INIS)

    Ozalp, N.; Hyman, B.

    2005-01-01

    The chemical industry is the second largest energy user after the petroleum industry in the United States. This paper provided a model for onsite steam and power generation in the chemical industry, as well as an end-use of the industrial gas manufacturing sector. The onsite steam and power generation model included the actual conversion efficiencies of prime movers in the sector. The energy end-use model also allocated combustible fuel and renewable energy inputs among generic end-uses including intermediate conversions through onsite power and steam generation. The model was presented in the form of a graphical depiction of energy flows. Results indicate that 35 per cent of the energy output from boilers is used for power generation, whereas 45 per cent goes directly to end-uses and 20 per cent to waste heat tanks for recovery in the chemical industry. The end-use model for the industrial gas manufacturing sector revealed that 42 per cent of the fuel input goes to onsite steam and power generation, whereas 58 per cent goes directly to end-uses. Among the end-uses, machine drive was the biggest energy user. It was suggested that the model is applicable to all other industries and is consistent with U.S. Department of Energy data for 1998. When used in conjunction with similar models for other years, it can be used to identify changes and trends in energy utilization at the prime mover level of detail. An analysis of the economic impact of energy losses can be based on the results of this model. Cascading of waste heat from high temperature processes to low temperature processes could be integrated into the model. 20 refs., 4 tabs., 8 figs

  17. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  18. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  19. Efficient Use of Energy: as a Life Style

    Directory of Open Access Journals (Sweden)

    Omneya Sabry

    2017-06-01

    ,EOS,…. In addition, Ministerial decisions and resolutions were issued to enforce the standards and labeling and to monitor the industry and the market as well.At the Regional Level the League of Arab States issued the “Arab Framework for Energy Efficiency for End-User” supported by the Regional Center for Renewable Energy and Energy Efficiency( RCREEE acting as technical arm.In 2012, MoERE applied this Framework to develop its National Plan which has been endorsed by the cabinet in the same year. This Plan included EE projects to be implemented by the Ministry as well as Measures for Energy Efficiency Improvement expected as a result of implementing these projects.Efficient Use of Energy is a Life Style and Culture that should be taught to children in Schools and at Home.

  20. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

    Science.gov (United States)

    Ma, Qinglei; Mo, Haiding; Zhao, Jay

    2018-04-01

    A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

  1. Healthcare Energy End-Use Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  2. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  3. Energy efficiency and using less – a social sciences and humanities annotated bibliography

    OpenAIRE

    Mourik, Ruth; Jeuken, Yvette; de Zeeuw, Mariska; Uitdenbogerd, Diana; van Summeren, Luc; Wilhite, Harold; Robison, Rosalyn A. V.; Heidenreich, Sara; Blahová, Michaela; Pidoux, Blandine; Kern-Gillard, Thomas; Arrobbio, Osman; Sonetti, Giulia; Throndsen, William; Fox, Emmet

    2017-01-01

    The challenge: \\ud * Technological progress and changes in energy supply are not sufficient for a transition to a low-carbon energy system; demand also needs to be considered. Energy efficiency and reducing total consumption - the topics of this bibliography - are typical elements of a demand side approach. \\ud * The uptake of energy efficient technologies, and understanding how we might use less energy, represent big challenges for researchers, policymakers, practitioners and end-users thems...

  4. Time-varying value of electric energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    2017-06-30

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range

  5. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  6. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  7. Energy saving and energy efficiency concepts for policy making

    International Nuclear Information System (INIS)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies.

  8. Energy saving and energy efficiency concepts for policy making

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, V. [SOM, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Becchis, F. [POLIS Department, University of East Piedmont, via Duomo, 6-13100 Vercelli (Italy); Steg, L. [Faculty of Behavioural and Social Sciences, University of Groningen, P.O. Box 72 9700 AB (Netherlands); Russolillo, D. [Fondazione per l' Ambiente ' T. Fenoglio' , Via Gaudenzio Ferrari 1, I-10124 Torino (Italy)

    2009-11-15

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies. (author)

  9. Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)

    International Nuclear Information System (INIS)

    Ferraro, Diego Omar

    2012-01-01

    As agricultural system comprises natural processes that are ruled by thermodynamics, the energy utilization is well suited for assessing the sustainability in the management of natural resources. The goals of this paper are 1) to assess the energy use efficiency of the main crops during the 1992–2005 period in Inland Pampa (Argentina); 2) to evaluate the database structure in terms of energy allocation; 3) to assess the changes in technical efficiency using frontier analysis and 4) to identify the best explanatory variables for energy efficiency variability. Results showed an upward trend in productivity per unit area in the crops analyzed (excluding sunflower). Summer soybean and sunflower showed higher energy efficiency values by the end of time series. The main shift in the energy use pattern was the reduction of the energy allocated to tillage. The overall performance of the wheat and soybean crops in the study area appears to be closer to the energy usage pattern shown by the top 5% energy use efficiency crop fields. The exploratory analysis using classification and regression trees (CART) revealed that the energy allocation to tillage; and the crop specie were the attributes that mainly explained the energy efficiency changes. -- Highlights: ► Energy use efficiency (EUE) of main Pampean crops (Argentina) in the 1992–2005 period was analyzed. ► An upward trend in productivity per unit area was observed with the exception of sunflower crop. ► Summer soybean and sunflower showed higher energetic efficiencies by the end of the time series analyzed. ► Average wheat and soybean EUE were closer to the energy usage pattern of the top 5% EUE crop fields. ► Tillage energy and crop specie were the attributes that most strongly explain the EUE changes.

  10. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  11. Resource acquisition, distribution and end-use efficiencies and the growth of industrial society

    Science.gov (United States)

    Jarvis, A. J.; Jarvis, S. J.; Hewitt, C. N.

    2015-10-01

    A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end-use. With respect to energy, the growth of industrial society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However, despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate of ~ 2.4 % yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

  12. Promotion of Efficient Use of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  13. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  14. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  15. National energy efficiency study. The Czech Republic

    International Nuclear Information System (INIS)

    Maly, M.; Jakubes, J.; Spitz, J.; Van Wees, M.T.; Uyterlinde, M.A.; Martens, J.W.; Van Oostvoorn, F.; Henelova, V.; Vazac, V.; Zalesak, M.; Marousek, J.; Szomolanyiova, J.; Havlickova, M.; Zeman, J.; Ten Donkelaar, M.; Travnicek, S.; Stejskal, F.; Pribyl, E.; Blokker, L.; Bizek, V.; Velthuijsen, J.W.

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech Government aims to promote these two sustainable options. The National Energy Efficiency Study has developed specific policies for the promotion of end use energy efficiency and renewables. These are described in two Action Plans, and in this report which serves as a background document. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy, including a listing of actions for implementation. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is presented to support project identification. In addition, two separate Action Plans have been published: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (separate document, ECN-C-99-065); and (2) The Renewable Energy Action Plan (separate document, ECN-C-99-064) deals with policy on promotion of renewable energy production. These two policy documents should provide policy makers in the Czech Government with essential information on potentials, targets, the required budget, and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation

  16. India Energy Outlook: End Use Demand in India to 2020

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  17. End-user flexibility in periods with scarcity - efficient use of ICT; Effektiv bruk av IKT : forbrukerfleksibilitet i knapphetssituasjoner

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Ove S.; Saele, Hanne

    2002-07-01

    In a period with limited extension of new power production, it is important to utilize the flexibility in consumption for end users. Last winter in Norway there was a new record in demand that outweighed the available power production. In addition, the country is gradually heading towards a larger energy deficit. The problem with power scarcity is concentrated in a limited number of hours and it is important that correct and efficient initiatives arc taken towards end users so that the power problem can be solved without increasing energy consumption. About 30% of the total demand in the Norwegian power system is flexible and can be disconnected or consumption patterns can be changed for shorter periods, but this potential is utilized only to a limited amount. These challenges have been addressed in a new research project ''End-user flexibility by efficient use of ICT'' that was established at SINTEF Energy Research in 2001. The main objective is to increase end-user flexibility in periods of scarcity of both energy and power. The project will test and evaluate different means of stimulating flexibility in consumption, based on the network tariff, the power price and new market solutions such as demand-side bidding. (author)

  18. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  19. Management of efficient use of energy and energy efficiency markets in Europe

    International Nuclear Information System (INIS)

    Lutz, Wolfang F.

    1999-01-01

    The present paper is based on the study S ystematization of European Legal, regulatory, and Institutional Frameworks for the Efficient Use of Energy , conducted in the framework of the project entitled Building up the Institutional and Regulatory Design to Consolidate Modernization of Energy Policies in the Countries of Latin America: Efficient Use of energy, implemented by the United Nations Economic Commission for Latin America and the Caribbean, in cooperation with the Synergy Programme of the European Commission of the Directorate General of Energy. (The author)

  20. Nonmonotonic energy harvesting efficiency in biased exciton chains

    NARCIS (Netherlands)

    Vlaming, S.M.; Malyshev, V.A.; Knoester, J.

    2007-01-01

    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average

  1. Energy efficiency and capital-energy substitutability: Evidence from four OPEC countries

    International Nuclear Information System (INIS)

    Adetutu, Morakinyo O.

    2014-01-01

    Highlights: • The analysis examines energy efficiency gains in selected OPEC countries during 1972–2010. • Capital-energy substitutability is also explored to analyze the impact of policy measures to reduce energy use. • The magnitudes of energy efficiency gains are somewhat small or modest. • Energy and capital are substitutes in some countries, but complements in others. • Climate change policies need to internalize the environmental cost of energy consumption in end-use prices. - Abstract: Rapid economic growth and development in several oil-exporting developing countries have led to increasing energy consumption and the accompanying greenhouse gas (GHG) emissions. Consequently, a good understanding of the nature and structure of energy use in developing economies is required for future energy and climate change policies. To this end, a modified translog cost function is employed in this paper to estimate energy efficiency for selected members of the Organization of the Petroleum Exporting Countries (OPEC) over the period 1972–2010. This also allows for the estimation of energy-capital substitutability, which arguably reflects the likely ease/disruption to long-term growth arising from policy measures aimed at reducing energy consumption and GHG emissions. The estimated results show that energy efficiency gains range from −14% to 13% for sampled countries. Furthermore, factor substitution elasticities suggest that energy and capital are substitutes in Algeria and Saudi Arabia, but are found to be complements in Iran and Venezuela. The insight generated by this study is that, over the last four decades, energy efficiency improvements in selected OPEC countries are modest, possibly reflecting a “subsidy effect” arising from artificially low energy prices. Thus, policy makers should take note that measures aimed at conserving energy need to internalize the environmental cost arising from energy consumption using pricing and fiscal instruments

  2. The Green Lab : Experimentation in Software Energy Efficiency

    NARCIS (Netherlands)

    Procaccianti, Giuseppe; Lago, Patricia; Vetrò, Antonio; Méndez Fernández, Daniel; Wieringa, Roel

    2015-01-01

    Software energy efficiency is a research topic where experimentation is widely adopted. Nevertheless, current studies and research approaches struggle to find generalizable findings that can be used to build a consistent knowledge base for energy-efficient software. To this end, we will discuss how

  3. Time-Varying Value of Energy Efficiency in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.

    2018-04-02

    Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning, is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.

  4. Substitution of efficient electro-technologies for thermal end-uses to traditional processes. Screening of possibilities and applications under study

    International Nuclear Information System (INIS)

    Menga, P.; Grattieri, W.; Korn, G.; Malinverni, R.

    1996-01-01

    ENEL's long-lasting commitment in rationalizing the energy end-uses, has lead to the assessment of the potential for the substitution, in the field of thermal uses, of traditional processes with efficient electro-technologies. The evaluation has been performed by taking in account the advantages for the user, in terms of the reduction in operating costs (energy included), for the electricity industry (increase in kWh sales), and for the Society (savings in primary energy consumption). The analysis allowed to identify many applications for which the primary energy saving is jointly obtained with significant extra-energy advantages for the end user. In order to validate the effectiveness of innovative electro-technologies, a demonstration activity, by means of pilot plants, is in progress. (author)

  5. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    Directory of Open Access Journals (Sweden)

    Chinhao Chong

    2015-04-01

    Full Text Available Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate that Malaysia’s energy use depends heavily on fossil fuels, including oil, gas and coal. In the past 30 years, Malaysia has successfully diversified its energy structure by introducing more natural gas and coal into its power generation. To sustainably feed the rapidly growing energy demand in end-use sectors with the challenge of global climate change, Malaysia must pay more attention to the development of renewable energy, green technology and energy conservation in the future.

  6. Energy efficiency subsidies with price-quality discrimination

    International Nuclear Information System (INIS)

    Nauleau, Marie-Laure; Giraudet, Louis-Gaëtan; Quirion, Philippe

    2015-01-01

    We compare various designs of energy efficiency subsidies in a market subject to both energy-use externalities and price-quality discrimination by a monopolist. We find that differentiated subsidies can establish the social optimum. Unlike per-quality regimes, ad valorem regimes generate downstream interferences: Subsidising of the high-end good leads the monopolist to reduce the quality of the low-end good. For this reason, ad valorem differentiated rates should always decrease with energy efficiency, a result seemingly at odds with actual practice. In contrast, with per-quality differentiated subsidies, the rates can increase if the externality is large enough relative to the market share of “low” type consumers. Contrary to differentiated subsidies, what we shall call single-instrument subsidies only achieve second-best outcomes. A uniform ad valorem subsidy should have a rate higher than that needed to specifically internalise energy-use externalities. Lastly, if, as is often observed in practice, only the high-end good is to be incentivised, a per-quality regime should be preferred to an ad valorem one. An ad valorem tax on the high-end good may even be preferred to an ad valorem subsidy if the externality is small enough and low-end consumers dominate the market.

  7. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    Science.gov (United States)

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  8. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  9. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  10. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  11. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  12. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  13. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  14. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  15. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  16. Development of a global computable general equilibrium model coupled with detailed energy end-use technology

    International Nuclear Information System (INIS)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Detailed energy end-use technology information is considered within a CGE model. • Aggregated macro results of the detailed model are similar to traditional model. • The detailed model shows unique characteristics in the household sector. - Abstract: A global computable general equilibrium (CGE) model integrating detailed energy end-use technologies is developed in this paper. The paper (1) presents how energy end-use technologies are treated within the model and (2) analyzes the characteristics of the model’s behavior. Energy service demand and end-use technologies are explicitly considered, and the share of technologies is determined by a discrete probabilistic function, namely a Logit function, to meet the energy service demand. Coupling with detailed technology information enables the CGE model to have more realistic representation in the energy consumption. The proposed model in this paper is compared with the aggregated traditional model under the same assumptions in scenarios with and without mitigation roughly consistent with the two degree climate mitigation target. Although the results of aggregated energy supply and greenhouse gas emissions are similar, there are three main differences between the aggregated and the detailed technologies models. First, GDP losses in mitigation scenarios are lower in the detailed technology model (2.8% in 2050) as compared with the aggregated model (3.2%). Second, price elasticity and autonomous energy efficiency improvement are heterogeneous across regions and sectors in the detailed technology model, whereas the traditional aggregated model generally utilizes a single value for each of these variables. Third, the magnitude of emissions reduction and factors (energy intensity and carbon factor reduction) related to climate mitigation also varies among sectors in the detailed technology model. The household sector in the detailed technology model has a relatively higher reduction for both energy

  17. The economic crisis and the energy efficiency programs

    International Nuclear Information System (INIS)

    Naturesa, Jim Silva; Mariotoni, Carlos Alberto

    2010-01-01

    This paper presents some data from the Brazilian economy (2009 and 2010) and their impact on energy efficiency programs. It is also shown the main results of the National Electricity Conservation Program (PROCEL) and PROCEL INFO, which aims to gather and make available information on the rational and efficient use of energy. At the end, we present information showing that MSMEs (Micro, Small and Medium Companies) should be the main focus of the technological innovation programs aimed to energy efficiency. (author)

  18. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  19. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  20. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  1. A Hierarchical Energy Efficient Reliable Transport Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prabhudutta Mohanty

    2014-12-01

    Full Text Available The two important requirements for many Wireless Senor Networks (WSNs are prolonged network lifetime and end-to-end reliability. The sensor nodes consume more energy during data transmission than the data sensing. In WSN, the redundant data increase the energy consumption, latency and reduce reliability during data transmission. Therefore, it is important to support energy efficient reliable data transport in WSNs. In this paper, we present a Hierarchical Energy Efficient Reliable Transport Protocol (HEERTP for the data transmission within the WSN. This protocol maximises the network lifetime by controlling the redundant data transmission with the co-ordination of Base Station (BS. The proposed protocol also achieves end-to-end reliability using a hop-by-hop acknowledgement scheme. We evaluate the performance of the proposed protocol through simulation. The simulation results reveal that our proposed protocol achieves better performance in terms of energy efficiency, latency and reliability than the existing protocols.

  2. Innovation in Multi-Level Governance for Energy Efficiency. Sharing experience with multi-level governance to enhance energy efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    Jollands, Nigel; Gasc, Emilien; Pasquier, Sara Bryan

    2009-12-15

    Despite creating a plethora of national and international regulations and voluntary programmes to improve energy efficiency, countries are far from achieving full energy efficiency potential across all sectors of the economy. One major challenge, among numerous barriers, is policy implementation. One strategy that many national governments and international organisations have used to address the implementation issue is to engage regional and local authorities. To that end, many programmes have been created that foster energy efficiency action and collaboration across levels of government. The aim of this report is to identify trends and detail recent developments in multi-level governance in energy efficiency (MLGEE). By sharing lessons learned from daily practitioners in the field, the IEA hopes energy efficiency policy makers at all levels of government will be able to identify useful multilevel governance (MLG) practices across geographical and political contexts and use these to design robust programmes; modify existing programmes, and connect and share experiences with other policy makers in this field.

  3. Where to place the saving obligation: Energy end-users or suppliers?

    International Nuclear Information System (INIS)

    Bertoldi, Paolo; Labanca, Nicola; Rezessy, Silvia; Steuwer, Sibyl; Oikonomou, Vlasis

    2013-01-01

    Obligations to save energy differentiate, among other features, by obliged parties. These are obligations on energy suppliers and energy end-users. Supplier obligations have been introduced in North America, Europe and Australia. Under supplier obligations energy suppliers have to comply with mandatory energy saving targets and thus they implement (directly or via third parties) energy efficiency projects on their clients’ premises, or they decide to trade certified project savings if this option is envisaged by their obligation scheme. In several emerging schemes such as the UK Carbon Reduction Commitment (CRC) Energy Efficiency Scheme, the Tokyo Emission Trading Scheme or the Perform Achieve and Trade (PAT) Scheme in India, the obligation to reduce energy consumption is placed on large end-users directly and end-users are allowed to trade emissions allowances or energy saving certificates. The paper starts with presenting these two conceptually different ways for introducing energy saving obligations. Then it analyses advantages and disadvantages of end-users obligations compared to suppliers obligations. The preliminary conclusion of the paper is that supplier obligations seem to be well-suited for the residential sector, but end-user saving obligations may offer advantages when it comes to the industrial and commercial sectors. - Highlights: • We present different ways for introducing energy saving obligations. • We analyse energy end-users obligations vs. supplier obligations. • Supplier obligations seem to be well-suited for the residential sector. • End-user obligations offer advantages in the industrial and commercial sectors

  4. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    Science.gov (United States)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  5. Benefits for whom? Energy efficiency within the efficient market

    International Nuclear Information System (INIS)

    Chello, Dario

    2015-01-01

    How should the lack of an efficient energy market affect the design of energy efficiency policies and their implementation? What the consequences of an inefficient energy market on end users’ behaviour? This article tries to give an answer to such questions, by considering the decision making of domestic users following a few fundamental concepts of behavioural economics. The mechanism of price formation in the market, with particular reference to the internal energy market in Europe, will be examined and we will show that price remains the inflexible attribute in making an energy choice. Then, some conclusions will be addressed to policy makers on how to overcome the barriers illustrated.

  6. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  7. Determination of Energy Use Efficiency of Sesame Production

    OpenAIRE

    BARAN, Mehmet Firat

    2018-01-01

    In this research it was aimed to determine an energy use efficiency of sesame production in Şanlıurfa province, during the production season of 2015. In order to determine the energy use efficiency of sesame production, trials and measurement were performed in sesame farm in the Bozova district of Şanlıurfa province. As energy inputs, human labour energy, machinery energy, chemical fertilizers energy, irrigation water energy, chemicals energy, diesel fuel energy and seed energy as were calcul...

  8. Energy efficiency solutions for driers used in the glass manufacturing and processing industry

    Directory of Open Access Journals (Sweden)

    Pătrașcu Roxana

    2017-07-01

    Full Text Available Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

  9. Efficient industrial energy use: The first step in transitioning Saudi Arabia's energy mix

    International Nuclear Information System (INIS)

    Matar, Walid; Murphy, Frederic; Pierru, Axel; Rioux, Bertrand; Wogan, David

    2017-01-01

    In Saudi Arabia, industrial fuel prices are administered below international prices and firms make decisions based on low energy prices, increasing domestic energy demand. This analysis explores alternative policies designed to induce a transition to a more efficient energy system by immediately deregulating industrial fuel prices, gradually deregulating fuel prices, and introducing investment credits or feed-in tariffs. It uses a dynamic multi-sector, mixed-complementarity model. Continuing existing policies results in a power system still fueled completely by hydrocarbons. The alternative policies result in a transition to a more efficient energy system where nuclear and renewable technologies become cost-effective and produce 70% of the electricity in 2032. Introducing the alternative policies can reduce the consumption of oil and natural gas by up to 2 million barrels of oil equivalent per day in 2032, with cumulative savings between 6.3 and 9.6 billion barrels of oil equivalent. The energy system sees a net economic gain up to half a trillion 2014 USD from increased oil exports, even with investments in nuclear and renewables. The results are robust to alternative assumptions regarding the value of oil saved and the growth in end-use energy demand. - Highlights: • We model the effect of reforming fuel prices to industrial sectors in Saudi Arabia. • Alternate policies can lower oil and gas use by up to two million boe/day in 2032. • Large economic gains could be achieved by reforming industrial fuel prices. • Some pricing policies manage transition without compromising the economic gain. • Saudi Arabia can maintain large crude oil export capacity by 2032.

  10. Energy efficiency action plan. Policy action plan for promotion of energy efficiency in the Czech Republic to 2010

    International Nuclear Information System (INIS)

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply and environmental protection. Therefore, the Czech government aims to promote these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. In addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formulation of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (this report); The Renewable Energy Action Plan (separate report; ECN-C--99-064) deals with policy on promotion of renewable energy production. These two Action Plans provide policy makers in the Czech government with essential information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; and (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  11. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    OpenAIRE

    Chinhao Chong; Weidou Ni; Linwei Ma; Pei Liu; Zheng Li

    2015-01-01

    Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate t...

  12. Energy efficiency and renewable energy policy in the Czech Republic within the framework of accession to the European Union

    International Nuclear Information System (INIS)

    Wees, M.T. van; Uyterlinde, M.A.; Maly, M.

    2002-01-01

    The main barrier for end-use energy efficiency and renewable energy in the Czech Republic is the lack of a stable political and regulatory framework. Market incentives can only properly work if the market conditions and restrictions are clear and stable. However, no comprehensive policies and regulation have been implemented in the Czech Republic. Although the acquis communautaire of the European Union includes regulation on energy efficiency and renewable energy, this topic remains low on the negotiation agenda for accession. This paper reports on the current situation in the Czech Republic, including the potentials for end-use energy efficiency and renewable energy, on the existing policy and regulatory framework, and on the remaining gaps with the requirements of accession to the European Union. Also, the impact of the recent increase of nuclear capacity on energy efficiency and renewable energy in the Czech Republic is discussed

  13. A housing stock model of non-heating end-use energy in England verified by aggregate energy use data

    International Nuclear Information System (INIS)

    Lorimer, Stephen

    2012-01-01

    This paper proposes a housing stock model of non-heating end-use energy for England that can be verified using aggregate energy use data available for small areas. These end-uses, commonly referred to as appliances and lighting, are a rapidly increasing part of residential energy demand. This paper proposes a model that can be verified using aggregated data of electricity meters in small areas and census data on housing. Secondly, any differences that open up between major collections of housing could potentially be resolved by using data from frequently updated expenditure surveys. For the year 2008, the model overestimated domestic non-heating energy use at the national scale by 1.5%. This model was then used on the residential sector with various area classifications, which found that rural and suburban areas were generally underestimated by up to 3.3% and urban areas overestimated by up to 5.2% with the notable exception of “professional city life” classifications. The model proposed in this paper has the potential to be a verifiable and adaptable model for non-heating end-use energy in households in England for the future. - Highlights: ► Housing stock energy model was developed for end-uses outside of heating for UK context. ► This entailed changes to the building energy model that serves as the bottom of the stock model. ► The model is adaptable to reflect rapid changes in consumption between major housing surveys. ► Verification was done against aggregated consumption data and for the first time uses a measured size of the housing stock. ► The verification process revealed spatial variations in consumption patterns for future research.

  14. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  15. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  16. End-to-end energy efficient communication

    DEFF Research Database (Denmark)

    Dittmann, Lars

    Awareness of energy consumption in communication networks such as the Internet is currently gaining momentum as it is commonly acknowledged that increased network capacity (currently driven by video applications) requires significant more electrical power. This paper stresses the importance...

  17. A golden age or a false dawn? Energy efficiency in UK competitive energy markets

    International Nuclear Information System (INIS)

    Eyre, N.

    1998-01-01

    Liberalisation of energy markets may affect the prospects for energy efficiency in a variety of ways. Downward pressure on prices will reduce incentives for efficiency and the end of a supply monopoly makes more difficult mandating demand side management programmes. On the other hand, the removal of price controls could end some regulatory disincentives, and liberalisation enables suppliers to market energy efficiency bundled with energy units. The overall effects of liberalisation for energy efficiency are therefore complex. This paper focuses on the effects of liberalisation on those characteristics of energy markets which underpin long-term energy inefficiency. These barriers to energy efficiency have been shown to arise from fundamental features of traditional utility markets - notably centralisation, commoditization and the complexity of demand side investment. The extent to which these will be altered in liberalised markets in the UK is considered. It is concluded that some important market imperfections are not addressed by competition in the supply of energy commodities. However, more fundamental changes may in the longer term encourage more differentiation in supply markets, in which there could be higher priority for energy efficiency. The policy measures which might encourage the process are discussed. (author)

  18. Energy consumption of electricity end uses in Malaysian historic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruzzaman, Syahrul N.; Edwards, Rodger E.; Zawawi, Emma M.A.

    2007-07-15

    Malaysia has inherited hundreds of heritage buildings from the past including those from the Indian, Chinese and Colonial eras apart from the indigenous traditional buildings. These buildings have the most unique ecstatic value from the viewpoint of architecture, culture, art, etc. Malaysian economy boom in 1980s spurred the need for more buildings especially in large cities. As a result, most of the historic buildings have been converted and transformed into commercial use. As reported by METP, Malaysian buildings energy uses are reflected by the energy consumption in the industrial and commercial sectors. Most of the buildings' energy consumption is electricity, used for running and operating the plants, lighting, lifts and escalators and other equipment in the buildings. These are amongst the factors that have resulted in the high demand for electricity in Malaysia. As outlined in the eighth Malaysia Plan, Malaysia is taking steps in conserving energy and reducing energy consumption on electricity consumption in building. This paper aims to present the breakdown of the major electricity end uses characteristics of historic buildings in Malaysia. The analysis was performed on annual data, allowing comparison with published benchmarks to give an indication of efficiency. Based on data collected a 'normalisation' calculated electricity consumption was established with the intention of improving the comparison between buildings in different climatic regions or with different occupancy patterns. This is useful for identifying where the design needed further attention and helped pinpoint problem areas within a building. It is anticipated that this study would give a good indication on the electricity consumption characteristics of historic buildings in Malaysia. (Author)

  19. National Report on the Energy Efficiency Service Business in Sweden

    OpenAIRE

    Stenqvist, Christian; Nilsson, Lars J

    2009-01-01

    The ChangeBest project is supported by the Intelligent Energy Europe Programme of the European Commission. The purpose of the project is to promote the development of an energy efficiency service (EES) market. The project provides good practice examples of changes in energy service business, strategies, and supportive policies and measures in the course of the implementation of Directive 2006/32/EC on Energy End-Use Efficiency and Energy Services. This report presents the sitauation o...

  20. LEAN and energy efficiency; Lean og energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    Jespersen, Per T; Vesterager Christensen, D; Andersen, Hans [Teknologisk Institut, Energi og Klima, Taastrup (Denmark); Dam Wied, M; Dam, M [NRGi Raadgivning, Aarhus (Denmark); Thorndahl, M [Horsens Kommune, Horsens (Denmark); Weldingh, P [Lokal Energi, Viby J. (Denmark); Maagoee, P; Kristensen, Kenneth T [Viegand og Maagoee, Copenhagen (Denmark); Kirketerp Friis, A [Novozymes, Bagsvaerd (Denmark)

    2010-03-15

    By means of theoretical reports and three specific cases, the project showed how Lean principles can improve energy consulting efficiency, thus making it easier for end-users and energy consultants to record and document energy savings achieved. The three cases documented various types of extra benefits of integrating energy efficiency improvement in Lean processes. As a result of process optimisation, one manufacturing company successfully reduced both staffing and energy consumption, thus making production in Denmark competitive with out-sourced production in Asia. (LN)

  1. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  2. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  3. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  4. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This publication is the first global analysis of energy consumption and energy efficiency potential of EMDS (electric motor- driven system). The electric motors and systems they drive are the largest single electricity end use, accounting for more than 40% of global electricity consumption. Huge energy efficiency potential was found untapped in EMDS - around 25% of EMDS electricity use could be saved cost-effectively, reducing total global electricity demand by about 10%. However, the energy efficiency of EMDS has been relatively neglected in comparison with other sustainable energy opportunities. It is crucial to scale up the operations and resources committed to realizing the vast savings potential of optimized EMDS. This paper proposes a comprehensive package of policy recommendations to help governments realize the potential for energy savings in EMDS.

