WorldWideScience

Sample records for energy efficient industrialized

  1. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  2. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  3. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  4. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  5. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  6. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  7. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  8. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  9. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  10. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  11. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  12. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  13. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  14. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  15. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    ...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...

  16. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  17. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  18. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  19. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  20. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  1. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  2. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  3. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  4. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  5. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  6. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  7. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...

  8. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  9. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs

    International Nuclear Information System (INIS)

    Thollander, Patrik; Danestig, Maria; Rohdin, Patrik

    2007-01-01

    The most extensive action targeting the adoption of energy efficiency measures in small- and medium-sized manufacturing industries in Sweden over the past 15 years was project Highland. This paper presents an evaluation of the first part of this local industrial energy programme, which shows an adoption rate of more than 40% when both measures that have already been implemented and measures that are planned to be implemented are included. A comparison between this programme and another major ongoing programme for the Swedish energy-intensive industry indicates that the approach used in project Highland aimed at small- and medium-sized industries is an effective way to increase energy efficiency in the Swedish industry. The major barriers to energy efficiency among the firms were related to the low priority of the energy efficiency issue

  10. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  11. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  12. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis

    International Nuclear Information System (INIS)

    Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q.

    2012-01-01

    Global awareness on energy security and climate change has created much interest in assessing economy-wide energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO 2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production framework of desirable and undesirable outputs, in this paper we construct both static and dynamic energy efficiency performance indexes for measuring industrial energy efficiency performance by using several environmental DEA models with CO 2 emissions. The dynamic energy efficiency performance indexes have further been decomposed into two contributing components. We finally apply the indexes proposed to assess the industrial energy efficiency performance of different provinces in China over time. Our empirical study shows that the energy efficiency improvement in China's industrial sector was mainly driven by technological improvement. - Highlights: ► China's industrial energy efficiency is evaluated by DEA models with CO 2 emissions. ► China's industrial energy efficiency improved by 5.6% annually since 1997. ► Industrial energy efficiency improvement in China was mainly driven by technological improvement.

  13. Measuring the efficiency of energy-intensive industries across European countries

    International Nuclear Information System (INIS)

    Makridou, Georgia; Andriosopoulos, Kostas; Doumpos, Michael; Zopounidis, Constantin

    2016-01-01

    This study evaluates the energy efficiency trends of five energy-intensive industries in 23 European Union (EU) countries over the period 2000–2009. In particular, the performance of the construction, electricity, manufacturing, mining and quarrying, and transport sectors is examined. The analysis is based on Data Envelopment Analysis (DEA) combined with the Malmquist Productivity Index (MPI), which allows for distinctions between efficiency and technology changes over time. At the second stage of the analysis, cross-classified multilevel modelling is applied to analyse the main drivers behind efficiency performance using a number of sector and country characteristics. Based on DEA results, an overall improvement in efficiency is observed in all sectors over the period. The decomposition of the MPI indicates that technology change is primarily responsible for the improvements achieved in most sectors. The results obtained by the cross-classified model show, among other things, that the high electricity prices, energy taxes, and market share of the largest generator in the electricity market have a negative effect on industrial energy efficiency. - Highlights: • Analysis of energy efficiency and trends of industrial sectors in EU. • Combination of non-parametric frontier models and multilevel explanatory analysis. • Examination of the drivers of energy efficiency. • Industrial energy efficiency performance is mainly driven by technological improvement.

  14. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  15. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  16. Review of policies and measures for energy efficiency in industry sector

    International Nuclear Information System (INIS)

    Tanaka, Kanako

    2011-01-01

    Energy efficiency in industry plays key roles in improving energy security, environmental sustainability and economic performance. It is particularly important in strategies to mitigate climate change. The evidence of great potential for cost-effective efficiency-derived reductions in industrial energy use and greenhouse gas (GHG) emissions have prompted governments to implement numerous policies and measures aimed at improving their manufacturing industries' energy efficiency. What can be learned from these many and varied initiatives? This paper provides foundation for policy analysis for enhancing energy efficiency and conservation in industry, by surveying more than 300 policies, encompassing about 570 measures, implemented by governments in IEA countries, Brazil, China, India, Mexico, Russia and South Africa. It outlines the measures' main features, their incidence of use, and their connections with specific technical actions and key stakeholders (i.e., how and where measures affect the energy efficiency of industry). It also examines the key features underlying the measures' success: (1) potential to reduce energy use and CO 2 emissions cost-efficiently; (2) ease of policy development, execution and assessment and (3) ancillary societal effects. - Highlights: → Provides foundation for policy analysis for energy efficiency in industry. → Surveys more than 300 policies and their trends, of mainly IEA countries. → Outlines measures' features, incidence of use, technical actions and stakeholders. → Examines the key features underlying the measures' success.

  17. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs

    International Nuclear Information System (INIS)

    Shi, G.-M.; Bi Jun; Wang Jinnan

    2010-01-01

    Data envelopment analysis (DEA) has recently become a popular method in measuring energy efficiency at the macro-economy level. However, previous studies are limited in that they failed to consider the issues of undesirable outputs and minimisation of energy consumption. Thus, this study considers both factors in measuring Chinese industrial energy efficiency and investigates the maximum energy-saving potential in 28 administrative regions in China. The results show that industries in the east area have the best average energy efficiency for the period 2000-2006, followed by the central area. Further, after comparing the industrial energy overall efficiency, pure technical efficiency (IEPTE), and scale efficiency of the 28 administrative regions examined, the study finds that in most regions of this study, the two main reasons causing the wastage of a large amount of energy during the industrial production process are that the industrial structure of most regions still relies on the massive use of energy in order to support the industrial-based economy and the IEPTE is too low. Based on these findings, this paper correspondingly proposes some policies to improve regional industrial energy efficiency.

