WorldWideScience

Sample records for energy employment generation

  1. Biomass energy: Employment generation and its contribution to poverty alleviation

    International Nuclear Information System (INIS)

    Openshaw, Keith

    2010-01-01

    Studies were undertaken in Malawi from 1995 to 1997 and 2007 to 2008 to estimate the supply and demand of household energy. Because little is known about the supply chain for biomass, surveys were carried out for urban areas on its production, transport and trade as well as sustainable supply. Also, because biomass is used by all people for a multitude of purposes, a complete picture was made of regional and urban biomass supply and demand. The results indicated that biomass is not only the principal energy, accounting for 89 percent of demand, but also the main traded energy in the two time periods accounting for 56-59 percent of commercial demand. Petroleum products supplied 26-27 percent, electricity 8-12 percent and coal 6-10 percent. The market value of traded woodfuel was US$ 48.8 million and US$ 81.0 million in 1996 and 2008 respectively, about 3.5 percent of gross domestic product (GDP). The study found that in 1996 and 2008 respectively, the equivalent of 93,500 and 133,000 full-time people was employed in the biomass supply chain, approximately 2 percent of the potential workforce. In contrast, about 3400 and 4600 people were employed in the supply chain of other fuels in these years. If the Malawi findings are applied to the current estimated wood energy consumption in sub-Saharan Africa, then approximately 13 million people could be employed in commercial biomass energy; this highlights its importance as a means to assist with sustainable development and poverty alleviation. (author)

  2. Analysis of the Dynamic Performance of Self-Excited Induction Generators Employed in Renewable Energy Generation

    Directory of Open Access Journals (Sweden)

    Mohamed E. A. Farrag

    2014-01-01

    Full Text Available Incentives, such as the Feed-in-tariff are expected to lead to continuous increase in the deployment of Small Scale Embedded Generation (SSEG in the distribution network. Self-Excited Induction Generators (SEIG represent a significant segment of potential SSEG. The quality of SEIG output voltage magnitude and frequency is investigated in this paper to support the SEIG operation for different network operating conditions. The dynamic behaviour of the SEIG resulting from disconnection, reconnection from/to the grid and potential operation in islanding mode is studied in detail. The local load and reactive power supply are the key factors that determine the SEIG performance, as they have significant influence on the voltage and frequency change after disconnection from the grid. Hence, the aim of this work is to identify the optimum combination of the reactive power supply (essential for self excitation of the SEIG and the active load (essential for balancing power generation and demand. This is required in order to support the SEIG operation after disconnection from the grid, during islanding and reconnection to the grid. The results show that the generator voltage and speed (frequency can be controlled and maintained within the statuary limits. This will enable safe disconnection and reconnection of the SEIG from/to the grid and makes it easier to operate in islanding mode.

  3. Energy investments and employment

    International Nuclear Information System (INIS)

    1993-08-01

    A study was conducted to assess the effect that different energy options would have on provincial and regional employment prospects in British Columbia. Current and future economic and employment patterns were examined to develop a more detailed understanding of the skills, age, gender, location, and other characteristics of British Columbia workers. Over 40 previous studies examining the energy/employment relationship were also reviewed. Based on this review and an analysis of the province's economic and labor conditions, the following conclusions are drawn. Investment in non-energy sectors offers better prospects for reducing unemployment than investment in the energy sector, whether for new supply or improving efficiency. Investments in the energy sector provide fewer jobs than investments in most other sectors of the economy. Among the available electricity supply options, large hydroelectric projects tend to produce the fewest jobs per investment dollar. Smaller thermal projects such as wood residue plants produce the most jobs. If and when more energy is needed in British Columbia, the most cost-effective combination of energy supply and efficiency options will also create the most jobs. Compared to traditional energy supply options, investments in energy efficiency would create about twice as many total jobs, create jobs that better match the skills of the province's unemployed and its population distribution, and create jobs that last longer on the average. Construction-related measures such as improved insulation tend to produce more jobs per investment dollar than the substitution of more energy-efficient equipment. 69 refs., 9 tabs

  4. Energy generation

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available Current perceptions conjure images of photovoltaic panels and wind turbines when green building or sustainable development is discussed. How energy is used and how it is generated are core components of both green building and sustainable...

  5. Employer attractiveness from a generational perspective: Implications for employer branding

    Directory of Open Access Journals (Sweden)

    Germano Glufke Reis

    2016-03-01

    Full Text Available ABSTRACT This study aimed to identify the employer attractiveness factors prioritized by different generations: Baby Boomers, Generation X, and Generation Y. The survey was conducted with a sample of 937 professionals, working in various areas and companies, most of them were managers and had a high education level. The Employer Attractiveness Scale proposed by Berthon et al. (2005 was adopted and the results indicate that, when choosing a company, the generations under study have specific features regarding the attractiveness attributes they prioritize. It was also observed that Generation Y discriminates and ranks such attributes more clearly than the others. Possible implications for employer branding and research limitations are discussed at the end of the article.

  6. Energy mix and employment effects

    International Nuclear Information System (INIS)

    Wodopia, F.J.

    2005-01-01

    ''Energy Mix and Employment Effects'' is a subject not to be reduced to the so-called ''job argument''. It also involves the question whether it will be possible to achieve consensus again about the composition of a balanced sustainable energy mix. This term must not be interpreted in a static sense; after all, the framework conditions of energy policy are changing. However, this must not render energy policy unsteady. This requirement should be imposed on economic policy in general, i.e. political interventions, it they are really unavoidable, must be predictable on a long term. This contribution also examines the meaning of the term ''energy mix.'' Aspects of the debate about the climate, especially potential factors influencing the climate, are discussed against the backdrop of scientific validity. Other key points covered are the description and analysis of the energy policy framework. One major aspect under study are all kinds of ''subsidies'' of energy resources and the consequences to the whole economy arising from these financial support mechanisms. The findings are projected onto the employment effects. Finally, the question is raised how to design an energy mix sustainable for the future, and how to achieve it politically and in society. (orig.)

  7. Employment-generating projects for the energy and minerals sectors of Honduras. Proyectos generadores de empleos para los sectores energetico y minero de Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Frank, J.A.

    1988-12-01

    A mission to Honduras invited by the Government of Honduras and sponsored by the Organization of American States addressed the generation of employment in various areas of interest to the country. The mission was made up of experts from numerous countries and international agencies. In the energy sector, the mission recommended consolidating the sector under a coordinating body; carrying out projects to promote reforestation, tree farms, and rational forest utilization; encouraging industrial energy conservation; developing alternative energy sources; and promoting rural electrification and expansion of the electrical grid. In the mining sector, the mission supported promotion and technical assistance for small gold-leaching and placer operations, the national mineral inventory, detailed exploration of promising sites, and the development of a mining school. 13 refs., 7 tabs.

  8. Development planning and employment generations: achievements ...

    African Journals Online (AJOL)

    Development planning and employment generations: achievements, challenges and ... Open Access DOWNLOAD FULL TEXT ... The paper mainly utilizes secondary data through the analysis of books, journals, reports and electronic sources.

  9. Employment Generation in Agricultural Industry | Oyemakinde ...

    African Journals Online (AJOL)

    When a man considers himself to be very ill, he may distrust just about any prescription. But that is how not to get well. The gravity of the depressed state of the Nigerian economy could trivialize measures for its redemption. However, when properly considered, employment generation in agricultural industry has the ...

  10. Employment impacts of solar energy in Turkey

    International Nuclear Information System (INIS)

    Cetin, Muejgan; Egrican, Niluefer

    2011-01-01

    Solar energy is considered a key source for the future, not only for Turkey, also for all of the world. Therefore the development and usage of solar energy technologies are increasingly becoming vital for sustainable economic development. The main objective of this study is investigating the employment effects of solar energy industry in Turkey. Some independent reports and studies, which analyze the economic and employment impacts of solar energy industry in the world have been reviewed. A wide range of methods have been used in those studies in order to calculate and to predict the employment effects. Using the capacity targets of the photovoltaic (PV) and concentrated solar power (CSP) plants in the solar Roadmap of Turkey, the prediction of the direct and indirect employment impacts to Turkey's economy is possible. As a result, solar energy in Turkey would be the primary source of energy demand and would have a big employment effects on the economics. That can only be achieved with the support of governmental feed-in tariff policies of solar energy and by increasing research-development funds. - Highlights: → The objective of the study, is investigating employment effects of solar energy. → Using the capacity targets of the PV and CSP plants in solar roadmap of Turkey. → Direct employment has been calculated by constructing of the solar power plant. → If multiplier effect is accepted as 2, total employment will be doubled. → Validity of the figures depends on the government's policies.

  11. Employment, energy, and economic growth in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J

    1979-09-01

    The author examines the complex relationships between energy use, employment opportunities, and economic growth as they apply to the Australian economy and concludes that state and federal governments should collaborate to analyze the employment impacts of the various energy strategies. He sees the need for changes in the political and economic environment as well as in the way energy is used before Australia can return to full employment. While low or zero energy growth policies would not, by themselves, solve the unemployment problem, most new jobs have been created in the labor-intensive service industries. 25 references. (DCK)

  12. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  13. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  14. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering

    2004-07-01

    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  15. Energy generation device

    International Nuclear Information System (INIS)

    Araki, Takashi; Tatsumi, Masami; Tada, Koji.

    1990-01-01

    In a reaction estimated as nuclear fusion, a portion near of electrode is heated locally to a high temperature by the heat of the reaction generated on the electrode, by which the electrode is melted or heavy water is boiled. Then, Continuous reaction is difficult and not practical. In view of the above, a cathode made of deuterium absorbing materials is put into heavy water and electric current is supplied, to continuously take place the reaction and an anode is disposed in a cylindrical cathode to cause reaction of energy generation therein in order to continuously take out the generated energy to the outside safely. Further, heavy water is circulated inside the cylindrical cathode to externally take out heavy water the temperature of which is elevated by the generated energy, and fresh heavy water is supplied to the inside of the cylindrical cathode. Thus, heavy water does not boil on the electrode, temperature elevation can be suppressed and melting of the electrode itself can be prevented. (N.H.)

  16. Employers and the New Generation of Employees

    Science.gov (United States)

    Smith, W. Stanton

    2006-01-01

    There are three generations that exist in the workplace today: baby boomers, Gen X, and Gen Y. Each generation shows an entire spectrum of human values, attitudes and beliefs. This article describes the characteristic attitudes and expectations of each generation. The author examines the differences that cause conflict and describes coping…

  17. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  18. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  19. Employment effects through enhanced use of renewable energy sources

    International Nuclear Information System (INIS)

    Eichelbroenner, M.

    1998-01-01

    The Bonn-based association Forum fuer Zukunftsenergien e.V., (forum for energies of the future), carried out a study investigating whether and to what extent enhanced use of renewable energy sources may contribute to improving in the future the employment situation in Germany. Taking as a basis the current conditions determining expenses and profits in the energy sector and the related employment situation, the study elaborates several scenarios and analyses their conceivable effects. The objective of the study presented in this issue was to assess the gross and net employment effects possibly to be achieved by programmes fostering power generation from renewable sources, and the financial input required in form of investments by industry and governmental grants. (orig./CB) [de

  20. 20 CFR 627.225 - Employment generating activities.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Employment generating activities. 627.225 Section 627.225 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR GENERAL... chambers of commerce); JTPA staff participation on economic development boards and commissions, and work...

  1. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  2. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  3. Employment by Nuclear Energy; Werkgelegenheid door Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, B.L.; De Jong, F.L.

    2009-06-15

    CE Delft is consulted by Greenpeace Netherlands to make an analysis of the direct employment effects created by the construction and operation of a 1,600 MW nuclear power plant in the Dutch province of Zeeland. The study only focuses on the direct employments effects. On one hand, this only shows a part of reality, because all indirect effects are neglected. On the other hand, it does give an indication of the dimensions concerning direct employment effects. In the past years only very few new nuclear power plants have been built in Europe and the US, so little reference material is available. That is why this study is based upon literature from Europe and the US to estimate the direct employment effects and the most influential aspects for these effects. The study shows that the average direct employment on site during the construction period of five years is 1,500 laborers. There is peak direct employment of 2,500-3,000 laborers on site. During operation, the power plant creates approximately 500 jobs. A more accurate study is needed, but a first indication of the indirect employments effects shows 1,800 and 500 jobs created respectively for construction and operation. Combining the most influential aspects of building and running a nuclear power plant (nuclear experience, international consortia, international tenders) with large construction projects in the Dutch energy sector, a translation can be made for the direct employment effects for the Netherlands and the province of Zeeland. The translation is based on types of jobs, level of education, local labor market and the current possibilities in the Netherlands. It is concluded that, in all fairness, the assumption can be made that the peak direct employment effects during construction for Zeeland are around 120-150 jobs. These are temporary jobs for the duration of the construction of the power plant. The permanent jobs in Zeeland for the operation of the power plant are estimated at 150. [Dutch] Op verzoek

  4. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  5. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  6. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  7. Biomass Energy Generation Project

    Energy Technology Data Exchange (ETDEWEB)

    Olthoff, Edward [Cedar Falls Utilities, Cedar Falls, IA (United States)

    2017-05-15

    The Municipal Electric Utility of the City of Cedar Falls (dba Cedar Fals Utilities or CFU) received a congressionally directed grant funded through DOE-EERE to run three short (4 hour) duration test burns and one long (10 days) duration test burn to test the viability of renewable fuels in Streeter Station Boiler #6, a stoker coal fired electric generation unit. The long test burn was intended to test supply chain assumptions, optimize boiler combustion and assess the effects of a longer duration burn of biomass on the boiler.

  8. Generational Differences in Japanese Attitudes toward Women's Employment.

    Science.gov (United States)

    Engel, John W.

    Traditional ideals discourage Japanese women from working outside the home. This study was conducted to explore generational differences in Japanese attitudes toward women's employment and to interpret those differences in terms of social change. Questionnaires were distributed to approximately 900 Japanese men and women. Subjects were classified…

  9. Employment from Solar Energy: A Bright but Partly Cloudy Future.

    Science.gov (United States)

    Smeltzer, K. K.; Santini, D. J.

    A comparison of quantitative and qualitative employment effects of solar and conventional systems can prove the increased employment postulated as one of the significant secondary benefits of a shift from conventional to solar energy use. Current quantitative employment estimates show solar technology-induced employment to be generally greater…

  10. Generation Y facing the challenge of employability: facts against stereotypes

    Directory of Open Access Journals (Sweden)

    Alberto Vallejo Peña

    2017-07-01

    Full Text Available Young people Spain classed as belonging Generation Y are facing the transition to employment under even more adverse conditions than the previous generation (X, as a result of the economic crisis (2008-2015 prevailing as they reach working age. This paper aims to address the generational traits that are attributed to these young people in Spain, and contrast them with the data offered (Labour Force Survey, LFS, and Organization for Economic Co-operation and Development, OECD, mainly. This aims to achieve a better understanding of the phenomenon to distinguish their true features and generational experiences from the testimony of somewhat unreliable sources. To this end, we analyse the main social types attributed to this generation (Not in Education, Employment, or Training, NEETs, mileuristas and boomerangs, technological changes that determine their profile (digital society, new migration trends, the influence of social stratification and the contribution of the family. The conclusions look in particular at the influence of certain factors (education, social class to improve their employability, and the prevalence of the family as a key institution in supporting these young people, given the lack of other social actors.

  11. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Narayanan, C.M.

    1993-01-01

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  12. Employment effects of the extended use of renewable energies

    International Nuclear Information System (INIS)

    Pfaffenberger, W.

    1997-01-01

    Any investment has a positive effect on employment: setting up an investment object involves a number of jobs. But in national economic terms, investments into renewable energies have an employment effect only if the investments are viewed within the context of the energy system as a whole. A global scenario for extending the use of renewable energies as it is outlined by the group 2010 is expected to have a positive effect on employment. Employment effects in connection with renewable energies are inferior to those associated with investments that are economical ex ante, such as many investments for enhancing energy efficiency. (orig./RHM)

  13. Energy generation x environmental impact

    International Nuclear Information System (INIS)

    Oliveira, Thalles Rodrigues

    2011-01-01

    This work aims: to analyze the various sources of energy giving a general idea of the good and bad points for each power generation model, and its impact in the environment, with the purpose of considering the best available options; research on alternative sources of energy production as well as Brazil's resources in a particular source of energy and point out their strengths and weaknesses; report the best options to take advantage of the available resources for energy production in Triangulo Mineiro, a region within Minas Gerais state

  14. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  15. Capacitive Neutralization Dialysis for Direct Energy Generation.

    Science.gov (United States)

    Liu, Yue; Zhang, Yi; Ou-Yang, Wei; Bastos Sales, Bruno; Sun, Zhuo; Liu, Fei; Zhao, Ran

    2017-08-15

    Capacitive neutralization dialysis energy (CNDE) is proposed as a novel energy-harvesting technique that is able to utilize waste acid and alkaline solutions to produce electrical energy. CNDE is a modification based on neutralization dialysis. It was found that a higher NaCl concentration led to a higher open-circuit potential when the concentrations of acid and alkaline solutions were fixed. Upon closing of the circuit, the membrane potential was used as a driving force to move counter ions into the electrical double layers at the electrode-liquid interface, thereby creating an ionic current. Correspondingly, in the external circuit, electrons flow through an external resistor from one electrode to the other, thereby generating electrical energy directly. The influence of external resistances was studied to achieve greater energy extraction, with the maximum output of 110 mW/m 2 obtained by employing an external resistance of 5 Ω together with the AC-coated electrode.

  16. Steam generation from solar energy

    International Nuclear Information System (INIS)

    Gozzi, M.

    2001-01-01

    The vapor for thermoelectric use is one of the most promoted methods for electric power generation from solar energy. The new plants are becoming more and more safe, and anyway in some cases the natural gas makes easy the production of electricity [it

  17. Micromotor-based energy generation.

    Science.gov (United States)

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Survey of employment in the UK wind energy industry

    International Nuclear Information System (INIS)

    Jenkins, G.

    1997-01-01

    A survey of employment in the UK wind energy industry has been carried out. It related to the financial years 1993-4 and 1994-5. A questionnaire was sent to all organisations working in wind energy in the UK. Some 249 replies were received. The paper reports on the findings regarding overall employment in the industry, employment in the major sectors of the industry, jobs by type of organisation, the major employers, the location of jobs, and the overall impact on employment in the UK economy. (Author)

  19. New Algorithm of Automatic Complex Password Generator Employing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Sura Jasim Mohammed

    2018-01-01

    Full Text Available Due to the occurred increasing in information sharing, internet popularization, E-commerce transactions, and data transferring, security and authenticity become an important and necessary subject. In this paper an automated schema was proposed to generate a strong and complex password which is based on entering initial data such as text (meaningful and simple information or not, with the concept of encoding it, then employing the Genetic Algorithm by using its operations crossover and mutation to generated different data from the entered one. The generated password is non-guessable and can be used in many and different applications and internet services like social networks, secured system, distributed systems, and online services. The proposed password generator achieved diffusion, randomness, and confusions, which are very necessary, required and targeted in the resulted password, in addition to the notice that the length of the generated password differs from the length of initial data, and any simple changing and modification in the initial data produces more and clear modification in the generated password. The proposed work was done using visual basic programing language.

  20. Generation Y’s expectations of their future employment relationships pose a challenge for their employers

    Directory of Open Access Journals (Sweden)

    Katarzyna Dziewanowska

    2016-06-01

    Full Text Available Generation Y is starting to represent a significant proportion of the labor force and adds to the diversity challenges faced by companies, especially those operating in a global market. Although many characteristics of Generation Y with regard to work and employment have been identified through research, most comes from developed Western countries. We explored the employment expectations of business students in Poland, Slovenia, the UK and South Korea from the psychological contract perspective. We aimed to identify and explain differences between anticipated employee and employer obligations of future entrants to the labor market. Overall, students expect more relational and balanced dimensions of a psychological contract than transactional. However, there are significant differences in the elements, dimensions and types of psychological contract between countries. Polish and Slovenian responses show more elements of a transactional contract than the UK and Korean. The differences can be explained by taking into account economic context and national culture characteristics. The implications of the results for employers’ approach to managing young talent are also discussed.

  1. Can agriculture generate clean energy?

    International Nuclear Information System (INIS)

    Van Zeijts, H.; Oosterveld, E.B.; Timmerman, E.A.

    1994-01-01

    Fossil fuels meet a large part of the energy requirements in Europe. The carbon dioxide produced by using these fuels contributes to the greenhouse effect. By generating energy from vegetable fibres (biomass) the emission of greenhouse gasses can be reduced. As well as an ecological advantage, the cultivation of crops for the supply of energy could also improve the moderate to bad economical results of Dutch arable farms. So far research into the use of biomass as a source of energy has been mainly concerned with its technical and economic feasibility. Our research also assesses the ecological sustainability of the cultivation and use of energy crops. The principal questions we have answered are: how harmful to the environment is the cultivation of energy crops?; what are the direct and indirect environmental effects of fitting energy crops into the cropping plan?; what indirect effects are to be expected at a regional and national level?; on balance, how much energy is produced in the entire cultivation, transport and processing chain?; What effect does this have on the emission of greenhouse gases?; what is the overall conclusion for the various crops with regard to sustainability? The conclusions of this research could help policy makers answer the question whether it is useful from the point of view of sustainability to stimulate the generation of energy from biomass. We have assessed the effects of the cultivation and use of energy crops on: the emission of minerals and pesticides; the use of energy and the emission of greenhouse gases; the fixation of carbon from CO2; the use of by-products and waste products; dehydration; erosion; the contribution to natural values; the contribution to scenic values; and use of space. In the overall assessment each criterion was given equal weight. This choice is arbitrary: in practice, the ratios are different in each situation. We have studied nine crops and their processing chains. Rape is converted into bio-diesel oil by

  2. Framework for projecting employment and population changes accompanying energy development

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.; Metzger, J.E.

    1980-05-01

    This report provides a framework which energy planners can use to readily estimate the size and timing of the population and employment changes associated with energy development. The direct employment requirements for eight different technologies are listed. This direct employment requirement can be combined with the set of employment multipliers and other information provided to obtain practical estimates of the employment and population impacts of new energy development. Some explanation is given for the variation of the multipliers among counties in the same region. A description is presented of a demographic model for deriving the annual population changes that can be expected as a result of in-migrating workers and their families. Several hypothetical examples of the procedure for making the calculations are discussed as practical exercises in using the multipliers. The necessary data are provided for obtaining estimates of population and employment changes in any county in the US.

  3. Energy transition: constraint or opportunity for growth and employment?

    International Nuclear Information System (INIS)

    Vona, Francesco

    2017-01-01

    This note aims at examining whether environmental policies associated with energy transition are either a brake on, or an opportunity for economic growth. In order to so, the authors compare France's situation with that of its economic partners (Germany, Spain, Italy) in terms of energy price, and of share of employment in polluting industries. They also examine the influence of an increase of energy prices on employment and competitiveness of French manufacturing companies. They finally show that energy transition implies a structural change which may result in an actual creation of green jobs. They finally propose three recommendations regarding economic policy

  4. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  5. Energy, employment and basic needs. The social implications of energy scarcity in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Baron, C

    1980-01-01

    This survey of published work on energy and economic development has three objectives. The first is to determine the extent to which the term 'crisis' can validly be used to describe the energy situation in the medium- and long-term from the point of view of the developing countries. The second objective is to define and discuss the policy choices facing developing countries in the field of energy supply and demand, taking into account their social objectives such as the generation of productive employment opportunities and the eradication of poverty. The modern (industry, energy and transport) and traditional sectors are treated separately. Finally a research agenda is presented, focusing on a few key issues which might usefully be made the subject of data collection and economic analysis.

  6. The expansion of renewable energies and employment effects in Germany

    International Nuclear Information System (INIS)

    Hillebrand, Bernhard; Buttermann, Hans Georg; Behringer, Jean Marc; Bleuel, Michaela

    2006-01-01

    The promotion of electricity produced from renewable energy is a high priority of the European Union, as well of its member states. The German government wants to increase the share of renewable energies from about 5% to 12% by 2010. To attain this goal, the German government has introduced compulsory compensation schemes for electricity produced from renewable energy fed into the public grid. This paper examines the economic impact of this policy employing an econometric model. Particular emphasis was given to employment effects. In general, we distinguish two effects: (1) an expansive effect resulting from additional investments and (2) a contractive effect resulting from an increase in the production cost of power. The first effect will dominate during the first years and lead to an increase in employment of approximately 33,000 new jobs. However, the contractive effect will offset these gains and lead to a slightly negative employment balance by 2010

  7. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Jr, A V; Orlando, A DeF; Magnoli, D

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  8. Employment in nuclear energy activities, 1977: a highlights report

    International Nuclear Information System (INIS)

    1979-05-01

    In spite of the uncertainties in the nuclear energy field, employment in nuclear activities increased by nearly 15 percent between July 1975 and July 1977, according to the latest Bureau of Labor Statistics survey conducted for the Department of Energy. The survey covers employment in 21 industrial sectors comprised of Government-owned facilities operated by 57 private contractors and 874 privately-owned establishments, including 21 not-for-profit institutions. Not included in the survey are employees of Federal, state, and local governments; uranium mining; construction, except for reactors; medical institutions; or educational institutions not performing work connected with the Department of Energy. Informaion is presented by type of employer, Federal region, industrial sector, and size of establishment. 6 figures, 6 tables

  9. Examination of employment in the atomic energy field

    International Nuclear Information System (INIS)

    Baker, J.G.

    1978-02-01

    This study, which focuses on the years 1968--1975, singles out important employment trends in the atomic energy field and develops causal explanations for these trends. The study also provides a descriptive profile of employment in the field. Employment in the atomic energy field has grown from 138,519 in 1963 to 197,466 in 1975, an annual rate of 3.0 percent. The deployment of scientists, engineers, and technicians in the government-owned, contractor-operated (GOCO) sector changed little from 1968 to 1975. Private sector deployment altered considerably, with a large increase. Within the scientist group, the GOCO sector employment by field has changed little from 1968 to 1975. Private sector scientists have seen considerable alteration of their employment. There has been little change in the employment shares of engineering fields in the GOCO sector for the 1968 to 1975 period. Private sector engineers have seen much greater change, with civil engineers increasing their share 6% to 11%. Of all GOCO technicians, physical science technicians have increased their employment share from 12% to 17%. Of all private sector technicians, draftsmen have increased their share from 29% to 37% and reactor operators from 4% to 7%. Total employment in the field is shifting toward smaller firms. Employment by region has changed considerably in the private sector from 1968 to 1975. GOCO regional employment has also changed. The percentage of scientists and engineers involved in research and development has declined from 68% in 1968 to 39% in 1975. Three private sector industrial segments--reactor design and manufacturing, nuclear facilities design and engineering, and operation and maintenance of reactors--have experienced tremendous growth from 1968 to 1975. 8 figures, 32 tables

  10. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  11. Energy development and urban employment creation: the case of the city of Los Angeles

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A; Kolk, D; Brady, M; Kneisel, R

    1981-10-01

    This paper analyzes four energy management tactics in terms of their economic viability and ability to generate employment at the local level. They include: (1) solar water heating, (2) weatherization, (3) coal-fired electricity generation, and (4) liquified natural gas distribution. In general it was found that new energy options offer a significant number of job openings, though they are by no means a major solution to urban unemployment as some have suggested. Also, the time-path and pattern of employment gains must be evaluated carefully by policy-makers if labor force dislocations are to be avoided. 21 refs.

  12. What energy transition for France? Priority to employment and environment

    International Nuclear Information System (INIS)

    2013-01-01

    France is one of the countries with the lowest greenhouse gas emissions per inhabitant ratio. Even if this environmental effort must be maintained, it has to be done in the respect of competitiveness and employment. In this paper, the authors reviewed some received ideas and shed light on the objectives to be pursued in the framework of the announced energy transition

  13. Renewable energy: Solution of energy generation

    International Nuclear Information System (INIS)

    Rodriguez Baracaldo, Rodolfo; Jimenez, Fabian Andres

    2002-01-01

    The negative environmental effects caused by the fossil fuels and their future exhaustion, have originated a new study field: the renewable energies. This paper expresses under informative way, the basic concepts of these energies and the possibility of their development inside the Colombian context

  14. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  15. Energy War Is Generating Jobs

    Science.gov (United States)

    Fiester, Kenneth

    1977-01-01

    Describes various energy-related projects and legislation, with new job estimates, to improve or design buildings and methods to reduce the annual growth in energy consumption by reducing gasoline consumption, cutting oil imports, increasing coal production, insulating buildings, and installing solar energy devices. (MF)

  16. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  17. Direct employment in the wind energy sector: An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)], E-mail: isabel.blanco@ewea.org; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  18. Direct employment in the wind energy sector. An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers - including major sub-components - are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles - project managers, engineers and O and M technicians - is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice. (author)

  19. Direct employment in the wind energy sector: An EU study

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel; Rodrigues, Gloria

    2009-01-01

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  20. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2017-01-01

    We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...... of the generated microwave waveforms is larger than 100 GHz, and it has wide bandwidth when changing the time delay of the adjacent taps and compactness, capability for integration with electronics and small power consumption are also its merits.......We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...

  1. Energy and environmental evaluation of tri-generation energy systems

    International Nuclear Information System (INIS)

    Chicco, G.; Mancarella, P.

    2008-01-01

    Tri generation facilities manufactured with various technologies represent an important alternative solution for the development more efficient energy systems and low environmental impact. Are described the issues related to modelling and energy and environmental evaluation [it

  2. Photovoltaic energy generation in Germany

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    An overview is given of the current state of the art regarding photovoltaic research and demonstration programmes in the Federal Republic of Germany. Also attention is paid to the companies and research institutes involved, and the long-term economical and technical prospects of photovoltaic energy. 13 figs., 4 tabs., 10 refs

  3. Dynamic energy management employing renewable energy sources in IP over DWDM networks

    DEFF Research Database (Denmark)

    Chen, Xin; Phillips, Chris; Wang, Jiayuan

    2013-01-01

    management framework employing renewable energy sources in IP over DWDM core networks. The main concept is to combine infrastructure sleeping and virtual router migration to improve the network energy efficiency. By using the energy source information provided by the smart grid, the nodes that are powered...

  4. Alternative energy and distributed generation: thinking generations ahead

    International Nuclear Information System (INIS)

    Hunt, P.D.

    2001-01-01

    Alternative Energy will be discussed in the context of Distributed Generation, which is defined as a delivery platform for micro-power generation, close to the end-users, that can also supplement regional electricity grids. Many references in the paper pertain to Alberta. This is for two reasons: First, familiarity by the author, and more importantly, Alberta is the first region in Canada that has de-regulated it's electricity sector. De-regulation allows independent and smaller power generators to enter the market. Focussing on Alberta, with some references to other Canadian provinces and USA, electricity consumption trends will be reviewed and the pressures to decentralize electricity generation discussed. Re-structuring of the electricity sector, convergence of power generation and natural gas industries, advances in technologies, and environmental concerns are collectively contributing to the creation of a new business called 'Distributed Generation'. Efficiency benefits of combined heat and power associated with the more prominent emerging distributed generation technologies like micro-turbines and fuel cells, will be highlighted. Areas of research, development and demonstration that will enable the successful deployment of Distributed Generation will be suggested with respect to Generation Technologies, Systems Controls, Supporting Infrastructure, and Socio-Political Barriers. Estimates of investments in the various alternative energy technologies will be presented. Using current trends and emerging technologies the Paper will conclude with some predictions of future scenarios. (author)

  5. Superconducting generators and motors and methods for employing same

    Energy Technology Data Exchange (ETDEWEB)

    Tomsic, Michael J.; Long, Larry

    2017-08-29

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and the cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.

  6. Combined Cycle Power Generation Employing Pressure Gain Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holley, Adam [United Technologies Corporation, East Hartford, CT (United States). Research Center

    2017-05-15

    The Phase I program assessed the potential benefit of applying pressure gain combustion (PGC) technology to a natural gas combined cycle power plant. A conceptual design of the PGC integrated gas turbine was generated which was simulated in a detailed system modeling tool. The PGC integrated system was 1.93% more efficient, produced 3.09% more power, and reduced COE by 0.58%. Since the PGC system used had the same fuel flow rate as the baseline system, it also reduced CO2 emissions by 3.09%. The PGC system did produce more NOx than standard systems, but even with the performanceand cost penalties associated with the cleanup system it is better in every measure. This technology benefits all of DOE’s stated program goals to improve plant efficiency, reduce CO2 production, and reduce COE.

  7. Analysis of Energy Efficiency in Dynamic Optical Networks Employing Solar Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    The paper presents energy efficient routing in dynamic optical networks, where solar energy sources are employed for the network nodes. Different parameters are evaluated, including the number of nodes that have access to solar energy sources, the different maximum solar output power, traffic type...... and the locations of solar powered nodes. Results show a maximum 39% savings in energy consumption with different increases in connection blocking probability....

  8. Metal photonics and plasmonics for energy generation

    Science.gov (United States)

    Nagpal, Prashant

    Energy generation from renewable sources and conservation of energy are important goals for reducing our carbon footprint on the environment. Important sources of renewable energy like sun and geothermal energy are difficult to harness because of their energetically broad radiation. Most of our current energy requirements are met through consumption of fossil fuels, and more than 60% of this energy is released to the environment as "waste heat". Thus, converting heat from sun, or inefficient furnaces and automobiles can provide an important source of energy generation. In the present work, I describe design, fabrication, and characterization two and three dimensional patterned metals. These nanofabricated structures can be used as selective emitters to tailor the glow of hot objects. The tailored radiation can then be converted efficiently into electricity using an infrared photocell. This thermophotovoltaic conversion can be very efficient, and useful for converting heat-to-electricity from a wide variety of sources.

  9. "Social Capitalism" in Renewable energy generation:

    DEFF Research Database (Denmark)

    Clark, Woodrow W; Li, Xing

    2010-01-01

    to develop a wide range of renewable energy generation including solar, wind, geothermal and run of the river. Because China practices “social capitalism” as expressed in it's recurrent Five Year National Plans since 1999, the national government and all the provinces have programs, unlike many western......With a population of over 1.3 billion people, demand for renewable energy is expected to grow to a USD $12 billion market in the near term. Under Renewable Energy Law (REL) in February 2005 in the People's Republic of China (PRC) passed by the National Congress, renewable energy projects...... will be able to receive a range of financial incentives starting in 2006, which will more than double the PRC current renewable energy generation from 7% to 15% by 2020. Most of the increase will be in hydroelectric generated power. Nonetheless, the nation and especially the provinces are moving rapidly...