  5. Municipalities and energy efficiency in countries in transition

    International Nuclear Information System (INIS)

    Rezessy, Silvia; Dimitrov, Konstantin; Urge-Vorsatz, Diana; Baruch, Seth

    2006-01-01

    It is widely recognized that many cost-efficient opportunities to employ end-use energy efficiency measures exist in countries in transition (CITs) and that municipal authorities have an essential role to play in capturing these opportunities. The aim of this paper is to review the factors that determine the degree of involvement of local authorities in the market for energy services and energy efficient (EE) equipment in three CITs: Bulgaria, Hungary and the Former Yugoslav Republic of Macedonia (hereafter: Macedonia). We achieve this aim by examining the current status of local governments as the most powerful determinant of municipal market involvement. Two broad groups of factors are discussed: statutory obligations and powers of local governments, especially energy-related tasks, and finance. We explain how specific features within these two areas may influence the motivation of local authorities to improve energy efficiency and their capacity to do so. We argue that greater decentralization is the first step in augmenting the role of local authorities in the market for energy services and EE equipment. Based on the analysis we give recommendations on how to encourage municipal authorities to use market mechanisms more extensively to deliver energy efficiency

  6. Rebuilding Romania. Energy, efficiency and the economic transition

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W [Royal Inst. of International Affairs, London (United Kingdom)

    1994-12-31

    Energy will be a crucial factor in the successful recreation of a democratic society based on a market economy in Romania, following the overthrow in 1989 of the Ceausescu dictatorship. This study focuses on energy efficiency and end-use, rather than the supply of fuels and electricity, and is written by a team of senior Romanian energy specialists, who describe the country`s existing energy systems, and their potential for improved use, including international cooperation for mutual benefit. (UK)

  7. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  8. Monitoring Energy Efficiency in the EU-27 the ODYSSEE - MURE Project

    International Nuclear Information System (INIS)

    Bosseboeuf, D.; Bozic, H.; Vuk, B.; Novosel, D.; Keco, M.; Karan, M.; Vukman, S.; Krstulovic, V.

    2008-01-01

    Since more than a decade, the European Commission through the Intelligent Energy for Europe programme and 29 partners, mainly European national energy efficiency agencies, have developed common methodologies on energy efficiency monitoring. This relies on two complementary tools: 1) ODYSSEE, an internet database on energy efficiency indicators. Around 200 indicators comparable and harmonised across countries are developed at sectoral or end uses levels, over the period 1980-2006 for the EU-15 countries and from 1990 for EU-10 countries + Croatia and Norway. 2) MURE, an interactive internet data base on energy efficiency policies. More than 1300 policies descriptions are stored. When available, ex-post evaluations are reported. Based on this material provided by each of partners representing all the EU-Members and Croatia, a cross countries analysis is carried by sector on the recent trends for the EU as a whole and by countries. This diagnosis of benchmark shows that countries which have performed the best differ according to the end uses. The contribution of the manufacturing sector in the energy savings seems slowing down compared to the late nineties. Inversely, results in transport seem now encouraging. The building sector has performed disappointingly despite numerous policies. Analysis of the policy mix across countries and its dynamic shows divergences between the EU-15 countries and the EU 10. Innovative measures can be found everywhere and are discussed extensively. These results become more and more widely used by member state to assess and interpret the target and the National Energy Efficiency Action Plan of the plan of the Energy Service directive recently launched. This report presents an analysis of energy efficiency trends in Croatian on the basis of energy efficiency indicators based on the ODYSSEE methodology. This analysis focuses on the period 1992-20041, in the energy consumption and energy efficiency in total and in sectors (industry

  9. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    De Paoli, L.; Bongiolatti, L.

    2006-01-01

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom [it

  10. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  11. Teaching the Fundamentals of Energy Efficiency

    Science.gov (United States)

    Meier, Alan

    2010-02-01

    A course on energy efficiency is a surprisingly valuable complement to a student's education in physics and many other disciplines. The Univ. of California, Davis, offers a 1-quarter course on ``understanding the other side of the meter.'' Lectures begin by giving students a demand-side perspective on how, where, and why energy is used. Students measure energy use of appliances in their homes and then report results. This gives students a practical sense of the difference between energy and power and learn how appliances transform energy into useful services. Lectures introduce the types of direct conservation measures--reducing demand, reducing fixed consumptions, and increasing efficiency. Practical examples draw upon simple concepts in heat transfer, thermodynamics, and mechanics. Graphical techniques, strengthened through problem sets, explain the interdependence of conservation measures. Lectures then examine indirect energy savings from measures and consider questions like ``where can one achieve the greatest fuel savings in a car by removing one gram of mass?'' Finally, students learn about conservation measures that circumvent physical limits by adopting new processes. By the end of the course, students have a gained a new perspective on energy consumption and the opportunities to reduce it. )

  12. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN... Water used to achieve energy efficiency. [Reserved] ...

  13. US energy conservation and efficiency policies: Challenges and opportunities

    International Nuclear Information System (INIS)

    Dixon, Robert K.; McGowan, Elizabeth; Onysko, Ganna; Scheer, Richard M.

    2010-01-01

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  14. US energy conservation and efficiency policies. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K.; Onysko, Ganna [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth; Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future. (author)

  15. US energy conservation and efficiency policies: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K. [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States); Onysko, Ganna, E-mail: gonysko@thegef.or [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  16. Worldwide trends in energy use and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Improvements in energy efficiency over the past three decades have played a key role in limiting global increases in energy use and CO{sub 2} emissions. For IEA countries, energy efficiency gains since 1990 have led to annual energy savings of more than 16 EJ in 2005 and 1.3 Gt of avoided CO{sub 2} emissions. However, the recent rate of efficiency improvement has been much lower than in the past. The good news is that a large potential remains for further energy and CO{sub 2} savings across all sectors. In industry alone, the application of proven technologies and best practices on a global scale could save between 1.9 Gt and 3.2 Gt of CO{sub 2} emissions per year. In public power generation, if all countries produced electricity at current best practice levels, CO{sub 2} savings would be between 1.8 Gt and 2.5 Gt. 40 figs., 5 tabs., 3 annexes.

  17. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  18. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  19. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  20. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  1. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  2. Designing building energy efficiency programs for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Lima Azevedo, Ines; Scott Matthews, H.; Hendrickson, Chris T.

    2011-01-01

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO 2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: → We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. → We use optimization to evaluate trade-offs between program objectives and capital constraints. → Local energy market conditions significantly influence efficiency expectations. → Different program objectives can lead to different effective investment strategies. → We reflect on the implications of our results for efficiency program design.

  3. Designing building energy efficiency programs for greenhouse gas reductions

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael, E-mail: mfb@andrew.cmu.edu [Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712 (United States); Lima Azevedo, Ines, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Scott Matthews, H., E-mail: hsm@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Hendrickson, Chris T., E-mail: cth@andrew.cmu.edu [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-09-15

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO{sub 2} eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: > We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. > We use optimization to evaluate trade-offs between program objectives and capital constraints. > Local energy market conditions significantly influence efficiency expectations. > Different program objectives can lead to different effective investment strategies. > We reflect on the implications of our results for efficiency program design.

  4. Research and development conference: California Institute for Energy Efficiency (CIEE) program

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    CIEE's first Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: building energy efficiency, air quality impacts of energy efficiency, and end-use resource planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured.

  5. Energy conservation: policy issues and end-use scenarios of savings potential. Part IV. Energy-efficient recreational travel

    Energy Technology Data Exchange (ETDEWEB)

    Benson, P.; Codina, R.; Cornwall, B.

    1978-09-01

    The guidelines laid out for the five subjects investigated in this series are to take a holistic view of energy conservation policies by describing the overall system in which they are implemented; provide analytical tools and sufficiently disaggregated data bases that can be adapted to answer a variety of questions by the users; identify and discuss some of the important issues behind successful energy conservation policy; and develop an energy conservation policy in depth. This report contains the design of a specific policy that addresses energy conservation in recreational travel. The policy is denoted as an ''Information System for the National Park Service.'' This work is based on prior examination of the characteristics of the recreational trip and decision making for the recreational experience. The examination revealed which aspects of the recreational travel system needed to be addressed to encourage energy-efficient modal decisions for recreational travel. This policy is briefly described in Section 1, the ''Summary of Initiative.'' A more detailed discussion of the policy follows. The material which led to the policy's formation is developed in Section 2: Importance and Impact of the Recreational Trip; Weekend Travel; The Flowchart: Decision Making for the Recreational Experience; Policy Development for Phase 1 ''Planning the Trip;'' and Objectives and Strategies for ''Planning the Trip.'' (MCW)

  6. Towards an energy end use model

    International Nuclear Information System (INIS)

    Smith Fontana, Raul

    2003-01-01

    The general equilibrium energy end use model proposed, uses linear programming as te basic and central element to optimization of variables defined in the economic and energy areas of the country related to a four factors structure: Energy, Raw Material, Capital and Labor, and related to the sectors: Residential, Commercial, Industrial, Transportation and Import/Export. Input-Output coefficients are defined in an input-output matrix of processes representing the supply of Electricity (generated by nuclear- not available in Chile-hydro, gas, fuel-oil and coal), Petroleum, Imported Natural Gas (transported and distributed) National Natural Gas, LPG, Coal, Wood and representing a demand of Residential, Commercial, Industrial, Transportation and Import/Export. There is an interaction of the final demand composition, the prices of capital, labor and taxes with the levels of operation for each process and the prices of goods and services. In addition to the prices of fuels for each annual period, to the supply and demand of energy and to the total demand it can forecast the optimum coefficients of the final demand. If the data to be collected result reasonably complete and consistent, the model will be useful for planning. A special effort should be placed in specifying a certain number of typical energy activities, the available options for fuels, the selection of them attending rational market decisions and conservation according to well known economical criteria of substitution. To simulate the process of options selection given by the activities and to allow substitutions, it is possible to introduce the logit function characterized by a Weibull distribution and the generalized substitution function characterized by the constant electricity. The model would allow, assuming differents scenario, to visualize general policies in the penetration of energy technologies. To study the penetration of electric energy generated by nuclear, in which the country does not have

  7. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  8. Energy efficient process planning based on numerical simulations

    OpenAIRE

    Neugebauer, Reimund; Hochmuth, C.; Schmidt, G.; Dix, M.

    2011-01-01

    The main goal of energy-efficient manufacturing is to generate products with maximum value-added at minimum energy consumption. To this end, in metal cutting processes, it is necessary to reduce the specific cutting energy while, at the same time, precision requirements have to be ensured. Precision is critical in metal cutting processes because they often constitute the final stages of metalworking chains. This paper presents a method for the planning of energy-efficient machining processes ...

  9. Tools and methods for integrated resource planning. Improving energy efficiency and protecting the environment

    International Nuclear Information System (INIS)

    Swisher, J.N.; Martino Jannuzzi, G. de; Redlinger, R.Y.

    1997-01-01

    This book resulted from our recognition of the need to have systematic teaching and training materials on energy efficiency, end-use analysis, demand-side management (DSM) and integrated resource planning (IRP). This book addresses energy efficiency programs and IRP, exploring their application in the electricity sector. We believe that these methods will provide powerful and practical tools for designing efficient and environmentally-sustainable energy supply and demand-side programs to minimize the economic, environmental and other social costs of electricity conversion and use. Moreover, the principles of IRP can be and already are being applied in other areas such as natural gas, water supply, and even transportation and health services. Public authorities can use IRP principles to design programs to encourage end-use efficiency and environmental protection through environmental charges and incentives, non-utility programs, and utility programs applied to the functions remaining in monopoly concessions such as the distribution wires. Competitive supply firms can use IRP principles to satisfy customer needs for efficiency and low prices, to comply with present and future environmental restrictions, and to optimize supply and demand-side investments and returns, particularly at the distribution level, where local-area IRP is now being actively practiced. Finally, in those countries where a strong planning function remains in place, IRP provides a way to integrate end-use efficiency and environmental protection into energy development. (EG) 181 refs

  10. Tools and methods for integrated resource planning. Improving energy efficiency and protecting the environment

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, J N; Martino Jannuzzi, G de; Redlinger, R Y

    1997-11-01

    This book resulted from our recognition of the need to have systematic teaching and training materials on energy efficiency, end-use analysis, demand-side management (DSM) and integrated resource planning (IRP). This book addresses energy efficiency programs and IRP, exploring their application in the electricity sector. We believe that these methods will provide powerful and practical tools for designing efficient and environmentally-sustainable energy supply and demand-side programs to minimize the economic, environmental and other social costs of electricity conversion and use. Moreover, the principles of IRP can be and already are being applied in other areas such as natural gas, water supply, and even transportation and health services. Public authorities can use IRP principles to design programs to encourage end-use efficiency and environmental protection through environmental charges and incentives, non-utility programs, and utility programs applied to the functions remaining in monopoly concessions such as the distribution wires. Competitive supply firms can use IRP principles to satisfy customer needs for efficiency and low prices, to comply with present and future environmental restrictions, and to optimize supply and demand-side investments and returns, particularly at the distribution level, where local-area IRP is now being actively practiced. Finally, in those countries where a strong planning function remains in place, IRP provides a way to integrate end-use efficiency and environmental protection into energy development. (EG) 181 refs.

  11. Contemporary Targets for Control of Efficient Energy Use

    Directory of Open Access Journals (Sweden)

    Yu. S. Petrusha

    2012-01-01

    Full Text Available The paper describes main principles of the methodology for control of efficient energy use in power engineering and economy sectors as a whole. Targets for control of energy use at different levels have been considered in the paper. A special attention has been paid to technical, organizational and legal aspects of energy efficiency improvement. The paper contains an analysis of the history of the given issue, the present level of its development and near-term prospects under conditions of the Republic of Belarus.

  12. Energy use efficiency in the Indian manufacturing sector: An interstate analysis

    International Nuclear Information System (INIS)

    Mukherjee, Kankana

    2008-01-01

    This paper approaches the measurement of energy efficiency from a production theoretic framework and uses Data Envelopment Analysis to measure energy efficiency in the Indian manufacturing sector. Using data from the Annual Survey of Industries for the years 1998-99 through 2003-04, the study compares the energy efficiency in manufacturing across states, based on several models. The results show considerable variation in energy efficiency across states. Comparing the results across our models, we find that the relative pricing of energy does not provide the appropriate incentives for energy conservation. A second-stage regression analysis reveals that states with a larger share of manufacturing output in energy-intensive industries have lower energy efficiency. Also, higher quality labor force associates with higher energy efficiency. Finally, the power sector reforms have not yet had any significant impact on achieving energy efficiency

  13. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  14. Mind the gap. Quantifying principal-agent problems in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    Energy efficiency presents a unique opportunity to address three energy-related challenges in IEA member countries: energy security, climate change, and economic development. Yet an energy-efficiency gap exists between actual and optimal energy use. That is, significant cost-effective energy efficiency potential is wasted because market barriers prevent countries from achieving optimal levels. Market barriers take many forms, from inadequate access to capital, isolation from price signals, information asymmetry, and split-incentives. Though many studies have reported the existence of such market barriers, none so far have attempted to quantify the magnitude of their effect on energy use and efficiency. This publication is an unprecedented attempt to quantify the size of one of the most pervasive barriers to energy efficiency - principal-agent problems, or in common parlance, variations on the 'landlord-tenant' problem. In doing so, the book provides energy analysts and economists with unique insights into the amount of energy affected by principal-agent problems. Using an innovative methodology applied to eight case studies (covering commercial and residential sectors, and end-use appliances) from five different IEA countries, the analysis identifies over 3,800 PJ/year of affected energy use - that is, around 85% of the annual energy use of a country the size of Spain. The book builds on these findings to suggest a range of possible policy solutions that can reduce the impact of principal-agent problems and help policy makers mind the energy efficiency gap.

  15. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  16. IMPACT OF THE COLD END OPERATING CONDITIONS ON ENERGY EFFICIENCY OF THE STEAM POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Slobodan Laković

    2010-01-01

    Full Text Available The conventional steam power plant working under the Rankine Cycle and the steam condenser as a heat sink and the steam boiler as a heat source have the same importance for the power plant operating process. Energy efficiency of the coal fired power plant strongly depends on its turbine-condenser system operation mode. For the given thermal power plant configuration, cooling water temperature or/and flow rate change generate alterations in the condenser pressure. Those changes have great influence on the energy efficiency of the plant. This paper focuses on the influence of the cooling water temperature and flow rate on the condenser performance, and thus on the specific heat rate of the coal fired plant and its energy efficiency. Reference plant is working under turbine-follow mode with an open cycle cooling system. Analysis is done using thermodynamic theory, in order to define heat load dependence on the cooling water temperature and flow rate. Having these correlations, for given cooling water temperature it is possible to determine optimal flow rate of the cooling water in order to achieve an optimal condensing pressure, and thus, optimal energy efficiency of the plant. Obtained results could be used as useful guidelines in improving existing power plants performances and also in design of the new power plants.

  17. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  18. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  19. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  20. Energy efficiency in U.K. shopping centres

    Science.gov (United States)

    Mangiarotti, Michela

    Energy efficiency in shopping centres means providing comfortable internal environment and services to the occupants with minimum energy use in a cost-effective and environmentally sensitive manner. This research considers the interaction of three factors affecting the energy efficiency of shopping centres: i) performance of the building fabric and services ii) management of the building in terms of operation, control, maintenance and replacement of the building fabric and services, and company's energy policy iii) occupants' expectation for comfort and awareness of energy efficiency. The aim of the investigation is to determine the role of the above factors in the energy consumption and carbon emissions of shopping centres and the scope for reducing this energy usage by changing one or all the three factors. The study also attempts to prioritize the changes in the above factors that are more cost-effective at reducing that energy consumption and identify the benefits and main economic and legal drivers for energy efficiency in shopping centres. To achieve these targets, three case studies have been analysed. Using energy data from bills, the performance of the selected case studies has been assessed to establish trends and current energy consumption and carbon emissions of shopping centres and their related causes. A regression analysis has attempted to break down the energy consumption of the landlords' area by end-use to identify the main sources of energy usage and consequently introduce cost-effective measures for saving energy. A monitoring and occupants' survey in both landlords' and tenants' areas have been carried out at the same time to compare the objective data of the environmental conditions with the subjective impressions of shoppers and shopkeepers. In particular, the monitoring aimed at assessing the internal environment to identify possible causes of discomfort and opportunities for introducing energy saving measures. The survey looked at

  1. End use energy consumption data base: transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  2. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  3. Towards a more efficient use of energy through beneficial electrification

    International Nuclear Information System (INIS)

    Barbesino, C.; Le Goff, R.; Goericke, P.; Porter, D.F.; Roth, M.F.; Halberg, N.

    1996-01-01

    An important part of any commitment to energy conservation is a commitment to achieving savings in the use of electrical energy. However, to enable true comparisons to be made in the drive for more efficient and effective use of energy, it is essential that the entire primary energy chain, up to and including the final application, is taken into account. Conversion losses, which occur in the generation of electricity can often be offset by very high efficiencies at the point of use. The existence of a wide range of technology, to improve the efficiency of energy use and maximize the quality of usable energy extracted from primary energy resources, is a prerequisite. Of equal importance are the promotion and marketing of these technologies. In attempting to draw up a consistent energy conservation policy, it is essential to adopt approaches which consider all forms of energy. (R.P.)

  4. Comparing Server Energy Use and Efficiency Using Small Sample Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry C.; Qin, Yong; Price, Phillip N.

    2014-11-01

    This report documents a demonstration that compared the energy consumption and efficiency of a limited sample size of server-type IT equipment from different manufacturers by measuring power at the server power supply power cords. The results are specific to the equipment and methods used. However, it is hoped that those responsible for IT equipment selection can used the methods described to choose models that optimize energy use efficiency. The demonstration was conducted in a data center at Lawrence Berkeley National Laboratory in Berkeley, California. It was performed with five servers of similar mechanical and electronic specifications; three from Intel and one each from Dell and Supermicro. Server IT equipment is constructed using commodity components, server manufacturer-designed assemblies, and control systems. Server compute efficiency is constrained by the commodity component specifications and integration requirements. The design freedom, outside of the commodity component constraints, provides room for the manufacturer to offer a product with competitive efficiency that meets market needs at a compelling price. A goal of the demonstration was to compare and quantify the server efficiency for three different brands. The efficiency is defined as the average compute rate (computations per unit of time) divided by the average energy consumption rate. The research team used an industry standard benchmark software package to provide a repeatable software load to obtain the compute rate and provide a variety of power consumption levels. Energy use when the servers were in an idle state (not providing computing work) were also measured. At high server compute loads, all brands, using the same key components (processors and memory), had similar results; therefore, from these results, it could not be concluded that one brand is more efficient than the other brands. The test results show that the power consumption variability caused by the key components as a

  5. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  6. From demand side management (DSM) to energy efficiency services: A Finnish case study

    International Nuclear Information System (INIS)

    Apajalahti, Eeva-Lotta; Lovio, Raimo; Heiskanen, Eva

    2015-01-01

    Energy conservation is expected to contribute significantly to climate change mitigation and energy security. Traditionally, energy companies have had strong role in providing Demand Side Management (DSM) measures. However, after energy market liberalization in Europe, energy companies' DSM activities declined. In response, the EU issued Directive (2006/32/EC) on energy end-use efficiency and energy services (ESD) to motivate energy companies to promote energy efficiency and conservation, closely followed by Directive (2012/27/EU) on energy efficiency (EED), requiring the setting up energy efficiency obligation schemes. Despite strong political and economic motivation, energy companies struggle to develop energy efficiency services in liberalised energy markets due to conflicting institutional demands, which arise from contradicting policy requirements and customer relations. The main challenges in developing new innovative energy efficiency services, evidenced by an in-depth case study, were (1) the unbundling of energy company operations, which makes it difficult to develop services when the contribution of several business units is required and (2) the distrust among energy end-users, which renders the business logic of energy saving contract models self-contradictory. On the basis of the research, avenues out of these dilemmas are suggested. -- Highlights: •Energy companies struggle to become energy service provides •We explore the development of new energy saving business solutions •Dispersed organisational structure leaves energy saving business as isolated function •Strong consumer scepticism towards energy companies as providers of energy saving •More emphasis on the changing company-customer relationship is needed

  7. SAVE - energy efficiency in Germany 1990-2000. Report based on the ODYSSEE data base on energy efficiency indicators and the MURE data base on energy efficiency policy measures with the support from SAVE. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Schlomann, B.

    2002-03-01

    This reports presents an analysis of energy efficiency trends in Germany on the basis of energy efficiency indicators extracted from the ODYSSEE data base, maintained and updated in the framework of the SAVE programme. This analysis focuses on the period 1990-2000. The year 1990 could however not be considered for all indicators, because most of the economic and some energy consumption data for Germany are only available since 1991. The analysis also examines the policies and measures implemented in the field of energy efficiency, with a focus on the latest years until February 2002. All these measures are extracted from the MURE data base also updated within the SAVE programme. The report starts with a review on data collection and the recent trends in the general context of energy efficiency, i. e. economic and energy consumption development, energy and environmental policy and energy price trends (Chapter 2). Afterwards, the energy efficiency trends are described both at the level of the whole economy and at sectoral level (Chapter 3). In Chapter 4 the development in one sector - transport - is described more detailed. For the other sectors (industry, residential, tertiary) Annex 2 presents a selection of commented graphs that show the trends for the main indicators. An overview of the most important measures in the field of energy efficiency policy in the end-use sectors in Germany is given in Annex 1. A more detailed description of the most recent measures is presented in Annex 3. (orig.)

  8. Change Best: Task 2.3. Analysis of policy mix and development of Energy Efficiency Services

    International Nuclear Information System (INIS)

    Boonekamp, P.; Vethman, P.

    2010-04-01

    The aim of the Change Best project is to promote the development of an energy efficiency service (EES) market and to give good practice examples of changes in energy service business, strategies, and supportive policies and measures in the course of the implementation of Directive 2006/32/EC on Energy End-Use Efficiency and Energy Services. This report addresses task 2.3: Analysis of policy mix and development of Energy Efficiency Services.

  9. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  10. Save-Odyssee project on EEI - final report - Part 2: energy efficiency in EU

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The European Odyssee project on energy efficiency indicators (EEI) was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. This report presents the status of the implementation of energy efficiency policies in European Union countries: institutional changes/context, measures and programmes, budget, pricing, subsidies and taxes. (J.S.)

  11. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    , it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

  12. Energy End-Use : Industry

    NARCIS (Netherlands)

    Banerjee, R.; Gong, Y; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; Es, D. van; Worrell, E.

    2012-01-01

    The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use. There

  13. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    International Nuclear Information System (INIS)

    Alluvione, Francesco; Moretti, Barbara; Sacco, Dario; Grignani, Carlo

    2011-01-01

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg -1 grain; wheat: 2.6 MJ kg -1 grain; soybean: 4.1 MJ kg -1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  14. Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Significantly improving energy efficiency remains a priority for all countries. Meetings of G8 leaders and IEA ministers reaffirmed the critical role that improved energy efficiency can play in addressing energy security, environmental and economic challenges. Many IEA publications have also documented the essential role of energy efficiency. For example, the World Energy Outlook and the Energy Technology Perspectives reports identify energy efficiency as the most significant contributor to achieving energy security, economic and environmental goals. Energy efficiency is clearly the “first fuel” in the delivery of energy services in the coming low-carbon energy future. To support governments in their implementation of energy efficiency, the IEA recommended the adoption of specific energy efficiency policy measures to the G8 summits in 2006, 2007 and 2008. The consolidated set of recommendations to these summits is known as the ‘IEA 25 energy efficiency policy recommendations’ because it covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and energy utilities. The IEA estimates that if implemented globally without delay, the proposed actions could save as much as 7.6 giga tonnes (Gt) CO2/year by 2030 – almost 1.5 times the current annual carbon dioxide (CO2) emissions of the United States. The IEA 25 energy efficiency policy recommendations were developed to address policy gaps and priorities. This has two implications. First, the recommendations do not cover the full range of energy efficiency policy activity possible. Rather, they focus on priority energy efficiency policies identified by IEA analysis. Second, while IEA analysis, the energy efficiency professional literature and engagement with experts clearly demonstrate the broad benefits of these IEA priority measures, the recommendations are not weighted to reflect the different energy end-use make up of different

  15. Front-end electronics for accurate energy measurement of double beta decays

    International Nuclear Information System (INIS)

    Gil, A.; Díaz, J.; Gómez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzó, J.M.; Monrabal, F.; Yahlali, N.

    2012-01-01

    NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-β decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.

  16. Energy Efficient Routing and Node Activity Scheduling in the OCARI Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2010-08-01

    Full Text Available Sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. Energy efficient strategies are required in such networks to maximize network lifetime. In this paper, we focus on a solution integrating energy efficient routing and node activity scheduling. The energy efficient routing we propose, called EOLSR, selects the route and minimizes the energy consumed by an end-to-end transmission, while avoiding nodes with low residual energy. Simulation results show that EOLSR outperforms the solution selecting the route of minimum energy as well as the solution based on node residual energy. Cross-layering allows EOLSR to use information from the application layer or the MAC layer to reduce its overhead and increase network lifetime. Node activity scheduling is based on the following observation: the sleep state is the least power consuming state. So, to schedule node active and sleeping periods, we propose SERENA that colors all network nodes using a small number of colors, such that two nodes with the same color can transmit without interfering. The node color is mapped into a time slot during which the node can transmit. Consequently, each node is awake during its slot and the slots of its one-hop neighbors, and sleeps in the remaining time. We evaluate SERENA benefits obtained in terms of bandwidth, delay and energy. We also show how cross-layering with the application layer can improve the end-to-end delays for data gathering applications.

  17. How do policies for efficient energy use in the household sector induce energy-efficiency innovation? An evaluation of European countries

    International Nuclear Information System (INIS)

    Girod, Bastien; Stucki, Tobias; Woerter, Martin

    2017-01-01

    Research on innovation induced by climate-mitigation policy has been focused predominantly on the supply side of the energy system. Despite considerable climate-mitigation potential on the demand side, less attention is given to the innovation effect of policies addressing the household sector. Based on a comprehensive data set, including 550 policy measures over 30 years (1980–2009) and covering 21 European countries, we find—based on econometric estimations—that policies targeting efficient energy use in the household sector significantly increase the number of patented energy-efficiency inventions. A comparison of the different policy types reveals a particularly strong influence from financial subsidies and energy labels. The results indicate that policies supporting early market adoption of energy-efficient technologies are effective in fostering innovation. - Highlights: • We evaluate the impact of energy-efficiency policy on energy-efficiency innovation. • The dataset covers patents and policies for 1980–2009 in 21 European countries. • Household policies show a positive influence on innovation activity (patented inventions). • The influence is most pronounced for financial subsidies and energy labels.