  18. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  19. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  20. China’s regional industrial energy efficiency and carbon emissions abatement costs

    International Nuclear Information System (INIS)

    Wang, Ke; Wei, Yi-Ming

    2014-01-01

    Graphical abstract: Major cities in eight economy-geography regions of China. - Highlights: • Industrial energy and emissions efficiency were evaluated for China’s major cities. • Shadow prices of CO 2 emissions were estimated for China’s major cities. • Efficiency increase potentials on energy utilization and CO 2 emissions are 19% and 17%. • N-shaped EKC exists between levels of CO 2 emissions efficiency and income. • Average industrial CO 2 emissions abatement cost for China’s major cities is 45 US$. - Abstract: Evaluating the energy and emissions efficiency, measuring the energy saving and emissions reduction potential, and estimating the carbon price in China at the regional level are considered a crucial way to identify the regional efficiency levels and efficiency promotion potentials, as well as to explore the marginal abatement costs of carbon emissions in China. This study applies a newly developed Data Envelopment Analysis (DEA) based method to evaluate the regional energy and emissions efficiencies and the energy saving and emissions reduction potentials of the industrial sector of 30 Chinese major cities during 2006–2010. In addition, the CO 2 shadow prices, i.e., the marginal abatement costs of CO 2 emissions from industrial sector of these cities are estimated during the same period. The main findings are: (i) The coast area cities have the highest total factor industrial energy and emissions efficiency, but efficiency of the west area cities are lowest, and there is statistically significant efficiency difference between these cities. (ii) Economically well-developed cities evidence higher efficiency, and there is still obviously unbalanced and inequitable growth in the nationwide industrial development of China. (iii) Fortunately, the energy utilization and CO 2 emissions efficiency gaps among different Chinese cities were decreasing since 2006, and the problem of inequitable nationwide development has started to mitigate. (iv

  1. Energy Audit as a Tool for Improving System Efficiency in Industrial Sector

    OpenAIRE

    Gopi Srinath,; N. Uday Kumar

    2014-01-01

    This paper presents the characteristics of energy consumption in industrial sector, the methodology and results of energy audits (EA) performed in industrial sites and potentials for energy efficiency (EE) improvements. The present state of industrial energy in India could be characterized by significant technological out-of–date, low energy efficiency and low level of environmental protection. Presented analysis of the results of conducted energy audits in selected industrial...

  2. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  3. Increased Energy Efficiency in Slovenian Industry - A Contribution to the Kyoto Target

    International Nuclear Information System (INIS)

    Selan, B.; Urbancic, A.

    1998-01-01

    In Slovenia the actual fast growth of greenhouse emissions will require substantial efforts to fulfil the target set in Kyoto. The end-use emissions in the in the industrial sectors represented one third of the total CO 2 emissions in the country in 1996. The cost-effective potential in the sector for CO 2 emission reduction is significant. In the paper, the most important ongoing energy efficiency activities in the industrial sector are presented: information and awareness building, energy advising to larger industrial consumers, energy audition programme, demonstration programme of energy efficiency technologies, financial incentives for energy efficiency investment and the energy efficiency investment fund. A CO 2 tax has been in force since 1997. The results of an evaluation of energy efficiency strategies in industry in the frame of the project 'Integrated resource planning for the energy efficiency in Slovenia' are discussed from the viewpoint of greenhouse gases reduction targets set by Slovenia, and a brief information on the ongoing and expected post Kyoto activities and studies is given. The most important points of the future GHG reduction strategy related to industrial sector in Slovenia will be focused on intensified energy efficiency programme, increased combined heat and power production (CHP), and the effects of incentives through the CO 2 tax. (author)

  4. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  5. Global warming and the energy efficiency of Spanish industry

    International Nuclear Information System (INIS)

    Feijoo, Maria L.; Hernandez, Jose M.; Franco, Juan F.

    2002-01-01

    This paper uses a stochastic frontier production function model to analyze the energy efficiency of Spanish industry. We used minimum cost input demand equations as the reference in order to calculate the demand for electricity, gas and other fuels. On this basis, we found that there is no inherent conflict between the objectives of achieving productive efficiency and reducing energy consumption. Indeed, it is possible to reduce the industrial emissions of CO 2 by up to 29.4% by means of a bottom-up energy efficiency policy. However, if the government wants firms to reduce their emissions even further, then it would be necessary to implement some form of energy regulatory policy. In this respect, we estimate the cost of reducing CO 2 emissions by 20%

  6. Energy Efficiency Practices: Assessment of Ohrid Hotel Industry

    OpenAIRE

    Petrevska, Biljana; Cingoski, Vlatko

    2016-01-01

    This paper provides information on the extent how the hotel industry in Ohrid meets the energy efficiency practices in terms of the current level of involvement. By undertaking an online survey in three, four and five-star hotels, the study assesses the attitudes and willingness of hotel managers concerning applying energy efficiency and environmental protection concepts and practices. Moreover, it investigates various determinants of energy consumption, like: solid waste management, resource...

  7. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  8. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency and..., Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence...

  9. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  10. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  11. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  12. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  13. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  14. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  15. Energy efficiency technologies in cement and steel industry

    Science.gov (United States)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  16. The Next Frontier to Realize Industrial Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2011-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  17. Research on the Renewable Energy Industry Financing Efficiency Assessment and Mode Selection

    Directory of Open Access Journals (Sweden)

    Xiaohuan Lyu

    2018-01-01

    Full Text Available In recent years, environmental issues are attracting widespread attention by various countries around the world. In this context, the renewable energy industry has become a stimulus point for economic development and has great potential for development. Renewable energy industry financing is difficult due to its characteristics of high risk and long-term investment returns, and relying on existing financing channels make it present a glut of excess capacity. It is key to realize resource optimal allocation, solve overcapacity phenomenon and select the valid financing mode. This paper used Bloomberg New Energy Finance (BNEF data and the data envelopment analysis (DEA method to analyze the financing efficiency different parts of the global renewable energy industry and different ways of financing. It could be found that although the financing efficiency showed a trend of increasing year by year, the financing efficiency of each industry presented generally weak DEA efficiency, the comprehensive financing efficiency of wind power industry was higher. The article also found that the financing efficiency of project financing and Research and Development (R&D were relatively high, and the equity market and venture capital and private equity were less efficient. The results of this paper play an important role in the overall financing status cognizance of the renewable energy industry and give suggestions about valid financing mode choice.