  10. Distributed generation - customer owned generation - Duke Energy case study

    Energy Technology Data Exchange (ETDEWEB)

    Iung, Anderson M. [Duke Energy International, Geracao Paranapanema S.A., SP (Brazil). Market Analysis Dept.; Ribeiro, Paulo F. [Calvin College, Grand Rapids, MI (United States); Oliveira, A.R. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Distributed generation (DG) is getting more attractive. Although unit costs show strong economies of scale for all generation technology types, there is a potential niche market for DG technology to drive growth in addition to environmental concern issues. Duke Energy encourages the installation of cost effective small scale costumer owned generation. The objective of this article is to evaluate some aspects of DG connection in the Duke's distribution system regarding power quality, voltage stability, system protection, power balance control policy and the economical viability. (author)

  11. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  12. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  13. RESGen: Renewable Energy Scenario Generation Platform

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Pinson, Pierre

    2016-01-01

    studies remains. Consequently, our aim here is to propose an open-source platform for space-time probabilistic forecasting of renewable energy generation (wind and solar power). This document covers both methodological and implementation aspects, to be seen as a companion document for the open......-source scenario generation platform. It can generate predictive densities, trajectories and space-time interdependencies for renewable energy generation. The underlying model works as a post-processing of point forecasts. For illustration, two setups are considered: the case of day-ahead forecasts to be issued......Space-time scenarios of renewable power generation are increasingly used as input to decision-making in operational problems. They may also be used in planning studies to account for the inherent uncertainty in operations. Similarly using scenarios to derive chance-constraints or robust...

  14. EMPLOY: Step-by-step guidelines for calculating employment effects of renewable energy investments [including annex 2

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara [Fraunhofer Inst. for Systems and Innovation Research (Germany); Nathani, Carsten [Ruetter and Partner Socioeconomic Research and Consulting (Switzerland); Resch, Gustav [Vienna Univ. of Technology, Energy Economics Group (EEG) (Austria

    2012-07-15

    The EMPLOY project aimed to help achieve the IEA-RETD’s objective to 'empower policy makers and energy market actors through the provision of information, tools and resources' by underlining the economic and industrial impacts of renewable energy technology deployment and providing reliable methodological approaches for employment – similar to those available for the incumbent energy technologies. The EMPLOY project resulted in a comprehensive set of methodological guidelines for estimating the employment impacts of renewable energy deployment in a coherent, uniform and systematic way. Guidelines were prepared for four different methodological approaches. In the introduction section of the guidelines policy makers are guided in their choice for the most suited approach, depending on the policy questions to be answered, the data availability and budget. The guidelines were tested for the IEA-RETD member state countries and Tunisia. The results of these calculations are included in the annex to the guidelines.

  15. Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG

    Science.gov (United States)

    Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya

    2017-10-01

    Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.

  16. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  17. Feasibility and desirability of employing the thorium fuel cycle for power generation - 254

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2010-01-01

    Thorium fuel cycle for nuclear power generation has been considered since the very start of the nuclear power era. In spite of a very large amount of research, experimentation, pilot scale and prototypic scale installations, the thorium fuel was not adopted for large scale power generation [1,2]. This paper reviews the developments over the years on the front and the back-end of the thorium fuel cycle and describes the pros and cons of employing the thorium fuel cycle for large generation of nuclear power. It examines the feasibility and desirability of employing the thorium fuel cycle in concert with the uranium fuel cycle for power generation. (authors)

  18. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  19. Novel ocean energy permanent magnet linear generator buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, K.; Agamloh, E.B.; Jouanne, A. von; Wallace, A.K.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Schacher, A. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3211 (United States); Chan, P.; Sweeny, B. [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331-3211 (United States)

    2006-07-15

    This paper describes the research, design, construction and prototype testing process of a novel ocean energy direct drive permanent magnet linear generator buoy. The buoy employs the vertical component of the motion of ocean waves to power a linear generator. The generator consists of a permanent magnet field system (mounted on the central translator shaft) and an armature, in which the power is generated (mounted on the buoy). The translator shaft is anchored to the sea floor, and the buoy/floater moves armature coils relative to the permanent magnet translator to induce voltages. The electrical and mechanical structures of the buoy generator are provided, along with performance characteristics, including voltage, current and developed power. (author)

  20. Who Gets the Job? First-Generation College Students' Perceptions of Employer Screening Methods

    Science.gov (United States)

    Parks-Yancy, Rochelle; Cooley, Delonia

    2018-01-01

    What are first-generation college students' (FGCS) perspectives of employment screening methods? The authors investigate which methods FGCS believe are likely to cause an employer to extend a job offer and which methods yield the best pool of job applicants. Survey data were collected from undergraduate business majors. They were analyzed using…

  1. Evaluating the employment-generating impact of rural roads in Nicaragua

    DEFF Research Database (Denmark)

    Rand, John

    2011-01-01

    This paper analyses the employment-generating impact of a tertiary road project in Nicaragua, applying a matched double-difference approach to control for initial conditions and time variant factors that simultaneously influence the placement of roads and subsequent employment growth rates. Results......, more integrated road networks....

  2. The employment impacts of economy-wide investments in renewable energy and energy efficiency

    Science.gov (United States)

    Garrett-Peltier, Heidi

    This dissertation examines the employment impacts of investments in renewable energy and energy efficiency in the U.S. A broad expansion of the use of renewable energy in place of carbon-based energy, in addition to investments in energy efficiency, comprise a prominent strategy to slow or reverse the effects of anthropogenic climate change. This study first explores the literature on the employment impacts of these investments. This literature to date consists mainly of input-output (I-O) studies or case studies of renewable energy and energy efficiency (REEE). Researchers are constrained, however, by their ability to use the I-O model to study REEE, since currently industrial codes do not recognize this industry as such. I develop and present two methods to use the I-O framework to overcome this constraint: the synthetic and integrated approaches. In the former, I proxy the REEE industry by creating a vector of final demand based on the industrial spending patterns of REEE firms as found in the secondary literature. In the integrated approach, I collect primary data through a nationwide survey of REEE firms and integrate these data into the existing I-O tables to explicitly identify the REEE industry and estimate the employment impacts resulting from both upstream and downstream linkages with other industries. The size of the REEE employment multiplier is sensitive to the choice of method, and is higher using the synthetic approach than using the integrated approach. I find that using both methods, the employment level per $1 million demand is approximately three times greater for the REEE industry than for fossil fuel (FF) industries. This implies that a shift to clean energy will result in positive net employment impacts. The positive effects stem mainly from the higher labor intensity of REEE in relation to FF, as well as from higher domestic content and lower average wages. The findings suggest that as we transition away from a carbon-based energy system to

  3. Health evaluation of energy-generating sources

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The American Medical Association's House of Delegates, at its December 1976 Clinical Convention, requested that an evaluation be made of the health hazards of nuclear, fossil, and alternative energy-generating sources, for employees of energy-producing facilities as well as for the general population. This report is a summary evaluation of such hazards prepared in response to that request. This report, which was adopted by the House of Delegates on June 21, 1978, appears here in a revised and corrected version

  4. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  5. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  6. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  7. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  8. The Employment Expectations of Different Age Cohorts: Is Generation Y Really that Different?

    Science.gov (United States)

    Treuren, Gerry; Anderson, Kathryn

    2010-01-01

    If the existence of Generation Y is a viable explanation of employment behaviour, as is asserted in the burgeoning literature, then people between 18 and 33 (born between 1977 and 1992) will have markedly different approaches to work when compared with Generation X (1962 and 1976) and the Baby Boomers (1946 to 1961). This article reviews the…

  9. Employment benefits of electricity generation. A comparative assessment of lignite and natural gas power plants in Greece

    International Nuclear Information System (INIS)

    Tourkolias, C.; Damigos, D.; Diakoulaki, D.; Mirasgedis, S.

    2009-01-01

    This paper aims at developing an integrated approach for estimating the employment benefits associated with power-generation technologies. The proposed approach exploits the input-output methodology for estimating the direct, indirect and induced employment effects associated with the energy project in question, as well as two different valuation techniques, namely the 'opportunity cost of labour' approach and the 'public expenditures' approach, for expressing these effects in monetary terms. This framework has been implemented to estimate the employment benefits resulting from the development of a lignite-fired and a natural gas-fired power plant in Greece, taking into account all the stages of the corresponding fuel cycles that are undertaken domestically. The results of the analysis clearly show that lignite-fired electricity generation results in significant employment benefits amounting to 2.9-3.5 EUR/MWh in the basic scenario. On the other hand, the employment benefits associated with the examined natural gas unit were estimated at 0.4-0.6 EUR/MWh in the basic scenario. It is also worth mentioning that the significant environmental externalities of the lignite-fired electricity in Greece that have been presented in a number of studies can only be partially compensated by the estimated employment benefits. (author)

  10. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  11. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  12. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  13. Turbulent energy generated by accelerations and shocks

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1986-01-01

    The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs

  14. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  15. Croatian Energy Policy as Function of Regional Development and Employment

    International Nuclear Information System (INIS)

    Potocnik, V.

    2006-01-01

    The Republic of Croatia has modest proven fossil fuels (oil and gas) reserves and relatively abundant renewable energy potential (wind, solar, biomass, geothermal, hydro), distributed mainly in less developed regions of Croatia. The Croatian energy system is excessively dependent on expensive oil and natural gas (80% of primary energy), compared to the European Union (61%), and the world average (58%). Approximately 60% of total energy is imported, which considerably contributes to the country's very high foreign trade deficit and foreign debt. Putting into focus of the Croatian energy policy the improvement of energy efficiency and implementation of renewable energies would significantly increase opportunities for mitigating rather wide regional development disparities and high unemployment rates, at the same time reducing energy import, foreign trade deficit and foreign debt, and contributing to energy security as a part of the national security.(author)

  16. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    Science.gov (United States)

    Miszczak, Jarosław Adam

    2013-01-01

    The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random

  17. Energy Generation in the Human Body by the Human Cells ...

    African Journals Online (AJOL)

    We adapted the thermodynamics equation for energy generation in a diesel engine in modeling energy generation in human body by the human cells by doing a thorough study on both systems and saw that the process of energy generation is the same in them. We equally saw that the stages involved in energy generation ...

  18. Raw materials for energy generation in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D S

    1976-03-01

    Canada is self-sufficient in energy. The energy demand in Canada up to the end of the century is predicted, and the present and future of the oil, gas, coal and uranium industries are considered. Since it is now Canadian policy to restrict export of energy sources, in the future Canada will probably make more domestic use of its coal reserves. An increase is forecast in the use of coal for electricity generation and as a feedstock for synthetic gas. A long lead time and large capital expenditure will be needed before coal can be transported from western Canada to markets in the east of the country. A relatively small amount of the coal reserves are extractable by surface mining, and new underground mining techniques will be needed to extract the extremely friable coal from the deformed seams in the mountains.

  19. modelling of hydropower reservoir variables for energy generation

    African Journals Online (AJOL)

    Osondu

    the River Niger (Kainji and Jebba dams) in Nigeria for energy generation using multilayer ... coefficient showed that the networks are reliable for modeling energy generation as a function of ... through turbines and electric generator system.

  20. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  1. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  2. 13_2_30: Experiences, Perceptions and Expectations of Retail Employment for Generation Y

    Science.gov (United States)

    Broadbridge, Adelina M.; Maxwell, Gillian A.; Ogden, Susan M.

    2007-01-01

    Purpose: The purpose of this paper is to examine Generation Y, potential graduate entrants to UK retailing, in respect of their job experiences, career perceptions and initial employment expectations. Design/methodology/approach: Utilising qualitative research methods, an exploratory study was undertaken with 33 students (all of whom fell into the…

  3. Predicting Postsecondary Education and Employment Outcomes Using Results from the Transition Assessment and Goal Generator

    Science.gov (United States)

    Burnes, Jennifer J.; Martin, James E.; Terry, Robert; McConnell, Amber E.; Hennessey, Maeghan N.

    2018-01-01

    We conducted an exploratory study to investigate the relation between nonacademic behavior constructs measured by the "Transition Assessment and Goal Generator" (TAGG) and postsecondary education and employment outcomes for 297 high school leavers who completed the TAGG during their high school years. Four of eight TAGG constructs…

  4. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  5. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  6. Generation-specific incentives and disincentives for nurse faculty to remain employed.

    Science.gov (United States)

    Tourangeau, Ann E; Wong, Matthew; Saari, Margaret; Patterson, Erin

    2015-05-01

    The aims of this paper are to: (1) describe work characteristics that nurse faculty report encourage them to remain in or leave their academic positions; and (2) determine if there are generational differences in work characteristics selected. Nurse faculty play key roles in preparing new nurses and graduate nurses. However, educational institutions are challenged to maintain full employment in faculty positions. A cross-sectional, descriptive survey design was employed. Ontario nurse faculty were asked to select, from a list, work characteristics that entice them to remain in or leave their faculty positions. Respondent data (n = 650) were collected using mailed surveys over four months in 2011. While preferred work characteristics differed across generations, the most frequently selected incentives enticing nurse faculty to stay were having: a supportive director/dean, reasonable workloads, supportive colleagues, adequate resources, manageable class sizes and work/life balance. The most frequently selected disincentives included: unmanageable workloads, unsupportive organizations, poor work environments, exposure to bullying, belittling and other types of incivility in the workplace and having an unsupportive director/dean. This research yields new and important knowledge about work characteristics that nurse faculty report shape their decisions to remain in or leave their current employment. Certain work characteristics were rated as important among all generations. Where similarities exist, broad strategies addressing work characteristics may effectively promote nurse faculty retention. However, where generational differences exist, retention-promoting strategies should target generation-specific preferences. © 2014 John Wiley & Sons Ltd.

  7. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  8. Pec power generation system using pure energy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K; Sonai, A; Kano, A [Toshiba International Fuel Cells Corp. (Japan). Cell Technology Development Dept.; Yatake, T [Toshiba International Fuel Cells Corp. (Japan). Plant Engineering Dept.

    2002-07-01

    A polymer electrolyte fuel cell (PEFC) power generation system using pure hydrogen was developed by Toshiba International Fuel Cells (TIFC), Japan, under the sponsorship of the World Energy Network (WE-NET) Project. The goals of the project consist of the construction of 30 kilowatt power generation plant for stationary application and target electrical efficiency of over 50 per cent. Two critical technologies were investigated for high utilization stack, as high hydrogen utilization operation represents one of the most important items for the achievement of target efficiency. The first technology examined was the humidification method from cathode side, while the second was the two-block configuration, which is arranged in series in accordance with the flow of hydrogen. Using these technologies as a basis for the work, a 5 kilowatt short stack was developed, and a steady performance was obtained under high hydrogen utilization of up to 98 per cent. It is expected that by March 2003 the design of the hydrogen fueled 30 kilowatt power generation plant will be completed and assembled. 1 ref., 1 tab., 11 figs.

  9. Employing a tri-axial accelerometer for estimating energy ...

    African Journals Online (AJOL)

    The Tritrac-R3D, a portable tri-axial accelerometer, was assessed for its ability to estimate energy expenditure during simulated load carrying activities. The Tritrac data were compared to metabolic data collected simultaneously by a MetaMax ergospirometry system while ten, healthy male subjects (aged 20.7 ±1.4 years) ...

  10. Wind energy industry in Germany. Turnover and employment

    International Nuclear Information System (INIS)

    Keuper, A.; Schmidt, A.

    1994-01-01

    As a consequence of the growing wind energy market in Germany the importance of the industry in this business are has grown. In 1994 the turnover will go beyond 500 million DM, and the number of employees will reach 2,900. The turnover and the number of employees are increasing in spite of the higher efficiency. In 1994 only 5 employees are needed by a manufacturer to install 1 MW rated power instead of 15 in 1989, and the ratio of installed power to manufacturer's turnover has risen from 0,25 W/DM in 1988 to 0,455 W/DM in 1994. On the other hand the turnover of the manufacturers per employee has increased from 80,000 DM in 1988 to 440,000 DM in 1994. Economic development has considerably been advanced by subsidies for the application of wind energy technology. (orig.)

  11. Wind energy - The facts. Vol. 3: Industry and employment

    International Nuclear Information System (INIS)

    Jacobsen, Henrik

    2004-01-01

    Since the last Wind Energy - The Facts report published in 1999, the European wind energy industry has made significant progress. There are several ways of monitoring this progress, such as measuring electricity output in MW or kW hours. However, the usual method is to use a measurement of installed capacity, so this chapter demonstrates national markets and their growth in terms of MW capacity installed. Wind experienced a surge of growth in California in the 1980s thanks to a combination of state and federal energy and investment tax credits. From 1980 to 1995, around 1,700 MW of wind capacity was installed and, although there were some turbines of poorer quality, the boom period provided a major export market for European manufacturers, and did much to establish the credibility of the industry. Since then, Europe has turned the tables and consolidated its position as the global market leader. Within Europe, certain countries are particularly strong: the top five in terms of installed capacity being Germany, Spain, Denmark, The Netherlands and Italy. (au)

  12. Modeling energy fluxes in heterogeneous landscapes employing a mosaic approach

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial diversity of soil and land use types are high, e.g. in Central Europe. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N 5.0. The aim of this study was to analyze the impact of the characteristics of two managed fields, planted with winter wheat and potato, on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N 5.0 to an analytical footprint model. The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). This approach accounts for the differences of the two soil types, of land use managements, and of canopy properties due to footprint size dynamics. Our preliminary simulation results show that a mosaic approach can improve modeling and analyzing energy fluxes when the land surface is heterogeneous. In this case our applied method is a promising approach to extend weather and climate models on the regional and on the global scale.

  13. Method and system of nuclear energy generation

    International Nuclear Information System (INIS)

    Wilke, W.

    1975-01-01

    The method is based on the nuclear reaction Li 6 (n,α)H 3 . Thermal neutrons, whose generation require a power reactor, are fed to a lithium deuterite target in such a manner that part of the tritons produced in this reaction undergo nuclear fusion of the kind d(T,n)α with the deuterons of the target. The remaining tritons are reacted with additional deuterons. The tritium produced in this reaction is processed and fed back to the lithium target over a triton source. It is also possible to process the tritium to a target, feed deuterons to it, and in addition to give the neutrons produced from the T(d,n)α reaction after slowing down to thermal energy to the lithium target. (DG/LH) [de

  14. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  15. Improvements to thermal plants for generating energy

    International Nuclear Information System (INIS)

    Pacault, P.H.

    1975-01-01

    Said invention relates to a procedure for superheating steam intended for steam cycled thermal plants of energy production, and particularly nuclear power plants. Said procedure combines two different working modes. According to the first working mode, the live steam is taken from the steam generator, mechanically compressed and the heat is partly transferred to the working fluid. According to the second working mode the heat is taken from an auxiliary fluid heated by an independent thermal source, distinct from the principal thermal source of the plant and this heat is partly transferred to the working fluid. A combination of both working modes enables the superheating of the working fluid to be obtained before it inflows the turbine and/or between two stages of said turbine [fr

  16. Wood-from-energy system and employment: effects on environment

    International Nuclear Information System (INIS)

    Defaye, S.

    1991-01-01

    Biomass and forest product under-extraction are strongly linked to rural zone desertification and to environmental degradation. It is shown how agriculture and forests are complementary areas and resources. Two concepts for rural zone management are presented and discussed: an environmentalist concept (such as maintenance of hedges and tree lines, without real profits), and a developmentalist concept (hedges and tree lines may generate products and profits). An approach that is at the same time local (and regional) in a global manner and on mean and long term, is required

  17. modelling of hydropower reservoir variables for energy generation

    African Journals Online (AJOL)

    Osondu

    the River Niger (Kainji and Jebba dams) in Nigeria for energy generation using multilayer ... coefficient showed that the networks are reliable for modeling energy generation as a function of ... water, like wind and sun, is a renewable resource.

  18. Employment and Wage Assimilation of Male First Generation Immigrants in Denmark

    DEFF Research Database (Denmark)

    Husted, Leif; Nielsen, Helena Skyt; Rosholm, Michael

    2000-01-01

    Labour market assimilation of Danish first generation male immigrants is analysed based on two panel data sets covering the population of immigrants and 10% of the Danish population during 1984-1995. Wages and employment probabilities are estimated jointly in a random effects model which corrects...... for unobserved cohort and individual effects and panel selectivity due to missing wage information. The results show that immigrants assimilate partially to Danes, but the assimilation process differs between refugees and non-refugees.......Labour market assimilation of Danish first generation male immigrants is analysed based on two panel data sets covering the population of immigrants and 10% of the Danish population during 1984-1995. Wages and employment probabilities are estimated jointly in a random effects model which corrects...

  19. Employment and Wage assimilation of Male First Generation Immigrants in Denmark

    DEFF Research Database (Denmark)

    Husted, Leif; Nielsen, Helena Skyt; Rosholm, Michael

    Labour market assimilation of Danish first generation male immigrants is analysed based on two panel data sets covering the population of immigrants and 10% of the Danish population during 1984-1995. Wages and employment probabilities are estimated jointly in a random effects model which corrects...... for unobserved cohort and individual effects and panel selectivity due to missing wage information. The results show that immigrants assimilate partially to Danes, but the assimilation process differs between refugees and non-refugees.......Labour market assimilation of Danish first generation male immigrants is analysed based on two panel data sets covering the population of immigrants and 10% of the Danish population during 1984-1995. Wages and employment probabilities are estimated jointly in a random effects model which corrects...

  20. Turbulence generation through intense kinetic energy sources

    Science.gov (United States)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  1. Turnover and employment in the German wind energy industry

    International Nuclear Information System (INIS)

    Keuper, A.

    1995-01-01

    Results of the fast growing wind energy market in 1994 are the turnover reaching more than 800 million DM, and the number of employees to about 3,700. In 1995 the manufacturers expect to need less than 4 employees to build and to install 1 MW rated power and to decrease the ratio of manufacturer's turnover per installed power unit to about 1900 DM/kW. In spite of this development it is expected that the turnover and the number of employees will increase due to the still fast growing market. (orig.)

  2. Employment and Wage Assimilation of Male First-generation immigrants in Denmark

    DEFF Research Database (Denmark)

    Husted, Leif; Nielsen, Helena Skyt; Rosholm, Michael

    2001-01-01

    Labour market assimilation of Danish first generation male immigrants is analysed based on two panel data sets covering the population of immigrants and 10% of the Danish population during 1984-1995. Wages and employment probabilities are estimated jointly in a random effects model which corrects...... for unobserved cohort and individual effects and panel selectivity due to missing wage information. The results show that immigrants assimilate partially to Danes, but the assimilation process differs between refugees and non-refugees....

  3. The Impact of Chinese FDI on Employment Generation in the Building and Construction Sector of Ghana

    Directory of Open Access Journals (Sweden)

    Kwasi Boakye – Gyasi

    2015-07-01

    Full Text Available One of the major concerns of governments in Africa in general and Ghana in particular is unemployment and underemployment. Most developing countries especially African countries compete to attract foreign direct investment (FDI into their economies with the desire of improving employment level and securing a sustainable development leading to economic growth. In view of this, the creation of jobs for the unemployed and technology transfer through Chinese investments has become complementary since Chinese FDI can be an important source for employment, economic growth and transformation processes. This study focuses on the contribution of China’s FDI on employment generation in the building and construction sector of Ghana. By using a robust regression model, the results show that, Chinese FDI flows on employment through direct effects on building and construction sector of Ghana have positive and significance on employment growth. This means that, Chinese FDI contributes to an efficient workforce which benefits an economy from high productivity and leads to growth in individual household incomes.

  4. The net employment impact of energy transition in France: An input-output analysis of the 'negaWatt' scenario

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2013-04-01

    We study the impact on employment in France of the implementation of the energy transition scenario built by negaWatt (2011), which provides a massive development of energy savings (through measures of sufficiency and energy efficiency) and renewable energy between 2012 and 2050. Compared to 2010, this scenario results in a halving of CO 2 emissions from energy sources in France in 2030 and a division by 16 in 2050, without capture and storage of CO 2 , without implementation of new nuclear power plant and closing existing plants after 40 years of operation at maximum. We calculate the effect on employment of the implementation of this scenario compared to a baseline scenario that extends recent developments and considers the policies already decided. The method used to calculate the effect on employment of each scenario is to calculate the cost of the main technical and organizational options used, to allocate these costs among the 118 branches of the French economy and multiply these costs by the employment content of each branch. The latter is estimated by input-output analysis, which enables the recording of jobs generated by the production of all inputs. One of two scenarios being more expensive than the other, one must take into account the negative effect on employment of funding such costs. For this, it is assumed that this additional cost is borne by households and that they decrease their consumption accordingly by the same amount. This avoids biasing the results in favour of the most expensive scenario. The implementation of negaWatt scenario leads to a positive effect on employment, on the order of 240 000 full-time equivalent jobs in 2020 and 630,000 in 2030. We study the sensitivity of results to assumptions on prices of imported energy, the evolution of labour productivity, the distribution of costs between households and governments, and finally the consumption-savings decision. The effect on employment is largely positive in all cases. (author)

  5. Smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting devices

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza

    2016-04-01

    This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation

  6. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  7. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    Science.gov (United States)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  8. Distributed coordination of energy storage with distributed generators

    NARCIS (Netherlands)

    Yang, Tao; Wu, Di; Stoorvogel, Antonie Arij; Stoustrup, Jakob

    2016-01-01

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal DER coordination problem considering

  9. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  10. Assessment of wind characteristics for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Koray Ulgen [Ege University, Izmir (Turkey). Solar Energy Institute; Asir Genc [Selcuk University, Konya (Turkey). Dept. of Statistics; Arif Hepbasli [Ege University, Izmir (Turkey). Dept. of Mechanical Engineering; Galip Oturanc [Selcuk University, Konya (Turkey). Dept. of Mathematics

    2004-11-15

    Wind technology in Turkey has gained considerable maturity over the last five years, and wind energy projects are becoming commercially attractive in the country. In practice, it is essential to describe the variation of wind speeds for optimizing the design of the systems resulting in less energy generating costs. The wind variation for a typical site is usually described using the so-called Weibull distribution. In this study, the two Weibull parameters of the wind speed distribution function, the shape parameter k (dimensionless) and the scale parameter c (m/s), were computed from the wind speed data for Aksehir in Konya, located in Central Anatolia in Turkey (latitude: 38.35{sup o} and longitude: 31.42{sup o}). Wind data, consisting of hourly wind speed records over a 6 year period, 1997-2002, were obtained from the Aksehir State Meteorological Station. Based on the experimental data, it was found that the numerical values of both Weibull parameters (k and c) for Aksehir vary over a wide range. The yearly values of k range from 1.756 to 2.076, while those of c are in the range of 2.956 to 3.444. Average seasonal Weibull distributions for Aksehir are given. The wind speed distributions are represented by Weibull distribution and also by Rayleigh distribution with a special case of the Weibull distribution for k = 2. The Rayleigh distribution is found to be suitable to represent the actual probability of wind speed data for the site studied. (author)

  11. Agricultural and forestry residues for decentralized energy generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Missagia, Bruna

    2011-10-11

    Regular electricity access is a key element for the economic development and social welfare of rural areas. Decentralized energy generation has the advantage of using local resources, increasing employment and reducing transmission and distribution losses. Brazil is a tropical country, endowed with vast arable land, plentiful precipitation levels, and a large supply of human labour. Furthermore, it has strong regional distinctions with geographical, cultural and economical differences. Forestry and agriculture, important activities in the Brazilian economy, are dependent on local people and are deeply connected to traditions, nature and culture. Furthermore, these activities generate a significant amount of residues that could be used in conversion technologies for biomass, based on type, availability and market demand. When biomass were used to generate energy locally, community members could have business opportunities, improving local economy and life quality of individuals while diversifying the Brazilian energy matrix, which is mostly based on hydropower. Alternatives for implementing small-scale decentralized biomass schemes are dependent on the screening of the existing biomass supply chains, the implementation of adapted technologies for local conditions and the exploration of local resources. The present research carried out a detailed field work in order to evaluate the potential of Brazilian biomass in different regions. The author identified crucial needs, usual constraints and possible challenges of rural electrification and economic development in Brazil. Several case studies and social groups were investigated in the Federal States of Minas Gerais, Sao Paulo and Para to identify different resource management strategies, which biomass technology was applied and the needs of the local population. It was concluded that the compaction of biomass to generate solid biofuels with uniform properties could be a cost-effective alternative for communities

  12. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  13. Generators for gearless wind energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Grauers, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    This paper discusses some design alternatives for directly driven generators, and one specific generator type is investigated for a wide range of rated power. First, the specification for a directly driven generator is presented, then different design alternatives are discussed. A radial-flux permanent magnet generator for frequency converter connection has been chosen for a more detailed investigation. The design, optimization and performance of that generator type are presented. Generators from 30 kW to 3 MW are designed and compared with conventional four-pole generators with gear. It is found that a directly driven generator can be more efficient than a conventional generator and gear and have a rather small diameter and a low active weight. 8 refs, 7 figs, 2 tabs

  14. Optimal condition for employing an axicon-generated Bessel beam to fabricate cylindrical microlens arrays

    Science.gov (United States)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji’an

    2018-05-01

    A numerical algorithm, modelling the transformation from a Gaussian beam to a Bessel beam, is presented for the purpose to study the optimal condition for employing an axicon-generated Bessel beam to fabricate cylindrical microlens arrays (CMLAs). By applying the numerical algorithm to simulate the spatial intensity distribution behind the axicon under different defects of a rotund-apex and different diameter ratios of an incident beam to the axicon, we find that the diffraction effects formed by the axicon edge can be almost eliminated when the diameter ratio is less than 1:2, but the spatial intensity distribution is disturbed dramatically even a few tens of microns deviation of the apex, especially for the front part of the axicon-generated Bessel beam. Fortunately, the lateral intensity profile in the rear part still maintains a desirable Bessel curve. Therefore, the rear part of the Bessel area and the less than 1:2 diameter ratio are the optimal choice for employing an axicon-generated Bessel beam to implement surface microstructures fabrication. Furthermore, by applying the optimal conditions to direct writing microstructures on fused silica with a femtosecond (fs) laser, a large area close-packed CMLA is fabricated. The CMLA presents high quality and uniformity and its optical performance is also demonstrated.

  15. EmployRES. The impact of renewable energy policy on economic growth and employment in the European Union. Final report

    International Nuclear Information System (INIS)

    Ragwitz, M.; Schade, W.; Breitschopf, B.; Walz, R.; Helfrich, N.; Rathmann, M.; Resch, G.; Panzer, C.; Faber, T.; Haas, R.; Nathani, C.; Holzhey, M.; Konstantinaviciute, I.; Zagame, P.; Fougeyrollas, A.; Le Hir, B.

    2009-04-01

    This study aims to meet the need for scientifically robust information on the gross effects (direct and indirect) as well as on the net effects (including both conventional replacement and budget effects) of renewable energy policies in Europe. Furthermore, the future development of RES in Europe will take place against the background of a global market for RES technology. This global market and the potential share of European industries in it will play a critical role in the potentials for growth and employment. This study aims to provide a sound scientific analysis of these issues. This report is divided into four main parts, A, B, C and D. While the first three covers the introduction, the theoretical approach, the modelling steps and structure of the report, the fourth part, part D, discusses in detail the models and results of the projects. It begins with chapter D 1 which describes past RES deployment and its costs. Then follows the past macroeconomic impacts presented by gross effects on employment and value added (D 2). Thereafter, the future potential (D 3) and future deployment (D 4) of renewable energy sources (RES) are discussed. Before the presentation of the future gross and net effects, the five scenarios used in the macro-economic models (D 5) are explained in detail. Finally we depict the future gross and net impacts on employment and GDP in D 6 and D 7, respectively. The comparison between the results of the two models and our conclusion for the study follows in chapter D 8 and 9

  16. Distributed Energy Generation for Climate Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Stout, Sherry; Hotchkiss, Eliza

    2017-05-24

    Distributed generation can play a critical role in supporting climate adaptation goals. This infographic style poster will showcase the role of distributed generation in achieving a wide range of technical and policy goals and social services associated with climate adaptation.

  17. Employment factors for wind and solar energy technologies: A literature review

    NARCIS (Netherlands)

    Cameron, L.; van der Zwaan, B.

    2015-01-01

    In this paper we present an up-to-date literature review on employment opportunities associated with the deployment of renewable energy technology. We identified approximately 70 studies and data sources published over the past decade that report analysed or observed employment impacts of renewable

  18. Urban energy generation and the role of cities

    DEFF Research Database (Denmark)

    Groth, Niels Boje; Fertner, Christian; Große, Juliane

    2016-01-01

    Although a major part of energy consumption happens in cities, contemporary energy generation is less obviously connected to the urban structure. Energy based on fossil fuels and consumed in transportation is produced at global scale; energy for electricity is usually distributed through a national...... or continental grid; energy for heating, if related to district heating systems or the use of local/regional resources for its generation (e.g. biomass, waste), has a more local or at least regional character. In the latter case, electricity might be a by-product of combined-heat-power plants, but still feeding...... on energy generation and distribution. However, contemporary focus on sustainable and efficient use of resources and energy at local level, mainstreaming of renewable energy production and ideas of urban energy harvesting put energy generation again on the local agenda. The role of cities can be twofold: (1...

  19. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  20. Performance of cryogenic thermoelectric generators in LNG cold energy utilization

    International Nuclear Information System (INIS)

    Sun Wei; Hu Peng; Chen Zeshao; Jia Lei

    2005-01-01

    The cold energy of liquefied natural gas (LNG) is generally wasted when the LNG is extracted for utilization. This paper proposes cryogenic thermoelectric generators to recover this cold energy. The theoretical performance of the generator has been analyzed. An analytical method and numerical method of calculation of the optimum parameters of the generator have been demonstrated

  1. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  2. SEADS 3.0 Sectoral Energy/Employment Analysis and Data System

    Energy Technology Data Exchange (ETDEWEB)

    Roop, Joseph M.; Anderson, David A.; Schultz, Robert W.; Elliott, Douglas B.