  18. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  19. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill; Goldman, Charles A.; Schiller, Steven R.

    2010-04-14

    Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy

  20. A new NAMA framework for dispersed energy end-use sectors

    DEFF Research Database (Denmark)

    Cheng, Chia-Chin

    2010-01-01

    This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two ...

  1. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  2. How to engage end-users in smart energy behaviour?

    Directory of Open Access Journals (Sweden)

    Valkering Pieter

    2014-01-01

    Full Text Available End users will play a crucial role in up-coming smart grids that aim to link end-users and energy providers in a better balanced and more efficient electricity system. Within this context, this paper aims to deliver a coherent view on current good practice in end-user engagement in smart grid projects. It draws from a recent review of theoretical insights from sustainable consumption behaviour, social marketing and innovation systems and empirical insights from recent smart grid projects to create an inventory of common motivators, enablers and barriers of behavioural change, and the end-user engagement principles that can be derived from that. We conclude with identifying current research challenges as input for a research agenda on end-user engagement in smart grids.

  3. Personalized Energy Reduction Cyber-Physical System (PERCS): A gamified end-user platform for energy efficiency and demand response.

    Energy Technology Data Exchange (ETDEWEB)

    Sintov, Nicole; Orosz, Michael; Schultz, P. Wesley

    2015-01-01

    The mission of the Personalized Energy Reduction Cyber-physical System (PERCS) is to create new possibilities for improving building operating efficiency, enhancing grid reliability, avoiding costly power interruptions, and mitigating greenhouse gas emissions. PERCS proposes to achieve these outcomes by engaging building occupants as partners in a user-centered smart service platform. Using a non-intrusive load monitoring approach, PERCS uses a single sensing point in each home to capture smart electric meter data in real time. The household energy signal is disaggregated into individual load signatures of common appliances (e.g., air conditioners), yielding near real-time appliance-level energy information. Users interact with PERCS via a mobile phone platform that provides household- and appliance-level energy feedback, tailored recommendations, and a competitive game tied to energy use and behavioral changes. PERCS challenges traditional energy management approaches by directly engaging occupant as key elements in a technological system.

  4. Energy efficiency policies in China, India, Indonesia, Thailand and Vietnam

    International Nuclear Information System (INIS)

    Chappoz, Loic; Laponche, Bernard

    2013-04-01

    Most papers dealing with energy efficiency policies focus on the policies and measures implemented in OECD countries and this may lead one to think that only the 'rich' countries are developing efforts in this field. International experience shows that emerging countries and even poor developing countries understand that energy efficiency is a prerequisite for their economic and environmentally friendly development. Among these countries, China, India, Indonesia, Thailand and Vietnam have implemented particularly interesting policies, some of which were launched several decades ago. Moreover the Agence Francaise de developpement (AFD) has active cooperation programs in these five countries. This study describes the current situation and recent trends in final energy demand in these countries as well as the policies and measures they are implementing in the field of end-use energy efficiency. (authors)

  5. Energy end use statistics and estimations in the Polish household sector

    International Nuclear Information System (INIS)

    Gilecki, R.

    1997-01-01

    The energy statistics in Poland was in the past concentrated on energy production and industrial consumption, but little information was available on the households energy consumption. This data unavailability was an important barrier for the various analyses and forecasting of the energy balance developments. In the recent years some successful attempts were made to acquire a wider and more reliable picture of household energy consumption. The households surveys were made and some existing data were analyzed and verified. The better and more detailed picture of households energy use was in this way constructed. The breakdown of energy consumption by end-use categories (space heating, water heating, cooking, electrical appliances) was quite reliably estimated. Important international cooperation and guidance was used in the course of Polish households energy consumption research. (author). 6 refs

  6. Energy end use statistics and estimations in the Polish household sector

    Energy Technology Data Exchange (ETDEWEB)

    Gilecki, R [Energy Information Centre, Warsaw (Poland)

    1997-09-01

    The energy statistics in Poland was in the past concentrated on energy production and industrial consumption, but little information was available on the households energy consumption. This data unavailability was an important barrier for the various analyses and forecasting of the energy balance developments. In the recent years some successful attempts were made to acquire a wider and more reliable picture of household energy consumption. The households surveys were made and some existing data were analyzed and verified. The better and more detailed picture of households energy use was in this way constructed. The breakdown of energy consumption by end-use categories (space heating, water heating, cooking, electrical appliances) was quite reliably estimated. Important international cooperation and guidance was used in the course of Polish households energy consumption research. (author). 6 refs.

  7. Policies for advancing energy efficiency and renewable energy use in Brazil

    International Nuclear Information System (INIS)

    Geller, Howard; Schaeffer, Roberto; Szklo, Alexandre; Tolmasquim, Mauricio

    2004-01-01

    This article first reviews energy trends and energy policy objectives in Brazil. It then proposes and analyzes 12 policy options for advancing energy efficiency and renewable energy use. The policies are analyzed as a group with respect to their impacts on total energy supply and demand as well as CO 2 emissions. It is determined that the policies would provide a broad range of benefits for Brazil including reducing investment requirements in the energy sector, cutting energy imports, lowering CO 2 emissions, and providing social benefits. (Author)

  8. Energy efficiency and renewable energy sources in Nordic homes

    Energy Technology Data Exchange (ETDEWEB)

    Hyysalo, S; Rinkinen, J [Aalto Univ. School of Economics, Helsinki (Finland). Dept. of Management and International Business; Heiskanen, E [National Consumer Research Centre, Helsinki (Finland)

    2011-07-01

    The role of citizens as innovators, adaptors of existing technologies and diffusers of new climate-relevant innovations has been studied extensively in recent years. Since the late 1970s, sociological and demographic research on residential energy use has consistently found great variations in energy use among similar households. It has been suggested that these variations constitute a source of innovative low-carbon practices. Yet, while there are many generic technologies available for end-use efficiency and renewables, their slow rate of diffusion suggests that they are not as such applicable to local conditions. Citizens have a key role in their adoption and adaptation to local conditions, as well in their diffusion to other users. Against this backdrop, the track 4 of NCF called for poster presentations of innovative new products, modifications of existing products, news ways of make use of existing technologies as well as such living practices that reduce energy use or enable the utilization of renewable energy sources in domestic settings in the Nordic countries. (orig.)

  9. Biomethane storage: Evaluation of technologies, end uses, business models, and sustainability

    International Nuclear Information System (INIS)

    Budzianowski, Wojciech M.; Brodacka, Marlena

    2017-01-01

    Highlights: • Biomethane storage integrates the different energy subsystems. • It facilitates adoption of solar and wind energy sources. • It is essential to adequately match storages with their end uses and business models. • Business models must propose, create, and capture value linked with gas storage. • Sustainable is economically viable, environmentally benign, and socially beneficial. - Abstract: Biomethane is a renewable gas that can be turned into dispatchable resource through applying storage techniques. The storage enables the discharge of stored biomethane at any time and place it is required as gas turbine power, heat or transport fuel. Thus the stored biomethane could more efficiently serve various energy applications in the power, transport, heat, and gas systems as well as in industry. Biomethane storage may therefore integrate the different energy subsystems making the whole energy system more efficient. This work provides an overview and evaluation of biomethane storage technologies, end uses, business models and sustainability. It is shown that storage technologies are versatile, have different costs and efficiencies and may serve different end uses. Business models may be created or selected to fit regional spatial contexts, realistic demands for gas storage related services, and the level of available subsidies. By applying storage the sustainability of biomethane is greatly improved in terms of economic viability, reduced environmental impacts and greater social benefits. Stored biomethane may greatly facilitate adoption of intermittent renewable energy sources such as solar and wind. Other findings show that biomethane storage needs to be combined with grid services and other similar services to reduce overall storage costs.

  10. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  11. Analysis of the Syrian long-term energy and electricity demand projection using the end-use methodology

    International Nuclear Information System (INIS)

    Hainoun, A.; Seif-Eldin, M.K.; Almoustafa, S.

    2006-01-01

    A comprehensive analysis of the possible future long-term development of Syrian energy and electricity demand covering the period 1999-2030 is presented. The analysis was conducted using the IAEA's model MAED, which relies upon the end-use approach. This model has been validated during the last two decades through the successful application in many developing countries, even those having partial market economy and energy subsidy. Starting from the base year, final energy consumption distributed by energy forms and consumption sectors, the future energy and electricity demand has been projected according to three different scenarios reflecting the possible future demographic, socio-economic and technological development of the country. These scenarios are constructed to cover a plausible range, in which future evolution factors affecting energy demand are expected to lie. The first is a high economy scenario (HS) representing the reference case, which is characterized by high gross domestic product (GDP) growth rate (average annual about 6%) and moderate improved technologies in the various consumption sectors. The second is an energy efficiency scenario (ES), which is identical to HS in all main parameters except these relating to the efficiency improvement and conservation measures. Here, high technology improvement and more effective conservation measures in all consumption sectors are proposed and the role of solar to substitute fossil energy for heating purposes is considered effectively. The third is a low economy scenario (LS) with low GDP growth rate (average annual about 3.5%) and less technology improvement in the consumption sectors. As a consequence, the improvement in the energy efficiency is low and the influence of conservation measures is less effective. Starting from about 10.5mtoe final energy in the base year, the analysis shows that the projected energy demand will grow annually at average rates of 5%, 4.5% and 3% for the HS, ES and LS

  12. Evaluation of energy efficiency policy instruments effectiveness : case study Croatia

    International Nuclear Information System (INIS)

    Bukarica, V.

    2007-01-01

    This paper proposed a theoretical basis for evaluating energy efficiency policy in the Republic of Croatia and corroborated it with the analysis of energy efficiency market development and transformation. The current status of the market was evaluated and policy instruments were adapted to achieve optimal results. In particular, the energy efficiency market in Croatia was discussed in terms of micro and macro environment factors that influence policy making processes and the choice of policy instruments. The macro environment for energy efficiency market in Croatia is the process of European Union pre-integration with all related national and international legislation, political and economical factors and potential to use financial funds. The micro environment consists of government institutions, local financing institutions and a range of market players on the supply and demand side. Energy efficiency is the most powerful and cost-effective way for achieving goals of sustainable development. Policy instruments developed to improve energy efficiency are oriented towards a cleaner environment, better standard of living, more competitive industry and improved security of energy supply. Energy efficiency is much harder to implement and requires policy interventions. In response to recent trends in the energy sector, such as deregulation and open competition, policy measures aimed at improving energy efficiency should shift from an end-users oriented approach towards a whole market approach. The optimal policy instruments mix should be designed to meet defined targets. However, market dynamics must be taken into consideration. 9 refs., 4 figs

  13. Upper bound for energy efficiency in multi-cell fibre-wireless access systems

    NARCIS (Netherlands)

    Koonen, A.M.J.; Popov, M.; Wessing, H.

    2013-01-01

    Bringing radio access points closer to the end-users improves radio energy efficiency. However, taking into account both the radio and the optical parts of a fibre-wireless access system, the overall system energy efficiency has an upper bound determined by the relation between the energy

  14. Upper bound for energy efficiency in multi-cell fibre-wireless access systems

    DEFF Research Database (Denmark)

    Koonen, A.M.J.; Popov, M.; Wessing, Henrik

    2013-01-01

    Bringing radio access points closer to the end-users improves radio energy efficiency. However, taking into account both the radio and the optical parts of a fibre-wireless access system, the overall system energy efficiency has an upper bound determined by the relation between the energy...

  15. Energy efficiency and load curve impacts

    International Nuclear Information System (INIS)

    Feilberg, Nicolai

    2002-01-01

    One of SINTEF Energy Research's European RTD projects is the two-year EFFLOCOM (Energy EFFiciency and LOad curve impacts of COMmercial development in competitive markets). This project will determine the end-user response of different market-related services offered in deregulated power markets. The project will investigate the possibility of influencing load curves by using different price signals and two-way communications via Internet. The partners are from Denmark. Finland, England, France and Norway. SINTEF Energy Research is in charge of the project management. During the project, the changes in load curves will he studied in the in the participating countries before and after deregulation. Specific issues are the use of ICT, time- and situation-dependent tariffs and smart-house technology. The project will consist of 5 work packages that will give recommendations about new methods, guidelines and tools to promote effective use of energy in the partner countries. The total budget is EUR 692 000. (author)

  16. Energy use, energy use in mainland Norway; Energibruk, energibruk i Fastlands-Noreg

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Ingrid H.; Spilde, Dag; Killingland, Magnus

    2011-05-15

    The purpose of this report is to describe the development of energy in the mainland, with emphasis on key developments within the major end user groups. At the same time we explain concepts and relationships that are often used within the field of energy. Finally, we look at forecasts for future energy use that is made by environments outside NVE. The total end use of energy in the mainland was 207 TWh in 2009. The most important end user groups are households, service industries, manufacturing and transportation industries. Additionally, it was used 15 TWh in the energy sector in the mainland. Energy used in the energy sector will not be considered as end use since it's going to produce new energy products. The long-term trend of energy consumption in the mainland is that fuel for transport and electricity for energy sector is increasing, while energy consumption in other sectors flattens out. The reason for increase of fuel for transport is the increasing number of motorized equipment and vehicles in mainland Norway, which has led to the consumption of petrol and diesel have risen by 75 percent since 1976. The petroleum sector is the largest user of energy in the energy sector in Mainland, and electricity from land to the platforms in the North Sea and new facilities on land has led to electricity usage has increased from 1 TWh in 1995 to 5 TWh in 2009. Energy consumption in households had a flat trend from 1996 to 2009, after many years of growth. The rationale behind the flattening is partly warmer climate, higher energy prices, heat pumps and more energy-efficient buildings. In service industries, growth in energy consumption decreased since the end of the 1990s, and the explanation of this is much the same as for households. In industry is the closure of energy-intensive businesses and new more energy-efficient enterprises the most important reason that energy use is leveling out. Electricity is the most widely used energy source in Norway, and

  17. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  18. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  19. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  20. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  1. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  2. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  3. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  4. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  5. Change Best.Task 2.1. National Report on the Energy Efficiency Service Business in Italy

    International Nuclear Information System (INIS)

    Sabbatucci, N.; Labanca, N.

    2009-05-01

    The aim of the Change Best project is to promote the development of an energy efficiency service (EES) market and to give good practice examples of changes in energy service business, strategies, and supportive policies and measures in the course of the implementation of Directive 2006/32/EC on Energy End-Use Efficiency and Energy Services. This report addresses Task 2.1: National Report on the Energy Efficiency Service Business in Italy. More information can be found on the website of Change Best at www.changebest.eu.

  6. End users heat energy savings using thermostat regulation valves radiators, v. 16(64)

    International Nuclear Information System (INIS)

    Jakimovska, Emilija Misheva; Potsev, Eftim

    2008-01-01

    Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)

  7. End users heat energy savings using thermostat regulation valves radiators, v. 16(63)

    International Nuclear Information System (INIS)

    Jakimovska, Emilija Misheva; Potsev, Eftim

    2008-01-01

    Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)

  8. SEE Action Guide for States: Guidance on Establishing and Maintaining Technical Reference Manuals for Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-06-01

    The goal of this guide is to support the development, maintenance, and use of accurate and reliable Technical Reference Manuals (TRMs). TRMs provide information primarily used for estimating the energy and demand savings of end-use energy efficiency measures associated with utility customer-funded efficiency programs.

  9. The use of energy analysis and indexes of energy efficiency in nuclear power

    International Nuclear Information System (INIS)

    D'yakonov, E.I.; Ignatenko, E.I.

    1991-01-01

    The results of calculating the indexes of energy efficiency for NPPs with the WWER-1000 and RBMK-1000 reactors, heat and power NPPs with the WWER-1000 and dictrict heating NPPs with the AST-500 reactor in three fuel cycles, namely, the open one and with uranium and plutonium recycles, are considered. Complex account for the quantity and quality of produced and consumed energy provides for objective evaluation of the indexes of energy efficiency during comparative analysis of nuclear power plants with different types of reactors. It is shown that complex use of the energy produced at a NPP provides for increase of indexes of energy efficiency. The highest indexes are obtained for heat and power NPP with the WWER-1000 reactor in the open fuel cycle, with uranium and plutonium recycle and for NPP with the WWER-1000 reactor with plutonium recycle

  10. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Ketoff, A.; Meyers, S.

    1981-05-01

    This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

  11. Investigation of techniques for energy-efficient new-build data centres

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Afman, M.; Van Lieshout, M. [CE Delft, Delft (Netherlands); Harryvan, D. [Mansystems, Den Haag (Netherlands)

    2013-05-15

    Data centres are becoming an increasingly important sector of the Dutch economy, but are also substantial and rapidly growing energy consumers, currently responsible for approximately 1.5% of national electricity use. In recent years a range of technical options have been developed that permit major improvements in the energy efficiency of data centres. In this context CE Delft has investigated in-depth a number of options for new-build data centres. All these options limit energy use and are economically and technically feasible. The study was conducted for the Dutch government's NL Agency in close cooperation with the trade association Nederland ICT and individual data centres, as well as national and local government authorities. The study consists of an extensive literature study and entailed interviews with suppliers of energy-efficient techniques. Based on detailed data delivered by these suppliers, model calculations were performed to predict the energy performance at different loading degrees. The results were validated with data centre operators. The results show that a high degree of energy efficiency can be achieved. Various combinations of techniques available to this end can deliver EUEs below 1.2. This is a significant step beyond the EUE of 1.3 used as a reference. EUE, Energy Usage Efficiency, is a measure of how energy-efficient a data centre provides its services. A crucial factor in all technology combinations is substantial use of 'free cooling', i.e. utilising natural sources of cold. The efficient variants use technology geared to maximising such use. The type of power supply is another key factor, and in this respect modular construction is pivotal. Operational aspects are also important for achieving high efficiencies. The report is to serve as a basis for guidelines for local government in the framework of environmental permits.

  12. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  13. ENERGY EFFICIENT TRACKING SYSTEM USING WIRELESS SENSORS

    OpenAIRE

    Thankaselvi Kumaresan; Sheryl Mathias; Digja Khanvilkar; Prof. Smita Dange

    2014-01-01

    One of the most important applications of wireless sensor networks (WSNs) is surveillance system, which is used to track moving targets. WSN is composed of a large number of low cost sensors which operate on the power derived from batteries. Energy efficiency is an important issue in WSN, which determines the network lifetime. Due to the need for continuous monitoring with 100% efficiency, keeping all the sensor nodes active permanently leads to fast draining of batteries. Hen...

  14. Average regional end-use energy price projections to the year 2030

    International Nuclear Information System (INIS)

    1991-01-01

    The energy prices shown in this report cover the period from 1991 through 2030. These prices reflect sector/fuel price projections from the Annual Energy Outlook 1991 (AEO) base case, developed using the Energy Information Administration's (EIA) Intermediate Future Forecasting System (IFFS) forecasting model. Projections through 2010 are AEO base case forecasts. Projections for the period from 2011 through 2030 were developed separately from the AEO for this report, and the basis for these projections is described in Chapter 3. Projections in this report include average energy prices for each of four Census Regions for the residential, commercial, industrial, and transportation end-use sectors. Energy sources include electricity, distillate fuel oil, liquefied petroleum gas, motor gasoline, residual fuel oil, natural gas, and steam coal. (VC)

  15. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    Science.gov (United States)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using

  16. Techniques and tools for measuring energy efficiency of scientific software applications

    CERN Document Server

    Abdurachmanov, David; Eulisse, Giulio; Knight, Robert; Niemi, Tapio; Nurminen, Jukka K.; Nyback, Filip; Pestana, Goncalo; Ou, Zhonghong; Khan, Kashif

    2014-01-01

    The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running o...

  17. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  18. Energy efficiency in Norway (1997). Cross Country Comparison on Energy Efficiency Indicators - Phase 5

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    2000-02-01

    This is the national report for Norway in phase 5 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of maximum 7-8 TWH from 1990 to 1997. This corresponds to a saving of 0.5% per year. In the same period, final energy use per Gross Domestic Product (GDP) was reduced by approx 2.4% per year. Thereby most of the reduction in final energy intensity can not be attributed to increased energy efficiency. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  19. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  20. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  1. Study on improvement of energy efficiency of walking robots by spring -installed leg design

    International Nuclear Information System (INIS)

    Shin, Eung Soo; Song, Heuy Gap

    1993-01-01

    Although a walking robot is potentially useful in nuclear industry, its application has not been successful so far due to poor energy efficiency. In this paper, dynamic spring balancing of a swinging leg is proposed for improving energy efficiency. Since the fluctuation of internal energy is unavoidable due to leg oscillation, springs can be used for storing energy that is otherwise dissipated at the end of the return phase of the leg. Based of approximation to harmonic oscillation, an optimum trajectory and spring parameters are simultaneously synthesized for the leg in the return phase. (Author)

  2. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina

    2015-01-01

    Highlights: • Implementation rates of 37 EEMs are quantified for China’s cement industry. • Energy Supply Cost Curves were implemented in the GAINS model. • The economic energy saving potential is 3.0 EJ and costs is $4.1 billion in 2030. • Energy efficiency would lead to large reductions in air pollution. • The co-benefits decrease average marginal costs of EEMs by 20%. - Abstract: China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of GHGs and air pollutants emission. In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO 2 and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China’s cement industry for the period 2011–2030. Results show that there are large co-benefits of improving energy efficiency and reducing emissions of CO 2 and air pollutants for the China’s cement industry during the study period. The cost-effective energy saving potential (EEP1 scenario) and its costs is estimated to be 3.0 EJ and 4.1 billion $ in 2030. The technical energy savings potential (EEP2 scenario) and its costs amount to 4.2 EJ and 8.4 billion $ at the same time. Compared to the baseline scenario, energy efficiency measures can help decrease 5% of CO 2 , 3% of PM, 15% of SO 2 , and 12% of NOx emissions by 2030 in EEP1 scenario. If we do not consider costs (EEP2 scenario), energy efficiency measures can further reduce 3% of CO 2 , 2% of PM, 10% of SO 2 , and 8% of NOx by 2030. Overall, the average marginal costs of energy efficiency measures will decrease by 20%, from 1.48 $/GJ to 1.19 $/GJ, when

  3. Energy Provider: Delivered Energy Efficiency: A global stock-taking based on case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    In 2011 the IEA and the Regulatory Assistance Project (RAP) took on a work programme focused on the role of energy providers in delivering energy efficiency to end-users. This work was part of the IEA’s contribution to the PEPDEE Task Group, which falls under the umbrella of the International Partnership on Energy Efficiency Cooperation (IPEEC). In addition to organizing regional dialogues between governments, regulators, and energy providers, the PEPDEE work stream conducted global stock-takings of regulatory mechanisms adopted by governments to obligate or encourage energy providers to delivery energy savings and the energy savings activities of energy providers. For its part the IEA conducted a global review of energy provider-delivered energy savings programmes. The IEA reached out to energy providers to identify the energy savings activities they engaged in. Some 250 energy saving activities were considered, and 41 detailed case studies spanning 18 countries were developed. Geographic balance was a major consideration, and much effort was expended identifying energy provider-delivered energy savings case studies from around the world. Taken together these case studies represent over USD 1 billion in annual spending, or about 8% of estimated energy provider spending on energy efficiency.

  4. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements

  5. HSTL IO Standard Based Energy Efficient Multiplier Design using Nikhilam Navatashcaramam Dashatah on 28nm FPGA

    DEFF Research Database (Denmark)

    Madhok, Shivani; Pandey, Bishwajeet; Kaur, Amanpreet

    2015-01-01

    standards. Frequency scaling is one of the best energy efficient techniques for FPGA based VLSI design and is used in this paper. At the end we can conclude that we can conclude that there is 23-40% saving of total power dissipation by using SSTL IO standard at 25 degree Celsius. The main reason for power...... consumption is leakage power at different IO Standards and at different frequencies. In this research work only FPGA work has been performed not ultra scale FPGA....

  6. Energy use in Denmark

    International Nuclear Information System (INIS)

    Schipper, L.; Howarth, R.; Andersson, B.; Price, L.

    1993-01-01

    This paper reviews the evolution of energy use in Denmark since the early 1970s, in order to shed light on the future path of energy use in Denmark, with particular emphasis on the role of energy efficiency. Improvements in end-use energy efficiency reduced primary energy requirements in Denmark by 22% between 1972 and 1988. This change accounts for two thirds of the decline in the ratio of energy use to gross domestic product that occurred during this time: the rest of the decline was caused by changes in the mix of goods and services produced and consumed by the Danes. Total energy savings achieved between 1972 and 1988 in Denmark ranked among the highest measured in any major OECD country. Overall, most of the energy savings in Denmark were brought about through improvements in technology. Short-term changes in consumer behaviour were significant in reducing energy needs for space heating and transport. An important stimulus for improved efficiency was higher energy prices, led in no small part by significant taxes imposed on small consumers of heating oil, electricity and motor fuels. (author). 21 refs, 20 figs, 2 tabs

  7. An energy-efficient architecture for internet of things systems

    Science.gov (United States)

    De Rango, Floriano; Barletta, Domenico; Imbrogno, Alessandro

    2016-05-01

    In this paper some of the motivations for energy-efficient communications in wireless systems are described by highlighting emerging trends and identifying some challenges that need to be addressed to enable novel, scalable and energy-efficient communications. So an architecture for Internet of Things systems is presented, the purpose of which is to minimize energy consumption by communication devices, protocols, networks, end-user systems and data centers. Some electrical devices have been designed with multiple communication interfaces, such as RF or WiFi, using open source technology; they have been analyzed under different working conditions. Some devices are programmed to communicate directly with a web server, others to communicate only with a special device that acts as a bridge between some devices and the web server. Communication parameters and device status have been changed dynamically according to different scenarios in order to have the most benefits in terms of energy cost and battery lifetime. So the way devices communicate with the web server or between each other and the way they try to obtain the information they need to be always up to date change dynamically in order to guarantee always the lowest energy consumption, a long lasting battery lifetime, the fastest responses and feedbacks and the best quality of service and communication for end users and inner devices of the system.

  8. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  9. Increased Energy Efficiency in Slovenian Industry - A Contribution to the Kyoto Target

    International Nuclear Information System (INIS)

    Selan, B.; Urbancic, A.

    1998-01-01

    In Slovenia the actual fast growth of greenhouse emissions will require substantial efforts to fulfil the target set in Kyoto. The end-use emissions in the in the industrial sectors represented one third of the total CO 2 emissions in the country in 1996. The cost-effective potential in the sector for CO 2 emission reduction is significant. In the paper, the most important ongoing energy efficiency activities in the industrial sector are presented: information and awareness building, energy advising to larger industrial consumers, energy audition programme, demonstration programme of energy efficiency technologies, financial incentives for energy efficiency investment and the energy efficiency investment fund. A CO 2 tax has been in force since 1997. The results of an evaluation of energy efficiency strategies in industry in the frame of the project 'Integrated resource planning for the energy efficiency in Slovenia' are discussed from the viewpoint of greenhouse gases reduction targets set by Slovenia, and a brief information on the ongoing and expected post Kyoto activities and studies is given. The most important points of the future GHG reduction strategy related to industrial sector in Slovenia will be focused on intensified energy efficiency programme, increased combined heat and power production (CHP), and the effects of incentives through the CO 2 tax. (author)

  10. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  11. Energy efficiency and CO2: is electricity the key factor?

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Y.

    2007-07-01

    Europe must face soon to the depletion of fossil energy resources. Efficiency in end energy uses is a key to prepare this challenge. First, the report shows that significant energy efficiency capacities remain in the main economy sectors in France and Europe: buildings, industry, transportation. The key technologies, mainly electricity-driven, are briefly presented, together with the related main tracks for R and D: heat pumps, thermal insulation, induction and mechanical vapour compression for industry, plugged hybrid vehicle, LED sources for lighting. Their ability to decrease CO2 emissions is shown. Control equipment and users behaviour are pointed out, mainly with the key role of price energy with recent French experience : load shifting, peak shaving. Finally, the report shows that a firm policy, based on high performance equipments, could lead to a significant decrease of energy needs in France around 2030.

  12. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  13. Auditing energy use -a systematic approach for enhancing energy efficiency

    International Nuclear Information System (INIS)

    Ardhapnrkar, P.M.; Mahalle, A.M.

    2005-01-01

    Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)

  14. Change Best.Task 2.1. National Report on the Energy Efficiency Service Business in the Netherlands

    International Nuclear Information System (INIS)

    Boonekamp, P.; Vethman, P.

    2009-11-01

    The aim of the Change Best project is to promote the development of an energy efficiency service (EES) market and to give good practice examples of changes in energy service business, strategies, and supportive policies and measures in the course of the implementation of Directive 2006/32/EC on Energy End-Use Efficiency and Energy Services. This report addresses Task 2.1: National Report on the Energy Efficiency Service Business in the Netherlands. More information can be found on the website of Change Best at www.changebest.eu.

  15. CNE'96: National Energy Conference 'Improving Energy Efficiency in a Transition Economy'. Proceedings

    International Nuclear Information System (INIS)

    Petrescu, M.; Balan, Gh.; Zlatanovici, D.