  18. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  19. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  20. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  1. Efficient use of energy: investment practice in industry; Effiziente Energienutzung: Investitionspraxis in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, J. [BHP - Brugger, Hanser und Partner AG, Zuerich (Switzerland); Zweiacker, J.-F. [Rapp AG Ingenieure und Planer, Biel (Switzerland); Rosch, M. [Consulting Verfahrenstechnik, Allschwil (Switzerland)

    2000-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on drying processes used in industry and possible ways of promoting investment in measures to increase the efficient use of energy. The energy consumption of dehydration and drying processes used in industry is examined and the savings potential for these processes estimated. Examples of the processes investigated are given and figures for the energy consumption for dehydration and drying processes in several different industrial sectors are quoted. The report then examines, on the one hand, the factors that hem innovations in this area and, on the other, those that promote them. Further, the report looks into which reasons are responsible for the realisation or non-realisation of technically and economically viable solutions for improving the energy-efficiency of the dehydration and drying processes.

  2. Exploring energy efficiency in China's iron and steel industry: A stochastic frontier approach

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Xiaolei

    2014-01-01

    The iron and steel industry is one of the major energy-consuming industries in China. Given the limited research on effective energy conservation in China's industrial sectors, this paper analyzes the total factor energy efficiency and the corresponding energy conservation potential of China's iron and steel industry using the excessive energy-input stochastic frontier model. The results show that there was an increasing trend in energy efficiency between 2005 and 2011 with an average energy efficiency of 0.699 and a cumulative energy conservation potential of 723.44 million tons of coal equivalent (Mtce). We further analyze the regional differences in energy efficiency and find that energy efficiency of Northeastern China is high while that of Central and Western China is low. Therefore, there is a concentration of energy conservation potential for the iron and steel industry in the Central and Western areas. In addition, we discover that inefficient factors are important for improving energy conservation. We find that the structural defect in the economic system is an important impediment to energy efficiency and economic restructuring is the key to improving energy efficiency. - Highlights: • A stochastic frontier model is adopted to analyze energy efficiency. • Industry concentration and ownership structure are main factors affecting the non-efficiency. • Energy efficiency of China's iron and steel industry shows a fluctuating increase. • Regional differences of energy efficiency are further analyzed. • Future policy for energy conservation in China's iron and steel sector is suggested

  3. 1997 ACEEE summer study on energy efficiency in industry: Proceedings, refereed papers, and summary monographs

    International Nuclear Information System (INIS)

    1997-01-01

    The theme of this conference is: How industry will procure energy efficiency services in the 21st century. This theme was chose in response to the changing nature of energy service companies. These changes will bring about enhanced opportunities for alliance and partnerships in the procurement of energy efficiency services as well as energy supply services. This Summer Study provides an opportunity to explore the opportunities provided by these changes in a marketplace and examines ways in which they can be used to enhance, in a cost-effective manner, energy efficiency and productivity in industry. The refereed papers in this conference are divided into the following topics: Food Products; Chemicals and Related Products; Iron and Steel; International Energy Issues; Electric Motor Systems; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Development of Partnerships; Case Studies; Steam Systems; Industrial Decision Making; and Industrial Energy Efficiency. The summary monographs cover: Electric Motor Systems; Energy Trends and Analysis; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Steam Systems; Industrial Decision Making; and Display-Summary Monograph. Separate abstracts were prepared for all 55 papers

  4. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  5. Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin

    2017-11-01

    Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.

  6. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    International Nuclear Information System (INIS)

    Herrero Sola, Antonio Vanderley; Mota, Caroline Maria de Miranda; Kovaleski, Joao Luiz

    2011-01-01

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: → Lack of decision model in industrial motor system is the main motivation of the research. → A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. → The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  7. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Sola, Antonio Vanderley, E-mail: sola@utfpr.edu.br [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil); Mota, Caroline Maria de Miranda, E-mail: carolmm@ufpe.br [Federal University of Pernambuco, Cx. Postal 7462, CEP 50630-970, Recife (Brazil); Kovaleski, Joao Luiz [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil)

    2011-06-15

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: > Lack of decision model in industrial motor system is the main motivation of the research. > A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. > The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  8. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  9. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  10. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  11. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  12. Potential for energy efficiency in the Norwegian land-based industry; Potensial for energieffektivisering i norsk landbasert industri

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Process Industry Association (PIL, now the Federation of Norwegian Industries) conducted in collaboration with Enova SF, Kjelforeningen - Norwegian Energy and Institute for Energy Technology, in 2002 a study to determine the potential for more environmentally efficient energy use and production in the Norwegian process industry. It was in 2007 conducted a review of the 2002-study, and this work showed that large parts of the potential identified in 2002 were not realized, and that in addition there was further potential. Enova therefore took the initiative in 2009 to do a new review of the potential for energy efficiency in the Norwegian industry. (AG)

  13. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  14. Tailoring cross-sectional energy-efficiency measures to target groups in industry

    NARCIS (Netherlands)

    Wohlfarth, Katharina; Eichhammer, Wolfgang; Schlomann, Barbara; Worrell, Ernst

    2018-01-01

    The improvement of energy efficiency in industrial companies plays a crucial role for the energy transition. Although significant economic potentials have been identified, the concerned actors are still struggling to realize them fully. To support the implementation of energy efficiency measures by

  15. Variables affecting energy efficiency and CO2 emissions in the steel industry

    International Nuclear Information System (INIS)

    Siitonen, Sari; Tuomaala, Mari; Ahtila, Pekka

    2010-01-01

    Specific energy consumption (SEC) is an energy efficiency indicator widely used in industry for measuring the energy efficiency of different processes. In this paper, the development of energy efficiency and CO 2 emissions of steelmaking is studied by analysing the energy data from a case mill. First, the specific energy consumption figures were calculated using different system boundaries, such as the process level, mill level and mill site level. Then, an energy efficiency index was developed to evaluate the development of the energy efficiency at the mill site. The effects of different production conditions on specific energy consumption and specific CO 2 emissions were studied by PLS analysis. As theory expects, the production rate of crude steel and the utilisation of recycled steel were shown to affect the development of energy efficiency at the mill site. This study shows that clearly defined system boundaries help to clarify the role of on-site energy conversion and make a difference between the final energy consumption and primary energy consumption of an industrial plant with its own energy production.