    2007-12-17

    SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, is a revision and upgrading of SEADS--PC, a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments (Roop, et al., 1995). If a question can be formulated so that implications can be translated into changes in final demands for goods and services, then SEADS 3.0 provides a quick and easy tool to assess preliminary impacts. And SEADS 3.0 should be considered just that: a quick and easy way to get preliminary results. Often a thorough answer, even to such a simple question as, “What would be the effect on U. S. energy use and employment if the Federal Government doubled R&D expenditures?” requires a more sophisticated analytical framework than the input-output structure embedded in SEADS 3.0. This tool uses a static, input-output model to assess the impacts of changes in final demands on first industry output, then employment and energy use. The employment and energy impacts are derived by multiplying the industry outputs (derived from the changed final demands) by industry-specific energy and employment coefficients. The tool also allows for the specification of regional or state employment impacts, though this option is not available for energy impacts.

  3. Exploration of the potential employment opportunities in the field of renewable energies in ''Wadi AL-ajal''

    International Nuclear Information System (INIS)

    Azzain, Gassem

    2015-01-01

    This inductive research is located within the theme of the management and development of renewable energy systems. In brief, It introduces the potential and ability of renewable energies available in “Wadi AL-ajal”, which is located south-west of Libya, in providing many job opportunities; in addition to power generation. Several proposed investment models in solar, wind and biomass energies in this paper show -via statistical approach- how to provide a variety of job opportunities according to investment activities proposed in the three mentioned fields of renewable energies. In conclusion, the paper confirms the availability of the earlier mentioned renewable energies in varying amounts and varying degrees, they are all able to create jobs and employment of advanced technology, which are necessary for any national program for sustainable development, with the support of economic stimuli that affect investment, such as; the market activation, human resources, and finance.(author)

  4. Employment impacts of energy conservation schemes in the residential sector. Calculation of direct and indirect employment effects using a dedicated input/output simulation approach

    International Nuclear Information System (INIS)

    Jeeninga, H.; Weber, C.; Maeenpaeae, I.; Rivero Garcia, F.; Wiltshire, V.; Wade, J.

    1999-10-01

    The relationship between investments in energy efficiency and employment is investigated. The employment effects of several energy conservation schemes implemented in the residential sector are determined by means of a dedicated input/output simulation approach. The employment effects of energy conservation schemes were determined for France, Germany, the Netherlands, Spain and the United Kingdom. Within the time frame of the project, it was not feasible to perform a comparable analysis for Greece, Ireland and Austria. For Finland, the employment effects of energy auditing schemes were investigated by means of a macro economic simulation model. The main driving force behind the positive employment effect of investment in energy efficiency in the residential sector is the fact that the energy sector has a rather low labour intensity. The resulting shift of expenditures from the energy sector to other sectors with higher labour intensity leads to increased employment. The main mechanisms that determine the net shift in employment resulting from investments in energy conservation are: 1. The employment effect related to the initial investment in energy efficiency; 2. The energy saving effect. Due to lower energy bill, a shift in expenditure pattern will occur from the labour extensive energy sector towards sectors with higher labour intensity, thus inducing a net positive effect on employment; 3. The effects of money transfers between sectors. For example, when the investment is subsidised by the government, money is transferred from the governmental sector to the residential sector; 4. Changes in the total government budget as a result of changes in total tax revenue and expenditures on unemployment benefits. Different financing methods for the investment in energy efficiency are analysed. The initial investment can be financed from the general household consumption budget, by means of a loan, using a subsidy or using private savings. The following input parameters

  5. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  6. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  7. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  8. Concrete thermal energy storage for steam generation

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Establishing enhancement methods to develop cost-effective thermal energy storage technology requires a detailed analysis. In this paper, a numerical investigation of the concrete based thermal energy storage system is carried out. The storage system consists of a heat transfer fluid flowing inside...

  9. Optimization of airborne wind energy generators

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2012-01-01

    This paper presents novel results related to an innovative airborne wind energy technology, named Kitenergy, for the conversion of high-altitude wind energy into electricity. The research activities carried out in the last five years, including theoretical analyses, numerical simulations, and

  10. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  11. Economic and Industrial Development: EID - EMPLOY. Final Report, task 1. Review of approaches for employment impact assessment of renewable energy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara; Nathani, Carsten; Resch, Gustav

    2011-11-15

    The importance of renewable energy in energy systems is increasing at an impressive rate, and the expectation is that this tendency will continue in the longer term. As a consequence, there is a strong need for reliable insight into the employment benefits from renewable energy. The current knowledge on the economic impacts of large-scale deployment of renewable energy technologies is more or less derived on an ad hoc basis and consists of a variety of different methodologies with different objectives. This is why the International Energy Agency's Implementing Agreement on Renewable Energy Technology Deployment (IEA-RETD) would like to facilitate a more structural approach, which will contribute to reliable and consistent insights of employment effects from deployment of renewable energy technologies. The objectives of the EMPLOY-EID project are to: Provide guidelines based on a thorough review of best practices, which are able to contribute to a consistent, reliable framework in which to measure employment effects from renewable energy deployment and which can be replicated from one country to another; Identify data sources and/or inputs required in application of such guidelines; Provide better understanding of key parameters and mechanisms that determine contribution of renewable energy employment; Assess availability of sources for employment benefit data for all RETD member countries as well as other interesting countries; Provide concrete gross employment benefit data to countries where data is available through application of the guidelines and best practices; and, Document the economic effects of renewable energy deployment through a publishable brochure of the main project results, presentations, the guidelines and background report. This project will help achieve the IEA-RETD's objective to ''empowering policy makers and energy market actors through the provision of information, tools and resources'' by underlining the

  12. Economic and Industrial Development: EID - EMPLOY. Final Report, task 1. Review of approaches for employment impact assessment of renewable energy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara; Nathani, Carsten; Resch, Gustav

    2011-11-15

    The importance of renewable energy in energy systems is increasing at an impressive rate, and the expectation is that this tendency will continue in the longer term. As a consequence, there is a strong need for reliable insight into the employment benefits from renewable energy. The current knowledge on the economic impacts of large-scale deployment of renewable energy technologies is more or less derived on an ad hoc basis and consists of a variety of different methodologies with different objectives. This is why the International Energy Agency's Implementing Agreement on Renewable Energy Technology Deployment (IEA-RETD) would like to facilitate a more structural approach, which will contribute to reliable and consistent insights of employment effects from deployment of renewable energy technologies. The objectives of the EMPLOY-EID project are to: Provide guidelines based on a thorough review of best practices, which are able to contribute to a consistent, reliable framework in which to measure employment effects from renewable energy deployment and which can be replicated from one country to another; Identify data sources and/or inputs required in application of such guidelines; Provide better understanding of key parameters and mechanisms that determine contribution of renewable energy employment; Assess availability of sources for employment benefit data for all RETD member countries as well as other interesting countries; Provide concrete gross employment benefit data to countries where data is available through application of the guidelines and best practices; and, Document the economic effects of renewable energy deployment through a publishable brochure of the main project results, presentations, the guidelines and background report. This project will help achieve the IEA-RETD's objective to ''empowering policy makers and energy market actors through the provision of information, tools and resources'' by underlining the economic and industrial impacts of

  13. Embedded generation for industrial demand response in renewable energy markets

    International Nuclear Information System (INIS)

    Leanez, Frank J.; Drayton, Glenn

    2010-01-01

    Uncertainty in the electrical energy market is expected to increase with growth in the percentage of generation using renewable resources. Demand response can play a key role in giving stability to system operation. This paper discusses the embedded generation for industrial demand response in renewable energy markets. The methodology of the demand response is explained. It consists of long-term optimization and stochastic optimization. Wind energy, among all the renewable resources, is becoming increasingly popular. Volatility in the wind energy sector is high and this is explained using examples. Uncertainty in the wind market is shown using stochastic optimization. Alternative techniques for generation of wind energy were seen to be needed. Embedded generation techniques include co-generation (CHP) and pump storage among others. These techniques are analyzed and the results are presented. From these results, it is seen that investment in renewables is immediately required and that innovative generation technologies are also required over the long-term.

  14. Conceptual study on deep-underground energy generation base

    International Nuclear Information System (INIS)

    Hayano, M.; Okawa, T.

    1992-01-01

    Mitsubishi Atomic Power Industries, Inc. (MAPI) and Taisei Corporation have started a conceptual study on a deep-underground energy generation base for future cities in the 21st century around the metropolitan area, which will be increasingly important from viewpoints of the autonomy and sharing of the energy supply to the future cities. The energy generation base consists of a gas cooled reactor with naturally safety features as the energy source, an electric generation base using the Alkali Metal Thermo-electric Converter (AMTEC), a hydrogen production plant with the Solid Polymer Electrolyte (SPE), a hydrogen storage plant with the Metal Hydride (MH), and a desalination plant. This paper describes a concept of the energy generation base and the structure in the deep-underground, in soft soil, then the basic system of each plant, and finally discusses the feasibility of the deep-underground energy generation base. (author)

  15. Probabilistic generation assessment system of renewable energy in Korea

    Directory of Open Access Journals (Sweden)

    Yeonchan Lee

    2016-01-01

    Full Text Available This paper proposes probabilistic generation assessment system introduction of renewable energy generators. This paper is focused on wind turbine generator and solar cell generator. The proposed method uses an assessment model based on probabilistic model considering uncertainty of resources (wind speed and solar radiation. Equivalent generation function of the wind and solar farms are evaluated. The equivalent generation curves of wind farms and solar farms are assessed using regression analysis method using typical least square method from last actual generation data for wind farms. The proposed model is applied to Korea Renewable Generation System of 8 grouped 41 wind farms and 9 grouped around 600 solar farms in South Korea.

  16. Risks of energy generation in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    Life expectancy reduction (LER) figures due to various risks are given. The example, air pollution from coal burning gives an LER of 12 days, and nuclear power, by government estimates, gives an LER of 0.04 days. The 25-day LER from all our use of energy is placed in perspective by comparing equivalent risks from everday hazards. The logical assumsption that reducing energy consumption reduces the LER figure is shown to be false because lower energy consumption lowers per capita income, which in turn greatly reduces life expectancy of the population. Energy shortage also ultimately leads to greater unemployment which increases the rate of suicide and murder and so, again, decreases life expectancy. (J.T.A.)

  17. Post-harvest technologies for various crops of pakistan: status quo, employment generation and prospects

    International Nuclear Information System (INIS)

    Ahmad, M.

    2005-01-01

    The climatic conditions of Pakistan vary from tropical to temperate, allow 40 different kinds of vegetables, 21 type of fruit, and 5 major crops (wheat, cotton, rice, sugarcane, and maize) to grow. During the peak harvest-season, a great proportion of fresh agricultural/horticultural produce is lost, due to unavailability of suitable post-harvest technologies. An effort was made to present the status quo, constraints, Government policies and possible post-harvest technologies that can be developed/adopted in the country to generate employment in the rural areas. Secondary processing-industry (flour mills, sugar mills, oil mills etc.) is fairly developed in the country. However. primary processing of agricultural produce is poorly developed in the country. The higher cost of the processed products, consumers habits of eating fresh commodities, seasonability of fresh fruit and vegetables, and low quality of the processed products are the key-constraints for the slow growth of post-harvest processing industry. By removing these constraints, and by developing/adopting various technologies, identified in this paper, we may help to establish post-harvest processing industry on sound footings. Consequently, the employment-opportunities will increase in the rural areas of the country. (author)

  18. Optimized Energy Procurement for Cellular Networks with Uncertain Renewable Energy Generation

    KAUST Repository

    Rached, Nadhir B.

    2017-02-07

    Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network is investigated. For a one-day operation cycle, the cellular network aims to reduce energy procurement costs from the smart grid by optimizing the amounts of energy procured from their locally deployed RE sources as well as from the smart grid. In addition to that, it aims to determine the extra amount of energy to be sold to the electrical grid at each time period. Chance constrained optimization is first proposed to deal with the randomness in the RE generation. Then, to make the optimization problem tractable, two well- know convex approximation methods, namely; Chernoff and Chebyshev based-approaches, are analyzed in details. Numerical results investigate the optimized energy procurement for various daily scenarios and compare between the performances of the employed convex approximation approaches.

  19. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  20. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  1. Draft Submission; Social Cost of Energy Generation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  2. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  3. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  4. The environmental interactions of tidal and wave energy generation devices

    OpenAIRE

    Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E.

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other...

  5. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  6. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  7. Microwave generation for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.; Levush, B.

    1994-05-01

    This task involves the feasibility of high-power pulsed, high- efficiency, millimeter-wave free electron lasers (FEL) for ecr of thermonuclear plasmas. The research undertaken is to develop high average power FEL at voltage below IMV allowing for smaller and less costly power supplies. Linear amplification experiments employing a No. 56 period untapered wiggler have been conducted, and substantial small signal gain was observed at 95 GHz over a wide range of experimental conditions consistent with the prediction of one-dimensional numerical simulation. Progress is also reported on theoretical studies relating to the development of high-power gryotron and the ability to predict and improve the performance of various cavity designs

  8. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  9. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  10. Elasticity and Causality Among Electricity Generation from Renewable Energy and Its Determinants in Malaysia

    OpenAIRE

    Bekhet, Hussain Ali; Harun, Nor Hamisham

    2017-01-01

    Renewable energy is a significant issue in attaining low-carbon emissions for Malaysia’s economic development path. Therefore, this study investigates the determinants (capital, labour, economic growth, and financial development), which has an influence on renewable energy generation, using time-series data from 1982 to 2015 period. The augmented Cobb–Douglas production function, F-bound test, and vector error correction model are employed to achieve the objectives of the study. The result of...

  11. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  12. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  13. Plasma generator utilizing dielectric member for carrying microwave energy

    International Nuclear Information System (INIS)

    Aklufi, M.E.; Brock, D.W.

    1991-01-01

    This patent describes a system in which electromagnetic energy is used to generate a plasma from a gas. It comprises a reaction chamber which is evacuated to less than ambient pressure and into which the gas is introduced; and a nonconductive member for carrying the electromagnetic energy and for emitting the electromagnetic energy so that a plasma is formed from the gas

  14. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  15. Nonlinear sound generation by high energy particles

    International Nuclear Information System (INIS)

    Westervelt, P.J.

    1978-01-01

    In connection with Project DUMAND, the proposal to utilize the ocean as a giant acoustic detector of neutrinos, the applicability of a recent theory of thermoacoustic arrays [Peter J. Westervelt and Richard S. Larson, J. Acoust. Soc. Am. 54, 121 (1973)] is studied. In the static case or at very low frequencies, about 10% of the coefficient of thermal expansion for water at 20 0 C can be attributed to Debye-like modes. Debye-like modes generate sound via the nonlinear mechanism responsible for the operation of the parametric acoustic array [Peter J. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963)]. The contribution of the Debye-like modes to the thermal expansion coefficient and thus to the sound pressure is essentially independent of the ambient water temperature. Hence if the Debye-like modes are not fully excited as is postulated to be the case at high frequencies, then the thermal expansion coefficient will be less than the static value by an amount that causes it to vanish at about 6 0 C instead of at 4 0 C, the temperature of maximum water density. This theory is in agreement with recent measurements of the temperature dependence of sound generated by proton deposition in water [L. Sulak, et al., Proceedings of the La Jolla Workshop on Acoustic Detection of Neutrinos, 25--29 July 1977, Scripps Institute of Oceanography, U.C.L.A., San Diego, Hugh Bradner, Ed.

  16. An innovative approach for energy generation from waves

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habaibeh, A. [Advanced Design and Manufacturing Engineering Centre, School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); Su, D. [School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); McCague, J. [Technical Director, Ocean Navitas Ltd., Lincolnshire (United Kingdom); Knight, A. [Marketing and Communications Manager, Ocean Navitas Ltd., Lincolnshire (United Kingdom)

    2010-08-15

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a {+-}0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves. (author)

  17. An innovative approach for energy generation from waves

    International Nuclear Information System (INIS)

    Al-Habaibeh, A.; Su, D.; McCague, J.; Knight, A.

    2010-01-01

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a ±0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves.

  18. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  19. Promoting nuclear energy: meeting with new generations

    International Nuclear Information System (INIS)

    Uemura, George; Neves, Maria A.; Pedron, Marilene Quinaud; Guimaraes, Regia R. Ramirez; Filgueiras, Sergio A. Cunha

    2000-01-01

    The VII General Congress on Nuclear Energy (VII CGEN) decided on another approach, in order to promote nuclear energy (NE) for the average public. Instead of promoting an event for the nuclear area, the VII CGEN was open to the general public, aiming at high schools of the city of Belo Horizonte, where the meeting was held. The papers submitted were classified to two poster sessions, one called journalistic, open to the public, and technical, for the congressmen. The authors of the former session were asked to make their posters understandable for an average person. The present article shows the strategies used in dealing with local high schools, which includes the preparation of two series of posters, one dealing with the history of NE until 1945, and the other with applications of NE, due to the lack of this kind of material in Portuguese. The results of these efforts are shown and discussed, in terms of a better public image for NE and her community in Brazil. The public response showed that there is more than enough public for this kind of event, but not events enough. (author)

  20. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  1. System for energy harvesting and/or generation, storage, and delivery

    Science.gov (United States)

    Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor); DeGreeff, Jenniffer Leigh (Inventor)

    2011-01-01

    A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.

  2. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    This chapter introduces Energy System Analysis methodologies and tools, which can be used for identifying the best application of different Fuel Cell (FC) technologies to different regional or national energy systems. The main point is that the benefits of using FC technologies indeed depend...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... technologies are very often connected to the use of hydrogen, which has to be provided e.g. from electrolysers. Decentralised and distributed generation has the possibility of improving the overall energy efficiency and flexibility of energy systems. Therefore, energy system analysis tools and methodologies...

  3. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  4. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  5. Comparison of the dielectric electroactive polymer generator energy harvesting cycles

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    The Dielectric ElectroActive Polymer (DEAP) generator energy harvesting cycles have been in the spotlight of the scientific interest for the past few years. Indeed, several articles have demonstrated thorough and comprehensive comparisons of the generator fundamental energy harvesting cycles......, namely Constant Charge (CC), Constant Voltage (CV) and Constant E-field (CE), based on averaged theoretical models. Yet, it has not been possible until present to validate the outcome of those comparisons via respective experimental results. In this paper, all three primary energy harvesting cycles...... are experimentally compared, based upon the coupling of a DEAP generator with a bidirectional non-isolated power electronic converter, by means of energy gain, energy harvesting efficiency and energy conversion efficiency....

  6. Generating Community, Generating Justice? The production and circulation of value in community energy initiatives

    Directory of Open Access Journals (Sweden)

    Taylor Chase Dotson

    2016-12-01

    Full Text Available In this paper, we explore the potentialities and interconnections between existing and hypothetical community energy systems and the concept of generative justice. New York State’s more recent official energy plan, for instance, includes provisions for community-scale microgrids, and several European nations offer significant financial support to citizens interested in building micro and intermediate-scale renewable energy systems. Such efforts and technologies appear to promise some degree of generative justice, returning much of the value generated by distributed renewable energy back to the community producing it. However, most currently conceived and implemented community energy systems recirculate value in very narrow and limited ways. Building upon an analysis of New York energy policy and on-the-ground cases, we explore community energy’s potential. What kinds of value are being generated by community energy systems and for whom? How could such efforts be more generative of justice across a broad range of values, not just electrons and dollars? Through the attempt to broaden thinking not only about community energy systems but also the concept of generative justice, we connect technological and organizational configurations of community energy systems and the forms of value they have the potential to generate: including, the production of grassroots energy and organizational expertise, the capacity for local and personal autonomy in energy planning and decision-making, and the enhancement of an affective sense and embodied experience of community. Finally, we examine some of the barriers to realizing more generatively just community energy systems. 

  7. Analysis and control of induction generator supplying stand-alone AC loads employing a Matrix Converter

    Directory of Open Access Journals (Sweden)

    Sumedha Mahajan

    2017-04-01

    Full Text Available This paper proposes a Capacitor Excited Induction Generator (CEIG-Matrix Converter (MC system for feeding stand-alone AC loads. The variable output voltage magnitude and frequency from CEIG is converted into a constant voltage magnitude and frequency at the load terminals by controlling MC using Space Vector Modulation (SVM technique. This single-stage MC is turned up as a good alternative for the proposed system against commonly used AC/DC/AC two stage power converters. The configuration and implementation of the closed-loop control scheme employing dSPACE 1103 real time controller have been fully described in the paper. The proposed closed-loop controller regulates the AC load voltage irrespective of changes in the prime mover speed and load. A method for predetermining the steady-state performance of the proposed system has been developed and described with relevant analytical expressions. The effectiveness of the proposed system is exemplified through simulation results for various operating conditions. The proposed control technique is further validated using an experimental setup developed in the laboratory.

  8. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  9. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Regional-employment impact of rapidly escalating energy costs. [Riverside-San Bernardino SMSA

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, D X

    1983-04-01

    This paper presents a methodology for incorporating price-induced technological substitution into a regional input-output forecasting model. The model was used to determine the employment impacts of rapidly escalating energy costs on the Riverside-San Bernardino (California) SMSA. The results indicate that the substitution effect between energy and other goods was dominated by the income effect. A reallocation of consumer expenditures from labor-intensive to energy-intensive goods occurred, resulting in a two- to threefold increase in the unemployment rate among low-skilled individuals. 18 references, 5 tables.

  11. Solving employment problems in the European Union: The role of energy efficiency

    International Nuclear Information System (INIS)

    Wiltshire, V.

    1998-01-01

    This paper is based on a project funded under the European Commission's SAVE (Specific Actions for Vigorous Energy Efficiency) program. The project is looking at the employment implications of energy efficiency programs, using a large number of case studies throughout the nine European Union (EU) countries participating in the project. Various modeling techniques are being used to investigate policy scenarios. The EU is particularly interested in looking at employment potential of energy efficiency at the present time. Traditionally, jobs in the environmental sector have only been seen as occurring in end-of-pipe type industries, such as pollution control; but a large potential for employment opportunities has now been recognized in the energy efficiency sector. Included in the study will be a detailed discussion of the quality, as well as the quantity, of jobs created, i.e. what skill levels will be required and the types of people who would wish to undertake the work. The qualitative aspect of jobs will be looked at for their suitability for solving EU and country specific problems, such as long term unemployment of unskilled workers. This paper will present some initial results from the study and discuss the issues raised by it and by other recent work in this area. Such issues include not only the types and numbers of jobs directly created through the programs, but also indirect effects on the local, national and international economies. The negative effects, such as the reduced energy usage effect on the supply industry will also be examined

  12. Energy conservation and sustainable employment. Curse or blessing?; Energiebesparing en duurzame arbeid. Vloek of zegen?

    Energy Technology Data Exchange (ETDEWEB)

    Settels, P.J.M. [Safety, Health Services and Ergonomics, ING HR-Nederland, Amsterdam (Netherlands)

    2010-11-15

    Energy conservation and sustainable employment is a contradiction. Sustainable employment is the fine tuning between work, tools and people. Sustainable physical working conditions and seasonal influences on human beings. Daylight Prevention for heat and cold resistance. Good illuminance is justified light. Improper light brings discomfort and costs money. LED lighting when it is not applied in the right way; costs of leakage. Integration of technology and human expertise provides sustainable human vitality, lower maintenance facilities, proper energy bills, higher returns for the company. Profit for management and shareholders and for the Netherlands as a whole. [Dutch] Uit verschillende onderzoeken blijkt dat positieve waardering meer en langduriger een hoger prestatie rendement oplevert, dan te wijzen op het verbeteren van de slechte prestaties. In dit artikel wordt een en ander opgehangen aan pogingen van bedrijven om energie te besparen en de arbeid duurzaam te maken en de werkomstandigheden te verbeteren.

  13. Economic and industrial development. EID - EMPLOY. Final report. Task 1. Review of approaches for employment impact assessment of renewable energy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Nathani, Carsten; Resch, Gustav

    2011-11-15

    The objective of this study is to provide an overview of existing impact assessment studies that analyse employment impacts of renewable energy (RE) deployment and to show which methodological approaches are best suitable to assess employment effect in the field of RE- electricity. A first review shows a large variety of impact assessment studies in the field of energy deployment applying a rather broad array of methodological approaches. Bounding the studies to RE-electricity considerably reduces the number of studies, but not necessarily the number of approaches. Due to different approaches the questions answered by the impact assessment studies cover a wide range that captures e.g. limited impacts in the RE industry as well as overarching employment impacts in the overall economy. First, based on the research focus of the studies and their impacts (Figure 0-1), we classify the assessed studies on employment impacts into two groups: gross employment studies and net employment studies. They aim to answer different policy questions and capture different effects: - Gross employment studies focus on the economic relevance of the RE industry in terms of employment, thus on the number of jobs provided in the RE industry and the structural analysis of employment in the RE industry. Furthermore employment in supplying industries are also included as indirect or induced impacts. The aim is to provide transparency on employment in an industry that is in the public interest but not adequately represented in official statistics, and, furthermore, enabling monitoring of this industry in the course of RE promotion. Gross studies take into account positive effects of RE deployment. - Net employment impact studies aim to assess the overall economic impact of promoting RE deployment, thus the change of the number of jobs in the total economy. For this, they take into account negative and positive effects of RE deployment on employment in all economic sectors and hence provide a

  14. The Impact of Energy Prices on Employment and Environmental Performance: Evidence from French Manufacturing Establishments

    International Nuclear Information System (INIS)

    Marin, Giovanni; Vona, Francesco

    2017-01-01

    This paper evaluates the historical influence of energy prices on a series of measures of environmental and economic performance for a panel of French manufacturing establishments over the period 1997-2010. The focus on energy prices is motivated by the fact that changes in environmental and energy policies have been dominated by substantial reductions in discounts for large consumers, making the evaluation of each policy in isolation exceedingly difficult. To identify price effects, we construct a shift-share instrument that captures only the exogenous variation in establishment-specific energy prices. Our results highlight a trade-off between environmental and economic goals: although a 10 percent increase in energy prices brings about a 6 percent reduction in energy consumption and to a 11 percent reduction in CO_2 emissions, such an increase also has a modestly negative impact on employment (-2.6 percent) and very small impact on wages and productivity. The negative employment effects are mostly concentrated in energy-intensive and trade-exposed sectors. Simulating the effect of a carbon tax, we show that job losses for the most exposed sectors can be quite large. However, these effects are upper bounds and we show that they are significantly mitigated in multi-plant firms by labor reallocation across establishments. (authors)

  15. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    Science.gov (United States)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  16. A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, C.S.; Yeon, J.U.; Jeoung, H.M.; Choi, J.H. [Chungbuk National University (Korea); Lee, H.J; Hong, G.W. [Korea Atomic Energy Research Institute (Korea)

    2000-06-01

    The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy storage system)is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy, In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal currents for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment. (author). 15 refs., 17 figs., 2 tabs.

  17. Behaviours, transmissions, generations: why is energy efficiency not enough?

    Energy Technology Data Exchange (ETDEWEB)

    Garabuau-Moussaoui, Isabelle (Electricite de France, Research and Development (France))

    2009-07-01

    Energy use is nowadays a very important question, in the context of global warming and expensive prices of energy. 'Energy conservation' is a paradox: environmental awareness increases, but also energy demand. Sociological knowledge concerning energy uses and energy savings remains important to understand the possible evolutions of practices and values and thus the possible future energy policies. Can the 'consumer society' become a 'less energy-intensive' society? This paper proposes to innovate with a 'new' way to analyse behaviours and to help policy makers to break the walls of 'the behavioural complexity'. We argue that energy efficiency, energy-using products and activities are socially embedded. More specifically, they depend on the 'social age' of people (children, teenagers, young adults, parents, old age people) and on their generation (events, experiences that people did live). The demonstration is based on the analysis of several qualitative studies carried out in France, showing that the generational and social ages analysis could be very efficient and innovative to understand: How are information, policies and energy-efficient technologies understood and embodied by people according to their age and their 'life story'? What kind of 'energy-related material culture' have people, and how does it evolve during the life? In a context of increasing energy demand, is it possible to change the energy-intensive 'socio-technical' mainstream towards a more sustainable way of life? What are the best moments during life for a behavioural change towards a less energy intensive way of life? Can we count on the new generation, to be more aware and less 'energy-intensive'?

  18. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  19. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    Instrumentation and Control (I and C) systems in current operating plants have not changed appreciably since their original design in the 1950's. These systems depend on a variety of traditional process and radiation sensors for the measurement of safety and control variables such as temperature, pressure, and neutron flux. To improve their performance and to make them more robust, many plant control systems have been upgraded from analog to digital; most of them continue to utilize traditional single-input single-output architecture. Transmission of data, for the most part, continues to employ large coaxial cables. These cables are not the small cables used in a laboratory (i.e., RG-58 or RG-59). Because of concern about electromagnetic and radio frequency interference and other environmental effects, bulky triax cables, which are cables with two outer shields separated by an insulator, are used. In a nuclear plant there are literally miles of cables and hundreds of specialized penetrations for cables going through containment or pressure vessel walls. The I and C systems in the advanced light water reactor (ALWR) designs, i.e., Generation III reactors, do employ more advanced technology than current plants; however, they do not incorporate new technology on a broad scale. This in part is a consequence of the ALWR design philosophy that discouraged use of advanced technology if current technology was adequate. As a consequence, the I and C systems in the ALWRs continue to make use of current technology. There are two exceptions, however, which include the broad use of software-based digital systems and fiber optics for signal isolation and data transmission in nonradioactive areas. The ALWR design philosophy was a justifiably low-risk approach when considering the overall objective of 'capturing' lessons learned from current operating plants to design a plant that would exhibit performance superior to current plants and would be relatively easy to license without

  20. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  1. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

    International Nuclear Information System (INIS)

    Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A.

    2013-01-01

    The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power. - Highlights: ► Nuclear, “renewable” and fossil energy are comparable on a uniform physical basis. ► Energy storage is considered for the calculation, reducing the ERoEI remarkably. ► All power systems generate more energy than they consume. ► Photovoltaics, biomass and wind (buffered) are below the economical threshold

  2. In Vitro Assessment of Three Clinical Lithotripters Employing Different Shock Wave Generators.

    Science.gov (United States)

    Faragher, Stuart Roy; Cleveland, Robin O; Kumar, Sunil; Wiseman, Oliver J; Turney, Benjamin W

    2016-05-01

    To test the hypothesis that shock wave lithotripsy machines vary in their ability to fragment standardized artificial urinary calculi. An in vitro test configuration was used to fragment synthetic U-30 Gypsum (U.S. Gypsum, Chicago, IL) stones (mean length 7.1 ± 0.2 mm, mean diameter 6.5 ± 0.07 mm, mean mass 299 ± 16 mg) using the Sonolith i-sys (EDAP TMS, Vaulx-en-Velin, France), Modulith SLX F2 (Storz Medical AG, Tägerwilen, Switzerland), and Piezolith 3000 (Richard Wolf GmbH, Knittlingen, Germany) lithotripters. Gypsum stones were placed at the nominal focus and treated with 250, 500, or 1000 shocks. The residual mass following passage through a 2-mm wire mesh was measured and compared using ANOVA and the Tukey-Kramer HSD test. There was no statistically significant difference between the Modulith SLX F2 and Piezolith 3000 lithotripters for 250 and 1000 shock treatments (p = 0.34 and 0.31, respectively). The Piezolith 3000 demonstrated the most favorable stone mass reduction for 500 shock treatments (187.4 ± 45.2 mg). The Sonolith i-sys was found to be significantly less effective than the other lithotripters for all shockwave conditions. Furthermore, performance of the Sonolith i-sys decreased beyond a threshold generator electrode age of 6000 shocks. This in vitro study found considerable variability in the ability of lithotripters to fragment synthetic urinary calculi. Synthetic stones were employed to provide a repeatable means of assessing variability in fragmentation efficiency of lithotripters. The Modulith SLX F2 and Piezolith 3000 are broadly equal and resulted in greater fragmentation efficiencies than the Sonolith i-sys. The performance of the Sonolith i-sys deteriorates at 6000 shocks, before the specified lifetime of 20,000 shocks.

  3. Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower

    Science.gov (United States)

    Elfikky, Niazi

    will decrease or when the Solar thermal radiation of the Sun will increase, the efficiency of the Solar Voltiac Cells will nearly fully degrade at the ambient temperature 55C?(131Fahrenheit). As known, in the African countries near the Atlantic Ocean like Mauritania, Senegal, South Africa and Guinea ..etc, also the middle east countries like Moroco, Tuniz, Lybia, Algeria, Egypt, Sudan, Saudi Arabia, Kuwait, United Arab Emarates and Iraq etc. the range of the ambient temerature in the Summer seasons especially in the Desrt near the Atlantic Ocean, the Mediterranean Sea, Red Sea and the Persian Gulf is around (60-70)C? or (140F-158F). Similarly the majority of the Latin American countries with India and China. So, all the environments of the antecedent countries are not the suitable envuironment for generating electric energy from the Solar Voltiac cells in all seasons along the year. Characteristics of the Concentrated Solar Power (CSP). It uses half cylindrical mirrors to reflect with concentration the Solar thermal Radiation around a pipe to heat a special liquid. When the liquid will be heated it will pass through a water tank to exchange its heat in water tank to evaporate the water and create a steam to drive the Power Turbine for generating electricity. Also the capacity of the electric power generated by such technique is so much limited with respect to the wide area (3000 acres, about five miles end to end) occupied by the Concentrated Solar Power Plant . 3. The New Project Profile. Employing the water from the Oceans, Mediterranean Sea, Red Sea and Chinees sea to generate the bulky Hydraulic power capacity which will be deliverd directly to the electric power Grid without any inverters. The Salt water will be drawn for desalination after driving A Steam Power Turbine for genrating additional electric power. Invited Call, Speaker No.41445.