    1996-01-01

    Every two years a national conference on energy is held in Romania under the auspices of Romanian Electricity Authority (RENEL). The CNC'96 Conference entitled 'Improving Energy Efficiency in a Transition Economy' has taken place in the Black Sea resort Neptun-Olimp, on September 1-5, 1996. The conference was divided in 8 sections covering the subjects: 1) Energy policies and strategies - Financing of refurbishment and development; 2) Clean and efficient technologies of the fossil fuels - Renewable energy sources; 3) Rehabilitation - Retrofitting of power facilities; 4) Nuclear Power; 5) Predictive and preventive maintenance technologies; 6) Management and process information systems; 7) Environment conservation and mitigating measures; and 8) Energy end-use. An opening talk was given by V.Romert, the Director General of RENEL, and keynote addresses were presented by I.Lindsay, WEC Secretary General (Energy in an era of change and the WEC within it), by J.E.Gray, Vice Chairman of the Atlantic Council of the United States (Global Energy Outlook), and by F.Meslier, Director of the EDF East Energy Unit, Ile de France and Chairman of the 37 Study Committee of CIGRE (Quelques evolutions recentes de la CIGRE et de son Comite 37). (M.C.)

  16. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  17. Energy and Water Consumption End-Use Survey in Commercial and Industrial Sectors in Georgia

    Data.gov (United States)

    US Agency for International Development — The objective of survey was to collect statistical energy and water end-use data for commercial and industrial sectors. The survey identified volumes of energy and...

  18. Energy Efficiency Analysis of a Two Dimensional Cooperative Wireless Sensor Network with Relay Selection

    Directory of Open Access Journals (Sweden)

    M. Kakitani

    2013-06-01

    Full Text Available The energy efficiency of non-cooperative and cooperative transmissions are investigated in a two-dimensional wireless sensor network, considering a target outage probability and the same end-to-end throughput for all transmission schemes. The impact of the relay selection method in the cooperative schemes is also analyzed. We show that under non line-of-sight conditions the relay selection method has a greater impact in the energy efficiency than the availability of a return channel. By its turn, under line-of-sight conditions a return channel is more valuable to the energy efficiency of cooperative transmission than the specific relay selection method. Finally, we demonstrate that the energy efficiency advantage of the cooperative over the non-cooperative transmission increases with the distance among nodes and with the nodes density.

  19. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  20. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  1. Modeling international trends in energy efficiency

    International Nuclear Information System (INIS)

    Stern, David I.

    2012-01-01

    I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period. Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on technological change over time. Energy efficiency is measured using a new energy distance function approach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the global production frontier. A country's relative energy efficiency is given by its distance from the frontier—the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil fuel reserves and it converges over time across countries. Globally, technological change was the most important factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.

  2. Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program

    Directory of Open Access Journals (Sweden)

    Fredrik Backman

    2017-01-01

    Full Text Available Improved energy efficiency has become a strategic issue and represents a priority for European competitiveness. Countries adopt various energy policies on local and national levels where energy audit programs are the most common energy end-use efficiency policy for industrial small- and medium-sized enterprises (SMEs. However, studies indicate that cost-efficient energy conservation measures are not always implemented, which can be explained by the existence of barriers to energy efficiency. This paper investigates how Swedish municipalities can support local micro- and small-sized enterprises with improved energy efficiency and the existence of different barriers to the implementation of energy efficiency. Relating this empirical case study to the theoretical barriers outlined in the text, this study found that the major explanatory factors related to non-implementation of cost-effective energy efficiency measures among micro- and small-sized industrial enterprises were bounded rationality (lack of time and/or other priorities, split incentives (having other priorities for capital investments, and imperfect information (slim organization and lack of technical skill. This study also found that information in the form of a report was the main thing that companies gained from working on the project “Energy-Driven Business”. Notably, the study involved companies that had participated in a local energy program and, still, companies face major barriers inhibiting implementation, indicating a need to further study other alternative policy models and how knowledge transfer can be improved.

  3. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    Science.gov (United States)

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  4. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  5. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  6. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads

    International Nuclear Information System (INIS)

    Zhang, Xingtian; Zhang, Zutao; Pan, Hongye; Salman, Waleed; Yuan, Yanping; Liu, Yujie

    2016-01-01

    Graphical abstract: In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power supplies for rail-side equipment. The proposed system consists of a mechanical transmission and a rectifier. Acting as the energy input and transmission, Gears and a rack amplify the small vibrations of the track, and one-way bearings enhance efficiency by transforming bidirectional motion to unidirectional rotation. Supercapacitors are used in the energy harvesting system for the first time. The supercapacitors permit the storage of energy from rapidly changing transient currents and a steady power supply for external loads. The proposed system is demonstrated through dynamic simulations, which show the rapid response of the system. An efficiency of 55.5% is demonstrated in bench tests, verifying that the proposed electromagnetic energy harvesting system is effective and practical in renewable energy applications for railroads. - Highlights: • A frequently ignored source of energy, railroad track vibrations, is harvested. • A novel conversion mechanism is designed to maximize efficiency. • Supercapacitors are included in the electromagnetic energy harvesting system. • A portable design is proposed for wider application. - Abstract: As the demand for alternative sources of energy has increased, harvesting abundant environmental energy such as vibration energy including track vibrations in railway systems has attracted greater attention. In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power

  7. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    lower priority for developing countries, where investments in energy supply infrastructure and more efficient use of existing capacities often come first. Given its broad geographical coverage, the report provides a comprehensive and valuable source of information. Its objective to relate energy efficiency indicators to energy efficiency policy measures represents an original approach to the evaluation of energy efficiency policies

  8. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  9. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  10. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  11. Agriculture/municipal/industrial waste management and resource recovery feasibility study : renewable energy clusters and improved end-use efficiency : a formula for sustainable development[Prepared for the North Okanagan Waste to Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    The North Okanagan Waste to Energy Consortium initiated a study that evaluated the technical, environmental and economic feasibility of a proposed biomass to renewable energy eco-system, using the technologies of anaerobic digestion (AD), cogeneration and hydroponics in a centralized waste treatment and recovery facility. The Okanagan Valley is well suited for the demonstration plant because of its concentration of food producers and processors and abundance of rich organic waste stream. The agricultural, municipal and industrial waste management consortium consisted of a dairy farm, 5 municipalities and local waste handlers. The consortium proposed to combine several organic waste streams such as dairy manure, slaughterhouse offal and source separated municipal solid waste (MSW) to produce biogas in an anaerobic digester. The methane would be processed into renewable energy (heat and electricity) for a hydroponics barley sprout operation. It is expected that the synergies resulting from this project would increase productivity, end-use efficiency and profitability. This study reviewed the basics of AD technology, technological options and evaluated several technology providers. The type and quantity of waste available in the area was determined through a waste audit and analysis. The potential to market the system by-products locally was also reviewed as well as the general economic viability of a centralized system. The study also evaluated site selection, preliminary design and costing, with reference to proximity to feedstock and markets, access to roads, impacts on neighbours and insurance of minimal environmental impact. 84 refs., 82 figs., 10 appendices.

  12. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  13. Energy-efficient cooperative protocols for full-duplex relay channels

    KAUST Repository

    Khafagy, Mohammad Galal

    2013-12-01

    In this work, energy-efficient cooperative protocols are studied for full-duplex relaying (FDR) with loopback interference. In these protocols, relay assistance is only sought under certain conditions on the different link outages to ensure effective cooperation. Recently, an energy-efficient selective decode-And-forward protocol was proposed for FDR, and was shown to outperform existing schemes in terms of outage. Here, we propose an incremental selective decode-And-forward protocol that offers additional power savings, while keeping the same outage performance. We compare the performance of the two protocols in terms of the end-to-end signal-to-noise ratio cumulative distribution function via closed-form expressions. Finally, we corroborate our theoretical results with simulation, and show the relative relay power savings in comparison to non-selective cooperation in which the relay cooperates regardless of channel conditions. © 2013 IEEE.

  14. Energy-efficient cooperative protocols for full-duplex relay channels

    KAUST Repository

    Khafagy, Mohammad Galal; Ismail, Amr; Alouini, Mohamed-Slim; Aï ssa, Sonia

    2013-01-01

    In this work, energy-efficient cooperative protocols are studied for full-duplex relaying (FDR) with loopback interference. In these protocols, relay assistance is only sought under certain conditions on the different link outages to ensure effective cooperation. Recently, an energy-efficient selective decode-And-forward protocol was proposed for FDR, and was shown to outperform existing schemes in terms of outage. Here, we propose an incremental selective decode-And-forward protocol that offers additional power savings, while keeping the same outage performance. We compare the performance of the two protocols in terms of the end-to-end signal-to-noise ratio cumulative distribution function via closed-form expressions. Finally, we corroborate our theoretical results with simulation, and show the relative relay power savings in comparison to non-selective cooperation in which the relay cooperates regardless of channel conditions. © 2013 IEEE.

  15. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  16. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings.

    Science.gov (United States)

    Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-09-07

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified

  17. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  18. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  19. An innovative educational program for residential energy efficiency. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  20. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  1. Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index

    International Nuclear Information System (INIS)

    Ang, B.W.

    2006-01-01

    Since the 1973 world oil crisis, monitoring trends in energy efficiency at the economy-wide level has been an important component of energy strategy in many countries. To support this effort, various energy efficiency-related indicators have been developed. We examine some classical indicators which are often found in national and international energy studies in the 1970s and 1980s. We then describe the recent developments in using the index decomposition analysis to give an economy-wide composite energy efficiency index based on a bottom-up approach. This composite index is superior to the classical indicators as an economy-wide energy efficiency measure and has lately been adopted by a growing number of countries for national energy efficiency trend monitoring

  2. Energy, cost, and emission end-use profiles of homes: An Ontario (Canada) case study

    International Nuclear Information System (INIS)

    Aydinalp Koksal, Merih; Rowlands, Ian H.; Parker, Paul

    2015-01-01

    Highlights: • Hourly electricity consumption data of seven end-uses from 25 homes are analyzed. • Hourly load, cost, and emission profiles of end-uses are developed and categorized. • Side-by-side analysis of energy, cost, and environmental effects is conducted. • Behaviour and outdoor temperature based end-uses are determined. • Share of each end-use in the total daily load, cost, and emission is determined. - Abstract: Providing information on the temporal distributions of residential electricity end-uses plays a major role in determining the potential savings in residential electricity demand, cost, and associated emissions. While the majority of the studies on disaggregated residential electricity end-use data provided hourly usage profiles of major appliances, only a few of them presented analysis on the effect of hourly electricity consumption of some specific end-uses on household costs and emissions. This study presents side-by-side analysis of energy, cost, and environment effects of hourly electricity consumption of the main electricity end-uses in a sample of homes in the Canadian province of Ontario. The data used in this study are drawn from a larger multi-stakeholder project in which electricity consumption of major end-uses at 25 homes in Milton, Ontario, was monitored in five-minute intervals for six-month to two-year periods. In addition to determining the hourly price of electricity during the monitoring period, the hourly carbon intensity is determined using fuel type hourly generation and the life cycle greenhouse gas intensities specifically determined for Ontario’s electricity fuel mix. The hourly load, cost, and emissions profiles are developed for the central air conditioner, furnace, clothes dryer, clothes washer, dishwasher, refrigerator, and stove and then grouped into eight day type categories. The side-by-side analysis of categorized load, cost, and emission profiles of the seven electricity end-uses provided information on

  3. An energy efficiency promotion strategy for industries and buildings in Thailand

    International Nuclear Information System (INIS)

    Vongsoasup, Sirinthorn; Du Pont, Peter

    2004-01-01

    Since 1992, when the Thai Parliament endorsed the Energy Conservation Promotion (ENCON) Act, the promotion of energy efficiency has been a cornerstone of Thailand's energy policy. The ENCON Act focuses on large commercial and industrial end users and is accompanied by a 'carrot' in the form of the Energy Conservation Promotion Fund (ENCON Fund), which provides financial incentives to install energy-efficiency measures. For the past several years, Thailand's Department of Alternative Energy Development and Efficiency (DEDE), the lead government agency implementing energy efficiency, has been reassessing its programs, simplifying the procedures, and improving its program promotion. In late 2002 and early 2003, Thailand launched two large-scale pilot programs. The 30% Subsidy Program provides rebates of up to USD 50,000 per facility to stimulate investment in energy-saving projects. This program has been remarkably successful, and allocated its entire budget of USD 2.5 million within the first 6 months of implementation. The average time for project approval is just 30 days. Every dollar of subsidy leverages 3.2 dollars in private sector investment and results in more than 16 dollars of energy cost savings over the lifetime of the equipment. The Energy Efficiency Revolving Fund is designed for larger projects and is administered directly by commercial banks. The fund is providing a total of USD 50 million of zero-interest loans to banks for lending at a low interest rate (< 4%) to commercial and industrial end users. Project investments are typically in the range of USD 400,000 to USD 800,000 million, with the maximum loan amount being USD 1.25 million. After one year of project implementation, USD 20 million has been loaned for energy-efficiency projects, of which USD 12 million has come from the Fund and USD 8 million from the bank's own funds. Implementation of these two pilot programs is providing the basis for the Thailand's newly created Ministry of Energy to

  4. Importance of energy efficiency in Venezuela

    International Nuclear Information System (INIS)

    Corrie, R.

    1991-01-01

    Venezuela's economic development relies heavily on oil. The nation's energy production equals 3.5 million barrels of oil equivalent (boe) per day. Oil comprises 71% of the energy Venezuela produces, natural gas 20%, hydro 9% and coal 1%. Of the energy produced, Venezuela exports three quarters and consumes the remainder. Over 99% of Venezuela's energy exports are crude oil and oil products. Economic problems have constrained Venezuela's development in recent years. Saddled with an external debt of $US 32 billion, Venezuela will continue to encounter barriers for years to come. The nation is, however, in the process of restructuring its economy. As part of this process, the Venezuelan government has begun to integrate opportunities for improving the efficiency of its energy use. As a major oil producer and exporter, Venezuela is conscious of its responsibility to the international community to limit its emissions of energy-related CO 2 into the atmosphere. For this reason, the Venezuelan government is in the process of creating a program to conserve and ration the use of energy. This effort incorporates a number of measures including the substitution of natural gas for liquid fuels for all end uses (including transportation activities), the increased reliance on hydropower in the generation of electricity and the reduction of waste in the production of natural gas to 2% of the economically recollectable volume

  5. The role of energy advisors on adoption of energy efficiency measures in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Nair, Gireesh; Gustavsson, Leif [Ecotechnology, Mid Sweden Univ., Oestersund (Sweden)

    2009-07-01

    External actors can influence potential adopters to adopt energy efficiency measures. In Sweden energy advisers are one such actor group who provides energy advice and information to the end users. Currently, all municipalities offer energy advisers' service. The success of such service for improvement of energy efficiency of detached houses depends on homeowners' perception towards it. In this context we conducted a national survey of about 3000 owners of detached houses through stratified random sampling method in 2008 summer. We found that majority of owners' of detached houses consider energy advisers as an important source of information. Furthermore, many homeowners who contacted energy advisers for advice had implemented the suggestions. However, only a few homeowners had actually contacted energy advisers. Our findings suggest that it is beneficial to continue the energy adviser service, but more efforts are needed to increase homeowners' awareness of and satisfaction with such services.

  6. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  7. Energy efficiency and CDM (Clean Development Mechanism): an attractive combination?; Eficiencia energetica e MDL (Mecanismo de Desenvolvimento Limpo): uma combinacao atrativa?

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Neto, Raymundo Moniz de; Silva, Pedro Paulo [Programa GERBI - Reducao da Emissao de Gases Causadores do Efeito Estufa na Industria Brasileira, CE (Brazil); Almeida, Jose Ricardo Uchoa Cavalcanti [PETROBRAS S.A., Pojuca, BA (Brazil). Unidade de Negocios de Gas Natural (UNGN)

    2004-07-01

    The agreements that defined associated practices to the CDM (Clean Development Mechanism) include energy efficiency in end users as a possible candidate to CDM eligibility. Worldwide, the experience of using 'carbon credits' resulted from reduced emissions in end users, as consequence of increased energy efficiency in processes, is limited. The paper presents preliminary conclusions of case studies developed by GERBI, evaluating the emissions reduction potential achieved by energy efficiency improvements in industrial processes, as well as financial impacts due to emissions reduction certificates traded. The paper considers a simplified methodology for feasibility analysis, but with necessary information to demonstrate how CDM and Energy Efficiency combination can support the decision for project implementation. (author)

  8. Using Field Data for Energy Efficiency Based on Maintenance and Operational Optimisation. A Step towards PHM in Process Plants

    Directory of Open Access Journals (Sweden)

    Micaela Demichela

    2018-03-01

    Full Text Available Energy saving is an important issue for any industrial sector; in particular, for the process industry, it can help to minimize both energy costs and environmental impact. Maintenance optimization and operational procedures can offer margins to increase energy efficiency in process plants, even if they are seldom explicitly taken into account in the predictive models guiding the energy saving policies. To ensure that the plant achieves the desired performance, maintenance operations and maintenance results should be monitored, and the connection between the inputs and the outcomes of the maintenance process, in terms of total contribution to manufacturing performance, should be explicit. In this study, a model for the energy efficiency analysis was developed, based on cost and benefits balance. It is aimed at supporting the decision making in terms of technical and operational solutions for energy efficiency, through the optimization of maintenance interventions and operational procedures. A case study is here described: the effects on energy efficiency of technical and operational optimization measures for bituminous materials production process equipment. The idea of the Conservation Supply Curve (CSC was used to capture both the cost effectiveness of the measures and the energy efficiency effectiveness. The optimization was thus based on the energy consumption data registered on-site: data collection and modelling of the relevant data were used as a base to implement a prognostic and health management (PHM policy in the company. Based on the results from the analysis, efficiency measures for the industrial case study were proposed, also in relation to maintenance optimization and operating procedures. In the end, the impacts of the implementation of energy saving measures on the performance of the system, in terms of technical and economic feasibility, were demonstrated. The results showed that maintenance optimization could help in reaching

  9. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  10. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  11. The relation between energy efficiency and other general objectives from a socioeconomic perspective

    International Nuclear Information System (INIS)

    Ankarhem, Mattias; Braennlund, Runar

    2006-09-01

    An important question in the analysis of energy efficiency programs and their consequences is: How are objectives and instruments defined? E.g. if the objective is reduced carbon dioxide emissions and energy efficiency is the means to reach the objective, then it is not certain that increased energy efficiency will give the result as expected (1). Furthermore, energy efficiency measures will probably be an inefficient way of reaching the goal (2). (1) due to the rebound effects, and (2) since the measures are applied indiscriminately, energy use with only weak couplings to the objective are also affected. Energy efficiency is a partial and relative measure, and does not give much information studied in isolation. It should rather be studied from the perspective of total resource efficiency. Economic policy ought to have the goal of securing a socioeconomic exploitation of all resources (of which energy is one). An instrument working in this direction is internalizing of external effects e.g. through environmental taxes, so that the prices reflect the socioeconomic costs for using the resources. Early foreign studies indicates that a rebound effect exists, usually, however, the technological efficiency potentials can be realized. In a recent study of Swedish conditions, the rebound effect seems to be important. It totally negates the initial effect, at in the end the emissions have increased compared to the starting point. The results show the energy efficiency measures can be in direct conflict with climate and other environmental objectives.

  12. Adaptive and energy efficient SMA-based handling systems

    Science.gov (United States)

    Motzki, P.; Kunze, J.; Holz, B.; York, A.; Seelecke, S.

    2015-04-01

    Shape Memory Alloys (SMA's) are known as actuators with very high energy density. This fact allows for the construction of very light weight and energy-efficient systems. In the field of material handling and automated assembly process, the avoidance of big moments of inertia in robots and kinematic units is essential. High inertial forces require bigger and stronger robot actuators and thus higher energy consumption and costs. For material handling in assembly processes, many different individual grippers for various work piece geometries are used. If one robot has to handle different work pieces, the gripper has to be exchanged and the assembly process is interrupted, which results in higher costs. In this paper, the advantages of using high energy density Shape Memory Alloy actuators in applications of material-handling and gripping-technology are explored. In particular, light-weight SMA actuated prototypes of an adaptive end-effector and a vacuum-gripper are constructed via rapid-prototyping and evaluated. The adaptive end-effector can change its configuration according to the work piece geometry and allows the handling of multiple different shaped objects without exchanging gripper tooling. SMA wires are used to move four independent arms, each arm adds one degree of freedom to the kinematic unit. At the tips of these end-effector arms, SMA-activated suction cups can be installed. The suction cup prototypes are developed separately. The flexible membranes of these suction cups are pulled up by SMA wires and thus a vacuum is created between the membrane and the work piece surface. The self-sensing ability of the SMA wires are used in both prototypes for monitoring their actuation.

  13. Performance analysis of an energy efficient building prototype by using TRNSYS

    OpenAIRE

    Lai, Kun; Wang, Wen; Giles, Harry

    2014-01-01

    Buildings section accouts for a large part of the total primary energy consumption. This paper reports a simulative study on an energy efficient building prototype named MIDMOD by using TRNSYS program. The prototype is a new genre of affordable medium density building concepts that are more adaptable, durable, and energy efficient as whole-life housing typologies than those currently available.The building envelope thermal insulation and air tightness are enhanced to reduce heat loss. Several...

  14. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  15. Renewable energy in energy efficient, low-pollution systems

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1997-03-01

    Energy use accounts for the dominating fraction of total sulphur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}), volatile organic compounds (VOCs) and carbon dioxide (CO{sub 2}) emissions. In this thesis, different strategies for reducing these emissions are evaluated, using a bottom-up approach. CO{sub 2} emissions from electricity and heat production in western Scania, Sweden, can be reduced by 25% and the emissions of acidifying gases (SO{sub 2} and NO{sub x}) by 50% by the year 2010, compared with 1988 levels, using energy systems based on efficient end-use technologies, cogeneration of heat and electricity, renewable energy sources and low-pollution energy conversion technologies. Exhaust-pipe NO{sub x} emissions from the Swedish transportation sector can be reduced by 50 percent by the year 2015, compared with 1991, by implementing the best available vehicle technologies. Exhaust-pipe emissions of CO{sub 2} can be stabilized at the 1991 level. With further technical development and the use of fuels from renewable sources of energy, NO{sub x} emissions can be reduced by 75 percent and CO{sub 2} emissions by 80 percent compared with 1991 levels. Swedish biomass resources are large, and, assuming production conditions around 2015, about 200 TWh/year could be utilised for energy. Major reductions in CO{sub 2} emissions could be achieved by substituting biomass for fossil fuels in heat, electricity and transportation fuel production. Transportation fuels produced from cellulosic biomass are likely to be less expensive than transportation fuels from conventional biomass feedstocks such as oil plants, sugar-beet and cereals. 90 refs, 3 figs, 5 tabs

  16. The economic crisis and the energy efficiency programs; A crise economica e os programas de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Naturesa, Jim Silva; Mariotoni, Carlos Alberto [Universidade Estadual de Campinas (GPESE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Civil, Arquitetura e Urbanismo. Grupo de Planejamento Energetico e Sistemas Eletricos; Gomes, Marcio H. de Avelar [Universidade de Brasilia (UnB), Gama, DF (Brazil)

    2010-07-01

    This paper presents some data from the Brazilian economy (2009 and 2010) and their impact on energy efficiency programs. It is also shown the main results of the National Electricity Conservation Program (PROCEL) and PROCEL INFO, which aims to gather and make available information on the rational and efficient use of energy. At the end, we present information showing that MSMEs (Micro, Small and Medium Companies) should be the main focus of the technological innovation programs aimed to energy efficiency. (author)

  17. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  18. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  19. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  20. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  1. Energy Efficiency Indicators for Assessing Construction Systems Storing Renewable Energy: Application to Phase Change Material-Bearing Façades

    Directory of Open Access Journals (Sweden)

    José A. Tenorio

    2015-08-01

    Full Text Available Assessing the performance or energy efficiency of a single construction element by itself is often a futile exercise. That is not the case, however, when an element is designed, among others, to improve building energy performance by harnessing renewable energy in a process that requires a source of external energy. Harnessing renewable energy is acquiring growing interest in Mediterranean climates as a strategy for reducing the energy consumed by buildings. When such reduction is oriented to lowering demand, the strategy consists in reducing the building’s energy needs with the use of construction elements able to passively absorb, dissipate, or accumulate energy. When reduction is pursued through M&E services, renewable energy enhances building performance. The efficiency of construction systems that use renewable energy but require a supplementary power supply to operate can be assessed by likening these systems to regenerative heat exchangers built into the building. The indicators needed for this purpose are particularly useful for designers, for they can be used to compare the efficiency or performance to deliver an optimal design for each building. This article proposes a series of indicators developed to that end and describes their application to façades bearing phase change materials (PCMs.

  2. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  3. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  4. Do energy efficiency measures promote the use of renewable sources?

    International Nuclear Information System (INIS)

    Marques, Antonio C.; Fuinhas, Jose A.

    2011-01-01

    This paper analyses the factors behind the deployment of renewable energy, focusing particularly on the effect of energy efficiency policies and measures. The impact of these factors is appraised within the context of several phases of the use of renewable sources. We therefore apply the quantile regression technique to a set of 21 European Countries in two time spans: from 1990 to 1998, and from 1999 to 2006. We control variables of policy, environment, socioeconomic characteristics, and electricity generation. For the second period, energy efficiency policies and measures concerning renewable sources effectively promote renewables, namely in the take-off phase. We shed light on the lobbying effect of traditional energy industries, showing that it depends both on the period under analysis, and on the kind of traditional energy source.

  5. Energy End-Use Efficiency and Environment

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1997-01-01

    For the course a series of notes were written since no textbook covers the field. Ten chapter of notes, totally around 200 pages, covering subject like pumping, ventilation, lighting, industry, agriculture, washing, cooking, as well as some general principles and theories....

  6. Impact of energy efficiency gains on output and energy use with Cobb-Douglas production function

    International Nuclear Information System (INIS)

    Wei Taoyuan

    2007-01-01

    A special issue of Energy Policy-28 (2000)-was devoted to a collection of papers, edited by Dr. Lee Schipper. The collection included a paper entitled 'A view from the macro side: rebound, backfire, and Khazzoom-Brookes' in which it was argued that the impact of fuel efficiency gains on output (roughly, GDP) is likely to be relatively small by Cobb-Douglas production function. However, an error in the analysis leads to under-estimation of the long-term impact. This paper first provides a partial equilibrium analysis by an alternative method for the same case and then proceeds to an analysis on the issue in a two-sector general equilibrium system. In the latter analysis, energy price is internalized. Both energy use efficiency and energy production efficiency are involved

  7. Consumer’s Attitude Towards Investments in Residential Energy-Efficient Appliances: How End-User Choices Contribute to Change Future Energy Systems

    DEFF Research Database (Denmark)

    Baldini, Mattia; Trivella, Alessio; Wente, Jordan William Halverson

    2017-01-01

    conventional and environmentally friendly alternatives when purchasing new household electric appliances. This study employs empirical data from a survey conducted by the Danish Energy Agency to model the decision criteria behind Danish consumer investment in energy-efficient labeled appliances. The analysis...... uses logistic regression over a set of socioeconomic, demographic, and behavioral variables to predict purchase propensities. The findings are relevant for policy makers interested in targeting consumers in the appliance market, particularly for a relatively wealthy national context. The study...

  8. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  9. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  10. Interactions of White Certificates for energy efficiency and other energy and climate policy instruments

    International Nuclear Information System (INIS)

    Oikonomou, V.

    2010-01-01

    The EU and its member states are developing their own policies targeting at energy supply, energy demand and environmental goals that are indirectly linked to energy use. As these policies are implemented in an already policy crowded environment, interactions of these instruments take place, which can be complementary competitive or self exclusive. As a starting point, we test White Certificates for energy efficiency improvement in the end-use sectors. Our main research questions are: (1) to provide a general explanatory framework for analyzing energy and climate policy interactions by employing suitable methods, and (2) to evaluate these methods and draw conclusions for policy makers when introducing White Certificates with other policy instruments stressing the critical condition that affect their performance. A core lesson is that when evaluating ex-ante instruments, a variety of economic and technological methods must be applied. Based on these methods, several endogenous and exogenous conditions affect the performance of White Certificates schemes with other policy instruments. Due to the innovative character of White Certificates and the uncertainty of hidden costs embedded into it, ex-ante evaluations should focus not only on the effectiveness and efficiency of the scheme, but on several other criteria which express the political acceptability and socioeconomic effects. We argue finally that White Certificates can make effective use of market forces and can assist in overcoming market barriers towards energy efficiency, and we expect that under certain preconditions, it can be integrated with other policy instruments and allows to achieve cost effectively multiple environmental objectives.

  11. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  12. Statistical and methodological issues in connection with the EU directive on energy end-use efficiency and energy services. Final report; Statistisch-methodische Fragen im Zusammenhang mit der Richtlinie der EU-KOM zu Endenergieeffizienz und zu Energiedienstleistungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Schlomann, B.; Gruber, E.