  16. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  17. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  18. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  19. Financing of energy-efficient productive industrial projects. Situation and first ideas for the future. Synthesis

    International Nuclear Information System (INIS)

    Billard, Yannael; Julien, Emmanuel; Blaisonneau, Laurent; Streiff, Frederic; Padilla, Sylvie; Benazzi, Eric; Domergue, Bruno; Fraysse, Sebastien; Gaussens, Jean-Pierre; Packeu, Paris; Bodino, Didier; Randimbivololona, Prisca; Verbbrughe, Gregory; Bissonnier, Alain; Dantec, Caroline

    2016-11-01

    Based on in-depth interviews with decision makers and experts belonging to energy consuming industrial groups, or involved in technological offer or in financing, this study addressed the issue of energy efficiency in the industrial sector, and of its financing. Interviewed persons represented 11 large companies, 5 medium-sized companies, and 14 industrial sectors, and 3 main professional profiles (from technical to financial). The authors thus explored current financing models implemented to finance energy efficiency, by analysing existing decision-making processes, brakes on energy efficiency in industry, levers favourable to energy efficiency in industry, operational and functional organisations addressing issues related to energy efficiency, the risk management policy implemented for the assessment and follow-up of investments in energy efficiency, and existing and envisaged financial packages to make these investments possible. As far as financing is concerned, the authors analyse present practices, difficulties faced, good and repeatable practices, and discuss some lines of thought to mobilise actors in order to structure and promote energy efficiency in industrial projects, to reduce the risk for an easier financing of such projects, to structure financing tools, to promote incentive taxes and aids

  20. Energy efficiency as an opportunity for the natural gas industry

    International Nuclear Information System (INIS)

    Love, P.

    2003-01-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves

  1. Energy efficiency as an opportunity for the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Love, P. [Canadian Energy Efficiency Alliance (Canada)

    2003-07-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  3. Assessing measures of energy efficiency performance and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.

    2008-02-15

    This paper explores different measures of energy efficiency performance (hereafter referred to as 'MEEP'): absolute energy consumption, energy intensity, diffusion of specific energy-saving technology and thermal efficiency. It discusses their advantages and disadvantages and their roles within policy frameworks. MEEP may be necessary at several stages during policy design: in a developing regulatory framework; during the actual application; and in evaluation after policy implementation. Policy makers should consider the suitability of MEEP at each of these stages, based on criteria such as reliability, feasibility and verifiability. The paper considers the importance of so-called boundary definitions when measuring energy performance, and how these affect the appropriateness of country comparisons to guide policy decisions. The paper also addresses the limitations of both energy intensity and technology diffusion indicators as measures of energy efficiency performance. A case study on Japan's iron and steel industry illustrates the critical role of proper boundary definitions for a meaningful assessment of energy efficiency in industry. Depending on the boundaries set for the analysis, the energy consumption per ton of crude steel ranges from 16 to 21 GJ. Both a proper understanding of various methods to assess energy efficiency and the linkage with policy objectives and frameworks are important. Using the diffusion rates of specific energy-efficient processes is a technology-oriented approach which seeks to encourage the retrofitting or replacement of less efficient equipment. There are fewer boundary problems using diffusion rates than by calculating energy consumption. 42 refs., 15 figs., 4 tabs., 1 app.

  4. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, M.; McKane, A.

    1999-01-01

    This paper describes a more compelling case for industry to promote the non-energy benefits of energy efficiency investments. They do this in two ways to actively appeal to chief executive officers' (CEOs') and chief financial officers' (CFOs') primary responsibility: to enhance shareholder value. First, they describe the use of a project-by-project corporate financial analysis approach to quantify a broader range of productivity benefits that stem from investments in energy-efficient technologies, including waste reduction and pollution prevention. Second, and perhaps just as important, they present such information in corporate financial terms. These standard, widely accepted analysis procedures are more credible to industry than the economic modeling done in the past because they are structured in the same way corporate financial analysts perform discounted cashflow investment analyses on individual projects. Case studies including such financial analyses, which quantify both energy and non-energy benefits from investments in energy-efficient technologies, are presented. Experience shows that energy efficiency projects' non-energy benefits often exceed the value of energy savings, so energy savings should be viewed more correctly as part of the total benefits, rather than the focus of the results. Quantifying the total benefits of energy efficiency projects helps companies understand the financial opportunities of investments in energy-efficient technologies. Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  5. Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Hochman, Gal; Fedets, Iryna

    2016-01-01

    Improvement of energy efficiency is an important element of energy policy for a sustainable supply of energy in Ukraine. However, the country is facing several challenges to the large-scale deployment of energy efficient technologies. We conducted a two-stage quota sample survey of 509 commercial and industrial firms of all regions of Ukraine to understand the barriers to energy efficiency improvements. Our study finds that more than two-thirds of the commercial and industrial firms in the country view improvement of energy efficiency very important to their business. However, due to several barriers they are unable to realize the improvements of energy efficiency. Among the 19 potential barriers investigated in the study, the survey results show that high upfront investment requirement, lack of government policies to support energy efficiency improvements, higher cost of capital, and lack of information and awareness are the most critical barriers to the improvement of energy efficiency in the industrial and commercial sectors in Ukraine. - Highlights: • Despite attractiveness, large scale deployment of energy efficiency is lacking. • Several barriers are responsible for slow implementation of energy efficiency. • Understanding the barriers from the field is crucial to design effective policies. • A survey of commercial and industrial firms reveals the key barriers. • Financial barriers are the main hurdles to adopt energy efficient technologies.

  6. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  7. Diffusion of energy-efficient technologies in industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.Y.

    1979-01-01

    United States energy policies aim at cutting down dependence on foreign oil in two ways: by energy conservation and by finding new domestic supplies. The study investigates how the first goal can be achieved in the industrial sector (manufacturing) of the economy, which accounts for about 40% (about 7.3 million barrels per day) of the total energy consumption in the US. It is noted that industry is able to conserve as much as 25 to 30% of its energy consumption by adopting simple conservation measures and energy-efficient technologies. These technologies can be implemented without major alterations of the original equipment. The schools of thought on innovative processes are discussed; these will serve as the conceptual and methodological base of the project. (MCW)

  8. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  10. Barriers to and drivers for energy efficiency in the Swedish foundry industry

    International Nuclear Information System (INIS)