  4. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  5. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  6. ALGORITHM TO CHOOSE ENERGY GENERATION MULTIPLE ROLE STATION

    Directory of Open Access Journals (Sweden)

    Alexandru STĂNESCU

    2014-05-01

    Full Text Available This paper proposes an algorithm that is based on a complex analysis method that is used for choosing the configuration of a power station. The station generates electric energy and hydrogen, and serves a "green" highway. The elements that need to be considered are: energy efficiency, location, availability of primary energy sources in the area, investment cost, workforce, environmental impact, compatibility with existing systems, meantime between failure.

  7. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  8. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  9. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  10. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable......W, respectively) with an iron yoke is subject to losses that exceed the realistic input power, and was therefore deemed infeasible. A generator without the iron yoke was concluded to perform well as a wearable energy harvester. An experimental investigation of a prototype revealed an output power of almost 1 m...

  11. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  12. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Science.gov (United States)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  13. VO2 thermochromic smart window for energy savings and generation

    Science.gov (United States)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  14. Building a Green Economy: Employment Effects of Green Energy Investments for Ontario

    OpenAIRE

    Robert Pollin; Heidi Garrett-Peltier

    2009-01-01

    In this study of Ontario’s green economy, Robert Pollin and Heidi Garrett-Peltier present an approach to realistically estimate the employment effects of green investments in Ontario. They focus on two alternative investment scenarios for the province: a baseline program of $18.6 billion invested in conservation and demand management; hydroelectric power; on-shore wind power; bioenergy; waste energy recycling; and solar power over 10 years, and a more ambitious $47.1 billion 10-year investmen...

  15. Analysis of the energy portfolio for electricity generation

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.; Esquivel E, J.

    2016-09-01

    The planning of electricity generation systems considers several factors that must be taken into account in order to design systems that are economical, reliable and sustainable. For this purpose, the Financial Portfolio Theory is applicable to the energy portfolio or the diversification of electricity generation technologies, such as is the combined cycle, wind, thermoelectric and nuclear. This paper presents an application of the Portfolio Theory to the national energy system, based on the total generation costs for each technology, which allows determining the average variance portfolio and the respective share of each of the electricity generation technologies considered, obtaining a portfolio of electricity generation with the maximum possible return for the risk taken in the investments. This paper describes the basic aspects of the Portfolio Theory and its methodology, in which matrices are implemented for the solution of the resulting Lagrange system. (Author)

  16. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira

    2007-01-01

    Electric energy has an important function in the modem world; it is fundamental for progress and development. The electricity discovery allowed improvements in several areas: health, water and food supply, quality of life and sanitary conditions, and contributed also to the establishment of the capitalist and consumption society. The use of oil as an energy generation source was the impulse for the industrial revolution and machines, motors and generators were developed contributing to the progress This also brought the pollutant gases emission (CO 2 , CO, SO x and NO x ) and other substances that had contributed to the greenhouse effect, the ozone hole and the acid rain, modifying the balance of the planet. The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. The discovery and the development of nuclear energy in Brazil and in the world as well as the functioning of a nuclear power plant, the impacts generated by its operation and decommissioning are presented. The history, functioning and development of hydroelectric energy generation in Brazil, characterized by the great plants, are related to environmental aspects The environmental

  17. Co-provision in sustainable energy systems: the case of micro-generation

    International Nuclear Information System (INIS)

    Watson, Jim

    2004-01-01

    Electricity generation by individual households (known as micro-generation) is attracting an increasing amount of interest within government, industry and the research community. This paper focuses on the potential for micro-generation to contribute to a more active role for household energy consumers in the development and operation of the energy system. The paper applies the concept of energy service co-provision to aid an understanding of this more active role. It considers a number of alternative models for micro-generation investment that imply different kinds of co-provision by consumers and energy companies. The analysis focuses in particular on the economics of these models in the UK, the associated barriers to micro-generation investment, and the scope for overcoming these barriers through changes in fiscal rules. Having conducted this economic analysis, the paper concludes with a brief discussion of the wider implications of these models for consumer behaviour. In particular, it considers the impact of IT and control systems that might be employed to facilitate energy service co-provision that includes micro-generation

  18. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  19. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  20. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  1. MICRO-MATERIAL HANDLING EMPLOYING E-BEAM GENERATED TOPOGRAPHIES OF COPPER AND ALUMINIUM

    Directory of Open Access Journals (Sweden)

    S. Matope

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper focuses on the employment of copper and aluminium in a micro-material handling system actuated by Van der Waals forces. Electron beam (e-beam evaporator deposited both materials on a silicon substrate at a rate of 0.6-1.2 Angstroms/second, vacuum pressure between 2x10-6 and 3x10-6mbar, and at a current less than 10mA. A Veeco NanoMan V Atomic Force Microscope with Nanoscope version 7.3 software was used to analyse the root mean square (rms surface roughnesses of the generated topographies. Rumpf-Rabinovich’s rms formula was used to determine the Van der Waals forces exerted by the surfaces. It was synthesised that an e-beam deposition of 7 minutes’ duration on both materials produced an optimum micro-material handling solution, with copper suitable for the pick-up position and aluminium for the placement position.

    AFRIKAANSE OPSOMMING: Die fokus van die artikel is op die gebruik van koper en aluminium in ‘n mikromateriaalhanteringstelsel, aangedryf deur Van der Waalskragte. ‘n Elektronstraal-verdamper plaas albei materiale op ‘n silikonbasis teen ‘n tempo van 0.6-1.2 Angstrom/sekonde, vakuumdruk tussen 2x10-6 en 3x10-6mbar, en teen ‘n stroom van minder as 10mA. ‘n Veeco NanoMan V Atomic Force mikroskoop, met Nanoscope 7.3 program-matuur is gebruik om die wortel-gemiddelde-kwadraat (wgk oppervlak ruheid van die gegenereerde topografieë te analiseer. Rumpf-Rabinovich se wgk-formule is gebruik om die Van der Waalskrage wat deur die oppervlaktes uitgeoefen word te bepaal. Dit is vasgestel dat ‘n elektronstraalafsetting van 7 minute op albei materiale die optimale materiaalhanteringoplossing bied, met koper geskik vir die optelposisie en aluminium vir die plasingsposisie.

  2. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  3. Quantifying the benefits: Energy, cost, and employment impacts of advanced industrial technologies

    International Nuclear Information System (INIS)

    Sullivan, G.P.; Roop, J.M.; Schultz, R.W.

    1997-01-01

    This development effort was supported by the Technologies Partnerships Program established through the US Department of Energy's Office of Energy Efficiency and Renewable Energy via the Office of Industrial Technology (OIT). This program supports research, development, and demonstration of industrial technologies aimed at improving energy efficiency and productivity while reducing pollution, material waste, and operations/maintenance costs. The goal of this program is to develop cost-shared partnerships with industry, government and non-government organizations to foster improved efficiency, productivity, and pollution prevention technologies. This partnership program is believed to be one way that energy efficiency will be delivered to industry in the 21st Century. This paper reports on the development of the Industrial Technology Employment Analysis Model (ITEAM) which calculates economy-wide employment impacts of specific partnership program technologies, using data developed by the technology partner. ITEAM is a desk-top computer model that allows users to evaluate base-case partnership data and/or run sensitivity tests using its graphical-user-interface features. To demonstrate the capabilities of ITEAM, an analysis is presented for the chemicals industry. In addition, the following major industries have been analyzed and summary data are presented: aluminum, stone/clay/glass, forest products, chemicals, metal casting, steel, and petroleum. This paper addresses the development, function, and use of ITEAM. Included is a presentation of key assumptions along with user inputs and a discussion of sensitivities. The results of ITEAM runs for over 20 technology projects in 7 program areas are reported. The paper also explains how the project data are used to modify the 1987 I/O table to impact output and employment. The calculations are explained and the approach is rationalized. The argument for this approach rests on the proposition that improvements in efficiency

  4. a Pseudo-Random Number Generator Employing Multiple RÉNYI Maps

    Science.gov (United States)

    Lui, Oi-Yan; Yuen, Ching-Hung; Wong, Kwok-Wo

    2013-11-01

    The increasing risk along with the drastic development of multimedia data transmission has raised a big concern on data security. A good pseudo-random number generator is an essential tool in cryptography. In this paper, we propose a novel pseudo-random number generator based on the controlled combination of the outputs of several digitized chaotic Rényi maps. The generated pseudo-random sequences have passed both the NIST 800-22 Revision 1a and the DIEHARD tests. Moreover, simulation results show that the proposed pseudo-random number generator requires less operation time than existing generators and is highly sensitive to the seed.

  5. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  6. Are ethnic minorities disadvantaged? The employment participation and occupational status of Moroccan and Turkish second generation migrants in the Netherlands

    NARCIS (Netherlands)

    Gracia, P.; Vazquez, L.; van de Werfhorst, H.G.

    2014-01-01

    We use data from the 2009/10 Wave of the Netherlands Longitudinal Lifecourse Study to analyze the employment participation and occupational status of Moroccan and Turkish Second Generation Migrants (SGM) in the Netherlands. By considering measures of family background (i.e. parental education,

  7. Employing Concept Mapping as a Pre-Writing Strategy to Help EFL Learners Better Generate Argumentative Compositions

    Science.gov (United States)

    Al-Shaer, Ibrahim M. R.

    2014-01-01

    The purpose of this research was to examine the impact of employing concept mapping at a pre-writing stage on English as a foreign language (EFL) students' ability to generate better argumentative essays. Thirty-eight participants were randomly assigned to two groups participating in Writing II course at Al-Quds Open University (QOU). Both groups…

  8. Smart Energy Cryo-refrigerator Technology for the next generation Very Large Array

    Science.gov (United States)

    Spagna, Stefano

    2018-01-01

    We describe a “smart energy” cryocooler technology architecture for the next generation Very Large Array that makes use of multiple variable frequency cold heads driven from a single variable speed air cooled compressor. Preliminary experiments indicate that the compressor variable flow control, advanced diagnostics, and the cryo-refrigerator low vibration, provide a unique energy efficient capability for the very large number of antennas that will be employed in this array.

  9. Piezoelectric Energy Generation from Vehicle Traffic with Technoeconomic Analysis

    Directory of Open Access Journals (Sweden)

    Hiba Najini

    2017-01-01

    Full Text Available This paper presents a technical simulation based system to support the concept of generating energy from road traffic using piezoelectric materials. The simulation based system design replicates a real life system implementation. It investigates practicality and feasibility using a real-time simulation platform known as MATLAB-Simulink. The system design structure was proposed considering factors involved with the field of material sciences for piezoelectric generator modeling and field of power electronics for additional components in producing a realist outcome. It also ensures ease of vehicle performance, as this system utilizes energy source derived as kinetic energy released from vehicles into electrical power output, that is, obtained by harnessing kinetic energy due to strain of vehicles over asphalt road surface. Due to the real-time simulation platform, the system simulation predicts the effective global carbon footprint. In addition to evaluating technical viability, a technoeconomical business analysis provides a strategic perspective. By using the simulation based power generation results, an estimation of implementation cost and payback time in real life (for United Arab Emirates was derived, hence validating and predicting real-time economic outcome. This is followed by a comparative study with other sources of renewable energy based on levelized energy cost factor that justifies the performance of the proposed system over other renewable energy sources, in support of providing an economical solution on reducing global carbon footprint.

  10. Confab - Systematic generation of diverse low-energy conformers

    Directory of Open Access Journals (Sweden)

    O'Boyle Noel M

    2011-03-01

    Full Text Available Abstract Background Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion. Results Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol. Conclusions Confab is available from http://confab.googlecode.com.

  11. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  12. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  13. Claw-pole Synchronous Generator for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    PAVEL Valentina

    2013-05-01

    Full Text Available This paper presents a claw-poles generator for compressed air energy storage systems. It is presented the structure of such a system used for compensating of the intermittency of a small wind energy system. For equipping of this system it is chosen the permanent magnet claw pole synchronous generator obtained by using ring NdFeB permanentmagnets instead of excitation coil. In such a way the complexity of the scheme is reduced and the generator become maintenance free. The new magnetic flux density in the air-gap is calculated by magneticreluctance method and by FEM method and the results are compared with measured values in the old and new generator.

  14. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.; Atoyo, Jonathan; Carnie, Matthew J.; Baran, Derya; Schroeder, Bob C.

    2017-01-01

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  15. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.

    2017-01-29

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  16. Generation of a bubble universe using a negative energy bath

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2011-01-01

    This paper suggests a model for a bubble universe using buildable false vacuum bubbles. We study the causal structures of collapsing false vacuum bubbles using double-null simulations. False vacuum bubbles violate the null energy condition and emit negative energy along the outgoing direction through semi-classical effects. If there are a few collapsing false vacuum bubbles and they emit negative energy to a certain region, then the region can be approximated by a negative energy bath, which means that the region is homogeneously filled by negative energy. If a false vacuum bubble is generated in the negative energy bath and the tension of the bubble effectively becomes negative in the bath, then the bubble can expand and form an inflating bubble universe. This scenario uses a set of assumptions different from those in previous studies because it does not require tunneling to unbuildable bubbles.

  17. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    Directory of Open Access Journals (Sweden)

    Giacomo Canciello

    2017-01-01

    Full Text Available A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like are normally used for the rectification of the generator voltage to be used to supply a high-voltage DC bus. The regulation is obtained by acting on a DC/DC converter that imposes the field voltage of the exciter. In this paper, the field voltage is fed to the generator windings by using a second-order sliding mode controller, resulting into a stable, robust (against disturbances action and a fast convergence to the desired reference. By using this strategy, an energy management strategy is proposed that dynamically changes the voltage set point, in order to intelligently transfer power between two voltage busses. Detailed simulation results are provided in order to show the effectiveness of the proposed energy management strategy in different scenarios.

  18. The influence of distributed generation penetration levels on energy markets

    International Nuclear Information System (INIS)

    Vahl, Fabrício Peter; Rüther, Ricardo; Casarotto Filho, Nelson

    2013-01-01

    Planning of national energy policies brings new dilemmas with the introduction of distributed generators (DG). Economic theory suggests that a perfectly competitive market would lead to efficient pricing. In the absence of competition, regulators play a fundamental role in attracting reasonably priced finance in order to maintain, refurbish and increase the infrastructure and provide services at a reasonable cost. Energy market price equilibrium is mainly dependent on suppliers, generators, energy sources and demand, represented by conventional utility grid users. Its behavior is similar to that of other commodities. As generation becomes less centralized with the increasing economic viability of renewable energy sources, new suppliers are being connected to the grid. Such evolution means the transition from a monopolistic market to a broader and more open environment, with an increasing number of competitors. We make use of variational inequalities to model a hypothetical DG market in different scenarios, from monopoly, to oligopoly, to open market. Such an approach enables different equilibrium outcomes due to different DG penetration levels. Based on these findings, we argue that energy policies for such markets must be developed according to each specific stage of the grid's lifecycle. We show how energy policies and market regulations may affect such a transition, which may be catastrophic if not managed properly, and which is dependent on the energy mix. -- Highlights: •DG affects energy markets depending on technologies, penetration and infrastructure. •Energy prices vary when the market moves from centralized to several suppliers. •Variational inequalities are presented to simulate a market under such transitions. •The increase of DG penetration level may present different energy prices variation. •If technical and political issues of smart grids are not improved, markets may crash

  19. A robust optimization approach for energy generation scheduling in microgrids

    International Nuclear Information System (INIS)

    Wang, Ran; Wang, Ping; Xiao, Gaoxi

    2015-01-01

    Highlights: • A new uncertainty model is proposed for better describing unstable energy demands. • An optimization problem is formulated to minimize the cost of microgrid operations. • Robust optimization algorithms are developed to transform and solve the problem. • The proposed scheme can prominently reduce energy expenses. • Numerical results provide useful insights for future investment policy making. - Abstract: In this paper, a cost minimization problem is formulated to intelligently schedule energy generations for microgrids equipped with unstable renewable sources and combined heat and power (CHP) generators. In such systems, the fluctuant net demands (i.e., the electricity demands not balanced by renewable energies) and heat demands impose unprecedented challenges. To cope with the uncertainty nature of net demand and heat demand, a new flexible uncertainty model is developed. Specifically, we introduce reference distributions according to predictions and field measurements and then define uncertainty sets to confine net and heat demands. The model allows the net demand and heat demand distributions to fluctuate around their reference distributions. Another difficulty existing in this problem is the indeterminate electricity market prices. We develop chance constraint approximations and robust optimization approaches to firstly transform and then solve the prime problem. Numerical results based on real-world data evaluate the impacts of different parameters. It is shown that our energy generation scheduling strategy performs well and the integration of combined heat and power (CHP) generators effectively reduces the system expenditure. Our research also helps shed some illuminations on the investment policy making for microgrids.

  20. The future of energy generation sector in Brazil

    International Nuclear Information System (INIS)

    Assis, Gino de

    2000-01-01

    The importance of energy on the life of modern man is evaluated considering environmental and strategic issues. Energetic crisis that happened on the recent past of Brazil and United States of America are reviewed and analysed in the light of the particular strategic matters of each country. A tentative projection of the profile of the electrical energy generator industry of Brazil is done based on the past experiences, on the present scenario and on the future potentials. (author)

  1. Visual Thinking Styles and Idea Generation Strategies Employed in Visual Brainstorming Sessions

    Science.gov (United States)

    Börekçi, Naz A. G. Z.

    2017-01-01

    This paper presents the findings of visual analyses conducted on 369 sketch ideas generated in three 6-3-5 visual brainstorming sessions by a total of 25 participants, following the same design brief. The motivation for the study was an interest in the thematic content of the ideas generated as groups, and the individual representation styles used…

  2. Dependability of wind energy generators with short-term energy storage.

    Science.gov (United States)

    Sørensen, B

    1976-11-26

    Power fluctuations and power duration curves for wind energy generators, including energy storage facilities of a certain capacity, are compared to those of typical nuclear reactors. A storage system capable of delivering the yearly average power output for about 10 hours already makes the dependability of the wind energy system comparable to that of a typical nuclear plant.

  3. Generator Requirements For Rural Electrification From Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Dzune Mipoung, Olivare; Pragasen, Pillay

    2010-09-15

    This paper addresses the issue of rural electrification from renewable energy. A brief introduction on biomass and wind electrical systems is given. The aim of this research is to propose optimal electrification system design for rural areas. This requires suitable generators selection as a starting point. Some generator types for rural electrification systems are introduced, followed by a discussion on the selection criteria. Simulation results of a typical electrification system for remote areas are obtained to support the safety aspect related to the individual generator types, in the event of accidental rotor motion. All simulations are done in Matlab-Simulink.

  4. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  5. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  6. Integrating sustainable generation technologies in the Canadian energy portfolio

    International Nuclear Information System (INIS)

    Saulnier, B.

    2001-01-01

    The structure of the energy industry and the planning of electrical networks are experiencing rapid changes under the combined action of social, technico-economical, environmental and trade pressures. Given the widening diversity of competing (demand and supply) options being offered to consumers, energy policy makers must establish a fair and consistent technico-economic methodology to compare the sustainability and natural synergies of energy options. Such an approach towards energy issues should allow renewable energies, energy efficiency and storage technologies to build strong alliances with information technology and take a major place in the long-term energy portfolio of societies. With examples of recent projects involving significant penetration of wind energy in electrical grids in Canada and abroad, the author presents the rationale for technico-economic comparison indicators that canadian policy makers need to take into account so as to bring the full advantage and value of promising renewable energy technologies to the canadian energy market. The merits of expanding the pace of the current Canadian GHG reduction program by granting all provinces, irrespective of their electricity market structure or generation mix, an equal opportunity to invest in RE projects contributing to the national goal are presented. In this regard, the limitations of the prevailing accounting rules found in the Canadian GHG reduction program are analysed and corrections are proposed. (author)

  7. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  8. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  9. ''Social capitalism'' in renewable energy generation: China and California comparisons

    International Nuclear Information System (INIS)

    Clark, Woodrow W. II.; Li, Xing

    2010-01-01

    With a population of over 1.3 billion people, demand for renewable energy is expected to grow to a USD $12 billion market in the near term. Under Renewable Energy Law (REL) in February 2005 in the People's Republic of China (PRC) passed by the National Congress, renewable energy projects will be able to receive a range of financial incentives starting in 2006, which will more than double the PRC current renewable energy generation from 7% to 15% by 2020. Most of the increase will be in hydroelectric generated power. Nonetheless, the nation and especially the provinces are moving rapidly to develop a wide range of renewable energy generation including solar, wind, geothermal and run of the river. Because China practices ''social capitalism'' as expressed in it's recurrent Five Year National Plans since 1999, the national government and all the provinces have programs, unlike many western and industrialized nations, to ''plan'' and provide for infrastructures. This paper concerns only the energy infrastructure sector and renewable energy generation in particular. The planning process includes financial incentives and investments which are a major part of the Chinese law focused on ''encouraging foreign investment industries''. The key part of the law is to guarantee long-term power purchase agreements with state owned and controlled ''utilities''. In short, China may have gotten the economics of the energy sector correct in its concern for planning and finance. The paper develops these energy infrastructure ideas along with the legal and financial requirements as ''lessons'' learned from the USA and especially California. These lessons now apply to China and allow it to learn from the American mistakes. Empirical data will be drawn from work done in China that examine the renewable energy generation and infrastructures and hence allow the RPC and its Provinces to ''leap frog ''the mistakes of other developed nations. Further lessons will be learned from provinces and

  10. Energy expenditure in adolescents playing new generation computer games.

    Science.gov (United States)

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2008-07-01

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Setting Research laboratories. Six boys and five girls aged 13-15 years. Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kl/kg/min), tennis (202.5 (31.5) kl/kg/min), and boxing (198.1 (33.9) kl/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kl/kg/min) (Pgames. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  11. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    Science.gov (United States)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  12. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  13. Low energy supersymmetric models for several generations and proton decay

    International Nuclear Information System (INIS)

    Deo, B.B.; Sarkar, U.

    1983-08-01

    It is found that by invoking additional horizontal gauge symmetries required to explain the generational structure the low energy standard supersymmetric unified theories avoid the renormalizable unsuppressed baryon number violating interactions in a natural way. Theories considered here are anomaly-free by construction. (author)

  14. Generating energy dependent neutron flux maps for effective ...

    African Journals Online (AJOL)

    For activation analysis and irradiation scheme of miniature neutron source reactor, designers or engineers usually require information on thermal neutron flux levels and other energy group flux levels (such as fast, resonance and epithermal). A methodology for readily generating such flux maps and flux profiles for any ...

  15. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  16. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  17. Dynamic analysis of floating wave energy generation system with mooring system

    International Nuclear Information System (INIS)

    Choi, Gyu Seok; Sohn, Jeong Hyun

    2013-01-01

    In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load

  18. Development of Electricity Generation from Renewable Energy Sources in Turkey

    Science.gov (United States)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  19. Renewable energy and decentralized power generation in Russia: an opportunity for German-Russian energy cooperation

    OpenAIRE

    Chukanov, Denis; Opitz, Petra; Pastukhova, Maria; Piani, Gianguido; Westphal, Kirsten

    2017-01-01

    Renewable and decentralized power generation are a centerpiece of Germany's domestic energy transition (Energiewende) and a major element of its international efforts to promote this goal. Recently, the renewables sector has also been advancing in Russia, albeit from a lower level. Thus, it is time to explore the status quo and analyze the potential for sustainable energy cooperation. In the context of the current deterioration in EURussian (energy) relations, crafting a sustainable energy pa...

  20. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...

  1. Emerging technologies in electricity generation : an energy market assessment

    International Nuclear Information System (INIS)

    2006-03-01

    Canada's National Energy Board (NEB) monitors the supply of electricity as well as its demand in both domestic and export markets. It monitors the main drivers affecting current trends in generation, demand, prices, infrastructure additions, and inter-regional and international trade. This document presented an assessment of renewable and other emerging technologies that are considered to have significant promise and increased application in Canada over the longer term. It provided comprehensive information on the status and prospects for these technologies, related issues and regional perspectives. Alternative and renewable resources and demand management are becoming more important in addressing air quality issues and supply adequacy. In preparation of this report, staff at the NEB participated in a series of informal meetings with electric utilities, independent power producers, provincial energy regulators, power system operators and those engaged in technology development. The report involved on-site information gathering at wind farms, small hydro facilities, biomass, solar and geothermal operations and other facilities associated with emerging energy technologies such as fuel cells and ocean energy. Clean coal technologies that refer to methods by which emissions from coal-fired generation can be reduced were also evaluated. It was noted that the prospects for emerging technologies vary among the provinces and territories depending on regional resources, provincial government policies and strategies regarding fuel preferences. It was noted that currently in Canada, only 3 per cent of the installed generating capacity consists of emerging technologies. This low penetration is due to the low cost of electricity derived from conventional sources and to the structure of the industry in which large publicly owned utilities have historically opted for large central generating stations. It was suggested that the large increase in fossil fuel prices, public concern

  2. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  3. Associations of maternal employment and three-generation families with pre-school children's overweight and obesity in Japan.

    Science.gov (United States)

    Watanabe, E; Lee, J S; Kawakubo, K

    2011-07-01

    Maternal employment has been shown to be associated with childhood overweight and obesity (Ow/Ob), but the presence of family members who care for children in place of the mothers might influence children's Ow/Ob and lifestyles. The influence of maternal employment on children's Ow/Ob should be examined together with the presence of caregivers such as grandparents. The effects of maternal employment and the presence of grandparents on lifestyles and Ow/Ob in Japanese pre-school children were investigated. Cross-sectional study on 2114 children aged 3-6 years who attended all childcare facilities in a city and primary caregivers was conducted. Children's weight and height, family environments (family members, maternal employment, single parent, number of siblings and parental Ow/Ob) and lifestyles (dietary, physical activity and sleeping habits) were surveyed using a self-administered questionnaire. Ow/Ob was defined by the International Obesity Task Force cut-offs. The eligible participants were 1765 children. The prevalence of Ow/Ob was 8.4% in boys and 9.9% in girls. Maternal employment was associated positively with irregular mealtimes, unfixed snacking times, bedtime after 10 p.m. and nighttime sleep duration of less than 10 h, whereas three-generation families were associated negatively with irregular mealtimes after adjustment for children's characteristics and family environments. Irregular mealtimes (OR (95% CI); 2.03 (1.36, 3.06)) and nighttime sleep duration of less than 10 h (1.96 (1.28, 3.01)) were associated with increased risks of being Ow/Ob. Both maternal employment and three-generation families were significantly associated with children's Ow/Ob. However, three-generation families maintained a significant association (1.59 (1.08, 2.35)) after adjustment for maternal employment. These study results suggest that the grandparents who care for pre-school children in place of mothers are more likely to contribute to childhood Ow/Ob than maternal

  4. Effect of second-generation antipsychotics on employment and productivity in individuals with schizophrenia: an economic perspective.

    Science.gov (United States)

    Percudani, Mauro; Barbui, Corrado; Tansella, Michele

    2004-01-01

    Schizophrenia is a serious mental illness that imposes a considerable burden not only on those who are ill, but also on their families, neighbours and the wider society. Costs associated with treating people with schizophrenia are those derived from the use of a wide range of services provided by public psychiatric facilities and/or by voluntary and private agencies. In addition, a large part of the economic impact of schizophrenia is related to the difficulties that patients encounter in finding and keeping paid employment. The introduction of second-generation antipsychotics (SGAs), also defined as atypicals, has increased the therapeutic options available for individuals with schizophrenia. Potential benefits of these agents include a more favourable profile in terms of positive and negative symptoms, less adverse effects and better cognitive functioning than first-generation antipsychotics (FGAs). As a consequence, SGAs might favourably affect the capacity, seriously impaired in schizophrenia, of finding and keeping paid employment. To date, only 13 published studies have investigated the effect of SGA agents on employment and work productivity. Clozapine was studied in eight studies, while both olanzapine and risperidone were studied in three. Clozapine emerged as the SGA with at least some effect on work status. However, all but one clozapine study enrolled only a few individuals and did not adopt an experimental design, making it very difficult to judge the validity and generalisability of findings. Taken together, studies found little benefit, in terms of employment and work productivity, for the use of SGAs compared with FGAs. The evidence available suggests that until data demonstrate a robust effect of newer agents on employment, it remains mandatory for mental health professionals to use the most effective drug treatment together with non-pharmacological interventions, such as vocational rehabilitative programmes nested into models of community

  5. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material

    Directory of Open Access Journals (Sweden)

    Juan Camilo Solarte-Toro

    2018-05-01

    Full Text Available The use of nonrenewable energy sources to provide the worldwide energy needs has caused different problems such as global warming, water pollution, and smog production. In this sense, lignocellulosic biomass has been postulated as a renewable energy source able to produce energy carriers that can cover this energy demand. Biogas and syngas are two energy vectors that have been suggested to generate heat and power through their use in cogeneration systems. Therefore, the aim of this review is to develop a comparison between these energy vectors considering their main features based on literature reports. In addition, a techno-economic and energy assessment of the heat and power generation using these vectors as energy sources is performed. If lignocellulosic biomass is used as raw material, biogas is more commonly used for cogeneration purposes than syngas. However, syngas from biomass gasification has a great potential to be employed as a chemical platform in the production of value-added products. Moreover, the investment costs to generate heat and power from lignocellulosic materials using the anaerobic digestion technology are higher than those using the gasification technology. As a conclusion, it was evidenced that upgraded biogas has a higher potential to produce heat and power than syngas. Nevertheless, the implementation of both energy vectors into the energy market is important to cover the increasing worldwide energy demand.How to cite: Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018:33. https://doi.org/10.1016/j.ejbt.2018.03.005 Keywords: Anaerobic digestion, Biogas power generation, Biomass gasification, Biomethane, Energy sources, Energy vectors, Heat generation, Lignocellulosic energy production, Power generation, Renewable energy, Syngas production

  6. Energy source options for the generation of electrical power in Taiwan

    International Nuclear Information System (INIS)

    Chang, Ching-Chih; Wang, Chih-Min

    2014-01-01

    Highlights: • Analyses of CO 2 emissions and cost in different generation energy source. • Solar, geothermal and wave energy are opportunity for reducing CO 2 emissions. • Expanding renewable energy support electrical industry sustainable development. - Abstract: This study sought to evaluate newly introduced energy policies with regard to economic development and environmental preservation by analyzing carbon dioxide emissions and the costs associated with various electrical power generation schemes. Nonlinear regression was used to measure the efficiency of technology aimed at CO 2 emission reduction and the Morris method was employed for sensitivity analysis. Our results indicate that new Taiwanese energy policies represent the lowest possible cost and the lowest possible CO 2 emissions per kW h currently possible. However, total CO 2 emissions under this plan fail to meet emissions targets established in 2000. This paper outlines a long-term plan for the transformation of the Taiwanese power generation industry from a major contributor of pollution into a largely green entity through the replacement of coal with renewable energy sources

  7. An entropy generation metric for non-energy systems assessments

    International Nuclear Information System (INIS)

    Sekulic, Dusan P.

    2009-01-01

    Processes in non-energy systems have not been as frequent a subject of sustainability studies based on Thermodynamics as have processes in energy systems. This paper offers insight into thermodynamic thinking devoted to selection of a sustainability energy-related metric based on entropy balancing of a non-energy system. An underlying objective in this sustainability oriented study is product quality involving thermal processing during manufacturing vs. resource utilization (say, energy). The product quality for the considered family of materials processing for manufacturing is postulated as inherently controlled by the imposed temperature non-uniformity margins. These temperature non-uniformities can be converted into a thermodynamic metric which can be related to either destruction of exergy of the available resource or, on a more fundamental level of process quality, to entropy generation inherent to the considered manufacturing system. Hence, a manufacturing system can be considered as if it were an energy system, although in the later case the system objective would be quite different. In a non-energy process, a metric may indicate the level of perfection of the process (not necessarily energy efficiency) and may be related to the sustainability footprint or, as advocated in this paper, it may be related to product quality. Controlled atmosphere brazing (CAB) of aluminum, a state-of-the-art manufacturing process involving mass production of compact heat exchangers for automotive, aerospace and process industries, has been used as an example.

  8. Energy efficiency resource modeling in generation expansion planning

    International Nuclear Information System (INIS)

    Ghaderi, A.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K.

    2014-01-01

    Energy efficiency plays an important role in mitigating energy security risks and emission problems. In this paper, energy efficiency resources are modeled as efficiency power plants (EPP) to evaluate their impacts on generation expansion planning (GEP). The supply curve of EPP is proposed using the production function of electricity consumption. A decision making framework is also presented to include EPP in GEP problem from an investor's point of view. The revenue of EPP investor is obtained from energy cost reduction of consumers and does not earn any income from electricity market. In each stage of GEP, a bi-level model for operation problem is suggested: the upper-level represents profit maximization of EPP investor and the lower-level corresponds to maximize the social welfare. To solve the bi-level problem, a fixed-point iteration algorithm is used known as diagonalization method. Energy efficiency feed-in tariff is investigated as a regulatory support scheme to encourage the investor. Results pertaining to a case study are simulated and discussed. - Highlights: • An economic model for energy efficiency programs is presented. • A framework is provided to model energy efficiency resources in GEP problem. • FIT is investigated as a regulatory support scheme to encourage the EPP investor. • The capacity expansion is delayed and reduced with considering EPP in GEP. • FIT-II can more effectively increase the energy saving compared to FIT-I

  9. Bolivia-Brazil gas-pipeline implantation. The employment generation according to Leontief's matrix

    International Nuclear Information System (INIS)

    Pieroni, Fernando de Paiva; Guerra, Sinclair Mallet Guy

    1999-01-01

    During the past 15 years, a strong evolution in the concept of the use of energy for industrial purpose was brought in step by step by the Governments and users themselves. The progress within the fields of energy savings, thermal control and reduction of air pollution must be pointed out. Within this scheme the natural gas technology has overcome many technical difficulties and the solutions using natural gas rank among the most efficient to tackle current problems. The aim of this work is to analyse Bolivia-Brazil gas-pipeline implantation and it influences in the Brazilian economy

  10. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  11. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    DEFF Research Database (Denmark)

    Wang, L.; Lee, D. J.; Lee, W. J.

    2008-01-01

    wind turbines andWells turbines to respectively capture wind energy and wave energy from marine wind and oceanwave. In addition to wind-turbine generators(WTGs) andwave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE......This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore......) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system(FESS) and a compressed air energy storage (CAES) system to balance the required energy...