    2006-09-15

    After its recent approval by the EU the Directive on Energy End-Use Efficiency and Energy Services entered into force on 17 May 2006. In this research project the Fraunhofer Institute ISI, acting on behalf of the German Federal Ministry for Economy and Technology, examined how this Directive might be transposed into German national law. In a first step the basic prerequisites for the Directive's transposition into national law were examined. This involved determining the national savings target for Germany as specified by the Directive and assessing its aimed-for savings in general. A question of focal interest was whether such an assessment should best be performed by a top-down or a bottom-up approach or by a combination of the two. The main characteristics of these two approaches were discussed in connection with the statistical data basis in Germany. These characteristics were then used directly for an assessment of ''Early Action'', i.e. of political measures that were implemented at an early stage (mostly after 1995) but which the Directive recognises as savings. The public sector was examined in greater depth because it has been charged with a model role by the Directive. This preparatory work provided a basis for the second step, in which a basic model for the implementation of activity assessments in Germany as required by the Directive was drafted and a possible structure for the energy efficiency action plans which the Directive requires to be set up by the member states was outlined.

  13. Can nanophotonics control the Förster resonance energy transfer efficiency?

    DEFF Research Database (Denmark)

    Blum, C.; Zijlstra, N.; Lagendijk, A.

    2013-01-01

    from photovoltaics and lighting, to probing molecular distances and interactions.It is an intriguing open question whether the FRET rate γFRET and the energy transfer efficiency ηFRET can also be controlled by the nanoscale optical environment, characterized by the local density of optical states (LDOS...... precisely-defined, isolated, and efficient donor-acceptor pairs. The FRET pairs are dye molecules that covalently bound to the opposite ends of a 15 basepair long double-stranded with a precisely defined distance of 6.8 nm. Control over the LDOS is realized by positioning the FRET systems at well...... of the energy donor by the LDOS, the energy transfer efficiency can be enhanced or reduced. If a donor with unit quantum efficiency is placed in a 3D photonic bandgap, the energy transfer efficiency will approach 100 %, independent of the acceptor, and of the distances and orientations between the FRET partners....

  14. Commercial Midstream Energy Efficiency Incentive Programs: Guidelines for Future Program Design, Implementation, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Milostan, Catharina [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States); Guzowski, Leah Bellah B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Many electric utilities operate energy efficiency incentive programs that encourage increased dissemination and use of energy-efficient (EE) products in their service territories. The programs can be segmented into three broad categories—downstream incentive programs target product end users, midstream programs target product distributors, and upstream programs target product manufacturers. Traditional downstream programs have had difficulty engaging Small Business/Small Portfolio (SBSP) audiences, and an opportunity exists to expand Commercial Midstream Incentive Programs (CMIPs) to reach this market segment instead.

  15. EVALUATION OF ENERGY EFFICIENT USE AT THE LEVEL OF NATIONAL ECONOMY

    Directory of Open Access Journals (Sweden)

    RUGINĂ V.

    2016-03-01

    Full Text Available The paper presents the importance of evaluating energy efficient use that is explicitly stipulated in the strategic and legislative documents adopted at the national and international level, including the Directive 2012/27/EU and the Law 121/2014. Energy intensity frequently that is used in international evaluations and comparisons of energy efficient use is also used in Romania. The topic is approached both by specialists and politicians, newspapermen, representatives of the public opinion etc. This indicator has acquired axiomatic valences and its values are presented as unquestionable arguments for incontestable truths. Nevertheless, besides correct and well-balanced approaches one may come across distorted presentations and exaggerations resulting from superficially knowing the problem. The information and data presented in the paper can bring clarifications on this field. In the first place, energy intensity characterizes the economic efficiency of energy utilization and only to little extent the technical efficiency. Its value is directly linked to macroeconomic parameters, among which the parity between the national currency and the currencies in international circulation, the structure of the national economy etc. The paper presents different variants for the interpretation and calculation of the energy intensity indicator value, including the corresponding mathematical models. Based on the primary information obtained from reliable sources (National Institute of Statistics, EUROSTAT data base values of this indicator are calculated in different variants that are considered and comparisons between the obtained results are made. Choosing the variant for defining and calculating energy intensity, respectively, depends on the purpose of the analysis to be carried out and needs to be explicitly presented together with the results obtained. The paper includes recommendations on how the calculation variants and the results obtained by carrying

  16. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  17. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  18. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  19. Techniques and tools for measuring energy efficiency of scientific software applications

    International Nuclear Information System (INIS)

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Niemi, Tapio; Pestana, Gonçalo; Khan, Kashif; Nurminen, Jukka K; Nyback, Filip; Ou, Zhonghong

    2015-01-01

    The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running on ARM and Intel architectures, and compare their power consumption and performance. We leverage several profiling tools (both in hardware and software) to extract different characteristics of the power use. We report the results of these measurements and the experience gained in developing a set of measurement techniques and profiling tools to accurately assess the power consumption for scientific workloads. (paper)

  20. Interactions between energy efficiency and emission trading under the 1990 Clean Air Act Amendments

    International Nuclear Information System (INIS)

    Hillsman, E.L.; Alvic, D.R.

    1994-08-01

    The 1990 Clean Air Act Amendments affect electric utilities in numerous ways. The feature that probably has received the greatest attention is the provision to let utilities trade emissions of sulfur dioxide (SO 2 ), while at the same time requiring them to reduce S0 2 emissions in 2000 by an aggregate 43%. The emission trading system was welcomed by many as a way of reducing the cost of reducing emissions, by providing greater flexibility than past approaches. This report examines some of the potential interactions between trading emissions and increasing end-use energy efficiency. The analysis focuses on emission trading in the second phase of the trading program, which begins in 2000. The aggregate effects, calculated by an emission compliance and trading model, turn out to be rather small. Aggressive improvement of end-use efficiency by all utilities might reduce allowance prices by $22/ton (1990 dollars), which is small compared to the reduction that has occurred in the estimates of future allowance prices and when compared to the roughly $400/ton price we estimate as a base case. However, the changes in the allowance market that result are large enough to affect some compliance decisions. If utilities in only a few states improve end-use efficiency aggressively, their actions may not have a large effect on the price of an allowance, but they could alter the demand for allowances and thereby the compliance decisions of utilities in other states. The analysis shows how improving electricity end-use efficiency in some states can cause smaller emission reductions in other states, relative to what would have happened without the improvements. Such a result, while not surprising given the theory behind the emission trading system, is upsetting to people who view emissions, environmental protection, and energy efficiency in moral rather than strictly economic terms

  1. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  2. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  3. Role of executive agencies for energy efficiency with a view on activities of Serbian Energy Efficiency Agency

    Directory of Open Access Journals (Sweden)

    Kovačić Bojan J.

    2012-01-01

    Full Text Available Many countries, particularly in Europe, have executive energy efficiency agencies at national, regional and local levels that are organized in different ways. For all of them, it is common that there are existing strategic needs in their countries for enhancement of conditions and measures for rational use of energy and fuels. Serbian Energy Efficiency Agency was established in 2002 within the reform of the energy sector in Serbia and its current status was defined in 2004 by the Energy Law. It contributes to the improvement of social responsibility towards energy in all structures of the state and society, by proposing energy efficiency incentives, promoting importance of energy efficiency, as well as by managing energy efficiency and renewable energy programs and projects.

  4. Using energy efficiency and alternative energy to extend fossil resources or what if tomorrow actually comes

    International Nuclear Information System (INIS)

    Moore, M.C.

    2003-01-01

    This PowerPoint presentation outlined the role of energy in maintaining and advancing society, and what happens if we run out of energy. The author provided a glimpse into the energy world through the display of a series of graphs depicting world energy consumption, world energy production, world population distribution, growth rates in Asia, coal use per capita, the United States energy consumption by source, percent of air emissions in the United States from fossil fuel use, and others. It was argued that alternative energy and energy efficiency diminish growth in demand and peak load, supports portfolio diversity, lowers cost, and diminishes environmental impacts. The advances in wind power and solar power were reviewed, as well as advances in bioenergy and hydrogen. The author also argued the case for energy efficiency and conservation. A discussion of various pricing schemes was offered. The first option examined was time of use price, defined as 3 time blocks published in advance for entire seasons. The second option was critical peak pricing, involving a high price imposed for a few days per year when system conditions are critical or near critical. The third option discussed was real-time prices, implying an hourly real-time marginal cost of a kilowatt hour. It was suggested that the system should be changed, since subsidizing energy consumption distorts demand. Energy efficiency and renewables extend fossil energy availability, helping in the transition to a more sustainable world. refs., tabs., figs

  5. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  6. Measuring energy efficiency in economics: Shadow value approach

    Science.gov (United States)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  7. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  8. Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Kerui

    2014-01-01

    The importance of technology heterogeneity in estimating economy-wide energy efficiency has been emphasized by recent literature. Some studies use the metafrontier analysis approach to estimate energy efficiency. However, for such studies, some reliable priori information is needed to divide the sample observations properly, which causes a difficulty in unbiased estimation of energy efficiency. Moreover, separately estimating group-specific frontiers might lose some common information across different groups. In order to overcome these weaknesses, this paper introduces a latent class stochastic frontier approach to measure energy efficiency under heterogeneous technologies. An application of the proposed model to Chinese energy economy is presented. Results show that the overall energy efficiency of China's provinces is not high, with an average score of 0.632 during the period from 1997 to 2010. - Highlights: • We introduce a latent class stochastic frontier approach to measure energy efficiency. • Ignoring technological heterogeneity would cause biased estimates of energy efficiency. • An application of the proposed model to Chinese energy economy is presented. • There is still a long way for China to develop an energy efficient regime

  9. Retrofit of ammonia plant for improving energy efficiency

    International Nuclear Information System (INIS)

    Panjeshahi, M.H.; Ghasemian Langeroudi, E.; Tahouni, N.

    2008-01-01

    The aim of this work is to perform a retrofit study of an ammonia plant, in purpose of improving energy efficiency. As a common practice, one can divide an ammonia plant into two parts: the hot-end and the cold-end. In the hot section, two different options are investigated that both lead to a threshold condition and achieve maximum energy saving. The first option covers only process-to-process energy integration, while the second option considers some modification in the convection section of the primary reformer through a new arrangement of the heating coils. Thus, a considerable reduction in cooling water, HP steam and fuel gas consumption is achieved. In the cold section, retrofit study is dominated by reducing the amount of shaft work or power consumption in the refrigeration system. Application of the Combined Pinch and Exergy Analysis revealed that part of the shaft work, which was originally being used, was inefficient and could have been avoided in a well-integrated design. Therefore, by proposing optimum refrigeration levels, reasonable saving (15%) in power consumption was observed without the need for new investment

  10. Energy efficiency, a new area of state supervision?; Energieeffizienz - eine neue Aufgabe fuer staatliche Regulierung?

    Energy Technology Data Exchange (ETDEWEB)

    Mennel, Tim; Sturm, Bodo

    2008-01-15

    The demand for higher energy efficiency as a rule is based on concrete goals of energy policy and environmental policy, e.g. climate protection, reliability of supply, and protection of resources. The publication analyzes these arguments and discusses possible political instrument to achieve this goal. It is found that any rational economic policy should make use of cost-efficient, specific instruments in case of energy-relevant market failure and problems of intergenerational justice. This includes informatory measures, CO2 certificates, and specific energy taxes. Higher energy efficiency is the result of a rational policy of this kind, not a means to an end. On the other hand, instruments of a more general nature that directly specify energy conservation goals, e.g. white certificates and enforced standards, are not to be recommended. (orig.)

  11. Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China

    International Nuclear Information System (INIS)

    Fan Ying; Liao Hua; Wei Yiming

    2007-01-01

    Since China accelerated its market oriented economic reforms at the end of 1992, its energy intensity has declined 3.6% annually over 1993-2005. However, its energy intensity declined 4.2% annually during its first reform period 1979-1992. Therefore, can we conclude that the accelerated marketization since the end of 1992 has made no contribution to its energy efficiency improvement? In order to answer this challenging question, we examine the changes of energy own-price elasticity, as well as the elasticities of substitution between energy and non-energy (capital and labor) in China during the periods of 1979-1992 and 1993-2003. Generally, in transition or developing economies, holding the technology and output level fixed, if the energy own-price elasticity (algebraic value) declines or the substitution elasticity between factors rises, they will contribute to energy efficiency improvement. Our empirical study finds that: (1) during 1979-1992, the energy own-price elasticity is positive (0.285), and capital-energy, labor-energy are both Morishima complementary; which indicates a distorted energy price and inefficient allocation; and (2) during 1993-2003, the own-price elasticity for energy is negative (-1.236), and capital-energy and labor-energy are both Morishima substitute. All factor demands become more elastic, and all elasticities of substitution increase. The implication is that the accelerated marketization contributes substantially to energy efficiency improvement since 1993

  12. Energy Efficiency in Norway 1996-1999. Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2002-05-01

    This is the national report for Norway in the EU/SAVE project ''Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects''. The report deals with energy use and energy efficiency in Norway 1990-1999. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.6% per year from 1990 to 1999. The energy efficiency improvement has been calculated to 0.4% pr year, while the role of structural changes has been 1.2% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 8 TWh from 1990 to 1999. (author)

  13. Efficient Energy Consumption Scheduling: Towards Effective Load Leveling

    Directory of Open Access Journals (Sweden)

    Yuan Hong

    2017-01-01

    Full Text Available Different agents in the smart grid infrastructure (e.g., households, buildings, communities consume energy with their own appliances, which may have adjustable usage schedules over a day, a month, a season or even a year. One of the major objectives of the smart grid is to flatten the demand load of numerous agents (viz. consumers, such that the peak load can be avoided and power supply can feed the demand load at anytime on the grid. To this end, we propose two Energy Consumption Scheduling (ECS problems for the appliances held by different agents at the demand side to effectively facilitate load leveling. Specifically, we mathematically model the ECS problems as Mixed-Integer Programming (MIP problems using the data collected from different agents (e.g., their appliances’ energy consumption in every time slot and the total number of required in-use time slots, specific preferences of the in-use time slots for their appliances. Furthermore, we propose a novel algorithm to efficiently and effectively solve the ECS problems with large-scale inputs (which are NP-hard. The experimental results demonstrate that our approach is significantly more efficient than standard benchmarks, such as CPLEX, while guaranteeing near-optimal outputs.

  14. Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model

    International Nuclear Information System (INIS)

    Shimoda, Yoshiyuki; Yamaguchi, Yukio; Okamura, Tomo; Taniguchi, Ayako; Yamaguchi, Yohei

    2010-01-01

    A model is developed that simulates nationwide energy consumption of the residential sector by considering the diversity of household and building types. Since this model can simulate the energy consumption for each household and building category by dynamic energy use based on the schedule of the occupants' activities and a heating and cooling load calculation model, various kinds of energy-saving policies can be evaluated with considerable accuracy. In addition, the average energy efficiency of major electric appliances used in the residential sector and the percentages of housing insulation levels of existing houses is predicted by the 'stock transition model.' In this paper, energy consumption and CO 2 emissions in the Japanese residential sector until 2025 are predicted. For example, as a business - as-usual (BAU) case, CO 2 emissions will be reduced by 7% from the 1990 level. Also evaluated are mitigation measures such as the energy efficiency standard for home electric appliances, thermal insulation code, reduction of standby power, high-efficiency water heaters, energy-efficient behavior of occupants, and dissemination of photovoltaic panels.

  15. Economic analysis of Brazilian policies for energy efficient electric motors

    International Nuclear Information System (INIS)

    Andrade, Cássio Tersandro de Castro; Pontes, Ricardo Silva Thé

    2017-01-01

    Brazil is leading several energy efficiency initiatives and has ambitious goals for 2030, according to the Brazilian National Energy Plan 2030. One of the main initiatives is the minimum efficiency performance standards (MEPS) program for energy-driven equipment and the electric motors appear as the most significant one (49% share of the total electricity consumption). The MEPS levels set new grades for efficiency, and then manufacturers and consumers have to conform to the new products and costs. Policy makers have to economically assess the effects of these MEPS in order to maintain the market stability. Since the benefits of this program come from future energy savings, this cost-effective analysis has to consider the parameters uncertainty and the results should reinforce the market players’ confidence. Thus, the goal of this work is, first, to analyze the economic viability of the MEPS transitions in Brazil considering the uncertainty of the parameters involved and then, to estimate the effects of this program on the energy savings goals for 2030. At the end, we also verify whether this investment in energy efficiency is competitive with other forms of investments in energy. - Highlights: • A cost-effectiveness method with uncertainty for efficiency program is presented. • Savings from electric motors MEPS program makes the 2030 Brazilian goals possible. • Electric motors MEPS program cost-effectiveness in Brazil is confirmed. • Saved energy cost from efficiency improvement is a competitive energy investment.

  16. Dynamic energy conservation model REDUCE. Extension with experience curves, energy efficiency indicators and user's guide

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Rijkers, F.A.M.

    1999-12-01

    The main objective of the energy conservation model REDUCE (Reduction of Energy Demand by Utilization of Conservation of Energy) is the evaluation of the effectiveness of economical, financial, institutional, and regulatory measures for improving the rational use of energy in end-use sectors. This report presents the results of additional model development activities, partly based on the first experiences in a previous project. Energy efficiency indicators have been added as an extra tool for output analysis in REDUCE. The methodology is described and some examples are given. The model has been extended with a method for modelling the effects of technical development on production costs, by means of an experience curve. Finally, the report provides a 'users guide', by describing in more detail the input data specification as well as all menus and buttons. 19 refs

  17. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  18. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  19. Increasing the energy efficiency of microcontroller platforms with low-design margin co-processors

    NARCIS (Netherlands)

    Gomez, A.; Bartolini, A.; Rossi, D.; Can Kara, B.; Fatemi, S.H.; Pineda de Gyvez, J.; Benini, L.

    2017-01-01

    Reducing the energy consumption in low cost, performance-constrained microcontroller units (MCU’s) cannot be achieved with complex energy minimization techniques (i.e. fine-grained DVFS, Thermal Management, etc), due to their high overheads. To this end, we propose an energy-efficient, multi-core

  20. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  1. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  2. Joint research report of Central Research Institute of Electric Power Industry and Japan Research Institute Ltd. Conceptual construction of Japanese type end-use model; Denryoku chuo kenkyusho Nihon Sogo Kenkyusho kyodo kenkyu hokokusho. Nippon gata end use model no gainen kochiku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The concept of Japanese type demand analysis model (end-use model) was constructed for the efficient management of electric power companies and efficient power utilization. Diffusion and use conditions of domestic air conditioners are considerably different depending on local life style and climate. In order to design demand measures considering combination of appliances in every market segment, demands in an end use level (end demand level, each appliance level) should be acquired. The basic structure of the model is composed of various exogenous variables such as weather data, price and ups and downs trend of customers, and various appliance data such as size, efficiency and energy consumption rate, and various customer data such as possession rate of appliances and number of customers. The final energy demand is estimated by integrating the above variables. By systematizing the stored data of precise actual load conditions, construction of DSM (demand side management) strategy becomes possible by using computer tools. 8 refs., 15 figs., 13 tabs.

  3. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  4. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  5. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-05-15

    Modern smartphones are being designed with increasing processing power, memory capacity, network communication, and graphics performance. Although all of these features are enriching and expanding the experience of a smartphone user, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated, which implies relying on the GPU power for rendering all application graphics. In addition, the GPUs installed in smartphones are becoming more and more powerful by the day. This raises an energy consumption concern. We present a novel implementation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) scheme implemented in the Android kernel to dynamically scale the GPU. The scheme includes four main governors: Performance, Powersave, Ondmand, and Conservative. Unlike previous studies which looked into the power efficiency of mobile GPUs only through simulation and power estimations, we have implemented our approach on a real modern smartphone GPU, and acquired actual energy measurements using an external power monitor. Our results show that the energy consumption of smartphones can be reduced up to 15% using the Conservative governor in 2D rendering mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.

  6. Improving thermoelectric energy harvesting efficiency by using graphene

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-05-01

    Full Text Available This study is aimed at enhancing the efficiency of a thermoelectric (TE energy harvesting system by using a thick graphene layer. This method is a simple yet effective way to increase the temperature gradient across a conventional TE module by accelerating heat dissipation on the cold side of the system. Aqueous dispersions of graphene were used to prepare a 112-μm thick graphene layer on the cold side of the TE system with aluminum as the substrate material. The maximum efficiency of the proposed system was improved by 25.45 %, as compared to the conventional TE system, which does not have a graphene layer. Additionally, the proposed system shows very little performance deterioration (2.87 % in the absence of enough air flow on the cold side of the system, compared to the case of the conventional system (10.59 %. Hence, the proposed system, when coupled with the latest research on high performance TE materials, presents a groundbreaking improvement in the practical application of the TE energy harvesting systems.

  7. Combating Climate Change with Energy Efficiency - How to Make It Work

    International Nuclear Information System (INIS)

    Bukarica, V.

    2016-01-01

    COP21 agreement raised the awareness of the widest international community on an urgent need to act and deliver results that would mitigate adverse consequences of climate change. Energy efficiency is once again declared as the most readily available, rapid and cost-effective way to achieve desired greenhouse gases reductions. However, although significant efforts are made worldwide to put sound energy efficiency policies in place, the desired results in terms of saved kWh, and consequently in terms of reduced tonnes of CO2 emitted, are missing. The paper investigates and explains the reasons behind this energy efficiency policy failure, known as energy efficiency gap, by using examples from current energy efficiency and other policies in Croatia. The first reason is in the lack of understanding of energy efficiency market, the analysis of which needs to be a starting point in policy making. Selection of policy instruments needs to be based on feedback from those that are actually intended to implement them, i.e. participatory approach needs to be mainstreamed in policy making as it will reveal the reality of the implementing environment (existing attitudes, experienced brakes and desired levers). Secondly, there is generally insufficient knowledge about policy instruments impacts (both potential and achieved). Evaluation of expected impacts of a certain policy instrument needs to be realistic taking into account time needed for target group to fully adopt the instrument and utilise it to the highest level envisaged by the policy. And the last, reason for energy efficiency policy failure is to be found in continuously neglecting benefits of improved energy efficiency beyond energy savings. Energy efficiency requires genuine not declarative commitment that will integrate it in all other policy spheres. It is essential to start treating energy efficiency not as an end (i.e. as a policy for itself), but as a means to achieve multiple social, economic and environmental

  8. A Study on Efficient Energy Use for Household Appliances in Malawi

    African Journals Online (AJOL)

    Keywords: Efficient , energy use, household appliances, power consumption. ... Although the hydro-electric power transmission lines extend the entire length of ..... R. Karri and P. Mishra, “Minimizing Energy Consumption of Secure Wireless ...

  9. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  10. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  11. Analysis of a DSM program using an end use model; End use model wo mochiita DSM program no bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Asano, H.; Takahashi, M.; Okada, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-01-30

    An end use model used in the United States who is advanced in demand-side management (DSM) was used to discuss possibilities of designing and evaluating Japan`s future DSM measures. The end use model assumes energy demand based on such factors as device characteristics, meteorological data, energy prices, user characteristics, market characteristics and DSM measures. The model calculates energy demand amount by end uses basically by multiplying assumptions on device unit requirement, device retention rate, and number of users. A representative tool as an end use model that handles load shapes is the hourly electric load model (HELM). It assumes an annual load curve and predicts a maximum system load. The present discussions have performed estimation on demand for consumer use air conditioners in a day in which a maximum summer load occurs in a reference year, estimation on load in a maximum load day in an estimated year, and estimation on weather sensitivity of loads. 5 refs., 5 figs.

  12. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  13. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  14. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  15. Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    2017-11-01

    This fact sheet "Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency" explains how the City of Moab used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  16. MARKAL Application for Analysis of Energy Efficiency in Economic Activities of the Republic of Moldova and Feasible use of Renewable Energy Sources

    OpenAIRE

    Robu, Sergiu; Bikova, Elena; Siakkis, Philip; Giannakidis, George

    2010-01-01

    The paper presents results of analyses of energy efficiency measures and renewable energy sources implementation in the Republic of Moldova using MARKAL model. Detailed analyses of four scenarios are presented for: Reference Scenario; Energy Efficiency Scenario; Renewable Energy Sources Scenario; Energy Efficiency&Renewable Energy Scenario. Energy savings and costs are identified for implementation of renewable energy sources and Energy efficiency measures.

  17. Exploring resource efficiency for energy, land and phosphorus use

    NARCIS (Netherlands)

    Berg, van den Maurits; Hermans, Kathleen; Vuuren, van Detlef P.; Bouwman, A.F.; Kram, Tom; Bakkes, Jan

    2016-01-01

    In this paper, we present four model-based scenarios exploring the potential for resource efficiency for energy, land and phosphorus use, and implications for resource depletion, climate change and biodiversity. The scenarios explored include technological improvements as well as structural

  18. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct a brief review of different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by the problem statement, and a description of the basic concepts of quantifying the cost of conserved energy including integrating no-regrets options.

  19. Electricity of nuclear origin and primary and end-use energy consumption; Electricite nucleaire et consommation d'energie primaire et finale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In France, the electricity of nuclear origin corresponds to about 40% of the primary energy consumption, while electricity as a whole represents about 23% of the end-use energy. This apparent paradox can be explained by 2 methodological points: 1 - the primary energy consumption, in the case of electricity, includes only the energy of nuclear, hydraulic, wind, photovoltaic and geothermal origin. On the other hand, the end-use energy consumption includes all forms of electricity consumed, i.e. the electricity of both primary and secondary origin. 2 - By international convention, the coefficients used to convert MWth into tpe (ton of petroleum equivalent) can change according to two factors: the power generation source and the type of kWh considered, either produced or consumed. The coexistence of different concepts and definitions is justified by the different usages made with them. Therefore, calculations referring to different definitions or equivalence coefficients are not immediately comparable. (J.S.)

  20. Energy use in Denmark: An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Howarth, R.; Andersson, B.; Price, L.

    1992-08-01

    This report analyzes the evolution use in Denmark since the early 1970s in order to shed light on the future path of energy use in Denmark, with particular emphasis on the role of energy efficiency. The authors found that improvements in end-use energy efficiency reduced primary energy requirements in Denmark by 22% between 1972 and 1988. Focusing on developments in six individual sectors of the Danish economy (residential, manufacturing, other industry, service, travel, and freight), they found that the residential, manufacturing, and service sectors have led the improvements in efficiency. Travel showed few significant improvements and the efficiency of freight transportation worsened. The international comparisons showed that the structure of energy use in Denmark is less energy-intensive than that of most high-income OECD countries, with the exception of Japan. Overall, they concluded that most of the energy savings achieved in Denmark were brought about through improvements in technology. They also found that an important stimulus for improved efficiency was higher energy prices, led in no small part by significant taxes imposed on small consumers of heating oil, electricity, and motor fuels. Energy-efficiency programs accelerated energy savings in homes and commercial buildings. The rate of improvement of energy efficiency in Denmark has slowed down significantly since 1984, consistent with trends observed in other major countries. While many of the energy-efficiency goals stated or implied in Denmark`s Energi 2000 are achievable over a very long period, present trends do not point towards achievement of these goals by 2010 or even 2020. Strong measures will have to be developed by both public and private authorities if energy efficiency is to make a key contributions to reducing environmental problems associated with energy use in Denmark.

  1. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  2. Quantifying the Effect of the Principal-Agent Problem on USResidential Energy Use

    Energy Technology Data Exchange (ETDEWEB)

    Murtishaw, Scott; Sathaye, Jayant

    2006-08-12

    The International Energy Agency (IEA) initiated andcoordinated this project to investigate the effects of market failures inthe end-use of energy that may isolate some markets or portions thereoffrom energy price signals in five member countries. Quantifying theamount of energy associated with market failures helps to demonstrate thesignificance of energy efficiency policies beyond price signals. In thisreport we investigate the magnitude of the principal-agent (PA) problemaffecting four of the major energy end uses in the U.S. residentialsector: refrigeration, water heating, space heating, and lighting. Usingdata from the American Housing Survey, we develop a novel approach toclassifying households into a PA matrix for each end use. End use energyvalues differentiated by housing unit type from the Residential EnergyConsumption Survey were used to estimate the final and primary energy useassociated with the PA problem. We find that the 2003 associated siteenergy use from these four end uses totaled over 3,400 trillion Btu,equal to 35 percent of the site energy consumed by the residentialsector.

  3. Energy Efficiency Standards of Induction Motors, ¿Are you Prepared Latin America?

    Directory of Open Access Journals (Sweden)

    Carlos M. Londoño-Parra

    2013-06-01

    Full Text Available In Colombia the regulatory process regarding the energy efficiency of end-use prod-ucts is emerging with the draft technical regulation product labeling RETIQ, which includes in Annex E, the test methods for determining the efficiency of motors alternat-ing current induction. The goal of this paper is to compare the energy efficiency of induction motors between the countries of Latin America and the countries of the major economies of the globe, considering four aspects: the current state of classification standards and test procedures of induction motors efficiency, multilateral agreements of mutual recognition, the infrastructure to conduct tests of the standard and support programs to improve the efficiency of electric motor-driven systems. The study reveals that Latin America is a considerable delay in the implementation of classification standards and methods for testing the efficiency of electric motors, most widely used in the world: IEC 60034-30:2008, IEC 60034-2-1: 2007 IEEE 112:2004 and EPAct'92, with respect to the countries of the European Union, United States, China, Australia, and other developed countries, in which these standards have been adopted. Furthermore, the region is evident in the absence of programs focused on improving the energy efficiency of electric motors and a limited number of accredited laboratories to evaluate their efficiency, which leads to most Latin American countries to establish agreements mutual recognition for this purpose.