    Rohdin, Patrik; Thollander, Patrik; Solding, Petter

    2007-01-01

    Despite the need for increased industrial energy efficiency, studies indicate that cost-efficient energy conservation measures are not always implemented, explained by the existence of barriers to energy efficiency. This paper investigates the existence of different barriers to and driving forces for the implementation of energy efficiency measures in the energy intensive Swedish foundry industry. The overall results from a questionnaire show that limited access to capital constitutes by far the largest barrier to energy efficiency according to the respondents. A comparison between group-owned and privately owned foundries shows that, except for limited access to capital, they face different high-ranked barriers. While barriers within group owned companies are more related to organizational problems, barriers within private foundries are more related to information problems. This study also found that energy consultants or other actors working with energy issues in foundries are of major importance in overcoming the largest barriers, as the foundries consider them trustworthy. They may thus help the foundries overcome organizational problems such as lack of sub-metering and lack of budget funds by quantifying potential energy efficiency investments. The two, by far, most important drivers were found to be people with real ambition and long-term energy strategies

  11. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  12. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  13. Industrial energy efficiency: the need for investment decision support from a manager perspective

    International Nuclear Information System (INIS)

    Sandberg, Peter; Soederstroem, Mats

    2003-01-01

    Global competition, commitment to the Kyoto Protocol and a deregulated, integrated European electricity market will in all probability increase the demand for energy efficiency on the part of companies in Sweden. Investment decisions are an important part of meeting the new demands, because they decide the future efficiency of industrial energy systems. The objective of this study is to investigate, from a managerial perspective, the need to improve decision support in some industries, which can help to facilitate and improve investment decisions concerning energy efficiency. This work has been conducted through in-depth interviews with representatives for a number of energy-intensive companies and non-energy-intensive companies from different sectors. One need that was identified was the improvement of working methods in order to support the decision-making process. Here, external players seem to be playing an increasingly important role. Access to correct information, better follow-up activities, and transparent, understandable calculations are also considered to be important. The study will form the foundation for subsequent work on decision support and energy efficiency in industry

  14. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  15. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  16. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  17. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  18. Motor systems energy efficiency supply curves: A methodology for assessing the energy efficiency potential of industrial motor systems

    International Nuclear Information System (INIS)

    McKane, Aimee; Hasanbeigi, Ali

    2011-01-01

    Motor-driven equipment accounts for approximately 60% of manufacturing final electricity use worldwide. A major barrier to effective policymaking, and to more global acceptance of the energy efficiency potential in industrial motor systems, is the lack of a transparent methodology for quantifying the magnitude and cost-effectiveness of these energy savings. This paper presents the results of groundbreaking analyses conducted for five countries and one region to begin to address this barrier. Using a combination of expert opinion and available data from the United States, Canada, the European Union, Thailand, Vietnam, and Brazil, bottom-up energy efficiency supply curve models were constructed to estimate the cost-effective electricity efficiency potentials and CO 2 emission reduction for three types of motor systems (compressed air, pumping, and fan) in industry for the selected countries/region. Based on these analyses, the share of cost-effective electricity saving potential of these systems as compared to the total motor system energy use in the base year varies between 27% and 49% for pumping, 21% and 47% for compressed air, and 14% and 46% for fan systems. The total technical saving potential varies between 43% and 57% for pumping, 29% and 56% for compressed air, and 27% and 46% for fan systems. - Highlights: → Development of conservation supply curves for the industrial motor systems. → An innovative approach combining available aggregate country-level data with expert opinion. → Results show both cost-effective and technical potential for energy saving and their costs. → Policy implication of the results are briefly discussed.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  20. Energy efficiency in the industry: obstacles and R and D needs

    International Nuclear Information System (INIS)

    Jacquelin, Louis-Marie

    2012-05-01

    In 2011 ADEME, the French Environment and Energy Management Agency, and TOTAL asked ENEA, a consulting firm specialised in energy and the environment for the industrial sector, to carry out a study. The goal was to update the relevance of their shared program to fund and promote R and D in the Energy Efficiency sector. This survey gathered, in a neutral manner, the opinions of different actors about the need of the industry, the innovation obstacles or the processes of the ADEME TOTAL program. The results of the study have been implemented in the Seventh call for proposal of the program, published at the end of 2011. A report synthesizing the main results of the study has been written to contribute to the promotion of the R and D effort in the Energy Efficiency sector

  1. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  3. Industrial energy efficiency: Interdisciplinary perspectives on the thermodynamic, technical and economic constraints

    OpenAIRE

    McKenna, Russell

    2009-01-01

    Overreliance on energy from fossil fuels is unsustainable because of their regional depletion and associated environmental impacts. The British industrial sector accounts for around one fifth of final energy demand and one third of carbon emissions nationally. This thesis attempts to quantify the potential for industrial energy efficiency from the current baseline, by adopting thermodynamic and economic perspectives. The methodology involves a top-down analysis of energy trends within the man...

  4. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are known and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly

  5. Efficient industrial energy use: The first step in transitioning Saudi Arabia's energy mix

    International Nuclear Information System (INIS)

    Matar, Walid; Murphy, Frederic; Pierru, Axel; Rioux, Bertrand; Wogan, David

    2017-01-01

    In Saudi Arabia, industrial fuel prices are administered below international prices and firms make decisions based on low energy prices, increasing domestic energy demand. This analysis explores alternative policies designed to induce a transition to a more efficient energy system by immediately deregulating industrial fuel prices, gradually deregulating fuel prices, and introducing investment credits or feed-in tariffs. It uses a dynamic multi-sector, mixed-complementarity model. Continuing existing policies results in a power system still fueled completely by hydrocarbons. The alternative policies result in a transition to a more efficient energy system where nuclear and renewable technologies become cost-effective and produce 70% of the electricity in 2032. Introducing the alternative policies can reduce the consumption of oil and natural gas by up to 2 million barrels of oil equivalent per day in 2032, with cumulative savings between 6.3 and 9.6 billion barrels of oil equivalent. The energy system sees a net economic gain up to half a trillion 2014 USD from increased oil exports, even with investments in nuclear and renewables. The results are robust to alternative assumptions regarding the value of oil saved and the growth in end-use energy demand. - Highlights: • We model the effect of reforming fuel prices to industrial sectors in Saudi Arabia. • Alternate policies can lower oil and gas use by up to two million boe/day in 2032. • Large economic gains could be achieved by reforming industrial fuel prices. • Some pricing policies manage transition without compromising the economic gain. • Saudi Arabia can maintain large crude oil export capacity by 2032.