  12. Integrated O&M for energy generation and exchange facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Ingeteam Service, part of the Ingeteam Group, is a leading company in the provision of integrated O&M services at energy generation and exchange facilities worldwide. From its head office in the Albacete Science and Technology Park, it manages the work of the 1,300 employees that make up its global workforce, rendering services to wind farms, PV installations and power generation plants. In addition, it maintains an active participation strategy in a range of R&D+i programmes that improve the existing technologies and are geared towards new production systems and new diagnostic techniques, applied to renewables installation maintenance. (Author)

  13. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  14. Clean generation of electric energy; Generacion limpia de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M.; Torres, Emmanuel [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Guadalajara (Mexico)

    2006-10-15

    This article deals on the existing alternatives of renewable energy for generation of electricity free from polluting sequels within the Mexican territory and presents a global overview on the electricity generation in Mexico. Wind power, hydraulic energy, biomass, photovoltaic and fuel cells are sources of renewable energy that could contribute to Mexico's sustainable development, for this reason it is discussed on the main sources of renewable energy in Mexico - solar and wind energy, mini-hydraulic, biomass and geothermal -, on their development and evolution, cost, insertion projects and obstacles for their correct development in this country. [Spanish] Este articulo versa sobre las alternativas de energia renovable existentes para una generacion de electricidad libre de secuelas contaminantes dentro del territorio mexicano y presenta un panorama global sobre la generacion de electricidad en Mexico. La energia eolica, hidraulica, biomasa, fotovoltaica y las celdas de combustible son fuentes de energia renovable que podrian contribuir al desarrollo sustentable de Mexico, por esto se arguye sobre las principales fuentes de energia renovable en Mexico -energia solar, eolica, minihidraulica, biomasa y geotermia-, sobre su desarrollo y evolucion, costo, proyectos de insercion y obstaculos para su correcto desarrollo en ese pais.

  15. Regenesys utility scale energy storage. Overview report of combined energy storage and renewable generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The first part of the paper briefly discusses the advantages and disadvantages of various forms of renewable energy sources with respect to the United Kingdom. It discusses the intermittent nature of wind and solar power and the less intermittent nature of hydro power and energy from biomass. The need to store energy generated, particularly from the intermittent sources, is discussed with special reference to electric batteries and pumped storage. If the energy cannot be stored and delivered when required, then the commercial viability of the source will be adversely affected - the economics and how this fits with NETA are discussed briefly. The second part of the paper is an overview of some relevant literature discussing (a) how the problems of fluctuating supplies may be managed, (b) an analytical assessment of the contribution from wind farms, (c) how fluctuations in wind power can be smoothed using sodium-sulfur batteries, (d) how small generators can get together and reduce trading costs and imbalance exposure under NETA, (e) the benefits of large-scale energy storage to network management and embedded generation, (f) distribution networks, (g) embedded generation and network management issues and (h) costs and benefits of embedded generation. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions.

  16. Regenesys utility scale energy storage. Overview report of combined energy storage and renewable generation

    International Nuclear Information System (INIS)

    2004-01-01

    The first part of the paper briefly discusses the advantages and disadvantages of various forms of renewable energy sources with respect to the United Kingdom. It discusses the intermittent nature of wind and solar power and the less intermittent nature of hydro power and energy from biomass. The need to store energy generated, particularly from the intermittent sources, is discussed with special reference to electric batteries and pumped storage. If the energy cannot be stored and delivered when required, then the commercial viability of the source will be adversely affected - the economics and how this fits with NETA are discussed briefly. The second part of the paper is an overview of some relevant literature discussing (a) how the problems of fluctuating supplies may be managed, (b) an analytical assessment of the contribution from wind farms, (c) how fluctuations in wind power can be smoothed using sodium-sulfur batteries, (d) how small generators can get together and reduce trading costs and imbalance exposure under NETA, (e) the benefits of large-scale energy storage to network management and embedded generation, (f) distribution networks, (g) embedded generation and network management issues and (h) costs and benefits of embedded generation. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions

  17. Investments in electricity generation in Croatian liberalized market: energy option

    International Nuclear Information System (INIS)

    Androcec, I.; Viskovic, A.; Slipac, G.

    2004-01-01

    The Republic of Croatia should have enough capacities built on its own territory to cover system's peak load at any time for ensuring a long-term reliability of its operation. According to annual increasing of electricity consumption and progressive shutdown of the oldest generating plants, the security of future electricity supply depends on new investments. The market, i.e. a competitive generation, is the driving force in the construction of new power plants. The main stimulus for the construction is the possibility of definite return of invested capital and enabling potential investors to realize the expected revenues (profit). The construction of generating capacities is subject of authorisation procedure or tendering procedure, by approval of the Energy Regulatory Council. The electricity market opening in Croatia is parallel process with establishment of regional energy market in South East Europe where the decision of investment in new power plant will be defined by regional investment priorities, all in the aspect of European Union enlargement. In those liberalisation conditions it is necessary to realize all possible energy options according to the Strategy of Energy Development of Republic of Croatia and to the regional energy market requirements or European Union Directives. New power plant will be realized, because of objective circumstances, through construction of gas power plant or coal power plant and possible nuclear power plant, and in much smaller size through construction of hydro power plants or power plants on renewable energy sources. The possibility of any energy option will be considered in view of: investment cost, operation and maintenance cost, fuel price, external costs, public influence, and through investor's risk. This paper is aiming to analyse the possibility of nuclear power plant construction in Croatia as well as in other small and medium electricity grids. Nuclear option will be comprehensively considered in technical

  18. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  19. Generating heavy particles with energy and momentum conservation

    Science.gov (United States)

    Mereš, Michal; Melo, Ivan; Tomášik, Boris; Balek, Vladimír; Černý, Vladimír

    2011-12-01

    We propose a novel algorithm, called REGGAE, for the generation of momenta of a given sample of particle masses, evenly distributed in Lorentz-invariant phase space and obeying energy and momentum conservation. In comparison to other existing algorithms, REGGAE is designed for the use in multiparticle production in hadronic and nuclear collisions where many hadrons are produced and a large part of the available energy is stored in the form of their masses. The algorithm uses a loop simulating multiple collisions which lead to production of configurations with reasonably large weights. Program summaryProgram title: REGGAE (REscattering-after-Genbod GenerAtor of Events) Catalogue identifier: AEJR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1523 No. of bytes in distributed program, including test data, etc.: 9608 Distribution format: tar.gz Programming language: C++ Computer: PC Pentium 4, though no particular tuning for this machine was performed. Operating system: Originally designed on Linux PC with g++, but it has been compiled and ran successfully on OS X with g++ and MS Windows with Microsoft Visual C++ 2008 Express Edition, as well. RAM: This depends on the number of particles which are generated. For 10 particles like in the attached example it requires about 120 kB. Classification: 11.2 Nature of problem: The task is to generate momenta of a sample of particles with given masses which obey energy and momentum conservation. Generated samples should be evenly distributed in the available Lorentz-invariant phase space. Solution method: In general, the algorithm works in two steps. First, all momenta are generated with the GENBOD algorithm. There, particle production is modeled as a sequence of two

  20. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    International Nuclear Information System (INIS)

    Deal, John R. Grizz; Pearson, Cody

    2010-01-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining; remote communities lacking

  1. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  2. Energy sources and energy generation in the future; Fuentes de energia y la generacion del futuro

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Pelegry, E.

    2001-07-01

    With this article, that gathers the conference imparted inside of the cycle Technologies and Power Supply Development: Gas or Coal, complementary alternatives, organized by the Spanish Club of the Energy (ENERCLUB), the author plants a series of questions over the sources of energy and the its generation in the future, in order to wake the reflections over the theme. (Author)

  3. Markets and employment related to energy efficiency improvements and renewable energies: situation 2012-2013 and short term outlook

    International Nuclear Information System (INIS)

    Fleuriot, Fanny; Gaudin, Thomas; Guillerminet, Marie-Laure; Louis, Jonathan; Vesine, Eric; Greffet, Pierre; Randriambololona, Celine; Rageau, Francois; Carabot, Cyril

    2014-11-01

    Since 2008, ADEME has regularly compiled an overview of markets and employment related to the main activities connected with improving energy efficiency and developing renewable sources of energy in France. The activities were selected partly according to their connection with ADEME's field of activity and partly according to their connection with the main policies determined by the Grenelle environment summit. Another factor taken into account was the existence of statistical data enabling the relevant markets to be regularly monitored. Since the very first version of the report, each time it has analysed some thirty market segments, all of which fall into one of three main sectors: - Energy efficiency improvements in residential accommodation: work to improve energy efficiency in existing housing (insulation of outside walls and replacement of windows and doors with more effective solutions), purchase of condensing boilers, energy efficient large household electrical appliances, and compact fluorescent lamps; - Energy efficiency improvements in transport systems: developments in urban public transport systems and railways, including equipment and sales of category A and B private vehicles; - Investments in the production of renewable energy (RE) and sales of renewably sourced energy. Over the years, several new markets have been added, including controlled mechanical ventilation systems (CMV), city bike schemes, etc. For this edition of the report, three new markets have been introduced, each with its own individual 'Market Report': Marine Renewable Energies, Heating Networks, and Hybrid and Electric Vehicles, while thermodynamic domestic boilers and sales of LED lamps have been added to markets for heat-pumps and compact fluorescent lamps respectively. The possibility of including markets related to energy efficiency improvements in industry and non-residential buildings was also investigated, but no regular statistical data enabling proper

  4. A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings

    International Nuclear Information System (INIS)

    Garshasbi, Samira; Kurnitski, Jarek; Mohammadi, Yousef

    2016-01-01

    Graphical abstract: The energy consumption and renewable generation in a cluster of NZEBs are modeled by a novel hybrid Genetic Algorithm and Monte Carlo simulation approach and used for the prediction of instantaneous and cumulative net energy balances and hourly amount of energy taken from and supplied to the central energy grid. - Highlights: • Hourly energy consumption and generation by a cluster of NZEBs was simulated. • Genetic Algorithm and Monte Carlo simulation approach were employed. • Dampening effect of energy used by a cluster of buildings was demonstrated. • Hourly amount of energy taken from and supplied to the grid was simulated. • Results showed that NZEB cluster was 63.5% grid dependant on annual bases. - Abstract: Employing a hybrid Genetic Algorithm (GA) and Monte Carlo (MC) simulation approach, energy consumption and renewable energy generation in a cluster of Net Zero Energy Buildings (NZEBs) was thoroughly investigated with hourly simulation. Moreover, the cumulative energy consumption and generation of the whole cluster and each individual building within the simulation space were accurately monitored and reported. The results indicate that the developed simulation algorithm is able to predict the total instantaneous and cumulative amount of energy taken from and supplied to the central energy grid over any time period. During the course of simulation, about 60–100% of total daily generated renewable energy was consumed by NZEBs and up to 40% of that was fed back into the central energy grid as surplus energy. The minimum grid dependency of the cluster was observed in June and July where 11.2% and 9.9% of the required electricity was supplied from the central energy grid, respectively. On the other hand, the NZEB cluster was strongly grid dependant in January and December by importing 70.7% and 76.1% of its required energy demand via the central energy grid, in the order given. Simulation results revealed that the cluster was 63

  5. Small Distributed Renewable Energy Generation for Low Voltage Distribution Networks

    Directory of Open Access Journals (Sweden)

    Chindris M.

    2016-08-01

    Full Text Available Driven by the existing energy policies, the use of renewable energy has increased considerably all over the world in order to respond to the increasing energy consumption and to reduce the environmental impact of the electricity generation. Although most policy makers and companies are focusing on large applications, the use of cheap small generation units, based on local renewable resources, has become increasingly attractive for the general public, small farms and remote communities. The paper presents several results of a research project aiming to identify the power quality issues and the impact of RES based distributed generation (DG or other non-linear loads on low voltage (LV distribution networks in Romania; the final goal is to develop a Universal Power Quality Conditioner (UPQC able to diminish the existing disturbances. Basically, the work analyses the existing DG technologies and identifies possible solutions for their integration in Romania; taking into account the existent state of the art, the attention was paid on small systems, using wind and solar energy, and on possibility to integrate them into suburban and rural LV distribution networks. The presence of DG units at distribution voltage level means the transition from traditional passive to active distribution networks. In general, the relatively low penetration levels of DG does not produce problems; however, the nowadays massive increase of local power generation have led to new integration challenges in order to ensure the reliability and quality of the power supply. Power quality issues are identified and their assessment is the key element in the design of measures aiming to diminish all existing disturbances.

  6. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2004-01-01

    The integration of flutuating wind power is an important issue for the future development of sustainable energy systems. In Denmark, the integration is affected by a large amount of cogeneration of heat and power. This gives possibilities as well as sets restraints. The paper shows that with anci...... that with ancillary services supplied by large-scale condensation and CHP-plants, a certain degree of large-scale generation is required regardless of momentary wind input....

  7. Rainier Biogas Manure Management and Renewable Energy Generation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, John [King County, WA (United States)

    2017-06-06

    The Rainier Biogas project is a community manure processing and renewable energy generation facility. Construction was completed and operation initiated in 2012. It is owned and operated by Rainier Biogas, LLC in collaboration with local dairy farmers, Washington State University, and the King County Department of Natural Resources and Parks. The project receives manure from three to four partner dairy farms mostly by underground pipe. The project is located at 43218 208th Ave SE; Enumclaw, WA 98022.

  8. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  9. COMBINED SYSTEMS OF ENERGY GENERATION – A CHARACTERISATION AND CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Jan Gilewski

    2014-09-01

    Full Text Available The study presents issues concerning technical solutions of combined systems of energy generation which can be used primarily in low-level power plants, installed in various types of public utility sites. A detailed description is given of selected ways of powering combined energy generation systems, presenting conceptual outlines of their operation and information on their advantages, disadvantages and applications. The following systems are introduced: gas-steam, back-pressure steam turbine, extraction-condensing steam turbine, gas turbine, gas microturbine, Stirling engine, fuel cells and internal combustion piston engine. Moreover, the study addresses economic aspects of energy generation in combined systems, discussing different methodologies of cost calculation, including the one used by the European Union. The article also gives a detailed review of piston engine combined-system aggregates available in the Polish market. Type series of associated systems designed for low-power appliances are shown, produced by Polish and foreign companies such as Viessmann, Centrum Elektroniki Stosowanej CES, H. Cegielski – Poznań, KWE Technika Energetyczna, TEDOM Poland or the EPS System.

  10. A third generation mobile high energy radiography system

    International Nuclear Information System (INIS)

    Fry, D.A.; Valdez, J.E.; Johnson, C.S.; Kimerly, H.J.; Vananne, J.R.

    1997-01-01

    A third generation mobile high energy radiographic capability has been completed and put into service by the Los Alamos National Laboratory. The system includes a 6 MeV linac x-ray generator, Co-60 gamma source, all-terrain transportation, on-board power, real-time radiography (RTR), a control center, and a complete darkroom capability. The latest version includes upgraded and enhanced portability, flexibility, all-terrain operation, all-weather operation, and ease of use features learned from experience with the first and second generation systems. All systems were required to have the following characteristics; all-terrain, all-weather operation, self-powered, USAF airlift compatible, reliable, simple to setup, easy to operate, and all components two-person portable. The systems have met these characteristics to differing degrees, as is discussed in the following section, with the latest system being the most capable

  11. WAMS Based Damping Control of Inter-area Oscillations Employing Energy Storage System

    Directory of Open Access Journals (Sweden)

    MA, J.

    2012-05-01

    Full Text Available This paper presents a systematic design procedure for a wide-area damping controller (WADC employing Energy Storage Systems (ESSs. The WADC is aimed at enhancing the damping of multiple inter-area modes in a large scale power system. Firstly, geometric measures of controllability and obsevability are used to select the control locations for ESSs and most effective stabilizing signals, respectively. Then, the WADC coordinates these signals to achieve multiple-input-multiple-output (MIMO controllers with the least Frobenius norm feedback gain matrix. The simulation results of frequency and time domains verify the effectiveness of the wide-area damping controller for various operating conditions. Furthermore, the robustness of the wide-area damping controller is also tested with respect to time delay and uncertainty of models.

  12. Co-generation: Increasing energy efficiency in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lekić Alija

    2007-01-01

    Full Text Available The main sources for power generation in Bosnia and Herzegovina are domestic coals, mainly lignite and brown coals, which are relatively characterized with a high content of sulphur (3-5% and incombustibles (˜30%. From the 70’s, use of this type of fuels was not allowed in the city of Sarajevo due to very unfavorable emissions to the atmosphere, during the heating period, and since then Sarajevo has been supplied with natural gas. All the heating installations in the city were reconstructed and adapted. The district heating system Toplane Sarajevo is supplied with electrical energy from the Public electrical distribution network (Elektrodistribucija Sarajevo at low voltage (0.4 kV. The boiler-house Dobrinja III-2 (KDIII-2, from the district heating system of Sarajevo Suburb Dobrinja, which was not in use after the war 1992-1995, had a lot of advantages for the reconstruction into the co-generation plant. The Government of Canton Sarajevo financially supported this proposal. An analysis of co-generations for the district heating system and a selection of most appropriate co-generation systems were made. In the proposed conceptual design, the co-generation KDIII-2 was located in the existing boiler-house KDIII-2, connected with the heating system in Dobrinja. The operating costs of production of electricity and heat were evaluated in the study and compared with the costs of conventional energy supply to the district heating system. This analysis resulted in economic indicators, which showed that this investment was economically viable, and it also determined the payback period of the investment. In this paper results of the mentioned study and an overview of co-generation in Bosnia and Herzegovina are presented.

  13. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  14. Numerical study on design for wave energy generation of a floater for energy absorption

    International Nuclear Information System (INIS)

    Li, Kui Ming; Parthasarathy, Nanjundan; Choi, Yoon Hwan; Lee, Yeon Won

    2012-01-01

    In order to design a wave energy generating system of a floater type, a 6 DOF motion technique was applied to the three Dimensional CFD analysis on a floating body and the behavior was interpreted according to the nature of the incoming waves. Waves in a tank model were generated using a single floater comparing with that of a Pelamis wave energy converter. In this paper, we focus on four variables, namely the wave height, angular velocity, diameter and length of the floater. The process was carried out in three stages and it was found that there are energy absorption differences in different parameters of wave height, length and the diameter of a floater during simulation, thus leading for the necessity of an optimal design for wave energy generation

  15. Exploring the potential uptake of distributed energy generation

    International Nuclear Information System (INIS)

    Gardner, John; Ashworth, Peta; Carr-Cornish, Simone

    2007-01-01

    Full text: Global warming has been identified as an energy problem (Klare 2007). With a predicted increase in fossil fuel use for many years to come (IEA 2004) there is a need to find a future energy path that will meet our basic requirements for energy but also help to mitigate climate change (CSIRO 2006). Currently there are a range of technological solutions available, with each representing a different value proposition. Distributed Energy (DE) is one such technological solution, which involves the widespread use of small local power generators, located close to the end user. Such generators can be powered by a range of low emission and/or renewable sources. Until now, cheap electricity, existing infrastructure and reluctance for change both at a political and individual level has meant there has been little prospect for DE to be considered in Australia, except in some remote communities. However, with the majority of Australians now rating climate change as an issue of strategic importance to Australia (Ashworth, Pisarski and Littleboy 2006), it can be inferred that Australia's tolerance for generating greenhouse gas emissions has reduced, and that potential support for DE is increasing. It is therefore important to understand what factors might influence the potential adoption of DE. As part of a research project called the Intelligent Grid, CSIRO's Energy Transformed Flagship is aiming to identify the conditions under which Distributed Energy might be effectively implemented in Australia. One component of this project involves social research, which aims to understand the drivers and barriers to the uptake of DE technology by the community. This paper presents findings from two large-scale surveys (one of householders and one of businesses), designed to assess beliefs and knowledge about environmental issues, and about traditional and renewable energy sources. The surveys also assess current energy use, and identify preferences regarding DE technology. The

  16. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    Science.gov (United States)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  17. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  18. Life cycle analysis on carbon emissions from power generation – The nuclear energy example

    International Nuclear Information System (INIS)

    Nian, Victor; Chou, S.K.; Su, Bin; Bauly, John

    2014-01-01

    Highlights: • This paper discusses about a methodology on the life cycle analysis of power generation using nuclear as an example. • The methodology encompasses generic system, input–output, and boundaries definitions. • The boundaries facilitate the use of Kaya Identity and decomposition technique to identify carbon emission streams. - Abstract: A common value of carbon emission factor, t-CO 2 /GWh, in nuclear power generation reported in the literature varies by more than a factor of 100. Such a variation suggests a margin of uncertainty and reliability. In this study, we employ a bottom-up approach to better define the system, its input and output, and boundaries. This approach offers improved granularity at the process level and consistency in the results. Based on this approach, we have developed a methodology to enable comparison of carbon emissions from nuclear power generation. The proposed methodology employs the principle of energy balance on a defined power generation system. The resulting system boundary facilitates the use of the “Kaya Identity” and the decomposition technique to identify the carbon emission streams. Using nuclear power as a case study, we obtained a carbon emission factor of 22.80 t-CO 2 /GWh, which falls to within 2.5% of the median of globally reported LCA results. We demonstrate that the resulting methodology could be used as a generic tool for life cycle analysis of carbon emissions from other power generation technologies and systems

  19. Employing UMLS for generating hints in a tutoring system for medical problem-based learning.

    Science.gov (United States)

    Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan

    2012-06-01

    While problem-based learning has become widely popular for imparting clinical reasoning skills, the dynamics of medical PBL require close attention to a small group of students, placing a burden on medical faculty, whose time is over taxed. Intelligent tutoring systems (ITSs) offer an attractive means to increase the amount of facilitated PBL training the students receive. But typical intelligent tutoring system architectures make use of a domain model that provides a limited set of approved solutions to problems presented to students. Student solutions that do not match the approved ones, but are otherwise partially correct, receive little acknowledgement as feedback, stifling broader reasoning. Allowing students to creatively explore the space of possible solutions is exactly one of the attractive features of PBL. This paper provides an alternative to the traditional ITS architecture by using a hint generation strategy that leverages a domain ontology to provide effective feedback. The concept hierarchy and co-occurrence between concepts in the domain ontology are drawn upon to ascertain partial correctness of a solution and guide student reasoning towards a correct solution. We describe the strategy incorporated in METEOR, a tutoring system for medical PBL, wherein the widely available UMLS is deployed and represented as the domain ontology. Evaluation of expert agreement with system generated hints on a 5-point likert scale resulted in an average score of 4.44 (Spearman's ρ=0.80, p<0.01). Hints containing partial correctness feedback scored significantly higher than those without it (Mann Whitney, p<0.001). Hints produced by a human expert received an average score of 4.2 (Spearman's ρ=0.80, p<0.01). Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Nuclear energy in medium and long term energy generation of Turkey

    International Nuclear Information System (INIS)

    Sarici, L. E.; Yilmaz, S.; Guray, B. S.

    2001-01-01

    In this study; objectives and activities of Nuclear Power Plants Department and Turkish Electricity Generation and Transmission Corporation is briefly mentioned. A brief history of electricity generation, development of Turkish electrical energy sector and development of the installed capacity of country is presented. The history and future perspectives of AKZuyu Nuclear Power Plant Project is sharply outlined. In the light of the current situation in electricity generation and demand projections, importance of nuclear power among the other future electricity generation alternatives of Turkey is underlined

  1. Potential of Livestock Generated Biomass: Untapped Energy Source in India

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2017-06-01

    Full Text Available Modern economies run on the backbone of electricity as one of major factors behind industrial development. India is endowed with plenty of natural resources and the majority of electricity within the country is generated from thermal and hydro-electric plants. A few nuclear plants assist in meeting the national requirements for electricity but still many rural areas remain uncovered. As India is primarily a rural agrarian economy, providing electricity to the remote, undeveloped regions of the country remains a top priority of the government. A vital, untapped source is livestock generated biomass which to some extent has been utilized to generate electricity in small scale biogas based plants under the government's thrust on rural development. This study is a preliminary attempt to correlate developments in this arena in the Asian region, as well as the developed world, to explore the possibilities of harnessing this resource in a better manner. The current potential of 2600 million tons of livestock dung generated per year, capable of yielding 263,702 million m3 of biogas is exploited. Our estimates suggest that if this resource is utilized judiciously, it possesses the potential of generating 477 TWh (Terawatt hour of electrical energy per annum.

  2. Simulation of energy use in buildings with multiple micro generators

    International Nuclear Information System (INIS)

    Karmacharya, S.; Putrus, G.; Underwood, C.P.; Mahkamov, K.; McDonald, S.; Alexakis, A.

    2014-01-01

    This paper focuses on the detailed modelling of micro combined heat and power (mCHP) modules and their interaction with other renewable micro generators in domestic applications based on an integrated modular modelling approach. The simulation model has been developed using Matlab/Simulink and incorporates a Stirling engine mCHP module embedded in a lumped-parameter domestic energy model, together with contributions from micro wind and photovoltaic modules. The Stirling cycle component model is based on experimental identification of a domestic-scale system which includes start up and shut down characteristics. The integrated model is used to explore the interactions between the various energy supply technologies and results are presented showing the most favourable operating conditions that can be used to inform the design of advanced energy control strategies in building. The integrated model offers an improvement on previous models of this kind in that a fully-dynamic approach is adopted for the equipment and plant enabling fast changing load events such as switching on/off domestic loads and hot water, to be accurately captured at a minimum interval of 1 min. The model is applied to two typical 3- and 4-bedroom UK house types equipped with a mCHP module and two other renewable energy technologies for a whole year. Results of the two cases show that the electrical contribution of a Stirling engine type mCHP heavily depends on the thermal demand of the building and that up to 19% of the locally-generated electricity is exported whilst meeting a similar percentage of the overall annual electricity demand. Results also show that the increased number of switching of mCHP module has an impact on seasonal module efficiency and overall fuel utilisation. The results demonstrate the need for the analysis of equipment design and optimal sizing of thermal and electrical energy storage. -- Highlights: • Dynamic modelling of a building along with its space heating and hot

  3. Photovoltaic energy mini-generation: Future perspectives for Portugal

    International Nuclear Information System (INIS)

    Carvalho, Duarte; Wemans, Joao; Lima, Joao; Malico, Isabel

    2011-01-01

    This paper evaluates the benefits of developing the mini-generation PV market in Portugal. It presents the legal framework and current status of the Portuguese PV electricity sector, and compares the country to other European nations: France, Germany, Greece, Italy, Spain and the United Kingdom. A model that combines PVGIS with a self-developed financial tool is used to assess the feasibility of a 150 kW mini-generation system using five different technologies: fixed mount, single-axis tracking, double-axis tracking, low concentration and medium concentration (MCPV). The profitability of the mini-generation systems in the seven countries studied is calculated and compared. According to this analysis, MCPV and, of the conventional technologies, the single-axis tracking systems are the most profitable technologies. Despite the attractiveness of the current Portuguese feed-in tariffs and of the abundant solar resource, investors are discouraged and the country's PV market is far from mature. Specific mini-generation regulations should focus on a fast and transparent licensing procedure and should promote the access to financing. This would attract new investments, which would result in the growth of the PV electricity produced, and would help Portugal to meet its European Union Renewable Energy targets. - Highlights: → This work promotes the development of a mini-generation PV market in Portugal. → The Portuguese current status and legal framework is compared to other EU countries. → The profitability of 5 different PV technologies is compared for 7 European countries. → The Portuguese growth potential for PV energy is still big. → Portugal, due to its radiation levels, presents excellent investment opportunities.

  4. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  5. Study of energy recovery and power generation from alternative energy source

    Directory of Open Access Journals (Sweden)

    Abdulhakim Amer A. Agll

    2014-11-01

    Full Text Available The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG and combined heat power (CHP. In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation.

  6. Offshore Hydrokinetic Energy Conversion for Onshore Power Generation

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2009-01-01

    Design comparisons have been performed for a number of different tidal energy systems, including a fully submerged, horizontal-axis electro-turbine system, similar to Verdant Tidal Turbines in New York's East River, a platform-based Marine Current Turbine, now operating in Northern Ireland's Strangford Narrows, and the Rotech Lunar Energy system, to be installed off the South Korean Coast. A fourth type of tidal energy system studied is a novel JPL/Caltech hydraulic energy transfer system that uses submerged turbine blades which are mechanically attached to adjacent high-pressure pumps, instead of to adjacent electrical turbines. The generated highpressure water streams are combined and transferred to an onshore hydroelectric plant by means of a closed-cycle pipeline. The hydraulic energy transfer system was found to be cost competitive, and it allows all electronics to be placed onshore, thus greatly reducing maintenance costs and corrosion problems. It also eliminates the expenses of conditioning and transferring multiple offshore power lines and of building offshore platforms embedded in the sea floor.

  7. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  8. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  9. Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2008-01-01

    Renewable energy has been in the limelight ever since the price of crude petroleum oil increases to the unprecedented height of US$96 per barrel recently. This is due to the diminishing oil reserves in the world and political instabilities in some oil-exporting countries. The advantages of renewable energy compared to fossil fuels are enormous in terms of environment and availability. Biofuels like bioethanol and biodiesel are currently being produced from agricultural products such as sugarcane and rapeseed oil, respectively. Collectively, these biofuels from food sources are known as first-generation biofuels. Although first-generation biofuels have the potential to replace fossil fuels as the main source of energy supply, its production is surrounded by certain issues like tropical forests' destruction. Instead, second-generation bioethanol, which utilizes non-edible sources such as lignocellulose biomass to produce ethanol, has been shown to be more suitable as the source of renewable energy. However, there are challenges and obstacles such as cost, technology and environmental issues that need to be overcome. Hence, the introduction of energy policy is crucial in promoting and implementing second-generation bioethanol effectively and subsequently become a major source of renewable energy

  10. Turbulence generation through intense localized sources of energy

    Science.gov (United States)

    Maqui, Agustin; Donzis, Diego

    2015-11-01

    Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.

  11. An optimization model for energy generation and distribution in a dynamic facility

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  12. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  13. Transition to distributed energy generation in Finland: Prospects and barriers

    International Nuclear Information System (INIS)

    Ruggiero, Salvatore; Varho, Vilja; Rikkonen, Pasi

    2015-01-01

    Small-scale distributed energy generation is expected to play an important role in helping Finland increase its energy self-sufficiency. However, the overall strategy to date for promoting distributed energy remains unclear. It is not yet well understood which factors promote the growth of the distributed energy sector and what barriers need to be removed. In this article we present the results of a questionnaire directed at a panel of 26 experts from the distributed energy value chain and 15 semi-structured interviews with industry and non-industry representatives. We investigated, from a sociotechnical transition perspective, the possibilities and challenges of the transition to distributed energy in Finland through 2025. The results show that a shift to a prosperous future for distributed energy is possible if permit procedures, ease of grid connection, and taxation laws are improved in the electricity sector and new business concepts are introduced in the heat sector. In contrast to other European countries, the transition in Finland is expected to take place through a market-based approach favoring investment-focused measures. We conclude that incentive-based schemes alone, whatever they may be, will be insufficient to create significant growth in Finland without institutional change, removal of barriers, and the engagement of key actors. - Highlights: • We examine the possibilities and challenges of the transition to DE in Finland. • Technological niches are emerging both in the heat and electricity sector. • Business model innovation is evident only in the electricity sector. • Removing barriers and developing new business models will accelerate the transition.

  14. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  15. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Xiaoyu, Yan; Zhang, Xiliang

    2011-01-01

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO 2,e )/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO 2,e /MJ with the development of nuclear and renewable energy and to 169.014 gCO 2,e /MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  16. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Xiaoyu, Yan [Smith School of Enterprise and the Environment, University of Oxford, Oxford OX1 2BQ (United Kingdom); Zhang, Xiliang [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China)

    2011-01-15

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO{sub 2,e})/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO{sub 2,e}/MJ with the development of nuclear and renewable energy and to 169.014 gCO{sub 2,e}/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  17. Ion energy distributions from laser-generated plasmas at two different intensities

    Science.gov (United States)

    Ceccio, Giovanni; Torrisi, Lorenzo; Okamura, Masahiro; Kanesue, Takeshi; Ikeda, Shunsuke

    2018-01-01

    Laser-generated non-equilibrium plasmas were analyzed at Brookhaven National Laboratory (NY, USA) and MIFT Messina University (Italy). Two laser intensities of 1012 W/cm2 and 109 W/cm2, have been employed to irradiate Al and Al with Au coating targets in high vacuum conditions. Ion energy distributions were obtained using electrostatic analyzers coupled with ion collectors. Time of flight measurements were performed by changing the laser irradiation conditions. The study was carried out to provide optimum keV ions injection into post acceleration systems. Possible applications will be presented.

  18. Perspective on energy security and other non environmental externalities in electricity generation

    International Nuclear Information System (INIS)

    Bohi, D.R.

    1994-01-01

    Applications of the term externality to non environmental matters are often controversial and ambiguous. This paper argues that these externalities are also rarer or less important than sometimes alleged. The paper examines various potential energy security externalities and concludes that none of them are relevant to decisions regarding electric generation. Externalities may exist with regard to effects on local employment and the local infrastructure, although their importance is location specific and their measurement is highly subjective. In short, the consideration of this subset of externalities may confuse policy makers more than it helps them. (author). 15 refs

  19. Natural gas for power generation : issues and implications : an energy market assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This report presented a historical examination of trends in natural gas-fired generation as well as a perspective on the issues and potential implications of increasing reliance on natural gas. Potential changes to Canadian energy consumers were reviewed in addition to natural gas infrastructure and services. Electricity prices relating to natural gas generation were examined. A broad regional and continental perspective was employed to account for energy market integration and the fact that gas trends reflect developments outside of Canada. The report was divided into 2 sections: (1) an examination of the trend toward natural-gas fired generation of electricity in North America; and (2) an examination of issues in closer detail from a regional perspective followed by a discussion of the changes in generation and natural gas markets in western, eastern, and central North America. Questions arising from the analysis of specific regional supply, demand and infrastructure situations were also examined. Recommendations were presented for issues concerning the current gas market and the appropriate role of the government in ensuring adequate generation. Uncertainties in future natural gas supply were also considered. It was concluded that rapid industrial growth will continue to increase demand for natural gas and electricity supply. 5 figs

  20. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  1. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    Science.gov (United States)

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  3. Future of nuclear energy for electricity generation in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro

    2015-01-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  4. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  5. Generation and energy utilization of methane form industrial wastewater

    International Nuclear Information System (INIS)

    Lebek, M.