  4. Energy Efficiency Standards of Induction Motors, ¿Are you Prepared Latin America?

    Directory of Open Access Journals (Sweden)

    Carlos M. Londoño-Parra

    2013-06-01

    Full Text Available In Colombia the regulatory process regarding the energy efficiency of end-use products is emerging with the draft technical regulation product labeling RETIQ, which includes in Annex E, the test methods for determining the efficiency of motors alternating current induction. The goal of this paper is to compare the energy efficiency of induction motors between the countries of Latin America and the countries of the major economies of the globe, considering four aspects: the current state of classification standards and test procedures of induction motors efficiency, multilateral agreements of mutual recognition, the infrastructure to conduct tests of the standard and support programs to improve the efficiency of electric motor-driven systems. The study reveals that Latin America is a considerable delay in the implementation of classification standards and methods for testing the efficiency of electric motors, most widely used in the world: IEC 60034-30:2008, IEC 60034-2-1: 2007 IEEE 112:2004 and EPAct'92, with respect to the countries of the European Union, United States, China, Australia, and other developed countries, in which these standards have been adopted. Furthermore, the region is evident in the absence of programs focused on improving the energy efficiency of electric motors and a limited number of accredited laboratories to evaluate their efficiency, which leads to most Latin American countries to establish agreements mutual recognition for this purpose.

  5. Data on electrical energy conservation using high efficiency motors for the confidence bounds using statistical techniques.

    Science.gov (United States)

    Shaikh, Muhammad Mujtaba; Memon, Abdul Jabbar; Hussain, Manzoor

    2016-09-01

    In this article, we describe details of the data used in the research paper "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques" [1]. The data presented in this paper is intended to show benefits of high efficiency electric motors over the standard efficiency motors of similar rating in the industrial sector of Pakistan. We explain how the data was collected and then processed by means of formulas to show cost effectiveness of energy efficient motors in terms of three important parameters: annual energy saving, cost saving and payback periods. This data can be further used to construct confidence bounds for the parameters using statistical techniques as described in [1].

  6. Promotion of energy efficiency in enterprises

    International Nuclear Information System (INIS)

    Beltrani, G.; Schelske, O.; Peter, D.; Oettli, B.

    2003-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made within the framework of the research programme on energy-economics fundamentals on how the energy efficiency of enterprises can be improved. The report first examines the present state of affairs in Swiss enterprises and looks into the interaction of energy efficiency and environmental management systems. ISO 14001 certification is discussed and examples are given of the responses of various enterprises to a survey concerning the role of energy efficiency in environmental management. Both hindrances and success factors for the embedding of energy-efficiency measures in environmental management activities are discussed and examples are given. Instruments available in Switzerland and from abroad that can be used to promote energy efficiency in enterprises are discussed. Four particular instruments are presented; guidelines and computer-based tools that help in the making of energy-relevant investment decisions, incentives to take part in an energy-benchmark system for small and medium-sized enterprises (SME), low-interest loans for investments in energy-efficiency for SMEs and the closer definition of 'continuous improvement' of energy efficiency within the framework of ISO 14001. The results of a survey amongst those involved are discussed. The report is concluded with recommendations for the implementation of the guidelines and for improvements in the integration of energy efficiency in environmental management systems

  7. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  8. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  9. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    Directory of Open Access Journals (Sweden)

    Srinivas Kanakala

    2014-01-01

    Full Text Available In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing protocol to further reduce the energy consumption. The proposed energy-efficient coding-aware cluster based routing protocol (ECCRP scheme applies network coding at cluster heads to reduce number of transmissions. We also modify the queue management procedure of COPE protocol to further improve coding opportunities. We also use an energy efficient scheme while selecting the cluster head. It helps to increase the life time of the network. We evaluate the performance of proposed energy efficient cluster based protocol using simulation. Simulation results show that the proposed ECCRP algorithm reduces energy consumption and increases life time of the network.

  10. Modernizing residential heating in Russia: End-use practices, legal developments, and future prospects

    International Nuclear Information System (INIS)

    Korppoo, Anna; Korobova, Nina

    2012-01-01

    This article explores the significance of modernization policies concerning Russia’s technically obsolete but socially important residential heating sector, focusing on the 2009 energy efficiency framework law and its prospects for implementation. Ownership and control structures are in flux throughout the heating sector chain. Inefficiencies, causing low service quality and rising prices, have already started eroding the market share of district heating, despite its potential benefits. End-use management practices – such as lack of metering, communal billing, and low prices that do not cover production costs – reduce consumer incentives to cut consumption. The diversity of end-users adds to the complexity of focused measures like energy-saving contracts. However, end-use sector reforms such as mandatory meter installation and increasing prices – even if socially acceptable and fully implemented – cannot alone provide the massive investments required. More appropriate is sector-wide reform with the government’s financial participation – especially if consumer efforts can yield better service quality. - Highlights: ► We analyze Russia’s energy efficiency policy on residential heating sector. ► Institutional structures and practices reduce incentives to cut consumption. ► Meter installation and increasing prices cannot deliver investments required. ► Government led sector-wide reform is required, linked to better service quality.

  11. The role of energy and investment literacy for residential electricity demand and end-use efficiency

    NARCIS (Netherlands)

    Blasch, J.E.; Boogen, Nina; Filippini, Massimo; Kumar, Nilkanth

    2017-01-01

    This paper estimates the level of transient and persistent efficiency in the use of electricity in Swiss households using the newly developed generalized true random effects model (GTREM). An unbalanced panel dataset of 1, 994 Swiss households from 2010 to 2014 collected via a household survey is

  12. Ressource efficient IT in schools. Options of an energie-efficient and material-efficient use in information technology; Ressourceneffiziente IT in Schulen. Optionen des energie- und materialeffizienten Einsatzes von Informationstechnik (IT)

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jens; Fichter, Klaus [Borderstep Insitut, Berlin (Germany)

    2009-12-15

    The number of computers in schools increases continuously. This requires a use of material-efficient and energy-efficient IT technologies. As an alternative to traditional large desktop personal computers (PC), there are three types of computer solutions with a significant improvement: Mini PCs, notebooks and Thin Client and Server Based Computing. Schools need to reflect fundamentally on more material-efficient and more energy-efficient IT solutions and consider the system change to server-based computing as an alternative. Thus, the information and training of IT personnel in schools plays as a central role such as the expansion of the competence of advising and supervising system houses. This is the only way to reduce material costs, energy consumption and administration costs despite an increasing number of computer devices and to exploit existing potentials for resource efficiency.

  13. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  14. Moving around efficiently: Energy and transportation

    Directory of Open Access Journals (Sweden)

    Hermans L. J. F.

    2013-06-01

    Full Text Available Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  15. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  16. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  17. Energy efficiency in Norway 1990-2002. Monitoring tools for energy efficiency in Europe: The Odyssee and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt

    2004-08-01

    This report presents an analysis of energy efficiency trends in Norway on the basis of energy efficiency indicators extracted from the Odyssee data base, maintained and updated in the framework of the SAVE programme. This analysis focuses on the period 1990-2001/2002. It also examines the policies and measures implemented in the field of energy efficiency with a focus on the years 2000-2003. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 2% pr year in the period 1990 to 2002. The energy efficiency improvement has been calculated to 0.7% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). We have found in total efficiency improvement of approximately 15 TWh from 1990 to 2001. (Author)

  18. Energy efficiency rating of districts, case Finland

    International Nuclear Information System (INIS)

    Hedman, Åsa; Sepponen, Mari; Virtanen, Mikko

    2014-01-01

    There is an increasing political pressure on the city planning to create more energy efficient city plans. Not only do the city plans have to enable and promote energy efficient solutions, but it also needs to be clearly assessed how energy efficient the plans are. City planners often have no or poor know how about energy efficiency and building technologies which makes it difficult for them to answer to this need without new guidelines and tools. An easy to use tool for the assessment of the energy efficiency of detailed city plans was developed. The aim of the tool is for city planners to easily be able to assess the energy efficiency of the proposed detailed city plan and to be able to compare the impacts of changes in the plan. The tool is designed to be used with no in-depth knowledge about energy or building technology. With a wide use of the tool many missed opportunities for improving energy efficiency can be avoided. It will provide better opportunities for sustainable solutions leading to less harmful environmental impact and reduced emissions. - Highlights: • We have created a tool for assessing energy efficiency of detailed city plans. • The energy source is the most important factor for efficiency of districts in Finland. • Five case districts in Finland were analyzed. • In this paper one residential district has in-depth sensitivity analyses done

  19. Energy Efficient MANET Routing Using a Combination of Span and BECA/AFECA

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents some novel approaches for energy efficient routing in mobile ad-hoc networks. Two known energy preserving techniques, Span and BECA/AFECA, are combined with a well-known re-active routing protocol, AODV, to create a new energy efficient routing protocol. Furthermore, the proto......This paper presents some novel approaches for energy efficient routing in mobile ad-hoc networks. Two known energy preserving techniques, Span and BECA/AFECA, are combined with a well-known re-active routing protocol, AODV, to create a new energy efficient routing protocol. Furthermore...

  20. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  1. The transition between energy efficient and energy inefficient states in Cameroon

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2016-01-01

    I use a two-state (energy efficient/inefficient) Markov-switching dynamic model to study energy efficiency in Cameroon in a novel manner, employing yearly data covering 1971 to 2012. I find that the duration of an energy inefficient state is about twice as long as an energy efficient state, mainly due to fuel subsidies, low income, high corruption, regulatory inefficiencies, poorly developed infrastructure and undeveloped markets. To escape from an energy inefficient state a broad policy overhaul is needed. Trade liberalization and related growth policies together with the removal of fuel subsidies are useful, but insufficient policy measures; the results suggest that they should be combined with structural policies, aiming at institutional structure and investment in infrastructure. - Highlights: • I investigate the transition between energy efficient/inefficient states. • On the average, energy inefficient state persists more than energy efficient state. • The duration of energy inefficient state is about twice as long as energy efficient state. • Price, income and trade openness have distinct energy saving effect irrespective of state. • A broad policy overhaul is needed to escape the energy inefficient state.

  2. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  3. Energy efficient circuit design using nanoelectromechanical relays

    Science.gov (United States)

    Venkatasubramanian, Ramakrishnan

    Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS

  4. Energy Efficiency and Scalability of Metallic Nanoparticle Production Using Arc/Spark Discharge

    Directory of Open Access Journals (Sweden)

    Martin Slotte

    2017-10-01

    Full Text Available The increased global demand for metallic nanoparticles for an ever growing number of applications has given rise to a need for larger scale and more efficient nanoparticle (NP production processes. In this paper one such process is evaluated from the viewpoints of scalability and energy efficiency. Multiple setups of different scale of an arc/spark process were evaluated for energy efficiency and scalability using exergy analysis, heat loss evaluation and life cycle impact assessment, based on data collected from EU FP7 project partners. The energy efficiency of the process is quite low, with e.g., a specific electricity consumption (SEC of producing ~80 nm copper NP of 180 kWh/kg while the thermodynamic minimum energy need is 0.03 kWh/kg. This is due to thermal energy use characteristics of the system. During scale-up of the process the SEC remained similar to that of smaller setups. Loss of NP mass in the tubing of larger setups gives a lower material yield. The variation in material yield has a significant impact on the life cycle impact for the produced NP in both the Human Health and Ecosystem Quality categories while the impact is smaller in the Global Warming and Resource Depletion categories.

  5. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  6. Energy efficiency in Norway (1996). Cross Country Comparison on Energy Efficiency Indicators, Phase 4

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    1998-12-01

    This is the national report for Norway in phase 4 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. Final energy use per Gross Domestic Product (GDP) was reduced by approx 2.3% per year from 1990 to 1996. Doing detailed sector analysis we are applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity. Calculating an aggregate intensity index from the sector intensities gives an average intensity reduction of 0.4% per year. Thereby most of the reduction in final energy per unit GDP are due to structural changes, and not technical improvements. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  7. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  8. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  9. Decentralized energy studies: Compendium of international studies and research

    Science.gov (United States)

    Wallace, C.

    1980-03-01

    With efficient use of energy, renewable energy sources can supply the majority, if not the totality, of energy supplies in developed nations at real energy prices that double or triple by 2025 (1975 prices). This appears true even in harsh climates with oil dependent industrial economies. Large increases in end-use energy efficiency are cost effective at present prices. Some reports show that cost effective end-use efficiency improvements can reduce energy consumption (per capita, per unit of amenity, or per unit of output) to as much as 90 percent. This was demonstrated by highly disaggregated analyses of end-uses. Such analyses consistently show larger potential for efficiency improvements than can be detected from conventional analyses of more aggregated data. As energy use demands decline due to end use efficiency improvements, energy supply problems subsequently decrease. Lifestyle changes, influenced by social factors, and rising energy prices can substantially reduce demands for energy. Such changes are already discernible in end-use energy studies. When energy efficient capital stock is in place, many end-users of energy will be able to provide a substantial portion of their own energy needs from renewable energy sources that are directly available to them.

  10. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  11. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  12. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  13. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Allen, Myria W.

    2014-01-01

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  14. Accelerated Enveloping Distribution Sampling: Enabling Sampling of Multiple End States while Preserving Local Energy Minima.

    Science.gov (United States)

    Perthold, Jan Walther; Oostenbrink, Chris

    2018-05-17

    Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.

  15. Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

  16. Possibility to Increase Biofuels Energy Efficiency used for Compression Ignition Engines Fueling

    Directory of Open Access Journals (Sweden)

    Calin D. Iclodean

    2014-02-01

    Full Text Available The paper presents the possibilities of optimizing the use of biofuels in terms of energy efficiency in compression ignition (CI engines fueling. Based on the experimental results was determinate the law of variation of the rate of heat released by the combustion process for diesel fuel and different blends of biodiesel. Using this law, were changed parameters of the engine management system (fuel injection law and was obtain increased engine performance (in terms of energy efficiency for use of different biofuel blends.

  17. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  18. Impact of technical and technological changes on energy efficiency of production company - case study

    Science.gov (United States)

    Szwedzka, K.; Gruszka, J.; Szafer, P.

    2016-08-01

    Improving energy efficiency is one of the strategic objectives of the European Union for rational energy economy. To make efforts to improve energy efficiency have been obliged both small and large end-users. This article aims to show the possibilities of improving energy efficiency by introducing technical and technological process changes of pine lumber drying. The object of the research is process of drying lumber implemented in a production company, which is a key supplier of large furniture manufacturer. Pine lumber drying chamber consume about 45% of total electricity in sawmill. According to various sources, drying of 1m3 of lumber uses about 3060kWh and is dependent of inter alia: the drying process itself, the factors affecting the processing time and the desired output moisture content of the timber. The article proposals for changes in the process of drying lumber pine have been positively validated in the company, and as a result their energy consumption per 1 m3 of product declined by 18%.

  19. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  20. Partial-factor Energy Efficiency Model of Indonesia

    OpenAIRE

    Nugroho Fathul; Syaifudin Noor

    2018-01-01

    This study employs the partial-factor energy efficiency to reveal the relationships between energy efficiency and the consumption of both, the renewable energy and non-renewable energy in Indonesia. The findings confirm that consumption of non-renewable energy will increase the inefficiency in energy consumption. On the other side, the use of renewable energy will increase the energy efficiency in Indonesia. As the result, the Government of Indonesia may address this issue by providing more s...

  1. Determinants of energy efficiency across countries

    Science.gov (United States)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  2. Use rational and efficient of energy - Challenge for the third millennium

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    2000-01-01

    More than two decades ago, in the years seventy, it happened a period of energetic crisis in the world, as consequence of the position adopted by the OPEC, that generated an unusual increment in the prices of raw. The first reaction of the countries that it had high of petroleum dependence, was to carry out a substitution politics for other resources and to use in more efficient form the energy, that is to say to improve its use. From then on, they began of saving political and promotion programs were introduced and of appropriate use of the energy resources, starting from the consideration of their relative readiness. Projects also settled down whose objective was to diminish the energy consumption in the productive processes, by means of its optimization and its more efficient use and through the use of more advanced technologies. Recently, the prices of the petroleum overflowed the 32 dollars for barrel, the highest level from the war of the gulf. This tendency began one year ago; with the announcement of the La Haya agreement about of the restriction among big exporters, situation that disturbs to the big economies. However, today it can value by the light of the programs of optimization and of rational energy use (REU) the impact that can have that behavior of the prices. Countries like United States consume now approximately half of the petroleum for dollar of GNP that they consumed at the beginning of the decade of the 70 and it owes it to the efficient programs of energy use had begun for many years. It is unlikely then that the energetic crisis lived behind, it repeats in all their magnitude

  3. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  4. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-01-01

    , they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU

  5. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  6. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  7. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    Science.gov (United States)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  8. Energy efficiency: Separate report to December 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Hydro-Quebec's energy efficiency project puts a priority on energy conservation and improvement of the existing network to satisfy long-term electricity demand. The objective of the project's energy savings program is to save 9.3 TWh by the year 2000, allocated among three sectors. The program is to be carried out in three phases. The first, 1990-1992, corresponds to a sensitization phase, and has had success in terms of commercial impact. The second phase, 1993-1995, is in progress; a third phase to end at the year 2000 will bring adjustments and refinements needed to attain the stated objective. The success of the first two years of the program has contributed to maintaining two performance indicators relating to residential customer satisfaction with regard to energy efficiency activities and the levels of energy savings generated. The project's load management program provides for interventions that will lead to a reduction in peak demand of 3,320 MW by 2000. In the second phase of the program, three programs were launched in 1993 with the objective of saving 3.7 TWh, or 2 TWh in the residential sector, 1.2 TWh in commercial and institutional lighting, and 0.5 TWh in industrial systems. Other programs will be tested in pilot projects in 1994. Programs in the areas of electrotechnologies and residential dual-energy started in 1993 but results are not yet available. To carry out its energy efficiency programs, Hydro-Quebec has entered cooperative agreements with manufacturers, distributors, and vendors, and has developed different forms of collaboration with government agencies and institutions. The proposed energy efficiency programs will sustain nearly 38,000 person-years of employment in Quebec from now to 2000. 10 tabs

  9. Measurement and verification of low income energy efficiency programs in Brazil: Methodological challenges

    Energy Technology Data Exchange (ETDEWEB)

    Martino Jannuzzi, Gilberto De; Rodrigues da Silva, Ana Lucia; Melo, Conrado Augustus de; Paccola, Jose Angelo; Dourado Maia Gomes, Rodolfo (State Univ. of Campinas, International Energy Initiative (Brazil))

    2009-07-01

    Electric utilities in Brazil are investing about 80 million dollars annually in low-income energy efficiency programs, about half of their total compulsory investments in end-use efficiency programs under current regulation. Since 2007 the regulator has enforced the need to provide evaluation plans for the programs delivered. This paper presents the measurement and verification (MandV) methodology that has been developed to accommodate the characteristics of lighting and refrigerator programs that have been introduced in the Brazilian urban and peri-urban slums. A combination of household surveys, end-use measurements and metering at the transformers and grid levels were performed before and after the program implementation. The methodology has to accommodate the dynamics, housing, electrical wiring and connections of the population as well as their ability to pay for the electricity and program participation. Results obtained in slums in Rio de Janeiro are presented. Impacts of the programs were evaluated in energy terms to households and utilities. Feedback from the evaluations performed also permitted the improvement in the design of new programs for low-income households.

  10. Towards a More Energy Efficient Future: Applying indicators to enhance energy policy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Improving energy efficiency is a shared policy goal of many governments around the world. The benefits of more efficient use of energy are well known. Not only does it reduce energy costs and investments in energy infrastructure, it also lowers fossil fuel dependency and CO2 emissions, while at the same time increasing competitiveness and improving consumer welfare. Yet many questions remain unanswered. What are the latest trends in global energy use and CO2 emissions? How do factors such as demography, economic structure, income, lifestyle and climate affect these trends? Where are the greatest potentials to further improve energy efficiency, and which data are required to support energy efficiency policy development? This publication answers these questions using the latest insights from the IEA energy indicators work. The goal is to show policy makers how in-depth indicators can be used to track the progress in efficiency and identify new opportunities for improvements.

  11. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  12. Measurement of energy efficiency based on economic foundations

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2015-01-01

    Energy efficiency policy is seen as a very important activity by almost all policy makers. In practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is energy intensity. However, this simple indicator is not necessarily an accurate measure given changes in energy intensity are a function of changes in several factors as well as ‘true’ energy efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy intensity measures. Related to this, some published academic papers over the last few years have attempted to use empirical methods to measure the efficient use of energy based on the economic theory of production. However, these studies do not generally provide a systematic discussion of the theoretical basis nor the possible parametric empirical approaches that are available for estimating the level of energy efficiency. The objective of this paper, therefore, is to sketch out and explain from an economic perspective the theoretical framework as well as the empirical methods for measuring the level of energy efficiency. Additionally, in the second part of the paper, some of the empirical studies that have attempted to measure energy efficiency using such an economics approach are summarized and discussed.

  13. Development of Energy Efficiency Indicators in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Russia is sometimes referred to as 'the Saudi Arabia of energy efficiency'; its vast potential to reduce energy consumption can be considered a significant 'energy reserve'. Russia, recognising the benefits of more efficient use of energy, is taking measures to exploit this potential. The president has set the goal to reduce energy intensity by 40% between 2007 and 2020. In the past few years, the IEA has worked closely with Russian authorities to support the development of energy efficiency indicators in Russia, critical to an effective implementation and monitoring of Russia's ambitious energy intensity and efficiency goals. The key findings of the IEA work with Russia on developing energy efficiency indicators form the core of this report.

  14. End-use energy characterization and conservation potentials at DoD Facilities: An analysis of electricity use at Fort Hood, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Konopacki, S.

    1995-05-01

    This report discusses the application of the LBL`s End-use Disaggregation Algorithm (EDA) to a DoD installation and presents hourly reconciled end-use data for all major building types and end uses. The project initially focused on achieving these objectives and pilot-testing the methodology at Fort Hood, Texas. Fort Hood, with over 5000 buildings was determined to have representative samples of nearly all of the major building types in use on DoD installations. These building types at Fort Hood include: office, administration, vehicle maintenance, shop, hospital, grocery store, retail store, car wash, church, restaurant, single-family detached housing, two and four-plex housings, and apartment building. Up to 11 end uses were developed for each prototype, consisting of 9 electric and 2 gas; however, only electric end uses were reconciled against known data and weather conditions. The electric end uses are space cooling, ventilation, cooking, miscellaneous/plugs, refrigeration, exterior lighting, interior lighting, process loads, and street lighting. The gas end uses are space heating and hot water heating. Space heating energy-use intensities were simulated only. The EDA was applied to 10 separate feeders from the three substations at Fort Hood. The results from the analyses of these ten feeders were extrapolated to estimate energy use by end use for the entire installation. The results show that administration, residential, and the bar-rack buildings are the largest consumers of electricity for a total of 250GWh per year (74% of annual consumption). By end use, cooling, ventilation, miscellaneous, and indoor lighting consume almost 84% of total electricity use. The contribution to the peak power demand is highest by residential sector (35%, 24 MW), followed by administration buildings (30%), and barrack (14%). For the entire Fort Hood installation, cooling is 54% of the peak demand (38 MW), followed by interior lighting at 18%, and miscellaneous end uses by 12%.

  15. South Lake Tahoe, California: Using Energy Data to Partner on Building Energy Efficiency Actions (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    2017-11-01

    This fact sheet "South Lake Tahoe, California: Using Energy Data to Partner on Building Energy Efficiency Actions" explains how the City of South Lake Tahoe used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  16. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  17. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  18. Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Eom, Jiyong; Clarke, Leon E.; Shukla, Priyadarshi R.

    2014-01-01

    With increasing population, income, and urbanization, meeting the energy service demands for the building sector will be a huge challenge for Indian energy policy. Although there is broad consensus that the Indian building sector will grow and evolve over the coming century, there is little understanding of the potential nature of this evolution over the longer term. The present study uses a technologically detailed, service based building energy model nested in the long term, global, integrated assessment framework, GCAM, to produce scenarios of the evolution of the Indian buildings sector up through the end of the century. The results support the idea that as India evolves toward developed country per-capita income levels, its building sector will largely evolve to resemble those of the currently developed countries (heavy reliance on electricity both for increasing cooling loads and a range of emerging appliance and other plug loads), albeit with unique characteristics based on its climate conditions (cooling dominating heating and even more so with climate change), on fuel preferences that may linger from the present (for example, a preference for gas for cooking), and vestiges of its development path (including remnants of rural poor that use substantial quantities of traditional biomass). - Highlights: ► Building sector final energy demand in India will grow to over five times by century end. ► Space cooling and appliance services will grow substantially in the future. ► Energy service demands will be met predominantly by electricity and gas. ► Urban centers will face huge demand for floor space and building energy services. ► Carbon tax policy will have little effect on reducing building energy demands

  19. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  20. End user prices in liberalised energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Lijesen, M.G. [Afdeling Energie en Grondstoffen, Centraal Planbureau CPB, Den Haag (Netherlands)

    2002-12-01

    As European energy markets move towards deregulation, energy prices shift from classic 'cost plus' prices towards market prices. We develop a model for the retail and wholesale energy markets in Europe, based on Bertrand competition in a two part pricing structure with switching costs. We use the model to forecast end user electricity and natural gas prices and find that the introduction of competition in energy retail and wholesale markets will decrease standing charges, lowering total costs for energy users. A larger number of entrants, a cost advantage for one of the suppliers, or lower switching costs reduces standing charges further.

  1. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  2. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    International Nuclear Information System (INIS)

    Herrero Sola, Antonio Vanderley; Mota, Caroline Maria de Miranda; Kovaleski, Joao Luiz

    2011-01-01

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: → Lack of decision model in industrial motor system is the main motivation of the research. → A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. → The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  3. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Sola, Antonio Vanderley, E-mail: sola@utfpr.edu.br [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil); Mota, Caroline Maria de Miranda, E-mail: carolmm@ufpe.br [Federal University of Pernambuco, Cx. Postal 7462, CEP 50630-970, Recife (Brazil); Kovaleski, Joao Luiz [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil)

    2011-06-15

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: > Lack of decision model in industrial motor system is the main motivation of the research. > A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. > The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  4. The Inefficiencies of Energy Efficiency : Reviewing the Strategic Role of Energy Efficiency and its Effectiveness in Alleviating Climate Change

    NARCIS (Netherlands)

    Read, S.A.; Lindhult, Erik; Mashayekhi, A.

    2016-01-01

    Our present economy is high-energy and demand-intensive, demand met through the use of high energy yield fossil fuels. Energy efficiency and renewable energy sources are proposed as the solution and named the ‘twin pillars’ of sustainable energy policy. Increasing energy efficiencies are expected to

  5. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  6. Energy efficiency effect on the public street lighting by using LED light replacement and kwh-meter installation at DKI Jakarta Province, Indonesia

    Science.gov (United States)

    Sudarmono, Panggih; Deendarlianto; Widyaparaga, Adhika

    2018-05-01

    Public street lighting consumes large energy for the public interest, but many street lights still do not use energy-saving technologies. In 2014, Provincial Government of DKI Jakarta operated 179,305 units of street lights. Of the number of installed armature, 92 % of them or 166,441 units are HPS (High-Pressure Sodium) armatures which are inefficient. In 2016, the Provincial Government of DKI Jakarta cut down the energy used for street lighting, by implementing the programs of kWh-meter installation in every street lighting panel and use energy-saving lamps equipped with the smart system. The Provincial Government of DKI Jakarta is registered with 6,399 customer IDs in PLN (State Owned Electric Company), and gradually carried out the kWh Meter installation and changes to the contract. The program to use energy-saving lights done by replacing the HPS armature that is not energy efficient to LED armature which is known to be energy efficient. Until the end of 2016, the number of armatures that has been replaced was 89,417 units. The research results on 25 samples of PLN customer IDs and the replacement of 2,162 units armature, showed that the energy efficiency through kWh meter installation and armature replacement reduce the power consumption from 330,414 kWh to 71,278 kWh or by 78.43%. Generally, there was a decrease in the value of electricity bill compared to the before the replacement. The program of kWh-meter installations and replacement of the armature has a payback period of 2.66 years.

  7. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  8. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  9. Research on the development efficiency of regional high-end talent in China: A complex network approach.

    Science.gov (United States)

    Zhang, Zhen; Wang, Minggang; Tian, Lixin; Zhang, Wenbin

    2017-01-01

    In this paper, based on the panel data of 31 provinces and cities in China from 1991 to 2016, the regional development efficiency matrix of high-end talent is obtained by DEA method, and the matrix is converted into a continuous change of complex networks through the construction of sliding window. Using a series of continuous changes in the complex network topology statistics, the characteristics of regional high-end talent development efficiency system are analyzed. And the results show that the average development efficiency of high-end talent in the western region is at a low level. After 2005, the national regional high-end talent development efficiency network has both short-range relevance and long-range relevance in the evolution process. The central region plays an important intermediary role in the national regional high-end talent development system. And the western region has high clustering characteristics. With the implementation of the high-end talent policies with regional characteristics by different provinces and cities, the relevance of high-end talent development efficiency in various provinces and cities presents a weakening trend, and the geographical characteristics of high-end talent are more and more obvious.