  6. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  7. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  8. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, Miriam; McKane, A.T.

    1999-01-01

    Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  9. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  10. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina

    2015-01-01

    Highlights: • Implementation rates of 37 EEMs are quantified for China’s cement industry. • Energy Supply Cost Curves were implemented in the GAINS model. • The economic energy saving potential is 3.0 EJ and costs is $4.1 billion in 2030. • Energy efficiency would lead to large reductions in air pollution. • The co-benefits decrease average marginal costs of EEMs by 20%. - Abstract: China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of GHGs and air pollutants emission. In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO 2 and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China’s cement industry for the period 2011–2030. Results show that there are large co-benefits of improving energy efficiency and reducing emissions of CO 2 and air pollutants for the China’s cement industry during the study period. The cost-effective energy saving potential (EEP1 scenario) and its costs is estimated to be 3.0 EJ and 4.1 billion $ in 2030. The technical energy savings potential (EEP2 scenario) and its costs amount to 4.2 EJ and 8.4 billion $ at the same time. Compared to the baseline scenario, energy efficiency measures can help decrease 5% of CO 2 , 3% of PM, 15% of SO 2 , and 12% of NOx emissions by 2030 in EEP1 scenario. If we do not consider costs (EEP2 scenario), energy efficiency measures can further reduce 3% of CO 2 , 2% of PM, 10% of SO 2 , and 8% of NOx by 2030. Overall, the average marginal costs of energy efficiency measures will decrease by 20%, from 1.48 $/GJ to 1.19 $/GJ, when

  11. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  13. An energy efficiency promotion strategy for industries and buildings in Thailand

    International Nuclear Information System (INIS)

    Vongsoasup, Sirinthorn; Du Pont, Peter

    2004-01-01

    Since 1992, when the Thai Parliament endorsed the Energy Conservation Promotion (ENCON) Act, the promotion of energy efficiency has been a cornerstone of Thailand's energy policy. The ENCON Act focuses on large commercial and industrial end users and is accompanied by a 'carrot' in the form of the Energy Conservation Promotion Fund (ENCON Fund), which provides financial incentives to install energy-efficiency measures. For the past several years, Thailand's Department of Alternative Energy Development and Efficiency (DEDE), the lead government agency implementing energy efficiency, has been reassessing its programs, simplifying the procedures, and improving its program promotion. In late 2002 and early 2003, Thailand launched two large-scale pilot programs. The 30% Subsidy Program provides rebates of up to USD 50,000 per facility to stimulate investment in energy-saving projects. This program has been remarkably successful, and allocated its entire budget of USD 2.5 million within the first 6 months of implementation. The average time for project approval is just 30 days. Every dollar of subsidy leverages 3.2 dollars in private sector investment and results in more than 16 dollars of energy cost savings over the lifetime of the equipment. The Energy Efficiency Revolving Fund is designed for larger projects and is administered directly by commercial banks. The fund is providing a total of USD 50 million of zero-interest loans to banks for lending at a low interest rate (< 4%) to commercial and industrial end users. Project investments are typically in the range of USD 400,000 to USD 800,000 million, with the maximum loan amount being USD 1.25 million. After one year of project implementation, USD 20 million has been loaned for energy-efficiency projects, of which USD 12 million has come from the Fund and USD 8 million from the bank's own funds. Implementation of these two pilot programs is providing the basis for the Thailand's newly created Ministry of Energy to

  14. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  15. The impact of energy efficiency interventions on industry – the Industrial Energy Efficiency Project in South Africa

    CSIR Research Space (South Africa)

    Hartzenburg, A

    2015-10-01

    Full Text Available The IEE Project was set up in 2010 to help transform the energy-use patterns of South African industry by means of energy management systems and energy systems optimisation. Through IEE Project implementation, around 100 industry plants have saved 1...

  16. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  17. Patterns of energy use in the Brazilian economy: Can the profile of Brazilian exports determine the future energy efficiency of its industry?

    International Nuclear Information System (INIS)

    Machado, G.V.; Schaeffer, R.

    1997-01-01

    This study examines the integration of the Brazilian economy in the global economy as a determining factor for the energy efficiency of its industry. Depending upon the profile of a country's exports (i.e., depending upon the share of energy-intensive exports out of total exports), different quantities of energy are required to produce the country's exported goods, which may counterbalance efforts made elsewhere to improve the overall energy efficiency of the country's industry. Different scenarios for the energy embodied in the industrial exports of Brazil are considered for the period 1995--2015. These scenarios are a combination of different shares of energy-intensive goods in the total exports of the country with different assumptions for gains obtained in industrial energy efficiency over time. For all scenarios the same fundamental hypothesis of liberalization of commerce and economic growth are assumed. Results for the year 2015 show that the total energy embodied in industrial exports varies from 1,413 PJ to 2,491 PJ, and the total industrial use of energy varies from 3,858 PJ to 6,153 PJ, depending upon the assumptions made. This is equivalent to an average industrial energy intensity variation ranging from 13.8 MJ to 22.0 MJ per US$-1985. The authors conclude that any policy aimed at improving Brazil's overall industrial energy efficiency should concentrate not only on the reduction of the energy intensity of particular industrial sectors, but also (and, perhaps, more importantly) on rethinking the very strategy for the integration of the country's economy in the global market in the future, with respect to the share of energy-intensive goods out of total exports. The focus is not incidental, for the ongoing structural changes in Brazilian exports alone may come to offset any efficiency improvements achieved by the national industry as a whole

  18. Unravelling the potential of energy efficiency in the Colombian oil industry

    NARCIS (Netherlands)

    Yanez Angarita, Edgar Eduardo; Ramirez, Andrea; Uribe, Ariel; Castillo, Edgar; Faaij, Adrianus

    2018-01-01

    The oil and gas sector represents 39% of the world's total industrial final energy consumption, and contributes to around 37% of total greenhouse gas (GHG) emissions. This study investigates the potential for improvements in energy efficiency, and their implications for CO2 abatement, in the

  19. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  20. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  1. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    Science.gov (United States)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  2. Research on energy efficiency evaluation based on indicators for industry sectors in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Wen, Zhexi; He, Ya-Ling; Tao, Wen-Quan; Li, Yangzhe; Wei, Xiangyang; Yin, Xiaolan; Huang, Xing