    2009-01-01

    At the production site of a natural ingredients manufacturer for the food industry was necessary the adjustment of the WWTP to the enlargement of the production and its complement with a pre-treatment. The core of the treatment plan tis an UASB (Upflow Anaerobic Sludge Blanket) reactor where the wastewater is removed under anaerobic conditions. The main advantages of this treatment ar the operation stability and the high methane production. The biogas generated is cleaned before it is used during the production process as an energy resource. (Author)

  6. Renewable energy resources for distributed generation systems in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Szewczuk, Stefan

    2010-09-15

    The South African Government has objective to provide universal access of electricity for its citizens and its electrification programme has been successful but focus has moved from numbers of connections to one of achieving sustainable socio-economic benefits. First-hand understanding was obtained of the complexity of socio-economic development where CSIR undertook a project in the rural areas of South Africa to identify electrification opportunities using renewable energy linked to economic activities. Lessons formed basis of a government funding implementation of pilot hybrid mini-grids to inform a future rollout. Results informed the development of distributed generation concepts and an integrated methodology.

  7. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  8. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  9. Energy concentration on S-300 pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Bakshaev, Yu Z; Chernenko, A S; Korolev, V D; Mizhiritskij, V I; Zazhivikhin, V V [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Energy concentration in fast Z-pinch investigation experiments on an 8-module 10 TW pulsed power S-300 generator (1.3 MV, 45 ns FWHM, 0.15 Ohm) is realized by a 3-d vacuum energy concentrator. The concentrator was constructed on the basis of triplate MITLs connected in parallel at the central unit where the Z-pinch is formed. At some start-up experiments on the 8-module installation version at 700 kV incident wave amplitude on concentrator for a gas puff load current of 4 MA with rise time of about 60 ns was obtained. The efficiency or current transfer from the concentrator input to the load for both a gas liner and a short-circuited case was practically the same. (author). 4 figs., 4 refs.

  10. Renewable Energy Jobs. Status, prospects and policies. Biofuels and grid-connected electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, H; Ferroukhi, R [et al.; IRENA Policy Advisory Services and Capacity Building Directorate, Abu Dhabi (United Arab Emirates)

    2012-01-15

    Over the past years, interest has grown in the potential for the renewable energy industry to create jobs. Governments are seeking win-win solutions to the dual challenge of high unemployment and climate change. By 2010, USD 51 billion had been pledged to renewables in stimulus packages, and by early 2011 there were 119 countries with some kind of policy target and/or support policy for renewable energy, such as feed-in tariffs, quota obligations, favourable tax treatment and public loans or grants, many of which explicitly target job creation as a policy goal. Policy-makers in many countries are now designing renewable energy policies that aim to create new jobs, build industries and benefit particular geographic areas. But how much do we know for certain about the job creation potential for renewable energy? This working paper aims to provide an overview of current knowledge on five questions: (1) How can jobs in renewable energy be characterised?; (2) How are they shared out across the technology value chain and what skill levels are required?; (3) How many jobs currently exist and where are they in the world?; (4) How many renewable energy jobs could there be in the future?; and (5) What policy frameworks can be used to promote employment benefits from renewable energy? This paper focuses on grid-connected electricity generation technologies and biofuels. Since the employment potential of off-grid applications is large, it will be covered by a forthcoming study by IRENA on job creation in the context of energy access, based on a number of case studies.

  11. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.

    2017-03-28

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  12. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2017-01-01

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  13. Controlled energy generation from nuclear fusion. 60th year atw

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Georg [Pintsch Bamag AG, Frankfurt am Main (Germany)

    2015-02-15

    Prospects increase, that with a controlled process of nuclear fusion one day an additional nuclear energy source will be commercially exploitable. In what follows, scientific principles according to the most recent research will be presented. Since approximately 30 years we are aware of the fact, that energy in form of light and heat provided by the sun and other fixed stars since over four billions years resulted from reactions of atomic nuclei. A series of such reactions became known which are considered for 'thermonuclear' processes, for example the carbon cycle by Bethe, where hydrogen is converted into helium. Most of the reflections and experiments dealt until 1938 with the reaction between nuclei of light elements. The possibility of splitting heavy nuclei was not anticipated. Its discovery by Hahn and Strassmann was a complete surprise - so to speak a rash reaction to release energy at the end of the element row. This 'way out' captured the interest of nuclear physicist for more than a decade. Only today, by starting to construct big nuclear power plants - only today, being able to assess the possibilities and limitations of this technology, the idea of energy generation through nuclear fusion steps into the foreground of nuclear research.

  14. Geothermal energy used in a cooling generation process

    International Nuclear Information System (INIS)

    Benzaoui, A.; El Gharbi, N.; Merabti, L.

    2006-01-01

    This paper deals with the geothermal energy recovery and use. It is available in an important water reservoir at 1800 m deep. Some drilled wells deliver each one about 200 1/s at 75-95 degree centigrade for agricultural use. It is necessarily cooled to be in irrigation conditions at 20-25 degree centigrade. Our purpose is to install the adequate sized heat exchangers to recover this important energy and to use it in different needs. Furthermore, a systematic survey is made, on the basis od Lindal Diagram, about different possibilities to use this geothermal reservoir available in arid area. Several applications are experimented and presented to farmers: air conditioning, domestic space heating, bathing, fruits and products drying, aqua fishing, etc.. In this report we present the study including scientific and technical questions (heat and mass transfer, absorption cooling generating, energy and mass balances, etc..). The available heat must be upgraded.The solar energy is used for this need. The total experimental cooled space is: 4 rooms X 210 m 3 . The coefficient of performance of the set up is 44% and could be enhanced. Inhabitants could use this fresh atmosphere to stock their products and to pay some home comfort. All calculations and theoretical simulations will be presented and commented.(Author)

  15. Renewable energy sources for electricity generation in selected developed countries

    International Nuclear Information System (INIS)

    1992-05-01

    The objectives of this report are to analyze the present status and to assess the future of selected renewable energy sources (RE) other than hydropower, i.e. wind, solar, biomass, tidal and geothermal, already in use or expected to be used for electricity generation. The report focuses on grid connected technologies leaving stand-alone power plants unconsidered. This report provides recent information on environmental impacts, costs and technical potentials related to the implementation of electricity technologies using these energy sources. The study is limited to six OECD countries, i.e. Australia, the Federal Republic of Germany, Japan, Sweden, the United Kingdom and the United States of America. The situation in other OECD countries is addressed where appropriate, but no comprehensive information is provided. Nevertheless, efforts are made to determine the technical potential of the renewable energy sources for ''Rest of OECD''. The time horizons in this report are 2010 and 2030. While detailed information is provided for the period until 2010, the technical potential for 2030 is discussed only qualitatively. Scenario analysis and the design of national energy and electric systems assuming different sets of objectives and boundary conditions are outside the scope of this study. Nevertheless, the information given in this report should provide input data for such a systems analysis. All the information given in this report is based on literature surveys. Any figure given is contingent on the fact that it has appeared in a paper or a publicly available technical report. 251 refs, figs and tabs

  16. Experimental Research on the Characteristic of a Generator Used in Wave Energy Conversion

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Wu, Guoheng

    2018-01-01

    Due to the environmental issues like global warming and pollution, the exploration for ocean energy becomes important. Selecting the suitable generator for wave energy generation system is essential to improve the efficiency of power generation system. Thus, the object of the research is the generator of a self-adaptation inversion type wave energy absorption device. The major focus of this paper is the characteristics and the technique of the generator used in prototype. By setting up the generator performance test platform, the output voltage, efficiency and performance of the generator are tested to select the suitable generator for the wave energy generating system.

  17. Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria

    Directory of Open Access Journals (Sweden)

    Oluseyi O. Ajayi

    2014-12-01

    Full Text Available The study assessed the wind energy potential of ten selected sites in the south western region of Nigeria and carried out a cost benefit analysis of wind power generation at those sites. Twenty four years’ (1987 to 2010 wind speed data at 10 m height obtained from the Nigerian meteorological agency were employed to classify the sites wind profiles for electricity generation. The energy cost analysis of generating wind electricity from the sites was also carried out. The outcome showed that sites in Lagos and Oyo States were adequately suited for large scale generation with average wind speeds ranged between 2.9 and 5.8 m/s. Those from other sites may be suitable for small scale generation or as wind farms, with several small turbines connected together, to generate large enough wind power. The turbine matching results shows that turbines cut-in and rated wind speeds of between 2.0 and 3.0 m/s, and between 10 and 12.0 m/s respectively will be very suited to all the sites, particularly those in locations outside Lagos and Oyo States. The energy cost analysis shows that generation cost can be as low as 0.02 €/kWh and as high as 5.03/kWh, depending on the turbine model employed.

  18. Matching of renewable source of energy generation graphs and electrical load in local energy system

    Science.gov (United States)

    Lezhniuk, Petro; Komar, Vyacheslav; Sobchuk, Dmytro; Kravchuk, Sergiy; Kacejko, Piotr; Zavidsky, Vladislav

    2017-08-01

    The paper contains the method of matching generation graph of photovoltaic electric stations and consumers. Characteristic feature of this method is the application of morphometric analysis for assessment of non-uniformity of the integrated graph of energy supply, optimal coefficients of current distribution, that enables by mean of refining the powers, transferring in accordance with the graph , to provide the decrease of electric energy losses in the grid and transport task, as the optimization tool.

  19. Employment Effects of Renewable Energy Expansion on a Regional Level—First Results of a Model-Based Approach for Germany

    Directory of Open Access Journals (Sweden)

    Ulrike Lehr

    2012-02-01

    Full Text Available National studies have shown that both gross and net effects of the expansion of energy from renewable sources on employment are positive for Germany. These modeling approaches also revealed that this holds true for both present and future perspectives under certain assumptions on the development of exports, fossil fuel prices and national politics. Yet how are employment effects distributed within Germany? What components contribute to growth impacts on a regional level? To answer these questions (new methods of regionalization were explored and developed for the example “wind energy onshore” for Germany’s federal states. The main goal was to develop a methodology which is applicable to all renewable energy technologies in future research. For the quantification and projection, it was necessary to distinguish between jobs generated by domestic investments and exports on the one hand, and jobs for operation and maintenance of existing plants on the other hand. Further, direct and indirect employment is analyzed. The results show, that gross employment is particularly high in the northwestern regions of Germany. However, especially the indirect effects are spread out over the whole country. Regions in the south not only profit from the delivery of specific components, but also from other industry and service inputs.

  20. Very Short-term Nonparametric Probabilistic Forecasting of Renewable Energy Generation - with Application to Solar Energy

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Gooi, Hoay Beng

    2016-01-01

    Due to the inherent uncertainty involved in renewable energy forecasting, uncertainty quantification is a key input to maintain acceptable levels of reliability and profitability in power system operation. A proposal is formulated and evaluated here for the case of solar power generation, when only...... approach to generate very short-term predictive densities, i.e., for lead times between a few minutes to one hour ahead, with fast frequency updates. We rely on an Extreme Learning Machine (ELM) as a fast regression model, trained in varied ways to obtain both point and quantile forecasts of solar power...... generation. Four probabilistic methods are implemented as benchmarks. Rival approaches are evaluated based on a number of test cases for two solar power generation sites in different climatic regions, allowing us to show that our approach results in generation of skilful and reliable probabilistic forecasts...

  1. Tidal Energy System for On-Shore Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  2. Wing/kite-based wind energy generation: An overview

    Science.gov (United States)

    Milanese, M.

    2013-06-01

    Several technologies, aimed at converting high-altitude wind into electricity, are actually being investigated by companies, research centers and universities worldwide, and the community of people working in this field has coined the term airborne wind energy (AWE) as a common umbrella for these concepts. Indeed, many basic ideas that are now being developed in the context of AWE were already present in patents and publications since the '70s. Then, these ideas remained somehow silent, until more recent years, when several research groups and companies started to carry out theoretical, numerical and experimental analyses, made possible by important advances in diverse fields like materials, aerodynamics, sensors, computation and control. In this lecture, the basic AWE concepts and results that have been up to date accomplished are overviewed, with a focus on a particular class of AWE generators, namely with flexible wings and ground level generators, and emphasis on optimization and control aspects. Finally, we delineate what challenges are still to be faced, in order to fully demonstrate the viability of airborne wind energy.

  3. Renewable Energy Power Generation Estimation Using Consensus Algorithm

    Science.gov (United States)

    Ahmad, Jehanzeb; Najm-ul-Islam, M.; Ahmed, Salman

    2017-08-01

    At the small consumer level, Photo Voltaic (PV) panel based grid tied systems are the most common form of Distributed Energy Resources (DER). Unlike wind which is suitable for only selected locations, PV panels can generate electricity almost anywhere. Pakistan is currently one of the most energy deficient countries in the world. In order to mitigate this shortage the Government has recently announced a policy of net-metering for residential consumers. After wide spread adoption of DERs, one of the issues that will be faced by load management centers would be accurate estimate of the amount of electricity being injected in the grid at any given time through these DERs. This becomes a critical issue once the penetration of DER increases beyond a certain limit. Grid stability and management of harmonics becomes an important consideration where electricity is being injected at the distribution level and through solid state controllers instead of rotating machinery. This paper presents a solution using graph theoretic methods for the estimation of total electricity being injected in the grid in a wide spread geographical area. An agent based consensus approach for distributed computation is being used to provide an estimate under varying generation conditions.

  4. Nuclear power generation alternative for a clean energy future

    International Nuclear Information System (INIS)

    Simionov, V; Ibadula, R.; Popescu, Ion.; Bobric, Elena

    2001-01-01

    World Energy Council stated that to raise the efficiency in which energy is provided is a huge challenge for power engineering. Over 60% of primary energy is in effect, wasted. At present 63% of the world's electricity comes from thermal power (coal, oil and gas), 19% from hydro, 17% from nuclear, 0.5% from geothermal and 0.1% from solar, wind and biomass. Nuclear power almost completely avoids all the problems associated within fossil fuels: no greenhouse effect, no acid rain, no air pollution with sulfur dioxide, nitrogen oxides, no oil spills, etc. Its impact on health and environment is related to radiation and is relatively minor. Without pretending a high accuracy of numbers, if the first Romanian nuclear power reactor will be replaced by a coal plant of equivalent capacity, about 5 millions tons of CO 2 and large quantities of associated sulfur and nitrous oxides, would be discharged to the atmosphere each year. However, the acceptance of nuclear power is largely an emotional issue. Based on the environmental monitoring program this paper tries to demonstrate that the routine radioactive emissions of Cernavoda NPP, which are limited by competent national authority, constitutes an insignificant risk increase. The concept of sustainable development was elaborated in the late 1980s and defined as a development that fulfil the needs of the present, without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also

  5. Electromagnetic Energy Converters - Rotating Motors and Linear Generators

    Energy Technology Data Exchange (ETDEWEB)

    Ekergaard, Boel

    2011-07-01

    This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System

  6. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  7. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    Science.gov (United States)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  8. Biophysical studies related to energy generation: Progress report

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1988-01-01

    This report covers work subsequent to our previous report of December 24, 1986. At that time we were groping to find relationships between vibrational and rotational electron impact cross sections in the vapor and liquid phases of water. Having reached an impass within the radiological literature, we drew upon the atmospheric, oceanographic and flame radiation literatures. Here a much broader body of excitation energy and intensity data related to the vibrational and rotational excitation of water in the vapor phases and liquid phases enabled us to identify certain ''big bands'' of H 2 O. These bands account for the major infrared absorption features observed in atmospheric transmission studies as well as important spectral radiation features observed in hydrocarbon combustion. Related liquid phase-gas phase involvement also entered our work on co-combustion of biomass and waste, and natural gas in studies directed toward contributing to the solution of national energy-environmental and economic problems. Attachments to this report include our published works, submitted works, and in complete studies related to radiological, atmospheric, and combustion studies which encompass biophysical studies related to energy generation and which have a common thread involving water in liquid and vapor form. These works are tied together in this brief report, along with some comments on trends in science and technology which they might illustrate

  9. Jet Streams as Power Generating Electrical Energy in Libya

    International Nuclear Information System (INIS)

    Shibani, Abdelfatah H.

    2014-01-01

    The supreme wind sources are extremely huge, and according to estimations, these winds can supply Libya with great quantity of electrical energy. Among the examples of contemporary engineering technologies in this field, is to create a new generation of Airborne Wind Turbines. Scientists realized that winds near the Earth's surface are too weak to provide a regular source of energy due to the presence of aerobic swirls and obstacles, which represent a source of ground friction being the cause of weakening wind power. Some consider that the Earth's surface is a totally inappropriate place for investing wind energy. As an alternative solution, we start to think about the establishment of wind farms in another place away from the Earth's surface by developing a new type that can run within the upper-air layers, precisely at jet streams areas. In comparison with fluctuating winds blowing gently near the Earth's surface, scientists estimate that the energy of jet streams increases a thousand times than that can be gathered from the most powerful winds on high hills. To be able to provide a clear picture of the possibility of energy investment of jet streams, we shall present, across the pages of this paper, an explanation of the topic through the following aspects: How do Airborne Wind Turbines' trip start, their advantages and difficulties faced, benefits and economic feasibility, General Atmospheric Circulation and jet streams. Since Libya is among the fortunate countries in the world, through which subtropical jet streams pass, we made an analysis and follow-up of daily synoptic charts, which show jet winds' speed, direction and their altitudes for a period of 60 consecutive months starting from January 1, 2003 until December 31, 2007. Also, an analysis was made of daily observational data of jet winds recorded by Tripoli Upper-air Station during the period from the beginning of March 1987 until the end of February 1989. The paper's results summarized that jet

  10. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  11. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    Science.gov (United States)

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  12. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    Directory of Open Access Journals (Sweden)

    Jeongjin Yeo

    2015-07-01

    Full Text Available The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  13. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements. In this paper, the modular PV generation system is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one dc/dc converter for battery......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information......Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...

  14. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at finding feasible electromagnetic designs of superconducting synchronous generators (SCSGs) for a 10-MW direct-drive wind turbine. Since a lower levelized cost of energy (LCoE) increases the feasibility of SCSGs in this application, 12 generator topologies are compared regarding...... their LCoE in a simplified form of levelized equipment cost of energy (LCoE$_{\\text{eq}}$). MgB$_2$ wires are employed in the field winding. Based on the current unit cost and critical current density capability of the MgB $_2$ wire at 20 K, the topologies with more iron have a much lower LCo...

  15. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    2017-04-01

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of the proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.

  16. The Production of Sewage Biogas and its Use for Energy Generation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Silva, Orlando Cristiano; Pecora, Vanessa; Abreu, Fernando Castro [Univ. de Sao Paulo (Brazil). IEE/CENBIO - Brazilian National Biomass Reference Center

    2006-07-15

    The project proposal of sewage use to produce biogas as fuel to generate electric energy is a commitment of CENBIO (Brazilian National Biomass Reference Center). It is one between others projects developed by Sao Paulo University Program named PUREFA (Program of Rational Energy Use and Alternative Sources), which aims to increase the renewable energy participation in University's energetic matrix, as well as it allows new perspectives to renewable energy employment in Brazil. In this context, this abstract presents a pilot project for biogas conversion in Brazil. The project aims to increase the biogas conversion efficiency, by using it as fuel to produce electricity. The biogas is generated in the University campus, in a Up-flow Anaerobic Sludge Blanket biodigestor, fed in this project, with liquid effluents provided by residential buildings, located in the University, presenting a mass flow rate equivalent to 3 m{sup 3}/h.This project is under development and the results will provide information about biodigestor's operational conditions, defining appropriate areas where it could be applicable. The most important environmental contribution associated to this project is the mitigation of greenhouse gases emissions, especially verified trough methane conversion in carbon dioxide, which presents a dangerous level around twenty times lower than methane.

  17. MINI-THESAURUS, Energy Data Base Subject Thesaurus Generator

    International Nuclear Information System (INIS)

    Paulk, J.W.

    2003-01-01

    1 - Description of program or function: MINI-THESAURUS allows the user to subset into highly-specialized 'mini-thesauri' the Energy Data Base (EDB) Subject Thesaurus, which contains the standard vocabulary of indexing terms (descriptors) developed and structured by the Office of Scientific and Technical Information (OSTI) for the building and maintenance of the U.S. Department of Energy (DOE) energy information databases. This structured vocabulary reflects the scope of DOE's research, development, and technological programs and encompasses terminology derived not only from the basic sciences but also from the areas of energy, conservation, safety, environmental impact, and regulation. Entire word blocks may be copied from the primary Subject Thesaurus, from another mini-thesaurus, or both, and subsequently modified through the addition of new terms, the deletion of existing terms, and changes to the internal relationships among the word blocks within the mini-thesaurus to create a new, special-purpose thesaurus. MINI-THESAURUS also provides the ability to copy the entire Subject Thesaurus and to treat the copy as a mini-thesaurus, thus allowing one to examine the effects of major changes to the thesaurus structure without having to modify the primary, on-line Thesaurus. The copy operation also optimizes the Subject Thesaurus structure. An interactive user having update privileges for a specific mini-thesaurus and access to the TeX and PostScript proprietary software can produce the mini-thesaurus in printed publication format. Once the mini-thesaurus has been published, periodic supplements may be generated based on date of entry or change maintained by the Thesaurus software. 2 Restrictions on the complexity of the problem: The system enforces the OSTI rules for Thesaurus development

  18. Heat-transfer aspects of Stirling power generation using incinerator waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.T.; Lin, F.Y.; Chiou, J.S. [National Cheng Kung University, Tainan, Taiwan (China). Department of Mechanical Engineering

    2003-01-01

    The integration of a free-piston Stirling engine with linear alternator and an incinerator is able to effectively recover the waste energy and generate electrical power. In this study, a cycle-averaged heat transfer model is employed to investigate the performance of a free-piston Stirling engine installed on an incinerator. With the input of source and sink temperatures and other realistic heat transfer coefficients, the efficiency and the optimal power output are estimated, and the effect induced by internal and external irreversibilities is also evaluated. The proposed approach and modeling results presented in this study provide valuable information for engineers and designers to recover energy from small-scale incinerators. (author)

  19. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    Science.gov (United States)

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-07

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.

  20. Building generation four: results of Canadian research program on generation IV energy technologies

    International Nuclear Information System (INIS)

    Anderson, T.; Leung, L.K.H.; Guzonas, D.; Brady, D.; Poupore, J.; Zheng, W.

    2014-01-01

    A collaborative grant program has been established between Natural Sciences and Engineering Research Council (NSERC) of Canada, Natural Resources Canada (NRCan), and Atomic Energy of Canada Limited (AECL) to support research and development (R&D) for the Canadian SuperCritical Water-cooled Reactor (SCWR) concept, which is one of six advanced nuclear reactor systems being studied under the Generation-IV International Forum (GIF). The financial support for this grant program is provided by NSERC and NRCan. The grant fund has supported university research investigating the neutronic, fuel, thermal-hydraulics, chemistry and material properties of the Canadian SCWR concept. Twenty-two universities have actively collaborated with experts from AECL Nuclear Laboratories and NRCan's CanmetMATERIALS (CMAT) Laboratory to advance the technologies, enhance their infrastructure, and train highly qualified personnel. Their R&D findings have been contributed to GIF fulfilling Canada's commitments. The unique collaborative structure and the contributions to Canada's nuclear science and technology of the NSERC/NRCan/AECL Generation IV Energy Technologies Program are presented. (author)

  1. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Deal, John R. Grizz; Pearson, Cody [Hyperion Power Generation, Inc., 369 Montezuma Ave, Suite 508, Santa Fe, NM 87501 (United States)

    2010-07-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining

  2. EDF energy generation UK transport of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [EDF Energy, London, (United Kingdom)

    2015-07-01

    This paper give an overview of irradiated fuel transport in the UK. It describes the design of irradiated fuel flask used by EDF Energy; operational experience and good practices learnt from over 50 years of irradiated fuel transport. The AGRs can store approximately 9 months generation of spent fuel, hence the ability to transport irradiated fuel is vital. Movements are by road to the nearest railhead, typically less than 2 miles and then by rail to Sellafield, up to 400 miles, for reprocessing or long term storage. Road and rail vehicles are covered. To date in the UK: over 30,000 Magnox flask journeys and over 15,000 AGR A2 flask journeys have been carried out.

  3. Hipse: an event generator for nuclear collisions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  4. Progress in energy generation for Canadian remote sites

    Science.gov (United States)

    Saad, Y.; Younes, R.; Abboudi, S.; Ilinca, A.; Nohra, C.

    2016-07-01

    Many remote areas around the world are isolated, for various reasons, from electricity networks. They are usually supplied with electricity through diesel generators. The cost of operation and transportation of diesel fuel in addition to its price have led to the procurement of a more efficient and environmentally greener method of supply. Various studies have shown that a wind-diesel hybrid system with compressed air storage (WDCAS) seems to be one of the best solutions, and presents itself as an optimal configuration for the electrification of isolated sites. This system allows significant fuel savings to be made because the stored compressed air is used to supercharge the engine. In order to optimize system performance and minimize fuel consumption, installation of a system for recovering and storing the heat of compression (TES) seems necessary. In addition, the use of hydro-pneumatic energy storage systems that use the same machine as the hydraulic pump and turbine allow us to store energy in tight spaces and, if possible, contribute to power generation. The scrupulous study of this technical approach will be the focus of our research which will validate (or not) the use of such a system for the regulation of frequency of electrical networks. In this article we will skim through the main research that recently examined the wind-diesel hybrid system which addressed topics such as adiabatic compression and hydro-pneumatic storage. Instead, we will offer (based on existing studies) a new ACP-WDCAS (wind-diesel hybrid system with adiabatic air compression and storage at constant pressure), which combines these three concepts in one system for the optimization of wind-diesel hybrid system.

  5. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    Science.gov (United States)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  6. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications

    International Nuclear Information System (INIS)

    Suzuki, Yuji; Miki, Daigo; Edamoto, Masato; Honzumi, Makoto

    2010-01-01

    In this paper, we propose a passive gap-spacing control method in order to avoid stiction between top and bottom structures in in-plane sensor/actuator/generator applications. A patterned electret using a high-performance perfluoro polymer material is employed to induce a repulsive electrostatic force. An out-of-plane repulsive force is successfully demonstrated with our early prototype, in both air and liquid. By using the present electret-based levitation method to keep the air gap, a MEMS electret generator has been developed for energy-harvesting applications. A dual-phase electrode arrangement is adopted in order to reduce the horizontal electrostatic damping force. With the present prototype, about 0.5 µW is obtained for both phases of the generator, resulting in a total power output of 1.0 µW at an acceleration of 2 g with 63 Hz. With our electromechanical model of the generator, we have confirmed that the model can mimic the response of the generator prototype

  7. Wind energy research activities of the Dutch Electricity Generating Board

    International Nuclear Information System (INIS)

    Halberg, N.

    1990-01-01

    The varying degrees of penetration of wind energy conversion systems (WECs) into the Dutch electricity generating system has been examined. A simulation has been carried out using wind data recorded at 6 sites spread across the area of interest in the Netherlands. The recorded wind data has been used in conjunction with a production costing model normally used by Sep (the Dutch Electricity Generating Board) for planning purposes. This model was modified to give a correct assessment of the quantity and value of fuel savings made by WECs. System studies were carried out for the year 2000 for zero wind penetration and for three distinctive penetration degrees of WECs, namely 5%, 10% and 15%. After incorporation of the WECS capacity, adjustments were made to the basic plant mix to allow the capacity credit WECs. Separate production cost simulations were executed for each distinct WECS capacity factor. Economic assessments were carried out using standard procedures. Except for the unpredictable development of fuel prices, the capital costs of the WECs proved to be the determinant for the economic viability of wind power. Significant improvements in costs and performance, as may be achieved through additional technological advances, are needed to made wind power competitive in widespread utility applications. (Author)

  8. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    Science.gov (United States)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  9. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  10. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  11. Combined power generation and desalination using renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Akbarzadeh, A.; Andrews, J. [RMIT Univ., Bundoora, Victoria (Australia). School of Aerospace, Mechanical and Manufacturing Engineering

    2007-07-01

    Australia is facing a severe fresh water shortage in addition to the decline of forests in western Victoria. Grass lands have been degraded by the salting, which is due to the withdrawing of underground water for farms and hence causing the deposition of salt. At the same time, with the development of the industry and increasing demand, more fresh water and power are needed, with limited resources. Finding a sustainable method to satisfy the demand for fresh water and energy is important. Combined power generation with desalination using solar energy (CPD) is a prospective way to solve the problems of fresh water shortage, the energy crisis and farm land degradation in Northern Victoria. This paper recorded the process of calculating the performance of the nozzle applying a homogenous equilibrium model and tested the prototype of CPD using a stationary nozzle system. Data were theoretically analyzed and presented. Based on the experimental figures, the next stage for the practical CPD was proposed and the preliminary design was finished. The principle concept of the theory was that when the hot salt water heated by the solar pond was passed through the rotary nozzles due the difference of pressures between atmosphere and the vacuumed chamber, it would vaporize and then condense into the fresh water, and the mixture rushing out the nozzles at high velocity would exert an antiforce to the nozzles to make them rotate. In addition, when the nozzles rotate, the pressure would increase, so the velocity would increase further and could produce more power. It was concluded that using CPD to prevent the deterioration of saline water to farm land in Australia is a promising technology. 10 refs., 12 figs.

  12. Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yue Hong

    2016-09-01

    Full Text Available The Lysekil wave energy converter (WEC, developed by the wave energy research group of Uppsala University, has evolved through a variety of mechanical designs since the first prototype was installed in 2006. The hundreds of engineering decisions made throughout the design processes have been based on a combination of theory, know-how from previous experiments, and educated guesses. One key parameter in the design of the WECs linear generator is the stroke length. A long stroke requires a taller WEC with associated economical and mechanical challenges, but a short stroke limits the power production. The 2-m stroke of the current WECs has been an educated guess for the Swedish wave climate, though the consequences of this choice on energy absorption have not been studied. When the WEC technology is considered for international waters, with larger waves and challenges of energy absorption and survivability, the subject of stroke length becomes even more relevant. This paper studies the impact of generator stroke length on energy absorption for three sites off the coasts of Sweden, Chile and Scotland. 2-m, 4-m, and unlimited stroke are considered. Power matrices for the studied WEC prototype are presented for each of the studied stroke lengths. Presented results quantify the losses incurred by a limited stroke. The results indicate that a 2-m stroke length is likely to be a good choice for Sweden, but 4-m is likely to be necessary in more energetic international waters.

  13. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  14. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  15. Of paradise and clean power: The effect of California's renewable portfolio standard on in-state renewable energy generation

    Science.gov (United States)

    Yin, Clifton Lee

    Renewable portfolio standards (RPS), policies that encourage acquisition of electricity from renewable energy sources, have become popular instruments for discouraging the use of climate change inducing-fossil fuels. There has been limited research, however, that empirically evaluates their effectiveness. Using data gathered by three governmental entities -- the federal-level Energy Information Administration and two California agencies, the Employment Development Department and the Department of Finance -- this paper investigates the impact of California's RPS, one of the nation's most ambitious such policies, on in-state renewable energy generation. It finds that the California RPS did not bring about a one-time increase in generation with its inception, nor did it compel an increase in generation over time. These results raise questions as to the best way to structure RPS policies in light of growing interest in the establishment of a national RPS.

  16. Planning for seven generations: Energy planning of American Indian tribes

    International Nuclear Information System (INIS)

    Brookshire, Daniel; Kaza, Nikhil

    2013-01-01

    The prevalence of energy resources on American Indian lands, the links between energy management and tribal sovereignty, and recent federal government incentives make tribal energy planning an interesting case study for community energy planning in the US. This paper studies the strategic energy planning efforts, energy resource development, and energy efficiency policies established by tribes within the continental US. The paper analyzes the results of a survey of various tribes′ energy resource development and planning efforts and supplements the responses with publicly available information on resources, economics, and demographics. We find that incentives and advisory services from the federal government are key to developing the capacity of the tribes to pursue energy planning and energy resource development. These incentives largely avoid the misdeeds of past federal policy by promoting tribal control over energy planning and energy resource development efforts. Tribes with formal energy plans or visions are more likely to develop energy resources than tribes without them and are engaged in a more comprehensive and sustainable approach to energy resource development and energy efficiency. - Highlights: • American Indian tribal energy planning is an understudied topic. • Tribal energy planning is interconnected with tribal sovereignty and sustainability. • We report the results of a survey of energy planning and development efforts. • Federal Government assistance is critical to the efforts of the tribes. • Tribes with energy plans take a more comprehensive approach to energy resource development

  17. The Participation Triangle : Involving Generation Y in energy strategy

    NARCIS (Netherlands)

    van Andel, I.C.O.

    2017-01-01

    The liberalization of the Dutch energy market has led to a change of relation between energy companies and their customers. At the same time, the Dutch energy policy expects energy companies to contribute to an energy supply that is cleaner, smarter and more varied, and available at any time at

  18. Optimal Sizing of Decentralized Photovoltaic Generation and Energy Storage Units for Malaysia Residential Household Using Iterative Method

    Directory of Open Access Journals (Sweden)

    Rahman Hasimah Abdul

    2016-01-01

    Full Text Available World’s fuel sources are decreasing, and global warming phenomena cause the necessity of urgent search for alternative energy sources. Photovoltaic generating system has a high potential, since it is clean, environmental friendly and secure energy sources. This paper presents an optimal sizing of decentralized photovoltaic system and electrical energy storage for a residential household using iterative method. The cost of energy, payback period, degree of autonomy and degree of own-consumption are defined as optimization parameters. A case study is conducted by employing Kuala Lumpur meteorological data, typical load profile from rural area in Malaysia, decentralized photovoltaic generation unit and electrical storage and it is analyzed in hourly basis. An iterative method is used with photovoltaic array variable from 0.1kW to 4.0kW and storage system variable from 50Ah to 400Ah was performed to determine the optimal design for the proposed system.