  10. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  11. Energy efficiency labelling

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This research assesses the likely effects on UK consumers of the proposed EEC energy-efficiency labeling scheme. Unless (or until) an energy-labeling scheme is introduced, it is impossible to do more than postulate its likely effects on consumer behavior. This report shows that there are indeed significant differences in energy consumption between different brands and models of the same appliance of which consumers are unaware. Further, the report suggests that, if a readily intelligible energy-labeling scheme were introduced, it would provide useful information that consumers currently lack; and that, if this information were successfully presented, it would be used and could have substantial effects in reducing domestic fuel consumption. Therefore, it is recommended that an energy labeling scheme be introduced.

  12. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  13. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  14. Exergy and environmental comparison of the end use of vehicle fuels: The Brazilian case

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M.; Oliveira Jr, Silvio de

    2015-01-01

    Highlights: • Total and non-renewable exergy costs of Brazilian transportation service are evaluated. • Specific CO 2 emissions of the Brazilian transportation service are determined. • Overall exergy efficiency of the end use of vehicle fuels in transportation sector is calculated. • A comparative extended analysis of the production and end use of transportation fuels is presented. - Abstract: In this work, a comparative exergy and environmental analysis of the vehicle fuel end use is presented. This analysis comprises petroleum and natural gas derivatives (including hydrogen), biofuels (ethanol and biodiesel), and their mixtures, besides of the electricity generated in the Brazilian electricity mix, intended to be used in plug in electric vehicles. The renewable and non-renewable unit exergy costs and CO 2 emission cost are proposed as suitable indicators for assessing the renewable exergy consumption intensity and the environmental impact, and for quantifying the thermodynamic performance of the transportation sector. This allows ranking the energy conversion processes along the vehicle fuels production routes and their end use, so that the best options for the transportation sector can be determined and better energy policies may be issued. It is found that if a drastic CO 2 emissions abatement of the sector is pursued, a more intensive utilization of ethanol in the Brazilian transportation sector mix is advisable. However, as the overall exergy conversion efficiency of the sugar cane industry is still very low, which increases the unit exergy cost of ethanol, better production and end use technologies are required. Nonetheless, with the current scenario of a predominantly renewable Brazilian electricity mix, based on more than 80% of renewable sources, this source consolidates as the most promising energy source to reduce the large amount of greenhouse gas emissions which transportation sector is responsible for

  15. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  16. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    Science.gov (United States)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  17. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  18. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  19. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    -funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.

  20. Energy efficiency enhancement in cement factories using expert system

    International Nuclear Information System (INIS)

    Effatnejad, R.; Jadih, S.

    2001-01-01

    Full text : In this paper, expert system for energy efficiency in cement industry is presented. Due to the fact that cement manufacturing project in these factories are similar, so in main parts knowing the consumption origins and save potential and existing approaches can be similar. In this method, via expert system software of prolog AH types of energy consumption and investment costs are listed in which method of best first search and innovative search have been used and by forming knowledge base, targeting to get best approaches is presented. The obtained results, regarding the executed limits, will be displayed in the output of program and this program can be given the best decision about energy management in cement factories

  1. Energy efficiency and economic value in affordable housing

    International Nuclear Information System (INIS)

    Chegut, Andrea; Eichholtz, Piet; Holtermans, Rogier

    2016-01-01

    Strong rental protection in the affordable housing market often prohibits landlords from charging rental premiums for energy-efficient dwellings. This may impede (re)development of energy efficient affordable housing. In the Netherlands, affordable housing institutions regularly sell dwellings from their housing stock to individual households. If they can sell energy efficient dwellings at a premium, this may stimulate investments in the environmental performance of homes. We analyze the value effects of energy efficiency in the affordable housing market, by using a sample of 17,835 homes sold by Dutch affordable housing institutions in the period between 2008 and 2013. We use Energy Performance Certificates to determine the value of energy efficiency in these transactions. We document that dwellings with high energy efficiency sell for 2.0–6.3% more compared to otherwise similar dwellings with low energy efficiency. This implies a premium of some EUR 3,000 to EUR 9,700 for highly energy efficient affordable housing. - Highlights: • Dutch affordable housing suppliers recoup sustainability investment by selling dwellings. • Energy-efficient affordable dwellings sell at a premium. • A-labeled dwellings are 6.3% – 9,300 euros – more valuable than C-labeled ones. • The combined value effect of refurbishing an affordable housing dwelling, including improving the energy efficiency, of 20% would more than pay for the retrofit.

  2. In situ evaluation of water and energy consumptions at the end use level: The influence of flow reducers and temperature in baths.

    Science.gov (United States)

    Matos, C; Briga-Sá, A; Bentes, I; Faria, D; Pereira, S

    2017-05-15

    Nowadays, water and energy consumption is intensifying every year in most of the countries. This perpetual increase will not be supportable in the long run, making urgently to manage these resources on a sustainable way. Domestic consumptions of water and electric energy usually are related and it's important to study that relation, identifying opportunities for use efficient improvement. In fact, without an understanding of water-energy relations, there are water efficiency measures that may lead to unintentional costs in the energy efficiency field. In order to take full advantage of combined effect between water and energy water management methodologies, it is necessary to collect data to ensure that the efforts are directed through the most effective paths. This paper presents a study based in the characterization, measurement and analysis of water and electricity consumption in a single family house (2months period) in order to find an interdependent relationship between consumptions at the end user level. The study was carried out on about 200 baths, divided in four different scenarios where the influence of two variables was tested: the flow reducer valve and the bath temperature. Data showed that the presence of flow reducer valve decreased electric energy consumption and water consumption, but increased the bath duration. Setting a lower temperature in water-heater, decreased electric consumption, water consumption and bath duration. Analysing the influence of the flow reducer valve and 60°C temperature simultaneously, it was concluded that it had a significant influence on electric energy consumption and on the baths duration but had no influence on water consumption. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Modelling of electricity savings in the Danish households sector: from the energy system to the end-user

    DEFF Research Database (Denmark)

    Baldini, Mattia; Trivella, Alessio

    2017-01-01

    sectors, has been extended in order to endogenously determine the best possible investments in more efficient home appliances. Second, we propose a method to relate the optimal energy system solution to the end-user choices by incorporating consumer behaviour and electricity price addition due to taxes...... of support to become profitable. The analysis quantifies energy and economic savings from the consumer side and reveals the impacts on the Danish power system and surrounding countries. Compared to a business-as-usual energy scenario, the end-user attains net economic savings in the range of 30–40 EUR per...

  4. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  5. Understanding Cost-Effectiveness of Energy Efficiency Programs

    Science.gov (United States)

    Discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  6. Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine

    International Nuclear Information System (INIS)

    Ibrik, I.H.; Mahmoud, M.M.

    2005-01-01

    Energy conservation in utilities has played a vital role in improving energy efficiency in the industrial, commercial and residential sectors. The electrical energy consumption in Palestine has increased sharply in the past few years and achieved by the end of 2001 to 10% per year. It is expected that this percentage will increase to about 12% if the current political situation will end hopefully with peace. Modern energy efficient technologies are needed for the national energy policy. Such technologies are investigated in this paper. Implementing of a national 3 years project aiming at energy efficiency improvement in residential and industrial sectors as well as in public utilities, which include wide range of diversified audits and power measurements, had led to creating this paper. Measurement and audit results had shown that the total conservation potential in these sectors is around 15% of the total energy consumption. The associated costs of the investment in this field are relatively low and correspond to a pay back period varying in the range from 6 to 36 months. Consequently, the energy conservation policy will be seriously improved in the forthcoming years. It is estimated that 10% of the new energy purchasing capacity will be reduced accordingly

  7. Energy efficiency in the industry: obstacles and R and D needs

    International Nuclear Information System (INIS)

    Jacquelin, Louis-Marie

    2012-05-01

    In 2011 ADEME, the French Environment and Energy Management Agency, and TOTAL asked ENEA, a consulting firm specialised in energy and the environment for the industrial sector, to carry out a study. The goal was to update the relevance of their shared program to fund and promote R and D in the Energy Efficiency sector. This survey gathered, in a neutral manner, the opinions of different actors about the need of the industry, the innovation obstacles or the processes of the ADEME TOTAL program. The results of the study have been implemented in the Seventh call for proposal of the program, published at the end of 2011. A report synthesizing the main results of the study has been written to contribute to the promotion of the R and D effort in the Energy Efficiency sector

  8. Walking the Torque: Proposed Work Plan for Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Electric motor-driven system is the largest single energy end use accounting for more than 40% of global electricity consumption. This paper sets out an ambitious but achievable target with the global work plan to improve the energy efficiency of electric motor-driven system by 10% to 15% based on the finding of working paper ''Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (Waide et al., 2011)''. If governments commit to the proposed work plan immediately and maintain resourcing levels, this could be achieved by 2030 and it would be equivalent to reducing total global electricity use by around 5%. The proposed work plan of this paper is to align regulatory settings within a globally applicable scheme. The IEA believes this target can only be achieved through global co-operation leading to aligned national policy settings that countries can unlock the economies of scale that will result from using more energy efficient EMDS.

  9. Monitoring of energy efficiency of technological modes of gas transport using modern gas-turbine equipment

    Science.gov (United States)

    Golik, V. V.; Zemenkova, M. Yu; Shipovalov, A. N.; Akulov, K. A.

    2018-05-01

    The paper presents calculations and an example of energy efficiency justification of the regimes of the equipment used. The engineering design of the gas pipeline in the part of monitoring the energy efficiency of a gas compressor unit (GCU) is considered. The results of the GCU characteristics and its components evaluation are described. The evaluation results of the energy efficiency indicators of the gas pipeline are presented. As an example of the result of the analysis, it is proposed to use gas compressor unit GCU-32 "Ladoga" because of its efficiency and cost effectiveness, in comparison with analogues.

  10. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  11. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  12. Energy efficiency and renewables policies: Promoting efficiency or facilitating monopsony?

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2011-01-01

    The cliche in the electricity sector, the 'cheapest power plant is the one we don't build,' neglects the benefits of the energy that plant would generate. That economy-wide perspective need not apply in considering benefits to only consumers if not building that plant was the exercise of monopsony power. A regulator maximizing consumer welfare may need to avoid rationing demand at monopsony prices. Subsidizing energy efficiency to reduce electricity demand at the margin can solve that problem, if energy efficiency and electricity use are substitutes. Renewable energy subsidies, percentage use standards, or feed in tariffs may also serve monopsony as well with sufficient inelasticity in fossil fuel electricity supply. We may not observe these effects if the regulator can set price as well as quantity, lacks buyer-side market power, or is legally precluded from denying generators a reasonable return on capital. Nevertheless, the possibility of monopsony remains significant in light of the debate as to whether antitrust enforcement should maximize consumer welfare or total welfare. - Research Highlights: → Subsidizing energy efficiency can promote monopsony, if efficiency and use are substitutes. → Renewable energy subsidies, portfolio standards, or feed-in tariffs may also promote monopsony. → Effects require buyer-side market power and ability to deny generators a reasonable return. → Monopsony is significant in light of whether antitrust should maximize consumer or total welfare.

  13. Saturation, energy consumption, CO{sub 2} emission and energy efficiency from urban and rural households appliances in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Flores, Jorge Alberto; Rosas-Flores, Dionicio [Division de Estudios de Posgrado, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Posgrado de Arquitectura, Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Galvez, David Morillon [Posgrado de Arquitectura, Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad, Universitaria, Coyoacan 04510, Mexico, DF (Mexico)

    2011-01-15

    Energy usage and energy efficiency are of increasing concern in Mexico, electricity generation principally depends upon fossil fuels. On one hand, the stocks of these fuels have been confirmed to be critically limited. On the other hand, in process of electricity generation by means of these fuels, a number of poisonous by-products adversely affect the conservation of natural eco-system. This paper focuses on estimation of energy consumption, energy savings, reduction of emissions of CO{sub 2} for use of urban and rural household appliances in Mexico between 1996 and 2021. The analysis concentrates on six major energy end uses in the residential sector: refrigerators, air conditioners, washing machines, TV set, iron and heater. It is estimated that by 2021 there will be a cumulative saving of 22,605 GWh, as a result of the implementation of government programs on energy efficiency that represents a cumulative reduction of CO{sub 2} emissions of 15,087 Tg CO{sub 2}. It means that Mexico can reduce in 5650 MW the generation capacity of national electricity system, which is to avoid burning 40.35 MM barrels of oil. The findings can be useful to policy makers as well as household appliances users. (author)

  14. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  15. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  16. Factors which influence Nova Scotia farmers in implementing energy efficiency and renewable energy measures

    International Nuclear Information System (INIS)

    Bailey, J.A.; Gordon, R.; Burton, D.; Yiridoe, E.K.

    2008-01-01

    Improvements in energy efficiency and renewable energy use can reduce farm operating costs and reduce greenhouse gas (GHG) emissions. Responses (n=224, representing a 32% response rate) from a mail survey were used to assess use and interest in energy efficient and renewable energy options on farms in Nova Scotia, Canada. Energy efficiency options used the most were behavior, insulation, and lighting. Few farms used renewable energy options. Approximately 78% of farmers indicated an interest in implementing energy efficiency and renewable energy options. Interest varied by farm type and size. Interest increased with farm size. The two main efficiency options of interest were lighting (60.8%) and insulation (43.7%), while wind power development (55.5%) and solar water heating (24.5%) were the main renewable options of interest. Farmers concerned about power and equipment reliability were less likely to be interested in implementing options. Farmers concerned about the environment were more likely to be interested in implementing options. Current use of certain energy efficiency technologies, such as efficient lighting, influenced implementation interest

  17. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  18. Closing the Gap GEF Experiences in Global Energy Efficiency

    CERN Document Server

    Yang, Ming

    2013-01-01

    Energy efficiency plays and will continue to play an important role in the world to save energy and mitigate greenhouse gas (GHG) emissions. However, little is known on how much additional capital should be invested to ensure using energy efficiently as it should be, and very little is known which sub-areas, technologies, and countries shall achieve maximum greenhouse gas emissions mitigation per dollar of investment in energy efficiency worldwide. Analyzing completed and slowly moving energy efficiency projects by the Global Environment Facility during 1991-2010, Closing the Gap: GEF Experiences in Global Energy Efficiency evaluates impacts of multi-billion-dollar investments in the world energy efficiency. It covers the following areas: 1.       Reviewing the world energy efficiency investment and disclosing the global energy efficiency gap and market barriers that cause the gap; 2.       Leveraging private funds with public funds and other resources in energy efficiency investments; using...

  19. Energy efficiency of substance and energy recovery of selected waste fractions

    International Nuclear Information System (INIS)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-01-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  20. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  1. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  2. Efficiency and Innovation in U.S. Manufacturing Energy Use

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-06-01

    The NAM has partnered with the Alliance to Save Energy to develop this booklet for manufacturers who want to achieve more strategic control over rising energy costs. Being better energy managers is important not only for each company, but is also an essential component in achieving a low-inflation, high-growth economy. We hope that the opportunities outlined in this booklet will encourage manufacturers to make energy efficiency a part of standard operating procedure.

  3. Using qualitative methods to understand non-technological aspects of domestic energy efficiency

    Science.gov (United States)

    Ambrose, Aimee Rebecca

    The overall aim of the collected published works is to investigate how different policy interventions in the field of energy efficiency (including zero carbon homes, low carbon heat networks, and domestic energy efficiency schemes) are experienced and made sense of by a range of key actors. A further aim is to understand these interventions in the context of existing theories within the field of domestic energy efficiency including socio-technical theory and Actor Network Theory. More specifically, this research advances existing knowledge in the following areas: The nature of the socio-technical challenges encountered in the introduction of more energy efficient buildings, and the importance of achieving a balance between socially acceptable and technically optimal environments. (Papers 2, 3, 4, 6 and 8). The value of qualitative research in gaining a more nuanced understanding of our relationship with the home and the implications of this for domestic energy efficiency interventions and the design of low energy buildings (all papers). The influence of tenure as determinant of access to a more energy efficient home and in particular, the stubborn and complex barriers to achieving higher standards of energy performance within the private rented sector. (Papers 1, 2, 3 and 4). The significance of identity, setting and notions of home in the context of domestic energy efficiency interventions. (Papers 1 and 4). As these themes suggest, this PhD is not just concerned with carbon reduction and energy saving as technical objects, but as a way of life. More specifically, it considers the interactions between the two and contends that technical or policy instruments, no matter how sophisticated, cannot succeed if they are not compatible with our ways of life (and ways of doing businesss) or if our ways of life cannot be reasonably adapted to acoomodate them.

  4. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  5. Energy Efficient Payload Aggregation in WSNs

    Directory of Open Access Journals (Sweden)

    Ákos MILÁNKOVICH

    2015-06-01

    Full Text Available Creating wireless sensor networks requires a different approach than traditional communication networks because energy efficiency plays a key role in sensor networks, which consist of devices without external power. The amount of energy used determines the lifetime of these devices. In most cases data packets are less sensitive to delay, thus can be aggregated, making it possible to gather more useful information reducing the energy required to transmit information. This article discusses the energy efficiency of different Forward Error Correction algorithms and presents a method to calculate the optimal amount of aggregation of the data packets in terms of power consumption, while taking into account the Bit Error Rate characteristics of the wireless channel. The contribution of this paper is a general method to improve the energy efficiency of wireless sensor networks by using the optimal amount of aggregation in case of different Forward Error Correction codes and channel characteristics. The presented results can be applied to any packet-based wireless protocol.

  6. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... Energy Efficiency and Renewable Energy Advisory [[Page 69656

  7. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  8. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  9. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  10. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  11. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  12. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  13. Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model

    International Nuclear Information System (INIS)

    Clinch, J. Peter; Healy, John D.

    2003-01-01

    There are a number of stimuli behind energy efficiency, not least the Kyoto Protocol. The domestic sector has been highlighted as a key potential area. Improving energy efficiency in this sector also assists alleviating fuel poverty, for research is now demonstrating the strong relationship between poor domestic thermal efficiency, high fuel poverty and poor health and comfort status. Previous research has modelled the energy consumption and technical potential for energy saving resulting from energy-efficiency upgrades in this sector. However, there is virtually no work evaluating the economic benefit of improving households' thermal comfort post-retrofit. This paper does this for Ireland using a computer-simulation program. A dynamic modelling process is employed which projects into the future predicting the extent to which energy savings are forgone for improvements in comfort

  14. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    Global warming resulting from the use of fossil fuels is threatening the environment and energy efficiency is one of the most important ways to reduce this threat. Industry, transport and buildings are all high energy-using sectors in the world and even in the most technologically optimistic...... perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...

  16. Increment of efficiency of the rice enterprise for energy use of residuals.

    Directory of Open Access Journals (Sweden)

    Armando Elías García Rivero

    2010-09-01

    Full Text Available The present work has the purpose of determining the possibility to improve the energy and economic efficiency of the “Sur del Jíbaro” rice enterprise by means of a study of saving potentials and alternative of cleaner production by energy use of residuals. In this work is carried out a study of the rice production process of the enterprise, with the purpose of determining the quantity of waste generated during this process, using for it the statistical data and the realization of samplings, to these waste they were applied the indexes of energy production found in the bibliography and was checked their possible contribution to the energy and economic efficiency, with the use of the straw of rice like raw material to produce biogas can be produced the equivalent of more than the double of the energy that demands the enterprise in a year, and using the husk like fuel can be produced the demanded electricity in the industry and almost all the necessary heat for the drying process, for which the possibility exists to contribute to the environment protection.

  17. Energy-efficient peer-to-peer networking for constrained-capacity mobile environments

    OpenAIRE

    Harjula, E. (Erkki)

    2016-01-01

    Abstract Energy efficiency is a powerful measure for promoting sustainability in technological evolution and ensuring feasible battery life of end-user devices in mobile computing. Peer-to-peer technology provides decentralized and self-organizing architecture for distributing content between devices in networks that scale up almost infinitely. However, peer-to-peer networking may require lots of resources from peer nodes, which in turn may lead to increased energy consumption on mobile d...

  18. Energy Tax and Competition in Energy Efficiency. The Case of Consumer Durables

    International Nuclear Information System (INIS)

    Conrad, K.

    2000-01-01

    The purpose of this paper is to analyze the role of an energy tax on technical improvements and on prices of consumer durables induced by strategic competition in energy efficiency. If the gasoline tax is raised this does in principle not affect the producers of cars because the motorist pays for it in terms of a higher cost of using the car. This, however, affects the unit sales of car producers because of substitution towards other modes of transportation. A second element of reaction to energy price variation is an indirect one and relates to the effect of energy prices on technology. Competition forces car producers to develop more energy efficient cars in order to reduce the cost of using a car. This indirect effect can partly offset the direct effect of higher energy prices on demand if it is profitable for the automobile industry to engineer more energy efficient equipment. We will analyze the impact of an energy tax on energy efficiency and on the price of a durable good. This will be done within the framework of a duopoly competing in prices and in the energy efficiency of its products. The government chooses a welfare maximizing energy tax as an incentive to innovate. Then we will analyze a strategic two-stage decision process in which the duopolists first decide about energy efficiency and then compete in prices. 18 refs

  19. Solving employment problems in the European Union: The role of energy efficiency

    International Nuclear Information System (INIS)

    Wiltshire, V.

    1998-01-01

    This paper is based on a project funded under the European Commission's SAVE (Specific Actions for Vigorous Energy Efficiency) program. The project is looking at the employment implications of energy efficiency programs, using a large number of case studies throughout the nine European Union (EU) countries participating in the project. Various modeling techniques are being used to investigate policy scenarios. The EU is particularly interested in looking at employment potential of energy efficiency at the present time. Traditionally, jobs in the environmental sector have only been seen as occurring in end-of-pipe type industries, such as pollution control; but a large potential for employment opportunities has now been recognized in the energy efficiency sector. Included in the study will be a detailed discussion of the quality, as well as the quantity, of jobs created, i.e. what skill levels will be required and the types of people who would wish to undertake the work. The qualitative aspect of jobs will be looked at for their suitability for solving EU and country specific problems, such as long term unemployment of unskilled workers. This paper will present some initial results from the study and discuss the issues raised by it and by other recent work in this area. Such issues include not only the types and numbers of jobs directly created through the programs, but also indirect effects on the local, national and international economies. The negative effects, such as the reduced energy usage effect on the supply industry will also be examined

  20. Total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Hu, J.-L.; Wang, S.-C.

    2006-01-01

    This paper analyzes energy efficiencies of 29 administrative regions in China for the period 1995-2002 with a newly introduced index. Most existing studies of regional productivity and efficiency neglect energy inputs. We use the data envelopment analysis (DEA) to find the target energy input of each region in China at each particular year. The index of total-factor energy efficiency (TFEE) then divides the target energy input by the actual energy input. In our DEA model, labor, capital stock, energy consumption, and total sown area of farm crops used as a proxy of biomass energy are the four inputs and real GDP is the single output. The conventional energy productivity ratio regarded as a partial-factor energy efficiency index is computed for comparison in contrast to TFEE; our index is found fitting better to the real case. According to the TFEE index rankings, the central area of China has the worst energy efficiency and its total adjustmentof energy consumption amount is over half of China's total. Regional TFEE in China generally improved during the research period except for the western area. A U-shape relation between the area's TFEE and per capita income in the areas of China is found, confirming the scenario that energy efficiency eventually improves with economic growth

  1. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... within the field of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public...

  2. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...

  3. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  4. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...

  5. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  6. Energy efficiency policies and measures in Norway: monitoring of energy efficiency in EU27, Norway and Croatia (ODYSSEE-MURE)

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2009-09-15

    This report represents the national case study of Norway for the EIE-project 'Monitoring of Energy Demand Trends and Energy Efficiency in the EU - ODYSSEE-MURE'. It presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. Total energy consumption (not including energy as feedstock) has increased from 16.6 M toe (195 TWh) in 1990 to 19.2 M toe (226 TWh) in 2007 and has been relatively constant the last ten years. Energy consumption in manufacturing industry has increased by 10 % from 1990 to 2007, but is lower in 2007 than in 1998. Final energy use in households has increased from 3515 k toe (41 TWh) in 1990 to 3826 (45 TWh) in 2007. The climate corrected energy use has been at approximately 4000 k toe since the mid 1990s. It seems to be an interrupt in the increase of energy use in households, despite the growth of all common used drivers in this sector. Energy efficiency policies and measures implemented since 1990 have contributed to improve the efficiency by 13 %, or 0.7 % per year; this means that if these policies and measures would not have been implemented, the final energy consumption would have been 13 % higher in 2007 (or approximately 1.9 M toe or 22 TWh). (Author)

  7. Energy conservation and management system using efficient building automation

    Science.gov (United States)

    Ahmed, S. Faiz; Hazry, D.; Tanveer, M. Hassan; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    In countries where the demand and supply gap of electricity is huge and the people are forced to endure increasing hours of load shedding, unnecessary consumption of electricity makes matters even worse. So the importance and need for electricity conservation increases exponentially. This paper outlines a step towards the conservation of energy in general and electricity in particular by employing efficient Building Automation technique. It should be noted that by careful designing and implementation of the Building Automation System, up to 30% to 40% of energy consumption can be reduced, which makes a huge difference for energy saving. In this study above mentioned concept is verified by performing experiment on a prototype experimental room and by implementing efficient building automation technique. For the sake of this efficient automation, Programmable Logic Controller (PLC) is employed as a main controller, monitoring various system parameters and controlling appliances as per required. The hardware test run and experimental findings further clarifies and proved the concept. The added advantage of this project is that it can be implemented to both small and medium level domestic homes thus greatly reducing the overall unnecessary load on the Utility provider.

  8. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    Directory of Open Access Journals (Sweden)

    Kan Luo

    2018-01-01

    Full Text Available Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS- based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node’s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM, block sparse Bayesian learning (BSBL method, and discrete cosine transform (DCT basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  9. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.

    Science.gov (United States)

    Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  10. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...

  11. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  12. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  13. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  14. Designing an energy-efficient quick service restaurant

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.; Spata, A.J.; Turnbull, P.; Allen, T.E.

    1999-07-01

    Food service operators typically focus on controlling labor and food costs in order to increase profits. Energy, which typically represents 2% to 6% of the total cost to operate, is often a lower priority due to the complexity of food service operations and the lack of practical information. However, in an increasing competitive market, operators are actively seeking opportunities to further reduce overhead, and energy represents a good candidate. This paper presents an overview of the design and application of energy-efficient technologies to a quick service restaurant (QSR) and the resulting energy savings. Included in the discussion are the relevance of energy efficiency in a QSR, the criteria for choosing appropriate energy-efficient technologies, the replication of results to other restaurants, and the performance of the individual energy-saving technologies. Three different techniques were used to estimate energy savings of the energy-efficient technologies, with results in the range of 12% to 18% savings in overall annual restaurant energy costs.

  15. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  16. Structure model of energy efficiency indicators and applications

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Chen, Bai-Sheng; Bor, Yun-Chang; Wu, Yin-Chin

    2007-01-01

    For the purposes of energy conservation and environmental protection, the government of Taiwan has instigated long-term policies to continuously encourage and assist industry in improving the efficiency of energy utilization. While multiple actions have led to practical energy saving to a limited extent, no strong evidence of improvement in energy efficiency was observed from the energy efficiency indicators (EEI) system, according to the annual national energy statistics and survey. A structural analysis of EEI is needed in order to understand the role that energy efficiency plays in the EEI system. This work uses the Taylor series expansion to develop a structure model for EEI at the level of the process sector of industry. The model is developed on the premise that the design parameters of the process are used in comparison with the operational parameters for energy differences. The utilization index of production capability and the variation index of energy utilization are formulated in the model to describe the differences between EEIs. Both qualitative and quantitative methods for the analysis of energy efficiency and energy savings are derived from the model. Through structural analysis, the model showed that, while the performance of EEI is proportional to the process utilization index of production capability, it is possible that energy may develop in a direction opposite to that of EEI. This helps to explain, at least in part, the inconsistency between EEI and energy savings. An energy-intensive steel plant in Taiwan was selected to show the application of the model. The energy utilization efficiency of the plant was evaluated and the amount of energy that had been saved or over-used in the production process was estimated. Some insights gained from the model outcomes are helpful to further enhance energy efficiency in the plant

  17. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...

  18. Benchmarking the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William; Hui, Y.V.; Lam, Y. Miu

    2006-01-01

    Benchmarking energy-efficiency is an important tool to promote the efficient use of energy in commercial buildings. Benchmarking models are mostly constructed in a simple benchmark table (percentile table) of energy use, which is normalized with floor area and temperature. This paper describes a benchmarking process for energy efficiency by means of multiple regression analysis, where the relationship between energy-use intensities (EUIs) and the explanatory factors (e.g., operating hours) is developed. Using the resulting regression model, these EUIs are then normalized by removing the effect of deviance in the significant explanatory factors. The empirical cumulative distribution of the normalized EUI gives a benchmark table (or percentile table of EUI) for benchmarking an observed EUI. The advantage of this approach is that the benchmark table represents a normalized distribution of EUI, taking into account all the significant explanatory factors that affect energy consumption. An application to supermarkets is presented to illustrate the development and the use of the benchmarking method

  19. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  20. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  1. An Energy-Efficient Scheme for Multirelay Cooperative Networks with Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Dingcheng Yang

    2016-01-01

    Full Text Available This study investigates an energy-efficient scheme in multirelay cooperative networks with energy harvesting where multiple sessions need to communicate with each other via the relay node. A two-step optimal method is proposed which maximizes the system energy efficiency, while taking into account the receiver circuit energy consumption. Firstly, the optimal power allocation for relay nodes is determined to maximize the system throughput; this is based on directional water-filling algorithm. Secondly, using quantum particle swarm optimization (QPSO, a joint relay node selection and session grouping optimization is proposed. With this algorithm, sessions can be classified into multiple groups that are assisted by the specific relay node with the maximum energy efficiency. This approach leads to a better global optimization in searching ability and efficiency. Simulation results show that the proposed scheme can improve the energy efficiency effectively compared with direct transmission and opportunistic relay-selected cooperative transmission.