  19. Low-carbon energy generates public health savings in California

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5) and ozone (O3). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy-economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are -36 % for PM0.1 mass, -3.6 % for PM2.5 mass, -10.6 % for PM2.5 elemental carbon, -13.3 % for PM2.5 organic carbon, -13.7 % for NOx, and -27.5 % for NH3. Predicted deaths associated with air

  20. Thorium and its future importance for nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2015-01-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  1. Micro Hydro-Electric Energy Generation- An Overview

    OpenAIRE

    S. O. Anaza; M. S. Abdulazeez; Y. A. Yisah; Y. O. Yusuf; B. U. Salawu; S. U. Momoh

    2017-01-01

    Energy is required now more than ever due to population growth, industrialization and modernization. Challenges such as carbon dioxide (CO2) emissions and depletion of conventional source of energy necessitate for renewable sources, of which hydro energy seems to be the most predictable. Micro-hydro which is hydro energy in a “small” scale provides electricity to small communities by converting hydro energy into electrical energy. This paper is an overview of micro-hydro system by reviewing s...

  2. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    Science.gov (United States)

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a

  3. The expansion of electricity generation from renewable energies in Germany

    International Nuclear Information System (INIS)

    Buesgen, Uwe; Duerrschmidt, Wolfhart

    2009-01-01

    The expansion of electricity generation from renewable sources in Germany is promoted by the Erneuerbare-Energien-Gesetz (EEG), which was last amended in June 2008. In a review of the EEG the political parameters, the progress achieved, and the impacts of the Act itself are set out. This Progress Report addresses cross-sectoral aspects, notably CO 2 emissions reduction, job creation, investment and turnover in the renewables industry, and that industry's prospects for the future. Trends in the individual renewables sectors are described and policy recommendations formulated, as appropriate, on this basis. The policy recommendations have been incorporated into the new EEG from 6 June 2008. The overarching goal of the new EEG is to achieve a renewables share of at least 30% in Germany's electricity consumption in 2020. This underlines the need for radical modernisation of the energy system as a whole. This article presents an overview of the content of the Progress Report and supplements it with current statistical data and research findings contained in other publications from the Federal Ministry for the Environment (BMU). It also highlights the points on which the new EEG diverges from the policy recommendations contained in the Progress Report.

  4. Innovative Approaches to Knowledge Management in EDF Energy Generation

    International Nuclear Information System (INIS)

    Johnson, A.; Robinson, P.; Roberts, A.

    2016-01-01

    Full text: Organizational learning is a key discipline in the safe, sustainable operation of civil nuclear fleet. In order to have an effective organizational learning culture a free flow of information is required. To facilitate this free flow of information and ideas EDF Energy Nuclear Generation created the concept of the Organizational Learning Portal (OLP). The OLP was created to remove existing barriers to knowledge sharing and allow easy exchange of information and ideas. To transfer existing data from legacy systems onto the OLP required a considerable effort, to ensure that information and knowledge was preserved and available to recall easily for future use. The OLP, was designed using the latest ‘App’ design to promote accessibility, in line with contemporary information portals and applications sites to ensure a positive and intuitive user journey. A key operational use of the OLP is for accelerated learning, after significant events, e.g., reactor Trips or SCRAM. Additional functionality within the OLP allows implementation of video OPEX and cataloguing of information sources. The OLP was recognized in the 2015 Operational and Safety Assessment Readiness Team as a Best Practice. (author

  5. Low-carbon energy generates public health savings in California

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available California's goal to reduce greenhouse gas (GHG emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5 and ozone (O3. Here we evaluate how business-as-usual (BAU air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step. Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy–economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths and mortality rate (deaths per 100 000 were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are −36 % for PM0.1 mass, −3.6 % for PM2.5 mass, −10.6 % for PM2.5 elemental carbon, −13.3 % for PM2.5 organic carbon, −13.7 % for NOx, and −27.5 % for NH3

  6. Ultralow-Energy Wireless Smart-Scales System with Micropower Generator

    Science.gov (United States)

    Kitamura, Kazuma; Yano, Hironori; Mochizuki, Misako; Takano, Tomoaki; Yamauchi, Hironori; Douseki, Takakuni

    A wireless smart-scales system with a face recognition function has been developed as an application for wireless sensor networks. The face recognition employs a wireless camera; and the system automatically identifies a person and stores the weights of all the people that use the system on a server. Two key ultralow-energy circuit techniques were devised for the smart scales. One is a nearly-zero-standby-current circuit that combines a mechanical switch and an electrical CPU-controlled power switch; it reduces the standby power dissipation of the CPU from 1.5 mW to less than 0.1 μW. The other is a super-intermittently-operating circuit with a power-switch transistor and a small resistance; it suppresses the energy dissipation of the wireless camera to just 1/4 of the total energy dissipation. Furthermore, an electromechanical micropower generator with electromagnetic induction further reduces the energy dissipation. It is located under the scales and supplies a power of 75 mW during one second.

  7. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation

    International Nuclear Information System (INIS)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R.; Nordmann, T.

    2010-05-01

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  8. Power generation assets. Energy constraints, upper bounds and hedging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Enge, Thomas

    2010-09-20

    The overall topic of this thesis is the valuation of power generation assets under energy and risk constraints. Our focus is on the modeling aspect i.e. to find the right balance between accuracy and computational feasibility. We define a new not yet investigated unit commitment problem that introduces an energy constraint to a thermal power plant. We define a continuous stochastic dynamic program with a nested mixed integer program (MIP). We introduce a fast implementation approach by replacing the MIP with an efficient matrix calculation and use principal component analysis to reduce the number of risk factors. We also provide a fast heuristic valuation approach for comparison. As both models can only provide lower bounds of the asset value, we investigate the theory of upper bounds for a proper validation of our power plant results. We review the primal dual algorithm for swing options by Meinshausen and Hambly and in particular clarify their notation and implementation. Then we provide an extension for swing options with multiple exercises at the same stage that we developed together with Prof. Bender, University of Braunschweig. We outline Prof. Bender's proof and describe the implementation in detail. Finally we provide a risk analysis for our thermal power plant. In particular we investigate strategies to reduce spot price risk to which power plants are significantly exposed. First, we focus on the measurement of spot price risk and propose three appropriate risk figures (Forward delta as opposed to Futures delta, synthetic spot delta and Earnings-at-Risk) and illustrate their application using a business case. Second we suggest risk mitigation strategies for both periods, before and in delivery. The latter tries to alter the dispatch policy i.e. pick less risky hours and accept a (desirably only slightly) smaller return. We introduce a benchmark that weighs risk versus return and that we will call EaR-efficient option value. We propose a mitigation

  9. Energy and Pitch Distribution of Spontaneously-generated High-energy Bulk Ions in the RFP

    Science.gov (United States)

    Kim, Jungha; Anderson, Jay; Reusch, Joshua; Eilerman, Scott; Capecchi, William

    2014-10-01

    Magnetic reconnection events in the reversed field pinch (RFP) are known to heat bulk and impurity ions. Runaway due to a parallel electric field has recently been confirmed as an important acceleration mechanism for high energy test ions supplied by a neutral beam. This effect does not, however, explain the change in distribution of nearly Maxwellian bulk ions at a reconnection event. By operating MST near maximum current and low electron density, significant fusion neutron flux can be generated without neutral beam injection. The bulk ion distribution created in these plasmas is well-confined, non-Maxwellian, and can be measured by the Advanced Neutral Particle Analyzer (ANPA) placed at a radial or tangential porthole. Data show a high energy tail up to 25 keV with a relatively higher signal in the low energy channels (8-15 keV) at the radial port following a reconnection event. Analysis of the energy dependence of trapped orbits sampled by the ANPA at the radial view implies an abundance of lower energy particles in regions of higher neutral density. This mandates a careful deconvolution of the measured ANPA signal to compute the fast ion distribution. This work is supported by the US DOE and NSF.

  10. Efficient unstructured mesh generation for marine renewable energy applications

    NARCIS (Netherlands)

    Avdis, A.; Candy, A.S.; Hill, J.; Kramer, SC; Piggott, M.D.

    2018-01-01

    Renewable energy is the cornerstone of preventing dangerous climate change whilst main- taining a robust energy supply. Tidal energy will arguably play a critical role in the renewable energy portfolio as it is both predictable and reliable, and can be put in place across the globe. However,

  11. Marine energy generation systems and related monitoring and control

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liu, Hui; Loh, Poh Chiang

    2014-01-01

    Energy is very important to the world as a driver of the modern society. According to estimations done by the International Energy Agency (IEA), the total global energy consumption is about 17 500 TW·h/yr [1]. In the past, fossil fuels like coal, oil and natural gas supplied the biggest part...... of this global consumption, and they were far larger than those of the renewable energy sources as Fig. 1 shows for 1973 [2]. In 2011, the production of renewable energy and global energy consumption increased, even though renewable energy was still much smaller than fossil fuels as Fig. 1 shows. [2]....

  12. The generation of pollution-free electrical power from solar energy.

    Science.gov (United States)

    Cherry, W. R.

    1971-01-01

    Projections of the U.S. electrical power demands over the next 30 years indicate that the U.S. could be in grave danger from power shortages, undesirable effluence, and thermal pollution. An appraisal of nonconventional methods of producing electrical power is conducted, giving particular attention to the conversion of solar energy into commercial quantities of electrical power by solar cells. It is found that 1% of the land area of the 48 states could provide the total electrical power requirements of the U.S. in the year 1990. The ultimate method of generating vast quantities of electrical power would be from a series of synchronous satellites which beam microwave power back to earth to be used wherever needed. Present high manufacturing costs of solar cells could be substantially reduced by using massive automated techniques employing abundant low cost materials.

  13. Adaptive automatic generation control with superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C.

    1992-01-01

    An improved automatic generation control (AGC) employing self-tuning adaptive control for both main AGC loop and superconducting magnetic energy storage (SMES) is presented in this paper. Computer simulations on a two-area interconnected power system show that the proposed adaptive control scheme is very effective in damping out oscillations caused by load disturbances and its performance is quite insensitive to controller gain parameter changes of SMES. A comprehensive comparative performance evaluation of control schemes using adaptive and non-adaptive controllers in the main AGC and in the SMES control loops is presented. The improvement in performance brought in by the adaptive scheme is particularly pronounced for load changes of random magnitude and duration. The proposed controller can be easily implemented using microprocessors

  14. Methodology and emission scenarios employed in the development of the National Energy Strategy

    International Nuclear Information System (INIS)

    Fisher, R.E.

    1992-01-01

    This paper describes the steps taken to model the National Energy Strategy (NES). It provides an overview of the NES process including the models used for the project. The National Energy Strategy Environmental Analysis Model (NESEAM), which was used in analyzing environmental impacts, is discussed. The structure of NESEAM, as well as results and analyses are presented

  15. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  16. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    Science.gov (United States)

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  17. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The efficiency of Ireland's Renewable Energy Feed-In Tariff (REFIT) for wind generation

    International Nuclear Information System (INIS)

    Doherty, Ronan; O'Malley, Mark

    2011-01-01

    Ireland's Renewable Energy Feed-In Tariff (REFIT) for wind generation has some unusual features making it different from other REFIT schemes around the world. By utilising an annual floor price element the scheme presents an option value to the contract holder, which to date has gone unnoticed or unvalued in the market. By employing an option pricing framework, this paper has quantified for the first time in the public domain the expected costs and value of the Irish REFIT support scheme for wind generation. While the cost of the REFIT scheme to the electricity consumer appears to be lower than the cost of schemes in other countries, significant inefficiencies exist as a result of the structure of the scheme. The Irish REFIT scheme is contrasted with a single Fixed Price support scheme and the analysis suggests that the Fixed Price scheme can provide a similar or greater incentive to the wind sector at half the cost to the end electricity consumer, and may also prove more compatible with consumers desire to reduce inter-year electricity portfolio cost volatility. - Highlights: → We review and summarise Ireland's support scheme for renewable energy. → We present information about the operation of the scheme in industry to date. → The scheme is really a series of put options. → Our option pricing model shows that the scheme is much more expensive/valuable than the industry has recognised to date. → The existing scheme is inefficient and simple variations represent much better policy instruments.

  19. Productivity of "Collisions Generate Heat" for Reconciling an Energy Model with Mechanistic Reasoning: A Case Study

    Science.gov (United States)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-01-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a…

  20. Design and Implementation of a Control Strategy for Microgrid Containing Renewable Energy Generations and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-01-01

    Full Text Available Large amount of such renewable energy generations as wind/photovoltaic generations directly connected to grid acting as distributed generations will cause control, protection, security, and safety problems. Microgrid, which has advantages in usage and control of distributed generations, is a promising approach to coordinate the conflict between distributed generations and the grid. Regarded as mobile power storages, batteries of electric vehicles can depress the fluctuation of power through the point of common coupling of microgrid. This paper presents a control strategy for microgrid containing renewable energy generations and electric vehicles. The control strategy uses current control for renewable energy generations under parallel-to-grid mode, and uses master-slave control under islanding mode. Simulations and laboratory experiments prove that the control strategy works well for microgrid containing renewable energy generations and electric vehicles and provides maximum power output of renewable energy and a stable and sustainable running under islanding mode.

  1. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    Science.gov (United States)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  2. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    International Nuclear Information System (INIS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-01-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station. (paper)

  3. Main influence factors on the final energy generation cost of a nuclear power plant in comparison with other energy sources

    International Nuclear Information System (INIS)

    Souza, J.A.M. de; Glardon, C.; Schmidt, R.M.

    1981-01-01

    The main factors in the construction and in the operation of nuclear power plants that affect the final energy generation cost are presented. The structure of the energy generation cost, of the nuclear fuel cost and the total investment are studied. (E.G.) [pt

  4. New approach to bidding strategies of generating companies in day ahead energy market

    International Nuclear Information System (INIS)

    Soleymani, S.; Ranjbar, A.M.; Shirani, A.R.

    2008-01-01

    In the restructured power systems, generating companies (Genco) are responsible for selling their product in the energy market. In this condition, the question is how much and for what price must each Genco generate to maximize its profit. Therefore, this paper intends to propose a rational method to answer this question. In the proposed methodology, the hourly forecasted market clearing price (FMCP) is used as a reference to model the possible and probable price strategies of Gencos. The forecasted price is the basis of the bidding strategies of each Genco, which can be achieved by solving a bi-level optimization problem using GAMS (general algebraic modeling system) language. The first level, called upper sub-problem is used to maximize the individual Genco's payoffs for obtaining the optimal offered quantity of Gencos. The second one, hereafter called the lower sub-problem uses the results of the upper sub-problem and minimizes the consumer's payment with regard to the technical and network constraints, which leads to the awarded generation of the Gencos. Similar to the other game problems, the Nash equilibrium strategies are the optimum bidding strategies of Gencos. A six bus system is employed to illustrate the application of the proposed method and to show its high precision and capabilities. (author)

  5. Determination of recoverable wind energy for electricity generation ...

    African Journals Online (AJOL)

    Utilization of renewable energy source, essentially the wind energy, has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Moreover, wind resource determination is a fundamental step in planning a wind energy project and exhaustive ...

  6. Modeling of an Integrated Electromagnetic Generator for Energy Scavenging

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2007-01-01

    The ubiquitous deploying of wireless electronic devices due to pervasive computing results in the idea of Energy Scavenging, i.e., harvesting ambient energy from surroundings of the electronic devices. As an approach to possible practical realization of such an energy scavenger, we aim at the

  7. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2016-01-01

    of Sustainable Energy Planning and Management. The editorial and the volume presents work on district heating system scenarios in Austria, grid optimisation using genetic algorithms and finally design of energy scenarios for the Italian Alpine town Bressanone-Brixen from a smart energy approach. © 2016, Aalborg...

  8. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  9. Provincial panel: addressing emerging energy constraints and new strategies to meet future generation demand

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    This paper addresses emerging energy constraints and new strategies to meet future generation demand in the Province of Manitoba. The focus is to reduce reliance on energy sources that emit greenhouse gases such as petroleum, natural gas and coal, and increase clean and green electricity. The current plan is to double hydro generation, achieve 1000 MW wind power and utilize bio energy

  10. Economics of Carbon Dioxide Sequestration and Mitigation versus a Suite of Alternative Renewable Energy Sources for Electricity Generation in U.S.

    Directory of Open Access Journals (Sweden)

    Zheming Zhang

    2011-01-01

    Full Text Available An equilibrium economic model for policy evaluation related to electricity generation in U.S has been developed; the model takes into account the non-renewable and renewable energy sources, demand and supply factors and environmental constraints. The non-renewable energy sources include three types of fossil fuels: coal, natural gas and petroleum, and renewable energy sources include nuclear, hydraulic, wind, solar photovoltaic, biomass wood, biomass waste and geothermal. Energy demand sectors include households, industrial manufacturing and non-manufacturing commercial enterprises. Energy supply takes into account the electricity delivered to the consumer by the utility companies at a certain price which maybe different for retail and wholesale customers. Environmental risks primarily take into account the CO2 generation from fossil fuels. The model takes into account the employment in various sectors and labor supply and demand. Detailed electricity supply and demand data, electricity cost data, employment data in various sectors and CO2 generation data are collected for a period of nineteen years from 1990 to 2009 in U.S. The model is employed for policy analysis experiments if a switch is made in sources of electricity generation, namely from fossil fuels to renewable energy sources. As an example, we consider a switch of 10% of electricity generation from coal to 5% from wind, 3% from solar photovoltaic, 1% from biomass wood and 1% from biomass waste. The model is also applied to a switch from 10% coal to 10% from clean coal technologies. It should be noted that the cost of electricity generation from different sources is different and is taken into account. The consequences of this switch on supply and demand, employment, wages, and emissions are obtained from the economic model under three scenarios: (1 energy prices are fully regulated, (2 energy prices are fully adjusted with electricity supply fixed, and (3 energy prices and

  11. The impact of DOE building technology energy efficiency programs on U.S. employment, income, and investment

    International Nuclear Information System (INIS)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.; Anderson, David M.; Cort, Katherine A.

    2008-01-01

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) analyzes the macroeconomic impacts of its programs that are designed to increase the energy efficiency of the U.S. residential and commercial building stock. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirements and investment. In the scenario of the Fiscal Year (FY) 2005 Building Technologies (BT) program, the technologies and building practices being developed and promoted by the BT program have the potential to save about 2.9 x 10 15 Btu in buildings by the year 2030, about 27% of the expected growth in building energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation's future economy

  12. Exhaust energy conversion by thermoelectric generator: Two case studies

    International Nuclear Information System (INIS)

    Karri, M.A.; Thacher, E.F.; Helenbrook, B.T.

    2011-01-01

    This study reports predictions of the power and fuel savings produced by thermoelectric generators (TEG) placed in the exhaust stream of a sports utility vehicle (SUV) and a stationary, compressed-natural-gas-fueled engine generator set (CNG). Results are obtained for generators using either commercially-available bismuth telluride (Bi 2 Te 3 ) or quantum-well (QW) thermoelectric material. The simulated tests are at constant speed in the SUV case and at constant AC power load in the CNG case. The simulations make use of the capabilities of ADVISOR 2002, the vehicle modeling system, supplemented with code to describe the thermoelectric generator system. The increase in power between the QW- and Bi 2 Te 3 -based generators was about three times for the SUV and seven times for the CNG generator under the same simulation conditions. The relative fuel savings for the SUV averaged around -0.2% using Bi 2 Te 3 and 1.25% using QW generators. For the CNG case the fuel savings was around 0.4% using Bi 2 Te 3 and around 3% using QW generators. The negative fuel gains in the SUV were caused by parasitic losses. The power to transport the TEG system weight was the dominant parasitic loss for the SUV but was absent in the CNG generator. The lack of space constraint and the absence of parasitic loss from the TEG system weight in the CNG case allowed an increase in the TEG system size to generate more power.

  13. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  14. A hadron-nucleus collision event generator for simulations at intermediate energies

    CERN Document Server

    Ackerstaff, K; Bollmann, R

    2002-01-01

    Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the DELTA sub 3 sub 3 -resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular d...

  15. Training the next generation of energy efficiency evaluators

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory LBNL and California Institute for Energy and Environment, Berkeley, CA (United States); Saxonis, W. [New York Department of Public Service, Albany, NY (United States); Peters, J. [Research Into Action, Portland, OR (United States); Tannenbaum, B. [Research Into Action, Madison, WI (United States); Wirtshafter, B. [Wirstshafter Associates, Rydal, PA (United States)

    2013-05-15

    The energy efficiency services sector is an increasingly important part of the global economy, with an increased need for trained evaluators to foster energy efficiency program accountability and improvement. Organizations are experiencing difficulty in finding people who are knowledgeable about and experienced in the evaluation of energy efficiency programs. Accordingly, there is a need to assess the training needs of the energy efficiency evaluation community (for both new and 'experienced' evaluators). This paper presents the results of a recent survey conducted by the International Energy Program Evaluation Conference (IEPEC) on energy efficiency evaluation training needs and contrasts those findings with the findings from a survey conducted by the American Evaluation Association on young evaluators (those people in the field <5 years) and another by the Association of Energy Services Professionals. This analysis is also complemented by a brief survey of members of the 2012 Rome Conference IEPEC Planning Committee on international needs.

  16. Evaluation of the long-term power generation mix: The case study of South Korea's energy policy

    International Nuclear Information System (INIS)

    Min, Daiki; Chung, Jaewoo

    2013-01-01

    This paper presents a practical portfolio model for the long-term power generation mix problem. The proposed model optimizes the power generation mix by striking a trade-off between the expected cost of power generation and its variability. We use Monte Carlo simulation techniques to consider the uncertainty associated with future electricity demand, fuel prices and their correlations, and the capital costs of power plants. Unlike in the case of conventional power generation mix models, we employ CVaR (Conditional Value-at-Risk) in designing variability to consider events that are rare but enormously expensive. A comprehensive analysis on South Korea's generation policy using the portfolio model shows that a large annual cost is additionally charged to substitute a portion of nuclear energy with other alternatives. Nonetheless, if Korea has to reduce its dependency on nuclear energy because of undermined social receptivity from the Fukushima disaster, it turns out that LNG or coal could be a secure candidate from an economic perspective. - Author-Highlights: • We develop a stochastic optimization model for long-term power generation mix. • Monte Carlo sampling method and scenario trees are used to solve the model. • The model is verified using the data provided by Korean government. • We evaluate Korea's existing nuclear expansion policy. • We analyze the cost of replacing nuclear energy with others in South Korea

  17. Power generation, energy management and environmental source book

    International Nuclear Information System (INIS)

    Jackson, M.

    1992-01-01

    The 14th World Energy Engineering Congress (WEEC) and the companion World Environmental Engineering Congress, October 23-25, 1991, Georgia World Congress Center, Atlanta, reflect the myriad of forces impacting on our industry. Energy conservation is once again in vogue. To reflect how the industry is changing, the Association of Energy Engineers (AEE) conducted its 1991 member survey. Fifty-six percent of the 762 responses revealed that energy awareness has increased over the last year. Purchasing activities for energy products will be brisk in the next twelve months: 78% plan to upgrade controls for efficiency improvement, 72% plan to install lighting efficiency products, and 63% plan to add or install energy management systems. Issues causing these energy conversation activities as well as solution are presented in this report. This year's WEEC prepares attendees for the energy and environmental challenges ahead. This current, document is a comprehensive up-to-the-minute reference. Based on the WEEC, it includes the latest methodologies used to improve efficiency and lower operating costs, plus new factors such as indoor air quality. CFC reduction and emission control technologies which must be addressed to stay competitive in the 1990s. For fourteen years, the World Energy Engineering Congress has provided the essential forum for industry. The sharing of information is important to the continued growth of the energy engineering profession. The 100 papers in this reference are abstracted and entered individually into EDB

  18. Estimation of energy potential and power generation from tidal basin in coastal area of malaysia

    Directory of Open Access Journals (Sweden)

    Nazri Nazani

    2016-01-01

    Full Text Available This paper presents the potential of tidal energy in Malaysia. Malaysia is heavily depending on the fossil fuel to satisfy the energy demand. However, this reserve energy is reported will be depleted. The population growth also caused the demand on energy increase over the year. This situation can lead to the global warming and climate change that be a major concern around the world. As an alternative, renewable energy become a solution in order to reduce the usage of conventional energy such as fossil fuel, coal and gas. One of the renewable energy that can be used is from ocean energy. Since the tidal energy is not study thoroughly in Malaysia and Malaysia has a potential sites that can implement this tidal energy for electricity generation to meet the local demand. This tidal energy can be harnessed in several approach such as by using tidal barrage single basin with single mode generation consist ebb-mode and flood-mode of generation and the other approach of single mode is double-mode of generation. In order to meet the local demand, single-mode generation and double-mode generation was studied by getting the number of population at that area, the electricity demand then from that data the basin area is estimated for power generation. The result shows that double-mode generation is one of the approaches that meet the local demand for electricity.

  19. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  20. The 'Energy transition' generation

    International Nuclear Information System (INIS)

    Bedossa, Bastien; Boutignon, Gregoire; Sivy, Corentin; Bercault, Florian; Cage, Agathe; Mahammedi-Bouzina, Mehdi; Potton, Gregoire

    2015-11-01

    The 'Cartes sur table' think tank aims at leveraging the opinion of young French people (from 20 to 35 years old) politically leaning to the left, in order to let them become actors in French debates, such as the one on the energy transition policy for a 'green growth'. This paper explains the origins and the context of the energy transition policy (the dangers of nuclear power, the high potential of renewable energies, etc.), how to finance the energy transition policy, how to promote energy transition in the daily life (notably in transports and through the struggle against wastage), create a Europe of energy, and so on

  1. Optimization of Linear Permanent Magnet (PM Generator with Triangular-Shaped Magnet for Wave Energy Conversion using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Aamir Hussain

    2016-06-01

    Full Text Available This paper presents the design optimization of linear permanent magnet (PM generator for wave energy conversion using finite element method (FEM. A linear PM generator with triangular-shaped magnet is proposed, which has higher electromagnetic characteristics, superior performance and low weight as compared to conventional linear PM generator with rectangular shaped magnet. The Individual Parameter (IP optimization technique is employed in order to optimize and achieve optimum performance of linear PM generator. The objective function, optimization variables; magnet angle,M_θ(∆ (θ, the pole-width ratio, P_w ratio(τ_p/τ_mz,, and split ratio between translator and stator, δ_a ratio(R_m/R_e, and constraints are defined. The efficiency and its main parts; copper and iron loss are computed using time-stepping FEM. The optimal values after optimization are presented which yields highest efficiency. Key

  2. Small Distributed Energy Russia: Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Astafev Alexander

    2016-01-01

    Full Text Available The issues and current trends of research in the field of decentralized energy supply for the period up to 2030 were considered. The analysis of the cogeneration market in Russia was done. The questions of gasification and hydrogen technologies as applied to the market of cogeneration plants were elucidated. Promising technologies for autonomous decentralized energy supply and the evaluation of their applicability to small energy were presented.

  3. Exhaust energy conversion by thermoelectric generator: Two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Karri, M.A.; Thacher, E.F.; Helenbrook, B.T. [Department of Mechanical and Aeronautical Engineering, PO Box 5725, Clarkson University, Potsdam, NY 13699 (United States)

    2011-03-15

    This study reports predictions of the power and fuel savings produced by thermoelectric generators (TEG) placed in the exhaust stream of a sports utility vehicle (SUV) and a stationary, compressed-natural-gas-fueled engine generator set (CNG). Results are obtained for generators using either commercially-available bismuth telluride (Bi{sub 2}Te{sub 3}) or quantum-well (QW) thermoelectric material. The simulated tests are at constant speed in the SUV case and at constant AC power load in the CNG case. The simulations make use of the capabilities of ADVISOR 2002, the vehicle modeling system, supplemented with code to describe the thermoelectric generator system. The increase in power between the QW- and Bi{sub 2}Te{sub 3}-based generators was about three times for the SUV and seven times for the CNG generator under the same simulation conditions. The relative fuel savings for the SUV averaged around -0.2% using Bi{sub 2}Te{sub 3} and 1.25% using QW generators. For the CNG case the fuel savings was around 0.4% using Bi{sub 2}Te{sub 3} and around 3% using QW generators. The negative fuel gains in the SUV were caused by parasitic losses. The power to transport the TEG system weight was the dominant parasitic loss for the SUV but was absent in the CNG generator. The lack of space constraint and the absence of parasitic loss from the TEG system weight in the CNG case allowed an increase in the TEG system size to generate more power. (author)

  4. Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system

    International Nuclear Information System (INIS)

    Rahim, A.H.M.A.; Nowicki, E.P.

    2012-01-01

    Highlights: ► A detailed dynamic model of a DFIG is developed to study the low voltage ride-through phenomenon. ► A supercapacitor-STATCOM energy storage system is employed. ► Decoupled real and reactive power control strategies implemented on the system. ► The proposed controller show extremely good transient behavior following low voltage conditions. - Abstract: The doubly fed induction generators (DFIGs) are preferred over other variable speed generators because of their advantages in terms of economy and control. One of the problems associated with high wind power penetration DFIG systems, however, is the inability of their converters to work properly under extreme low voltage conditions. This article presents a decoupled P–Q control strategy of a supercapacitor energy storage system, interfaced through a STATCOM, for low voltage ride through as well as damping enhancement of the DFIG system. The STATCOM meets the reactive power need under the depressed voltage condition, while the supercapacitor caters to the real power unbalance. An extensive dynamic model of the DFIG system including a supercapacitor DC–DC buck–boost converter and the STATCOM circuit has been developed. The fault ride-thorough capability of the generator has been investigated for a severe symmetrical three-phase to ground fault on the grid bus. Simulation results suggest that the proposed decoupled control of the supercapacitor STATCOM control strategy can help the DFIG ride through extreme low voltage conditions for significant duration. The proposed control strategy also damps the electromechanical transients, and thus quickly restores normal operation of the converters.

  5. Integrating environmental equity, energy and sustainability: A spatial-temporal study of electric power generation

    Science.gov (United States)

    Touche, George Earl

    The theoretical scope of this dissertation encompasses the ecological factors of equity and energy. Literature important to environmental justice and sustainability are reviewed, and a general integration of global concepts is delineated. The conceptual framework includes ecological integrity, quality human development, intra- and inter-generational equity and risk originating from human economic activity and modern energy production. The empirical focus of this study concentrates on environmental equity and electric power generation within the United States. Several designs are employed while using paired t-tests, independent t-tests, zero-order correlation coefficients and regression coefficients to test seven sets of hypotheses. Examinations are conducted at the census tract level within Texas and at the state level across the United States. At the community level within Texas, communities that host coal or natural gas utility power plants and corresponding comparison communities that do not host such power plants are tested for compositional differences. Comparisons are made both before and after the power plants began operating for purposes of assessing outcomes of the siting process and impacts of the power plants. Relationships between the compositions of the hosting communities and the risks and benefits originating from the observed power plants are also examined. At the statewide level across the United States, relationships between statewide composition variables and risks and benefits originating from statewide electric power generation are examined. Findings indicate the existence of some limited environmental inequities, but they do not indicate disparities that confirm the general thesis of environmental racism put forth by environmental justice advocates. Although environmental justice strategies that would utilize Title VI of the 1964 Civil Rights Act and the disparate impact standard do not appear to be applicable, some findings suggest potential

  6. Clean energy for a new generation. Steam generator life cycle management and Bruce restart

    International Nuclear Information System (INIS)

    Newman, G.W.

    2009-01-01

    In the mid to late 1990s, Ontario Hydro decided to lay-up and write-down the Bruce A Nuclear Reactors. Upon transition to Bruce Power L.P., Canada's first and only private nuclear operator, new life and prospects were injected into the site, local economy and the provincial energy portfolio. The first step in this provincial power recovery initiative involved restart of Bruce Units 3 and 4 in the 2003/04 time-frame. Units 3 and 4 have performed beyond expectation during the last five-year operating interval. A combination of steam generator and fuel channel issues precluded a similar restart of Units 1 and 2. Enter the refurbishment of Bruce Units 1 and 2. This first-of-a-kind undertaking within the Canadian nuclear power industry is testament to the demonstrated industry leadership by Bruce Power L.P., their investors and the significant vendor community contribution that is supporting this major power infrastructure enhancement. Initiated as a 'turn-key' project solution separated from the operating units, this major refurbishment project has evolved to a fully managed in-house refurbishment project with the continued support from the broader vendor community. As part of this first-of-kind undertaking, Bruce Power L.P. is in the process of accomplishing such initiatives as a complete fuel channel re-tube (i.e. full core calandria and pressure tube replacement), replacement of all boilers (i.e. 16 in total) and the majority of feeder pipe replacement. Complimentary major upgrades and replacement of the remainder of plant equipment including both nuclear and non-nuclear valves, heat exchangers, electrical infrastructure, service water systems and components, all while meeting a parallel evolving/maturing regulatory environment related to achieving compliance with IAEA derived modern codes and standards. Returning to ground level, boiler replacement is a key part of the refurbishment undertaking and this further reflected a meeting of the 'old' and the 'new'. Pre

  7. Implementation of viscoelastic mud-induced energy attenuation in the third-generation wave model, SWAN

    Science.gov (United States)

    Beyramzade, Mostafa; Siadatmousavi, Seyed Mostafa

    2018-01-01

    The interaction of waves with fluid mud can dissipate the wave energy significantly over few wavelengths. In this study, the third-generation wave model, SWAN, was advanced to include attenuation of wave energy due to interaction with a viscoelastic fluid mud layer. The performances of implemented viscoelastic models were verified against an analytical solution and viscous formulations for simple one-dimensional propagation cases. Stationary and non-stationary test cases in the Surinam coast and the Atchafalaya Shelf showed that the inclusion of the mud-wave interaction term in the third-generation wave model enhances the model performance in real applications. A high value of mud viscosity (of the order of 0.1 m2/s) was required in both field cases to remedy model overestimation at high frequency ranges of the wave spectrum. The use of frequency-dependent mud viscosity value improved the performance of model, especially in the frequency range of 0.2-0.35 Hz in the wave spectrum. In addition, the mud-wave interaction might affect the high frequency part of the spectrum, and this part of the wave spectrum is also affected by energy transfer from wind to waves, even for the fetch lengths of the order of 10 km. It is shown that exclusion of the wind input term in such cases might result in different values for parameters of mud layer when inverse modeling procedure was employed. Unlike viscous models for wave-mud interaction, the inverse modeling results to a set of mud parameters with the same performance when the viscoelastic model is used. It provides an opportunity to select realistic mud parameters which are in more agreement with in situ measurements.