  2. Dynamic modeling and verification of an energy-efficient greenhouse with an aquaponic system using TRNSYS

    Science.gov (United States)

    Amin, Majdi Talal

    Currently, there is no integrated dynamic simulation program for an energy efficient greenhouse coupled with an aquaponic system. This research is intended to promote the thermal management of greenhouses in order to provide sustainable food production with the lowest possible energy use and material waste. A brief introduction of greenhouses, passive houses, energy efficiency, renewable energy systems, and their applications are included for ready reference. An experimental working scaled-down energy-efficient greenhouse was built to verify and calibrate the results of a dynamic simulation model made using TRNSYS software. However, TRNSYS requires the aid of Google SketchUp to develop 3D building geometry. The simulation model was built following the passive house standard as closely as possible. The new simulation model was then utilized to design an actual greenhouse with Aquaponics. It was demonstrated that the passive house standard can be applied to improve upon conventional greenhouse performance, and that it is adaptable to different climates. The energy-efficient greenhouse provides the required thermal environment for fish and plant growth, while eliminating the need for conventional cooling and heating systems.

  3. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  4. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-10-18

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable... Efficiency and Renewable Energy, U.S. Department of Energy. [FR Doc. 2012-25636 Filed 10-17-12; 8:45 am...

  5. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  6. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    Science.gov (United States)

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.

  7. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  8. Energy-efficient relay selection and optimal power allocation for performance-constrained dual-hop variable-gain AF relaying

    KAUST Repository

    Zafar, Ammar; Radaydeh, Redha Mahmoud Mesleh; Chen, Yunfei; Alouini, Mohamed-Slim

    2013-01-01

    This paper investigates the energy-efficiency enhancement of a variable-gain dual-hop amplify-and-forward (AF) relay network utilizing selective relaying. The objective is to minimize the total consumed power while keeping the end-to-end signal

  9. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  10. Measurement of β-decay end point energy with planar HPGe detector

    Science.gov (United States)

    Bhattacharjee, T.; Pandit, Deepak; Das, S. K.; Chowdhury, A.; Das, P.; Banerjee, D.; Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S. R.

    2014-12-01

    The β - γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in 106Rh →106Pd. The end point energies corresponding to three weak branches in 106Rh →106Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  11. Establishing an energy efficiency recommendation for commercial boilers

    International Nuclear Information System (INIS)

    Ware, Michelle J.

    2000-01-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of$40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over$25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings

  12. Analysis of energy use and efficiency in Turkish manufacturing sector SMEs

    International Nuclear Information System (INIS)

    Onuet, Semih; Soner, Selin

    2007-01-01

    Small and medium size enterprises (SMEs) have an important role in the Turkish economy because of the workforce involved. According to the size of the industrial facilities, there are different cost components related to the total production costs. Energy cost is usually a small portion of the total production cost, but the Turkish industrial sector comprises approximately 35% of Turkey's total energy consumption and 98.8% of the total number of enterprises in Turkey constitutes the SMEs. Because of the uncertainty of energy costs in the world, it is important to take preventive measures to reduce energy costs and increase efficiencies in industry and consequently in SMEs. In this paper, medium sized enterprises are taken into consideration essentially. Because of getting homogeneity, enterprises with the number of workers between 100 and 200 in the metallic goods industry have been considered in the survey. Energy management includes increasing the profitability by reduced operational costs, and it is also a potential for improving market share. Many different evaluation models have been published in the energy management literature. However, there have not been so many systematic approaches to compare the relative efficiency of the systems. Data envelopment analysis (DEA) is a special linear programming model for deriving the comparative efficiency of multiple-input multiple-output decision making units (DMUs). An evaluation of energy efficiency in 20 medium sized companies has been conducted, and the results are discussed in this paper

  13. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: San Juan National Forest - Dolores Ranger District, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-26

    This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the San Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.

  14. Energy Efficiency Experiments on Samsung Exynos 5 Heterogeneous Multicore using OmpSs Task Based Programming

    OpenAIRE

    Holmgren, Rune

    2015-01-01

    This thesis explore the energy efficiency of task based programming with OpenMP SuperScalar (OmpSs) on the heterogeneous Samsung Exynos 5422 system on a chip. The system features small energy efficient cores, large high performance cores and a GPGPU, and OmpSs tasks were run on all three different processors. Experiments running a genetic algorithm and a Cholesky decomposition were used to gather results. The option of running applications on the energy efficient cores, on the high perfo...

  15. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  16. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O`Keefe, P.; Snape, C. [University of Northumbria, Newcastle upon Tyne (United Kingdom). Photovoltaics Application Centre

    1995-12-31

    The book gives a comprehensive analysis of the history and use of different forms of energy, their environmental and social impacts and, in particular, their economic costs and the future of their supply. It examines all the major forms of energy - conventional fuels such as oil and coal, nuclear power and alternative and renewable sources - and includes case studies on the transport and building sectors in the North and agroforestry and fuelwood problems in the South. The authors discuss the development of energy provision and patterns of supply and demand, and examine the use of end-use analyses. They look at the ways in which social and environmental costs should be introduced into energy planning and accounting, and emphasise the crucial role of efficiency to limit over-consumption. 91 refs., 100 figs., 62 tabs.

  17. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  18. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  19. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2009

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. (European Environment Agency (EEA), Copenhagen (Denmark)); Watterson, J. (AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom))

    2011-12-15

    The objective of this report is to help improve the understanding of past greenhouse gas (GHG) emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2009. (Author)

  20. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2010

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark); Watterson, J. [AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom)

    2012-12-15

    The objective of this report is to help improve the understanding of past GHG emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2010. (Author)

  1. Innovations with services relating to energy efficiency. Basic information and examples; Innovationen mit Dienstleistungen im Bereich Energieeffizienz. Basisinformationen und Beispiele

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, Michael; Kollnig, Sarah; Oertel, Britta

    2010-07-01

    This study describes how the ''Energy Efficient City'' competition is intended to promote activities towards greater energy efficiency which relate to cities as systems, are innovative, and conceive of and incorporate services as part of the solution. ''Innovation with services'' is not only about the further development of existing services but more particularly about the creation of high-quality services in growth areas which can serve to speed up innovation and create new application potentials for technical developments. They should be based on a holistic view on urban processes of energy use and energy supply and give consideration to all relevant stakeholders. The ''Energy Efficient City'' competition is aimed at systematically linking innovations with services to energy efficiency issues. The implementation of these goals will be facilitated by accompanying research. To this end the present text provides information on how services can be geared to energy efficiency.

  2. Energy efficiency and renewable energy systems in Portugal and Brazil

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Soares, Isabel; Ferreira, Paula

    2014-01-01

    This article presents a review of the energy situation in Brazil and Portugal; two countries which are both characterised by high utilisation of renewable energy sources though with differences between them. The article also introduces contemporary energy research conducted on the two countries...... and presented at The 1st International Congress on Energy & Environment ranging from electricity end-use analyses, electricity production analyses to socio-economic assessment and large-scale energy scenarios....

  3. Introduction to the 1975 Berkeley Summer Study. [On efficient use of energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dean, E

    1977-05-01

    The 1975 Berkeley Summer Study on the Efficient Use of Energy in Buildings was held to bring together designers and researchers from the building profession, universities, and government agencies for an intensive examination of the problems of improved efficiencies of energy use for the heating and cooling of buildings. The focus of the Study was the development of an understanding of the maximum potential for the use of natural heat and light in what has become known as the ''passive mode'', as well as of the practical difficulties involved. Consequently much of the work is centered on window systems, daylighting, and ventilation. The motivation for the organization of the Study was the fact that buildings in general are not designed, constructed, or operated well from the point of view of energy use, and that the appropriate strategies for maximum energy efficiency are not well understood. There was, in addition, a certain reluctance to refer to the content of the work of the Study as ''energy conservation'' because of the suggestion that seems to occur to the public and the policymakers that conservation means some form of deprivation of a ''lower standard of living''.

  4. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  5. On the Design of Energy Efficient Optical Networks with Software Defined Networking Control Across Core and Access Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2013-01-01

    This paper presents a Software Defined Networking (SDN) control plane based on an overlay GMPLS control model. The SDN control platform manages optical core networks (WDM/DWDM networks) and the associated access networks (GPON networks), which makes it possible to gather global information...... and enable wider areas' energy efficiency networking. The energy related information of the networks and the types of the traffic flows are collected and utilized for the end-to-end QoS provision. Dynamic network simulation results show that by applying different routing algorithms according to the type...... of traffic in the core networks, the energy efficiency of the network is improved without compromising the quality of service....

  6. Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector

    International Nuclear Information System (INIS)

    Elsland, Rainer; Divrak, Can; Fleiter, Tobias; Wietschel, Martin

    2014-01-01

    Turkey’s energy demand has been growing by 4.5% per year over the last decade. As a reaction to this, the Turkish government has implemented the Strategic Energy Efficiency Plan (SEEP), which provides a guideline for energy efficiency policies in all sectors. The aim of this study is to analyse the potential of the SEEP on final energy demand in the Turkish residential sector until 2030. Three scenarios are developed based on a detailed bottom-up modelling approach using a vintage stock model to simulate the energy demand of heating systems and appliances. The results show a decreasing final energy demand in the reference scenario from about 944 PJ in 2008 to 843 PJ in 2030. This reflects a structural break, which is mainly caused by a high building demolition rate and low efficiency in the existing building stock. The SEEP achieves additional savings of around 111 PJ until 2030, while a scenario with even higher efficiency shows further savings of 91 PJ. Electricity demand increases in all scenarios – mainly due to growing ownership rates of appliances. The SEEP will achieve around 10 TWh of electricity savings in 2030 compared to the reference scenario, mainly through more ambitious end-use standards

  7. Creating Jobs through Energy Efficiency Using Wisconsin's Successful Focus on Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Masood; Corrigan, Edward; Reitter, Thomas

    2012-03-30

    The purpose of this project was to provide administrative and technical support for the completion of energy efficiency projects that reduce energy intensity and create or save Wisconsin industrial jobs. All projects have been completed. Details in the attached reports include project management, job development, and energy savings for each project.

  8. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  9. Energy Efficiency Finance Programs: Use Case Analysis to Define Data Needs and Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-07-01

    There are over 200 energy efficiency loan programs—across 49 U.S. states—administered by utilities, state/local government agencies, or private lenders.1 This distributed model has led to significant variation in program design and implementation practices including how data is collected and used. The challenge of consolidating and aggregating data across independently administered programs has been illustrated by a recent pilot of an open source database for energy efficiency financing program data. This project was led by the Environmental Defense Fund (EDF), the Investor Confidence Project, the Clean Energy Finance Center (CEFC), and the University of Chicago. This partnership discussed data collection practices with a number of existing energy efficiency loan programs and identified four programs that were suitable and willing to participate in the pilot database (Diamond 2014).2 The partnership collected information related to ~12,000 loans with an aggregate value of ~$100M across the four programs. Of the 95 data fields collected across the four programs, 30 fields were common between two or more programs and only seven data fields were common across all programs. The results of that pilot study illustrate the inconsistencies in current data definition and collection practices among energy efficiency finance programs and may contribute to certain barriers.

  10. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  11. Energy supply with growing energy efficiency - the energy supply companies as driving force for rational energy use?; Energieversorgung bei wachsender Energieeffizienz - die Energieversorgungsunternehmen als Motor rationeller Energieverwendung?

    Energy Technology Data Exchange (ETDEWEB)

    Grawe, J. [Vereinigung Deutscher Elektrizitaetswerke VDEW e.V., Frankfurt am Main (Germany); Schulz, E. [Vereinigung Deutscher Elektrizitaetswerke VDEW e.V., Frankfurt am Main (Germany)

    1996-09-23

    The authors explain that growing energy efficiency was and is the positive prerequisite for the development of the electricity supply industry. They show that the business-oriented use of the concept of integrated resource planning by economic enterprises can improve energy efficiency and thus contribute towards mastering future demands and challenges. With the eta-initiative for energy rationalism the German electricity suppliers also intend to continue being motors of energy efficiency. (orig.) [Deutsch] Die Verfasser verdeutlichen, dass wachsende Energie-Effizienz positive Voraussetzung fuer die Entwicklung der Elektrizitaetswirtschaft war und ist. Sie arbeiten heraus, dass die unternehmenswirtschaftliche Nutzung des Konzepts der Integrierten Ressourcen-Planung die Energie-Effizienz verbessern und damit dazu beitragen kann, die kuenftigen Anforderungen und Herausforderungen zu meistern. Mit der eta-Initiative fuer Energievernunft wollen die deutschen Stromversorger auch in Zukunft Motor der Energie-Effizienz bleiben. (orig.)

  12. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  13. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor

  14. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  15. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  16. Marketing energy-efficient solar houses: A method to locate and identify people who will buy energy-efficient solar houses, or related services

    International Nuclear Information System (INIS)

    D'Alessio, G.

    1999-01-01

    Houses built in New England within the last six years, equal to or exceeding energy-efficiency standards from Energy Crafted Homes (ECH) or from DOE's Energy Star Homes are termed energy-efficient for this study. An assumption is that people who purchase houses being newly constructed may request special features including more energy-efficient features. The average house being constructed today is not as energy-efficient as it could easily be; therefore, owners of recently constructed energy-efficient houses may be termed early-adopters of an innovation. It has been demonstrated that early adopters have different personal attitudes and perceptions of an innovation compared to later-adopters. Both types of adopters--owners of recently constructed energy-efficient or energy-inefficient houses, have been surveyed in New England to determine whether their differences are significant enough to be used in identifying future potential early-adopters. Solar houses also are usually energy-efficient, and should be termed an innovation

  17. A Danish case. Portfolio evaluation and its impact on energy efficiency policy

    Energy Technology Data Exchange (ETDEWEB)

    Togeby, M.; Dyhr-Mikkelsen, K. [Ea Energy Analyses, Frederiksholms Kanal 4, 1220 Copenhagen K (Denmark); Larsen, A.E. [Department of Society and Globalisation, Roskilde University, Universitetsvej 1, 4000 Roskilde (Denmark); Bach, P. [Danish Energy Agency, Amaliegade 44, 1256 Copenhagen K (Denmark)

    2012-01-15

    A political agreement from 2005 stated that an evaluation of the entire Danish energy efficiency policy portfolio must be carried out before the end of 2008, with the aim to assess the following: (1) Is the policy portfolio sufficient to meet the energy efficiency targets? (2) Do the policies enable the national goals to be met in a cost-effective manner? (3) Is the overall design of the policy portfolio appropriate? The evaluation gave recommendations on how to improve and develop the portfolio, mainly using cost-effectiveness as criteria. The evaluation was completed in December 2008, and this paper presents the main findings and the subsequent impact on Danish policy. A key lesson learned is the importance of including all energy efficiency policies in the evaluation. Examining the entire portfolio of policies (as opposed to only selected policies) gave way to findings that would otherwise not have been captured. With its broad perspective, the evaluation found that the policy instruments prioritised the commercial and industrial sectors less than the household and public sectors. The recommendations made by the authors contributed to the implementation of new taxes for the commercial and industrial sectors together with the reform of the Electricity Saving Trust to a Centre for Energy Savings charged with energy savings within all sectors, except transport - both which have been important steps towards a more cost-effective solution.

  18. Energy efficiency policies and measures in Norway 2006. Monitoring of energy efficiency in EU15 and Norway (Odyssee-Mure)

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Espegren, Kari Aamodt

    2006-12-01

    This report represents the national case study of Norway for the EIE-project 'Monitoring of energy efficiency in EU-15 and Norway - ODYSSEE-MURE'. It presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. Total energy consumption (not including energy as feedstock) has increased from 192 TWh in 1990 to a present maximum of 219 TWh in 1999. From then it has been a slight decrease and in 2005 the final energy consumption was 215 TWh. Energy consumption in manufacturing industry has increased by 11 percent from 1990 to 2004, and in the period 1998-2004 it seems to be steadying at approximately 78 TWh. Final energy use in households has increased from 41 TWh in 1990 to a maximum of 46.6 TWh in 1996 and 2002. In 2005 44.1 TWh was used, which is almost the same as the consumption in 1994. It seems to be an interrupt in the increase of energy use in households, despite the growth of all common used drivers in this sector. Energy efficiency policies and measures implemented since 1990 have contributed to improve the efficiency by 10 percent, or 0.7 percent per year; this means that if these policies and measures would not have been implemented, the final energy consumption would have been 10 percent higher in 2004 (or approximately 19 TWh) (author) (ml)

  19. Some successful financing mechanisms for energy efficiency projects (EE) and projects using renewable energy sources (RES) - the experience of Bulgaria

    International Nuclear Information System (INIS)

    Uzunova, Boriana

    2004-01-01

    The paper analysis some of the most promising financial mechanisms for energy efficiency (EE) and renewable energy sources (RES) projects in Bulgaria - the TPF mechanism, the KIDS Fund, delivered by the EBRD fund the EE fund of the WB, established on the floor of the EE act, as well as a number of some of the pre accession and European energy programs used for financing this area. All data its rich intensive international and in -home work in the are of energy efficiency and renewable energy sources. (Author)

  20. On the experimental determination of the efficiency of piezoelectric impact-type energy harvesters using a rotational flywheel

    International Nuclear Information System (INIS)

    Janphuang, P; Lockhart, R; Briand, D; De Rooij, N F; Henein, S

    2013-01-01

    This paper demonstrates a novel methodology using a rotational flywheel to determine the energy conversion efficiency of the impact based piezoelectric energy harvesters. The influence of the impact speed and additional proof mass on the efficiency is presented here. In order to convert low frequency mechanical oscillations into usable electrical energy, a piezoelectric harvester is coupled to a rotating gear wheel driven by flywheel. The efficiency is determined from the ratio of the electrical energy generated by the harvester to the mechanical energy dissipated by the flywheel. The experimental results reveal that free vibrations of the harvester after plucking contribute significantly to the efficiency. The efficiency and output energy can be greatly improved by adding a proof mass to the harvester. Under certain conditions, the piezoelectric harvesters have an impact energy conversion efficiency of 1.2%

  1. Energy efficiency and economic fallacies: a reply; and reply

    International Nuclear Information System (INIS)

    Brookes, L.G.; Grubb, M.

    1992-01-01

    The claim that a programme of energy efficiency improvements has nothing to offer to the solution of any problem of global warming is discussed. Some very important points not previously conceded by supporters of energy efficiency solutions to economic and environmental problems are considered, namely: first that when energy supply/price is the constraint on the level of economic activity, using energy more efficiently does not help to reduce total energy demand; and, second, that it has in practice been true that when energy supply/price is not the macroeconomic constraint, once again demand for energy is not reduced by more efficient use. (author)

  2. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  3. High energy erbium laser end-pumped by a laser diode bar array coupled to a Nonimaging Optic Concentrator

    OpenAIRE

    Tanguy , Eric; Feugnet , Gilles; Pocholle , Jean-Paul; Blondeau , R.; Poisson , M.A.; Duchemin , J.P.

    1998-01-01

    International audience; A high energy Er3+, Yb3+:glass laser end pumped by a laser diode array emitting at 980 nm coupled to a Nonimaging Optic Concentrator (NOC) is demonstrated. Energy up to 100 mJ and a 16% slope efficiency are achieved in a plano-plano laser cavity. The energy transfer coefficient from Yb3+ to Er3+ is estimated by a new method.

  4. Healthcare Energy Efficiency Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  5. Storying energy consumption: Collective video storytelling in energy efficiency social marketing.

    Science.gov (United States)

    Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine

    2018-05-01

    Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Efficient use of energy: investment practice in industry; Effiziente Energienutzung: Investitionspraxis in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, J. [BHP - Brugger, Hanser und Partner AG, Zuerich (Switzerland); Zweiacker, J.-F. [Rapp AG Ingenieure und Planer, Biel (Switzerland); Rosch, M. [Consulting Verfahrenstechnik, Allschwil (Switzerland)

    2000-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on drying processes used in industry and possible ways of promoting investment in measures to increase the efficient use of energy. The energy consumption of dehydration and drying processes used in industry is examined and the savings potential for these processes estimated. Examples of the processes investigated are given and figures for the energy consumption for dehydration and drying processes in several different industrial sectors are quoted. The report then examines, on the one hand, the factors that hem innovations in this area and, on the other, those that promote them. Further, the report looks into which reasons are responsible for the realisation or non-realisation of technically and economically viable solutions for improving the energy-efficiency of the dehydration and drying processes.

  7. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  8. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  9. Measurement of β-decay end point energy with planar HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T., E-mail: btumpa@vecc.gov.in [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Pandit, Deepak [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Das, S.K. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Chowdhury, A.; Das, P. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Banerjee, D. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S.R. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India)

    2014-12-11

    The β–γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in {sup 106}Rh→{sup 106}Pd. The end point energies corresponding to three weak branches in {sup 106}Rh→{sup 106}Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  10. Householder behaviour and domestic energy use

    Energy Technology Data Exchange (ETDEWEB)

    Crawshaw, A J.E.

    1984-01-01

    A review of research which points to the importance of behaviour in energy consumption is presented. The literature or ways of controlling energy consumption by behavioural means is reviewed. This thesis investigates the idea that consumption could be reduced through an understanding of people's beliefs. A variety of methodologies was used to this end. As a result of the studies, many suboptimal strategies based on erroneous beliefs came to light. The research has not only enabled practical recommendations to be made for immediate implementation but has also demonstrated the fruitfulness of investigating consumers' understanding of their heating systems as a means of promoting the efficient use of energy.

  11. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  12. From energy efficiency towards resource efficiency within the Ecodesign Directive

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie; Mosgaard, Mette; Remmen, Arne

    2017-01-01

    on the most significant environmental impact has often resulted in a focus on energy efficiency in the use phase. Therefore, the Ecodesign Directive should continue to target resource efficiency aspects but also consider environ- mental aspects with a large improvement potential in addition to the most...... significant environmental impact. For the introduction of resource efficiency requirements into the Ecodesign Directive, these requirements have to be included in the preparatory study. It is therefore recommended to broaden the scope of the Methodology for the Ecodesign of Energy-related products and the Eco......The article examines the integration of resource efficiency into the European Ecodesign Directive. The purpose is to analyse the processes and stakeholder interactions, which formed the basis for integrating resource efficiency requirements into the implementing measure for vacuum cleaners...

  13. FTR: Performance-Aware and Energy-Efficient Communication Protocol for Integrating Sensor Networks into the Internet

    Directory of Open Access Journals (Sweden)

    Sinung Suakanto

    2014-11-01

    Full Text Available Integrating sensor networks into the Internet brings many advantages. For example, users can monitor or control the state of the sensors remotely without visiting the field. Some researchers have proposed methods using a REST-based web service or HTTP to establish communication between sensors and server via the Internet. Unfortunately, as we know, HTTP is a best-effort service. In some cases this means that if the number of sensors increases the end-to-end Quality of Service will decrease. The end-to-end network delay increases, as well as the failure rate of data sending caused by HTTP timeouts. In this paper, we propose Finite Time Response (FTR HTTP as a communication protocol suitable for integrating sensor networks into the Internet. We have defined a cross-layer approach that coordinates between the application layer and the physical layer to control not only performance but also energy efficiency. The HTTP request-response delay measured at the application layer is used as the decision factor at the physical layer to control the active and sleep periods. We also propose a forced-sleep period as a control mechanism to guarantee average performance for all nodes. The experimental results have shown that FTR has the ability to maintain better performance, indicated by a lower average response time and a lower average timeout experience. Optimization is still needed to gain better performance and better energy efficiency while also considering the average value of the update time.

  14. Uncertainty, loss aversion, and markets for energy efficiency

    International Nuclear Information System (INIS)

    Greene, David L.

    2011-01-01

    Increasing energy efficiency is critical to mitigating greenhouse gas emissions from fossil-fuel combustion, reducing oil dependence, and achieving a sustainable global energy system. The tendency of markets to neglect apparently cost-effective energy efficiency options has been called the 'efficiency gap' or 'energy paradox.' The market for energy efficiency in new, energy-using durable goods, however, appears to have a bias that leads to undervaluation of future energy savings relative to their expected value. This paper argues that the bias is chiefly produced by the combination of substantial uncertainty about the net value of future fuel savings and the loss aversion of typical consumers. This framework relies on the theory of context-dependent preferences. The uncertainty-loss aversion bias against energy efficiency is quantifiable, making it potentially correctible by policy measures. The welfare economics of such policies remains unresolved. Data on the costs of increased fuel economy of new passenger cars, taken from a National Research Council study, illustrate how an apparently cost-effective increase in energy efficiency would be uninteresting to loss-averse consumers.

  15. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  16. Mapping the Energy Flow from Supply to End Use in three Geographic Regions of China

    DEFF Research Database (Denmark)

    Mischke, Peggy; Xiong, Weiming

    China's past economic development policies resulted in different energy infrastructure patterns across China. There is a long tradition in analysing and discussing regional disparities of China's economy. For more than 20 years, regional differences in GDP, industrial outputs, household income...... and consumption were analysed across China's provincial units. Regional disparities in China's current energy flow are rarely visualised and quantified from a comprehensive, system-wide perspective that is tracing all major fuels and energy carriers in supply, transformation and final end-use in different sectors....... A few national and provincial energy flow diagrams of China were developed since 2000, althoug with limited detail on major regional disparities and inter-regional fuel flows. No regional energy flow charts are yet available for East-, Central- and West-China. This study maps and quantifies energy...

  17. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  18. Energy-Efficient Capacitance-to-Digital Converters for Low-Energy Sensor Nodes

    KAUST Repository

    Omran, Hesham

    2015-11-01

    Energy efficiency is a key requirement for wireless sensor nodes, biomedical implants, and wearable devices. The energy consumption of the sensor node needs to be minimized to avoid battery replacement, or even better, to enable the device to survive on energy harvested from the ambient. Capacitive sensors do not consume static power; thus, they are attractive from an energy efficiency perspective. In addition, they can be employed in a wide range of sensing applications. However, the sensor readout circuit–i.e., the capacitance-to-digital converter (CDC)–can be the dominant source of energy consumption in the system. Thus, the development of energy-efficient CDCs is crucial to minimizing the energy consumption of capacitive sensor nodes. In the first part of this dissertation, we propose several energy-efficient CDC architectures for low-energy sensor nodes. First, we propose a digitally-controlled coarsefine multislope CDC that employs both current and frequency scaling to achieve significant improvement in energy efficiency. Second, we analyze the limitations of successive approximation (SAR) CDC, and we address these limitations by proposing a robust parasitic-insensitive opamp-based SAR CDC. Third, we propose an inverter-based SAR CDC that achieves an energy efficiency figure-of-merit (FoM) of 31fJ/Step, which is the best energy efficiency FoM reported to date. Fourth, we propose a differential SAR CDC with quasi-dynamic operation to maintain excellent energy efficiency for a scalable sample rate. In the second part of this dissertation, we study the matching properties of small integrated capacitors, which are an integral component of energy-efficient CDCs. Despite conventional wisdom, we experimentally illustrate that the mismatch of small capacitors can be directly measured, and we report mismatch measurements for subfemtofarad integrated capacitors. We also correct the common misconception that lateral capacitors match better than vertical capacitors

  19. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  20. Energy-Efficient Deadline-Aware Data-Gathering Scheme Using Multiple Mobile Data Collectors.

    Science.gov (United States)

    Dasgupta, Rumpa; Yoon, Seokhoon

    2017-04-01

    In wireless sensor networks, the data collected by sensors are usually forwarded to the sink through multi-hop forwarding. However, multi-hop forwarding can be inefficient due to the energy hole problem and high communications overhead. Moreover, when the monitored area is large and the number of sensors is small, sensors cannot send the data via multi-hop forwarding due to the lack of network connectivity. In order to address those problems of multi-hop forwarding, in this paper, we consider a data collection scheme that uses mobile data collectors (MDCs), which visit sensors and collect data from them. Due to the recent breakthroughs in wireless power transfer technology, MDCs can also be used to recharge the sensors to keep them from draining their energy. In MDC-based data-gathering schemes, a big challenge is how to find the MDCs' traveling paths in a balanced way, such that their energy consumption is minimized and the packet-delay constraint is satisfied. Therefore, in this paper, we aim at finding the MDCs' paths, taking energy efficiency and delay constraints into account. We first define an optimization problem, named the delay-constrained energy minimization (DCEM) problem, to find the paths for MDCs. An integer linear programming problem is formulated to find the optimal solution. We also propose a two-phase path-selection algorithm to efficiently solve the DCEM problem. Simulations are performed to compare the performance of the proposed algorithms with two heuristics algorithms for the vehicle routing problem under various scenarios. The simulation results show that the proposed algorithms can outperform existing algorithms in terms of energy efficiency and packet delay.