  8. Nuclear energy perspectives for electric power generation. 2004 vision

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, Joao Roberto Loureiro de; Vasconcelos, Vanderley de; Jordao, Elizabete

    2004-01-01

    This document is based on the forecasting of the Energy Information Administration/US Department of Energy (EIA/DOE) for the period of 2001-2025 which indicates a growing of 9,800 billions of kWh (73.6 per cent) in the world electric power consumption in that period

  9. Renewable energy systems for distributed generation in South Africa

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-10-01

    Full Text Available by the CSIR and its international partners, Garrad Hassan of the UK and the Netherlands Energy Research Foundation into the development of an analytical tool that could be used to assist in identifying viable renewable energy opportunities in areas...

  10. Radio-frequency energy in fusion power generation

    International Nuclear Information System (INIS)

    Lawson, J.Q.; Becraft, W.R.; Hoffman, D.J.

    1983-01-01

    The history of radio-frequency (rf) energy in fusion experiments is reviewed, and the status of current efforts is described. Potential applications to tasks other than plasma heating are described, as are the research and development needs of rf energy technology

  11. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    OpenAIRE

    Jing Zhang; Haitao Yu; Zhenchuan Shi

    2018-01-01

    Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC) must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC) system with a tubular permanent magnet linear generator (TPMLG) on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating pr...

  12. Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

    OpenAIRE

    Hussain Ali Bekhet; Nor Hamisham Harun

    2016-01-01

    The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable ener...

  13. Survey of employment in the UK wind energy industry 1993-95

    International Nuclear Information System (INIS)

    Jenkins, G.

    1996-01-01

    Employment opportunities in the United Kingdom wind power industry are reviewed and compared to job availability in Europe, Canada and the USA, using a postal questionnaire. Most jobs were in manufacturing with consultancy and contract research forming another large group; with over two-thirds being in medium to microsized organizations, a size distribution similar to the manufacturing sector of the United Kingdom economy. Professional and management occupations account for over half of the total jobs making the wind industry a highly skilled area. Estimates suggest that, taking account of direct jobs, and those indirectly associated with the wind power industry, only about 2200 full-time equivalent jobs currently exist in the United Kingdom. (UK)

  14. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  15. Analysis of Solar Energy Generation Capacity Using Hesitant Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Veysel Coban

    2017-01-01

    Full Text Available Solar energy is an important and reliable source of energy. Better understanding the concepts and relationships of the factors that affect solar energy generation capacity can enhance the usage of solar energy. This understanding can lead investors and governors in their solar power investments. However, solar power generation process is complicated, and the relations among the factors are vague and hesitant. In this paper, a hesitant fuzzy cognitive map for solar energy generation is developed and used for modeling and analyzing the ambiguous relations. The concepts and the relationships among them are defined by using expertsr opinions. Different scenarios are formed and evaluated with the proposed model.

  16. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  17. Use of Geothermal Energy for Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mashaw, John M.; Prichett, III, Wilson (eds.)

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  18. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2016-05-01

    Full Text Available This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The innovative analogue solution of the control structure is based on a dedicated integrated circuit (IC for power factor correction (PFC circuits, used in a new configuration, to assure an efficient inverter start-up. The energy conversion system (control structure and maximum power point tracking algorithm is simulated using a new macromodel-based concept, which reduces the usual computational burden of the simulator and achieves high processing speed. The proposed novel system is presented in this article from concept, through the design and implementation stages, is verified through simulation and is validated by experimental results.

  19. Composites in energy generation and storage systems - An overview

    Science.gov (United States)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  20. Task 2 Report - A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grue, Nicholas W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rosenlieb, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resources for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy

  1. 16 Gb/s QPSK Wireless-over-Fibre Link in 75-110GHz Band Employing Optical Heterodyne Generation and Coherent Detection

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2010-01-01

    We report on the first demonstration of QPSK based Wireless-over-Fibre link in 75-110GHz band with a record capacity of up to 16Gb/s. Photonic wireless signal generation by heterodyne beating of free-running lasers and baud-rate digital coherent detection are employed....

  2. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  3. Sustainability Impact Assessment on the Production and Use of Different Wood and Fossil Fuels Employed for Energy Production in North Karelia, Finland

    Directory of Open Access Journals (Sweden)

    Matias Pekkanen

    2012-11-01

    Full Text Available The utilization rate of woody biomass in eastern Finland is high and expected to increase further in the near future as set out in several regional, national and European policies and strategies. The aim of this study was to assess the sustainability impacts of changes in fuel consumption patterns. We investigated fossil and woody biomass-based energy production chains in the region of North Karelia, focusing on some economic, environmental and social indicators. Indicators were selected based on stakeholder preferences and evaluated using the Tool for Sustainability Impact Assessment (ToSIA. The analysis was based on representative values from National Forest Inventory data, scientific publications, national and regional statistics, databases, published policy targets and expert opinion. From the results it became evident that shifting from fossil to wood-based energy production implies some trade-offs. Replacing oil with woody biomass in energy production would increase the local value added remaining in the region, create employment opportunities and would reduce total GHG emissions. However, firewood, wood chips from small-diameter trees from early thinning and wood pellets have high production costs. Moreover, large greenhouse gas emission resulted from wood pellet production. The case study generated valuable reference data for future sustainability assessments and demonstrated the usefulness of ToSIA as a tool presenting existing knowledge on sustainability impacts of alternative energy supply chains to inform decision making.

  4. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    Science.gov (United States)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  5. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Science.gov (United States)

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  6. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  7. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  8. Review of Comprehensive Evaluation Methods for Power Quality and Its Trend in New Generation Energy System

    Science.gov (United States)

    Liu, Ruihua; Wang, Rong; Liu, Qunying; Yang, Li; Xi, Chuan; Wang, Wei; Li, Lingzhou; Zhao, Zhoufang; Zhou, Ying

    2018-02-01

    With China’s new energy generation grid connected capacity being in the forefront of the world and the uncertainty of new energy sources, such as wind energy and solar energy, it is be of great significance to study scientific and comprehensive assessment of power quality. On the foundation of analysizing the current power quality index systematically and objectively, the new energy grid power quality analysis method and comprehensive evaluation method, this paper tentatively explored the trend of the new generation of energy system power quality comprehensive evaluation.

  9. Sustainability for power generation exemplarily shown by regenerative energy systems. Final report; Nachhaltigkeit am Beispiel regenerativer Energiesysteme zur Stromerzeugung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, T.J.; Wagner, H.J.

    2005-07-01

    Since the energy sector plays a key role in the concept of sustainable development, aspects of sustainability should be addressed within the scope of technology assessments. This applies particularly to new energy systems and new technological solutions. To evaluate sustainability, indicators are needed. A system of indicators was designed within a research project carried out by the Chair of Energy Systems and Energy Economics of the Ruhr-University Bochum. At first, the Brundtland-Definition for sustainable development was put in terms for energy conversion systems. Secondly, indicators were selected. For this purpose, a standardized procedure was developed that allows quantified multi criteria analysis. Overall objective was to cover all significant issues of sustainability by a minimum number of indicators. Seven appropriate indicators were identified: cumulated energy demand, power production costs, demand of air, water and area, as well as two new developed indicators to describe risks related to the security of energy supply, and employment effects. To prove the applicability of the indicator system, sample calculations were made for several solar and wind energy systems as well as for a natural gas fired power plant. Beside these examples, the indicator set in principle is applicable to any other technological pathway. It enables comparisons between conventional power generation technologies and innovative (renewable) energy systems. (orig.)

  10. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable...

  11. Comparison of approximate electrical energy generating costs in OECD countries

    International Nuclear Information System (INIS)

    Stevens, G.H.; Bertel, E.

    1996-01-01

    Costs of power generating in nuclear power plants have been predicted taking into account all factors connected with investment, maintenance, exploitation and decommissioning, basing on last OECD report. The costs have been compared with alternative solutions. In majority of OECD countries the direct costs of electricity generation are very close for nuclear fossil-fuel and gas power plants. All indirect costs such as environmental impact, public health hazard, waste management, accident risk and also public acceptance for nuclear power have been discussed. 13 refs, 5 tabs

  12. Questionnaire Study for The Use of Solar Energy and Wind Energy for The Generation of Electricity in Kuwait

    International Nuclear Information System (INIS)

    Tarawneh, Sultan; Rireh, Mohmd; Al-Razzi, Met'eb

    2015-01-01

    This research aims to study the acceptance of real management of designing electrical generation plants that work using solar energy and wind energy, to explain the benefits for the decision makers of the use of the solar energy and wind energy, and to define the most important obstacles that hinder the use of solar energy in generating electricity in spite of fulfilling the environmental conditions as clean energy and renewing energy contribute to sustainability of natural resources. The descriptive methodology was used by going back to reference material including books, and scientific journals and periodicals as well as scientific researches to identify the real management and design of electrical plant generation using solar energy and wind energy. A questionnaire was distributed among the study sample that was composed of the engineers working in energy field and electrical generation plants, the general institute for environment, Kuwait Institute for Scientific Research, and Kuwait Society of Engineers. 203 responses were received from the study sample. Results of the study showed the presence of obstacles and special problems related to the use of solar energy that face the decision makers with regard to the ability for acquiring important advanced technology and the huge financial support and the partnership of the private sector and training of unskilled human resources. And it was declared that there is a huge focus and attention in generation electrical energy from fossil fuel because of its presence and sustainability in investment in this field and the ability to fulfill the needs of the local market from energy.(author)

  13. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City

    Directory of Open Access Journals (Sweden)

    K. M. Nazmul Islam

    2016-01-01

    Full Text Available Increased generation of methane (CH4 from municipal solid wastes (MSW alarms the world to take proper initiative for the sustainable management of MSW, because it is 34 times stronger than carbon dioxide (CO2. Mounting land scarcity issue around the world brands the waste to energy (WtE strategy for MSW management in urban areas as a promising option, because WtE not only reduces the land pressure problem, but also generates electricity, heat, and green jobs. The goal of this study is to evaluate the renewable electricity generation potential and associated carbon reduction of MSW management in Bangladesh using WtE strategies. The study is conducted in two major cities of Bangladesh: Dhaka and Chittagong. Six different WtE scenarios are evaluated consisting of mixed MSW incineration and landfill gas (LFG recovery system. Energy potential of different WtE strategy is assessed using standard energy conversion model and subsequent GHGs emissions models. Scenario A1 results in highest economic and energy potential and net negative GHGs emission. Sensitivity analysis by varying MSW moisture content reveals higher energy potential and less GHGs emissions from MSW possessing low moisture content. The study proposes mixed MSW incineration that could be a potential WtE strategy for renewable electricity generation in Bangladesh.

  14. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients

    NARCIS (Netherlands)

    Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.

    2014-01-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we

  15. Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model

    International Nuclear Information System (INIS)

    Bi, Gong-Bing; Song, Wen; Zhou, P.; Liang, Liang

    2014-01-01

    Data envelopment analysis (DEA) has gained much popularity in performance measurement of power industry. This paper presents a slack-based measure approach to investigating the relationship between fossil fuel consumption and the environmental regulation of China's thermal power generation. We first calculate the total-factor energy efficiency without considering environmental constraints. An environmental performance indicator is proposed through decomposing the total-factor energy efficiency. The proposed approach is then employed to examine whether environmental regulation affects the energy efficiency of China's thermal power generation. We find that the environmental efficiency plays a significant role in affecting energy performance of China's thermal generation sector. Decreasing the discharge of major pollutants can improve both energy performance and environmental efficiency. Besides, we also have three main findings: (1) The energy efficiency and environmental efficiency were relatively low. (2) The energy and environmental efficiency scores show great variations among provinces. (3) Both energy efficiency and environmental efficiency are of obvious geographical characteristics. According to our findings, we suggest some policy implications. - Highlights: • We assess the energy efficiency and the environmental efficiency of China's thermal power generation simultaneously. • The energy efficiency and the environmental efficiency were relatively low during 2007–2009. • The energy efficiency and environmental efficiency show obvious geographic characters. • The environmental performance of a DMU plays a decisive role in the energy performance

  16. Kinematic method for beam energy determination at electrostatic generators

    International Nuclear Information System (INIS)

    Thomas, H.J.; Gersch, H.U.; Hentschel, E.; Wohlfahrt, D.

    1975-06-01

    The applicability of the kinematics of nuclear reactions to the energy determination of a particle beam is discussed. Most favourable conditions are obtained for the kinematic cross over of particles elastically and inelastically scattered at targets with different masses. At tandem energies between 4 and 15 MeV this method permits an exact determination with a precision of about 1 keV. The scattered particles must be measured at about 170 0 with a precision of the scattering angle of 0.1 0 . For the energy determination of a proton beam the compounds LiF, LiCl, or deuterium enriched hydrocarbons are found to be proper target materials. Experimental results with a LiF-target are described. (author)

  17. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    Science.gov (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  18. Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data

    International Nuclear Information System (INIS)

    Qin, H.; Zhou, W.; Zhang, S.

    2015-01-01

    Stochastic process-based models are developed to characterize the generation and growth of metal-loss corrosion defects on oil and gas steel pipelines. The generation of corrosion defects over time is characterized by the non-homogenous Poisson process, and the growth of depths of individual defects is modeled by the non-homogenous gamma process (NHGP). The defect generation and growth models are formulated in a hierarchical Bayesian framework, whereby the parameters of the models are evaluated from the in-line inspection (ILI) data through the Bayesian updating by accounting for the probability of detection (POD) and measurement errors associated with the ILI data. The Markov Chain Monte Carlo (MCMC) simulation in conjunction with the data augmentation (DA) technique is employed to carry out the Bayesian updating. Numerical examples that involve simulated ILI data are used to illustrate and validate the proposed methodology. - Highlights: • Bayesian updating of growth and generation models of defects on energy pipelines. • Non-homogeneous Poisson process for defect generation. • Non-homogeneous gamma process for defect growth. • Updating based on inspection data with detecting and sizing uncertainties. • MCMC in conjunction with data augmentation technique employed for the updating.

  19. The Energy Revolution Age - Africa's Opportunity to Generate its ...

    African Journals Online (AJOL)

    Today, 54 million Americans use electricity equivalent to that of 109 million Europeans or 950 million Africans. This article evaluates the possibility of supplying electricity to all Africans by 2030, generated from renewable resources. Furthermore, it evaluates the opportunity to export “green” electricity to Europe ...

  20. Renewable Energy Generation in India: Present Scenario and Future Prospects

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Singh, Bharat; Østergaard, Jacob

    2009-01-01

    The development of Renewable Energy Sources (RES) is necessary for the sustainable development of any country due to depleting fossil fuel level, climbing fossil fuel prices across the world and more recently pressure for reduction emission level. In India, several schemes and policies are launched...... by the government to support the use of RES to achieve energy security and self-sufficiency. This paper discusses the present scenario and future prospects of RES in India. Various schemes such as financial assistance, tax holiday etc for promoting RESs development and utilization are also discussed. The present...

  1. Study on generation investment decision-making considering multi-agent benefit for global energy internet

    Science.gov (United States)

    Li, Pai; Huang, Yuehui; Jia, Yanbing; Liu, Jichun; Niu, Yi

    2018-02-01

    Abstract . This article has studies on the generation investment decision in the background of global energy interconnection. Generation investment decision model considering the multiagent benefit is proposed. Under the back-ground of global energy Interconnection, generation investors in different clean energy base not only compete with other investors, but also facing being chosen by the power of the central area, therefor, constructing generation investment decision model considering multiagent benefit can be close to meet the interests demands. Using game theory, the complete information game model is adopted to solve the strategies of different subjects in equilibrium state.

  2. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  3. The comparative study on the environmental impact for various energy generating systems

    International Nuclear Information System (INIS)

    Jung, J. T.; Ha, J. J.; Jung, H. S.

    2002-01-01

    The concern about environmental problem due to electricity generation is increasing. And the current debate about the environmental and socioeconomic effects of energy use is now turning towards the internalization of externalities imposed on society and the environment that are not accounted by the producers and consumers of energy. The result of internalization of externalities are to be used in the decision making of selecting available options. Therefore, the environmental impact analysis for various energy generating systems were made by using Life Cycle Assessment(LCA). According to the results, the environmental burden due to nuclear power generating systems is low comparing with other energy generating systems due to low usage of resources. The results will be used in the comparative study on the environmental impacts for various energy generating systems

  4. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  5. Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator

    Directory of Open Access Journals (Sweden)

    Arif Indro Sultoni

    2013-04-01

    Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.

  6. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  7. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  8. The Implications of Changing Power Generation Mix on Energy Pricing and Security in Ghana

    OpenAIRE

    Acheampong, Theophilus

    2016-01-01

    Despite almost a decade of strong economic growth, Ghana still lags behind in its ability to generate enough power to catalyse this growth. The rapid deceleration in economic activity over the past three years has been primarily due to persistent energy supply constraints and rising energy-related input costs to production. This article analyses the implications of the changing power generation mix for electricity pricing in Ghana taking into account new capacity additions to the generation m...

  9. MC generator HARDPING 2.0: hadron production in lepton-nuclei interactions at high energies

    International Nuclear Information System (INIS)

    Berdnikov, Ya.A.; Ivanov, A.E.; Kim, V.T.; Murzin, V.A.

    2011-01-01

    Hadron production in lepton-nucleus interactions at high-energies is considered in framework of developing Monte Carlo (MC) generator HARDPING (HARD Probe INteraction Generator). Such effects as formation length, energy loss and multiple rescattering for produced hadrons are implemented into the HARPING. Available data from HERMES on hadron production in lepton-nucleus collisions are described by the current version of the HARDPING generator in a reasonable agreement.

  10. 20 CFR 667.262 - Are employment generating activities, or similar activities, allowable under WIA title I?

    Science.gov (United States)

    2010-04-01

    ... enterprise zone vouchering services, (4) Active participation in local business resource centers (incubators... employers for the purpose of placement of WIA participants; (2) Participation in business associations (such as chambers of commerce); joint labor management committees, labor associations, and resource centers...

  11. Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid

    Science.gov (United States)

    Kirmani, Sheeraz; Kumar, Brijesh

    2018-01-01

    “Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.

  12. Control of the DC-DC Converter used into Energy Generation System

    International Nuclear Information System (INIS)

    Bizon, Nicu; Oproescu, Mihai

    2006-01-01

    This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)

  13. Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security

    Science.gov (United States)

    2013-05-15

    installation of natural gas generation or cogeneration plants to increase their energy security from the typical three days using diesel supplies to weeks-to...better quantify the regional impact of natural gas for energy security. Modeling and simulation could identify those regions and DoD installations that...Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security N. Judson 15 May 2013 Prepared for the

  14. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  15. Toxicity of systems for energy generation and storage

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.

    1979-01-01

    This section contains summaries of research on assessment of health and environmental effects of electric storage systems, and the metabolism and toxicity of metal compounds associated with energy production and storage. The first project relates to the production and use of electric storage battery systems. The second project deals with the effects of pregnancy and lactation on the gastrointestinal absorption, tissue distribution, and toxic effects of metals (Cd). Also included in this study is work on the absorption of actinides ( 239 Pu)

  16. Generation of low-energy muons with laser resonant ionization

    International Nuclear Information System (INIS)

    Matsuda, Y.; Bakule, P.; Iwasaki, M.; Matsuzaki, T.; Miyake, Y.; Ikedo, Y.; Strasser, P.; Shimomura, K.; Makimura, S.; Nagamine, K.

    2006-01-01

    We have constructed a low-energy muSR spectrometer at RIKEN-RAL muon facility in ISIS, the UK. With low-background of pulsed muon beam, and short pulse width from laser resonant ionization method, it is hoped this instrument will open new possibilities for studies of material sciences with muon beam. It is enphasized that this method is well suited to the facility where intense pulsed proton beam is available

  17. Topological energy storage of work generated by nanomotors.

    Science.gov (United States)

    Weysser, Fabian; Benzerara, Olivier; Johner, Albert; Kulić, Igor M

    2015-01-28

    Most macroscopic machines rely on wheels and gears. Yet, rigid gears are entirely impractical on the nano-scale. Here we propose a more useful method to couple any rotary engine to any other mechanical elements on the nano- and micro-scale. We argue that a rotary molecular motor attached to an entangled polymer energy storage unit, which together form what we call the "tanglotron" device, is a viable concept that can be experimentally implemented. We derive the torque-entanglement relationship for a tanglotron (its "equation of state") and show that it can be understood by simple statistical mechanics arguments. We find that a typical entanglement at low packing density costs around 6kT. In the high entanglement regime, the free energy diverges logarithmically close to a maximal geometric packing density. We outline several promising applications of the tanglotron idea and conclude that the transmission, storage and back-conversion of topological entanglement energy are not only physically feasible but also practical for a number of reasons.

  18. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  19. Analysis Of Functional Stability Of The Triphased Asynchronous Generator Used In Conversion Systems Of A Eolian Energy Into Electric Energy

    Directory of Open Access Journals (Sweden)

    Ion VONCILA

    2003-12-01

    Full Text Available This paper presents a study of the influence of the main perturbation agent over the functional stability of the triphased asynchronous generator (for the two alternative: with coiled and short circuit rotor, used for the conversion systems from a eolian energy into electric energy.

  20. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    OpenAIRE

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for fu...

  1. Wave Energy Converters based on Dielectric Elastomer generators: Status and perspectives

    International Nuclear Information System (INIS)

    Fontana, Marco; Vertechy, Rocco

    2015-01-01

    Dielectric Elastomers (DEs) are a very promising technology for the development of energy harvesting devices based on the variable-capacitance electrostatic generator principle. This paper discusses the potentialities of DE technology for advancing the ocean wave energy sector. In particular, three innovative concepts of wave energy converters with DE-based power take-off system are introduced and described.

  2. Online Energy Management System for Distributed Generators in a Grid-Connected Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2015-01-01

    A microgrid is an energy subsystem composed of generation units, energy storage, and loads that requires power management in order to supply the load properly according to defined objectives. This paper proposes an online energy management system for a storage based grid-connected microgrid...

  3. A50-kW(el) solar energy thermionic power generator for spacecraft

    International Nuclear Information System (INIS)

    Sahin, S.

    1978-01-01

    The technical limits of thermionic reactors in space craft and the potentials of solar energy thermionic converters are discussed. The technical design of a solar energy thermionic generator for 50 kW(el) as a secondary energy source in unmanned space craft is presented. (GG) [de

  4. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  5. Quantum mechanical energy-based screening of combinatorially generated library of tautomers. TauTGen: a tautomer generator program.

    Science.gov (United States)

    Harańczyk, Maciej; Gutowski, Maciej

    2007-01-01

    We describe a procedure of finding low-energy tautomers of a molecule. The procedure consists of (i) combinatorial generation of a library of tautomers, (ii) screening based on the results of geometry optimization of initial structures performed at the density functional level of theory, and (iii) final refinement of geometry for the top hits at the second-order Möller-Plesset level of theory followed by single-point energy calculations at the coupled cluster level of theory with single, double, and perturbative triple excitations. The library of initial structures of various tautomers is generated with TauTGen, a tautomer generator program. The procedure proved to be successful for these molecular systems for which common chemical knowledge had not been sufficient to predict the most stable structures.

  6. GHz wireless On-off-Keying link employing all photonic RF carrier generation and digital coherent detection

    DEFF Research Database (Denmark)

    Sambaraju, Rakesh; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Gb/s wireless signals at 82, 88 and 100 GHz carrier frequencies are successfully generated by heterodyne mixing of two optical carriers. A photonic detection technique with optical coherent receiver and digital signal processing is implemented for signal demodulation....

  7. Low energy proton beams from laser-generated plasma

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Giuffrida, L.; Margarone, Daniele; Caridi, F.; Di Bartolo, F.

    2011-01-01

    Roč. 653, č. 1 (2011), s. 140-144 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) 7E09092; GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-generated plasma * proton acceleration * hydrogenated targets * proton yield * doped polymers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  8. Asian market plants for thermo-electric energy generation

    International Nuclear Information System (INIS)

    Antognazza, E.; Cozzi, G.

    1998-01-01

    This article synthesizes the analysis results carried out by IEFE (Bocconi University of Milan) on the evolution (1980-1997) and the present situation of industrial equipment orders for power generation in East and South Asia markets. At present these markets are the most important, on world scale, of the analyzed sector. Competitive positions changes have been analyzed, in every market and the whole Asian area, of the most important firms operating on international scale, as well as of the major local makers [it

  9. Regulatory actions to expand the offer of distributed generation from renewable energy sources in Brazil

    International Nuclear Information System (INIS)

    Pepitone da Nóbrega, André; Cabral Carvalho, Carlos Eduardo

    2015-01-01

    The composition of the Brazilian electric energy matrix has undergone transformations in recent years. However, it has still maintained significant participation of renewable energy sources, in particular hydropower plants of various magnitudes. Reasons for the growth of other renewable sources of energy, such as wind and solar, include the fact that the remaining hydropower capacity is mainly located in the Amazon, which is far from centers of consumption, the necessity of diversifying the energy mix and reducing dependence on hydrologic regimes, the increase in environmental restrictions, the increase of civil construction and land costs.Wind power generation has grown most significantly in Brazil. Positive results in the latest energy auctions show that wind power generation has reached competitive pricing. Solar energy is still incipient in Brazil, despite its high potential for conversion into electric energy. This energy source in the Brazilian electric energy matrix mainly involves solar centrals and distributed generation. Biomass thermal plants, mainly the ones that use bagasse of sugar cane, also have an important role in renewable generation in Brazil.This paper aims to present an overview of the present situation and discuss the actions and the regulations to expand the offer of renewable distributed generation in Brazil, mainly from wind power, solar and biomass energy sources. (full text)

  10. Photosynthetic Energy Storage for the Built Environment: Modeling Energy Generation and Storage for Net-Zero Analysis

    Science.gov (United States)

    Lichter-Marck, Eli Morris

    There is a growing need to address the energy demand of the building sector with non-polluting, renewable energy sources. The Net Zero Energy Building (NZEB) mandate seeks to reduce the impact of building sector energy consumption by encouraging on-site energy generation as a way to offset building loads. However, current approaches to designing on-site generation fail to adequately match the fluctuating load schedules of the built environment. As a result, buildings produce highly variable and often-unpredictable energy import/export patterns that create stress on energy grids and increase building dependence on primary energy resources. This research investigates the potential of integrating emerging photo-electrochemical (PEC) technologies into on-site generation systems as a way to enable buildings to take a more active role in collecting, storing and deploying energy resources according to their own demand schedules. These artificially photosynthetic systems have the potential to significantly reduce variability in hour-to-hour and day-to-day building loads by introducing high-capacity solar-hydrogen into the built environment context. The Building Integrated Artificial Photosynthesis (BIAP) simulation framework presented here tests the impact of hydrogen based energy storage on NZEB performance metrics with the goal of developing a methodology that makes on-site energy generation more effective at alleviating excessive energy consumption in the building sector. In addition, as a design performance framework, the BIAP framework helps guide how material selection and scale up of device design might tie photo-electrochemical devices into parallel building systems to take full advantage of the potential outputs of photosynthetic building systems.

  11. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    Science.gov (United States)

    Chamberlain, R. G.; McMaster, K. M.

    1981-10-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  12. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    Science.gov (United States)

    Chamberlain, R. G.; Mcmaster, K. M.

    1981-01-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  13. Carbon dioxide based power generation in renewable energy systems

    International Nuclear Information System (INIS)

    Kumar, Pramod; Srinivasan, Kandadai

    2016-01-01

    After a substantial impact on refrigeration, carbon dioxide (CO_2) is gaining considerable attention as a working fluid for thermal power generation. This can be attributed mainly to its excellent heat transfer properties and compactness of components arising from its high density. It has the merit of being amenable to operation in sub-, trans- or super-critical Brayton cycle modes. However, inhibiting factors are high pressures needed when operated in trans- or supercritical cycles and the work of compression eroding most of the work of expansion in sub-critical cycle operation. Some of the lacunae of CO_2 such as high work of compression can be alleviated by using non-mechanical means such as thermal compression using the adsorption technique either for partial compression in high pressure Brayton cycles or for total compression in low pressure cycles. CO_2 has also been proposed as an additive to flammable hydrocarbons such that their flammability can be suppressed and yet retaining their other desirable thermodynamic qualities. This review explores the potential and limitations of thermodynamic cycles where either CO_2 is used alone or as a component in mixture of working fluids. Inter alia, it also highlights the issues of regulation of load management using the efficiency-specific power output plane. When used as a blending component, pinch point in the regenerators affects the cycle performance. The objective is to identify research and developmental challenges involving CO_2 as a working fluid specifically for solar power generation.

  14. Restructuring and generation of electrical energy in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Dominguez, E. Fernandez; Bernat, J. Xiberta

    2007-01-01

    Portugal and Spain are on the threshold of the creation of an Iberian electricity market. In order to help its development, the power of the electric interconnection between the countries has been increased and market mechanisms designed to resolve congestion, should it arise. A system of joint supply for the Iberian Peninsula will lead to single price for the whole area except at times when the interconnection is saturated, in which case prices will be somewhat higher in the importing zone. In the medium term, the hope is that both systems will have very similar generating equipment and that their variable costs will equalize due to the substitution of the most obsolete equipment with combined cycle power stations, and to the increase of exchange capacity. The coming into effect of this market will bring about improvements in the security and efficiency of supply in both countries. There will also be some obstacles to overcome, such as, for example, the current regulatory frame deficiencies on power generation, the contacts which exist at present in Portugal between the producers and the National Electricity Network, the asymmetry of the distribution channels in each country, the differences in rates and the limited capacity for exchange. (author)

  15. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues...... and fuel that can also fulfill a storage function....

  16. Microwave generation for magnetic fusion energy applications, Task A

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Mayergoyz, I.D.; Singh, A.

    1990-05-01

    This report details progress over the past year in the research program ''Free Electron Lasers with Short Period Wigglers.'' The work is performed jointly by the laboratory for Plasma Research and the Electrical Engineering Department of the University of Maryland and is funded by the US Department of Energy Office of Fusion Energy. The goal of the work is the development of an electron cyclotron resonance heating (ECRH) scheme for magnetic fusion plasmas such as the Compact Ignition Tokamak (CIT). Our approach is the development of a free electron laser using a sheet electron beam and a short period wiggler magnet. The specific requirements for the heating method include 10 to 30 MW of average power with pulse durations of several seconds to CW at a frequency near 300 GHz (∼600 GHz) in the case of second harmonic (ECRH). Compatible with the experimental nature of the program, radiation frequency flexibility of 30% total bandwidth and 5% rapid dynamic (approx-lt 10 ms) bandwidth is desirable. As the source will eventually be applied to a reactor, priority is placed upon high system efficiency and reliability. Use of established technologies is encouraged where possible

  17. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  18. Prospect of solar-PV/biogas/diesel generator hybrid energy system of an off-grid area in Bangladesh

    Science.gov (United States)

    Mandal, Soumya; Yasmin, Hosna; Sarker, M. R. I.; Beg, M. R. A.

    2017-12-01

    The study presents an analysis and suggests about how renewable sources of energy can be an alternative option to produce electricity in an off-grid area. A case study is done by surveying 235 households in an off-grid area. Techno-economic analysis of the hybrid energy system is employed by using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Four solar-PV modules (each of 1kW), two biogas generators (each of 3kW), three diesel generators (each of 5kW), five batteries (each of 160 Ah) and 5kW converter is found to be the best configuration in terms of Cost of Energy (COE), environmental conditions and Renewable Fraction (RF). The Cost of Energy (COE), Net Present Cost (NPC), capital cost of this configuration is found BDT15.382, BDT10007224, and BDT2582433 respectively. The renewable fraction of this system is found 75% which indicates a lower emission compared with thegrid based system and stand-alone diesel system. Although the COE is higher than grid electricity, this system offers a cheaper option than using kerosene oil and solar home systems (SHSs).

  19. Energy price spread as a driving force for combined generation investments: A view on Europe

    International Nuclear Information System (INIS)

    Kavvadias, K.C.

    2016-01-01

    Combined generation of heat, cooling and power has a large potential to increase its share in distributed generation of energy. Such investments are driven by energy savings which result to operational profits. These profits are very sensitive to the prices of the competitive energy products: electricity and gas. In this work a theoretical indicator is developed between energy prices, the technical characteristics of cogeneration and conventional generation equipment and the investment viability. Through this indicator, the operational profitability of cogeneration equipment is mapped and discussed. Empirical rules are extracted which can give a clear view of the sensitivity of energy prices on energy efficiency investments. The European cogeneration status quo is analyzed in terms of energy prices and market share. The developed indicator is also used, to analyze market related barriers and highlight the importance of energy pricing policy as a tool to minimize the risk exposure of energy efficiency investments. - Highlights: • Energy price spread of competitive fuels affects combined generation profitability. • Its uncertainty is the most important barrier for new investments. • The minimum energy price spread had been generalized and mathematically justified. • Can be used as a tax-based mechanism to hedge the risk of fuel price fluctuations. • For a typical installation, power has to be at least 2 times more expensive than gas.

  20. Inductive energy store (IES) technology for multi-terrawatt generators

    International Nuclear Information System (INIS)

    Sincerny, P.S.; Ashby, S.R.; Childers, F.K.; Deeney, C.; Kortbawi, D.; Goyer, J.R.; Riordan, J.C.; Roth, I.S.; Stallings, C.; Schlitt, L.

    1993-01-01

    An IES pulsed power machine has been built at Physics International Company that serves as a prototype demonstration of IES technology that is scaleable to very large TW generators. The prototype module utilizes inductive store opening switch technology for the final stage of pulse compression and is capable of driving both electron beam Bremsstrahlung loads or imploding plasma loads. Each module consists of a fast discharge Marx driving a water dielectric transfer capacitor which is command triggered to drive the inductive store section of the machine. The inductive store is discharged into the load using a plasma erosion opening switch. Data demonstrating 22% efficient operation into an electron beam diode load are presented. The system issues addressing the combining of these modules into a very large pulsed power machine are discussed