    2014-01-01

    Highlights: • We try to evaluate energy efficiency of industry at the plant-level. • The Hierarchical–Indicator Comparison (HIC) method is proposed. • The HIC method can be implemented based on indicators at multi-levels. • The purified terephthalic acid (PTA) industry is used to illustrate the HIC method. • The construction procedure of indicators and the way to use them are presented. - Abstract: The so-called Hierarchical–Indicator Comparison (HIC) method is introduced in this paper. It mainly serves for industrial energy conservation programs in China. A chemical industry named purified terephthalic acid (PTA) is used to outline this method. Two key points of the HIC method are the construction of energy efficiency indicators (EEI) system and the way to utilize indicators appropriately. After a brief review of EE evaluation methods in literature, the construction procedure of energy efficiency indicators (EEI) system for PTA industry is presented firstly. How to correct reference values for indicators according to non-comparable factors is discussed. Then, how to implement the HIC method based on EEI system is presented. Every indicator has its own advantages and disadvantages. Disadvantages of an indicator can be conquered by other indicators. With multiple indicators used together, more objective EE evaluation result can be obtained. Finally, some proposals for further work of this method are also presented

  3. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets

    International Nuclear Information System (INIS)

    Fais, Birgit; Sabio, Nagore; Strachan, Neil

    2016-01-01

    Highlights: • A new industrial modelling approach in a whole energy systems model is developed. • The contribution of UK industry to long-term energy policy targets is analysed. • Emission reductions of up to 77% can be achieved in the UK industry until 2050. • The UK industry sector is essential for achieving the overall efficiency commitments. • UK industry can make a moderate contribution to the expansion of renewable energies. - Abstract: This paper evaluates the critical contribution of the industry sector to long-term decarbonisation, efficiency and renewable energy policy targets. Its methodological novelty is the incorporation of a process-oriented modelling approach based on a comprehensive technology database for the industry sector in a national energy system model for the UK (UKTM), allowing quantification of the role of both decarbonisation of upstream energy vectors and of mitigation options in the industrial sub-categories. This enhanced model is then applied in a comparative policy scenario analysis that explores various target dimensions on emission mitigation, renewable energy and energy efficiency at both a national and European level. The results show that ambitious emission cuts in the industry sector of up to 77% until 2050 compared to 2010 can be achieved. Moreover, with a reduction in industrial energy demand of up to 31% between 2010 and 2050, the sector is essential for achieving the overall efficiency commitments. The industry sector also makes a moderate contribution to the expansion of renewable energies mostly through the use of biomass for low-temperature heating services. However, additional sub-targets on renewable sources and energy efficiency need to be assessed critically, as they can significantly distort the cost-efficiency of the long-term mitigation pathway.

  4. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  5. Role of development banks in promoting industrial energy efficiency: India case studies

    International Nuclear Information System (INIS)

    Sathaye, J.; Gadgil, A.; Mukhopadhyay, M.

    1999-01-01

    The Industrial Development Bank of India (IDBI) is the premier institution in India purveying financial assistance to the industrial-sector projects. Its annual lending amounts to $6 billion. Recognizing the need to increase lending for energy efficiency and environmental management (ee/em) projects, the Asian Development Bank (ADB) provided a $150 million line of credit to IDBI. These funds were lent to cement, steel, paper, sugar and other industries. Accompanying the line of credit, ADB also provided funds for technical assistance to strengthen IDBI's capability for the assessment of projects related to energy efficiency and environmental management (ee/em). The technical assistance (TA) focused on IDBI's institutional capability, the procedures it follows for lending in this area, studies of ten energy-intensive sectors, and training and data needs to improve its lending. The findings of the TA reveal a need to (1) use ee/em indicators during IDBI's appraisal, approval, and monitoring of projects, (2) increase the ee/em information resource base - in-house and out-house ee/em experts, handbooks, computerized data bases - that IDBI staff can access, and (3) increase awareness of ee/em components among industrial borrowers. The sector studies show that there is at least a 20% lag compared to best practice for energy use, and that a significant potential, $1.0 billion, exists for investment in ee/em activities. These activities include (a) housekeeping measures such as improved lighting, variable-speed motors/drives, improving power factor, etc., (b) installing co-generation and captive power generation units, and (c) changing manufacturing processes to more efficient and less polluting ones. Training and data needs were also identified which would improve IDBI's lending for energy efficiency and environmental management

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  7. Industrial energy efficiency in light of climate change negotiations: Comparing major developing countries and the U.S

    International Nuclear Information System (INIS)

    Phylipsen, D.; Price, L.; Worrell, E.; Blok, K.

    1999-01-01

    In light of the commitments accepted within the Framework Convention on Climate Change there is an increasing need for useful information on energy consumption and energy efficiency. Governments can use this information in designing policies to reduce greenhouse gas emissions and prioritizing energy savings options. International comparison of energy efficiency can provide a benchmark against which a country's performance can be measured and policies can be evaluated. A methodology for international comparisons of industrial energy efficiency was developed by the International Network on Energy Demand analysis in the Industrial Sector. In this paper this methodology is used to analyze the energy efficiency of two energy-intensive industries in major developing countries. Energy consumption trends are shown for the steel and cement industry and an analysis is made of technologies used. In light of the Byrd-Hagel resolution, which states that the US will not ratify any climate treaty unless it also mandates commitments to limit greenhouse gas emissions for developing countries, the energy efficiency in the two sectors is compared to that of the US. The analysis shows that in the iron and steel sector South Korea and Brazil are more energy-efficient than the US, while Mexico has achieved a comparable energy efficiency level in recent years. For cement, South Korea, Brazil and Mexico are the most efficient countries analyzed. In recent years, China, and especially, India appear to have achieved energy efficiency levels, more or less comparable to that of the US. In light of data constraints, however, further analysis is required

  8. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Peng Liu

    2017-07-01

    Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

  9. New approaches to energy efficiency programs in the Brazilian industry; Novas abordagens para programas de eficiencia energetica na industria brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Sant' ana, Paulo Henrique de Mello [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia e Ciencias Sociais Aplicadas. Nucleo Interdisciplinar de Planejamento Energetico; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico

    2010-07-01

    A modern approach often used in international literature says that the government has the role to create favorable conditions for improving energy efficiency in industry, either through policies, programs or actions. This article's main objective is to describe the main programs for promoting energy efficiency in industry in Brazil and in other countries, for later to propose a new approach for the management and development of energy efficiency programs for the Brazilian industry. The creation of an executive agency, connected to the MME and with strong ties to ELETROBRAS and PETROBRAS, could manage effectively the enormous resources that are needed to mobilize the energy efficiency programs as real alternatives to programs for additional expansion in energy supply. The creation of energy assessment centers, along with an energy efficiency program for energy-intensive industry, would help in promoting energy efficiency in industry. These actions would likely bounce in other industries, and would assist in achieving optimal management standards in the energy industry, consistent with ISO 9000 and ISO 14000, used in countries like the USA and Sweden. (author)

  10. Assessing global resource utilization efficiency in the industrial sector

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2013-01-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. - Highlights: ► The global industrial sector and its industries are assessed by using energy and exergy methods. ► Global industrial sector efficiencies are evaluated as 51% based on energy and 30% based on exergy. ► Exergy analysis shows global industrial energy to be less efficient than does energy analysis. ► A misleadingly low margin for efficiency improvement is indicated by energy analysis. ► A significant and rational margin for efficiency improvement exists from an exergy perspective

  11. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  12. Evaluating the Economic Performance of High-Technology Industry and Energy Efficiency: A Case Study of Science Parks in Taiwan

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2013-02-01

    Full Text Available High-technology industries provide opportunities for economic growth, but also raise concerns because of their energy-demanding nature. This paper provides an integrated evaluation of both economic benefits and energy efficiency of high-technology industries based on the real data from one of the globally recognized high-technology industrial clusters, the national science parks in Taiwan. A nation-wide industrial Input-Output Analysis is conducted to demonstrate the positive effects of science parks on national economic developments and industrial upgrades. The concept of energy intensity and an energy-efficient economy index are applied to an integrated assessment of the relationship between economic growth and energy consumption. The proposed case study suggests that economic and energy efficiency objectives can be simultaneously achieved by the development of high-technology industries, while three energy policy implications are considered. First, a nation-wide macro viewpoint is needed and high-technology industries should be considered as parts of the national/regional economies by governmental agencies. Second, a proper industrial clustering mechanism and the shared environmental facilities supported by the government, such as planned land and road usage, electricity and water supply, telecommunications system, sewerage system and wastewater treatments, can improve energy efficiency of high-technology industries. Third, the governmental policies on the taxing and management system in science parks would also direct energy-efficient economy of high-technology industries.

  13. Features of energy efficiency benchmarking implementation as tools of DSTU ISO 50001: 2014 for Ukrainian industrial enterprises

    Directory of Open Access Journals (Sweden)

    Анастасія Юріївна Данілкова

    2015-12-01

    Full Text Available Essence, types and stages of energy efficiency benchmarking in the industrial enterprises are considered. Features, advantages, disadvantages and limitations on the use are defined and underlying problems that could affect the successful conduct of energy efficiency benchmarking to Ukrainian industrial enterprises are specified. Energy efficiency benchmarking as tools to the national standard of DSTU ISO 50001: 2014 is proposed

  14. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector; Energieeffizienz in der Industrie. Modellgestuetzte Analyse des effizienten Energieeinsatzes in der EU-27 mit Fokus auf den Industriesektor

    Energy Technology Data Exchange (ETDEWEB)

    Kuder, Ralf

    2014-01-09

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO{sub 2} emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The

  15. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  16. Bridging the industrial energy efficiency gap – Assessing the evidence from the Italian white certificate scheme

    International Nuclear Information System (INIS)

    Stede, Jan

    2017-01-01

    The Italian white certificate scheme is the main national policy instrument to incentivise energy efficiency of the industrial sector, with savings from white certificates amounting to 2% of Italy's 2012 primary energy consumption. The mechanism sets binding energy-saving targets on electricity and gas distributors with at least 50,000 clients and includes a voluntary opt-in model for participation from other parties. This paper investigates and assesses the elements of the scheme that help overcome several barriers to deliver industrial energy efficiency. Results from a survey conducted among leading experts indicate that the Italian system provides a strong financial incentive to energy efficiency investments, covering a significant share of investment costs and thus reducing payback time. Moreover, the scheme fosters the development of energy service companies (ESCOs), which are key to developing, installing and arranging finance for projects on the ground. In conjunction with other policies, the mechanism also raises awareness of energy efficiency investment opportunities, thus helping overcome the market failure of insufficient information. Core challenges remain, including tackling regulatory uncertainty and improving access to finance. - Highlights: • Due to a strong monetary incentive, energy savings are mainly achieved in industry. • White certificates cover around 25 per cent of investment costs in Italian industry. • Active energy services sector with >100 energy service companies built from scratch. • Tackling regulatory uncertainty is the key challenge.

  17. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  18. Energy efficiency and pollution control for thermal units in the Egyptian industry

    International Nuclear Information System (INIS)

    Said Abdel-wahab; Ismail, W.M.

    1999-01-01

    Energy conservation and environmental protection project (ECEP) is a Usaid sponsored project. Its main objective is to promote energy conservation and pollution protection in the egyptian industry through a group of demonstrated projects. One of the implemented activities is the boilers and furnaces tune-up program, which aims to increase energy efficiency and reduce pollution. To achieve this objective. (ECEP) distributed 100 electronic portable exhaust gas analyzers to cover eight industrial sectors at six different geographical locations in egypt. These analyzers were used to measure the contents of exhaust gases to help operators tune up their equipment on regular basis. The result is that the firing thermal units operate at the highest possible combustion efficiency to reduce the amount of fuel consumption as well as pollution emissions. The analyzer used measures two types of temperature, five different stack gases, draft and smoke density. moreover it computes the efficiency of combustion as well as Co2 and excess air percentage. Thermal units that rested by these analyzers were consuming a huge amount of fossil fuel from different types. The average combustion efficiency for thermal units tested was improved by 14%, 15% and 28% for boilers, furnaces and diesel respectively

  19. Energy use and implications for efficiency strategies in global fluid-milk processing industry

    International Nuclear Information System (INIS)

    Xu Tengfang; Flapper, Joris

    2009-01-01

    The fluid-milk processing industry around the world processes approximately 60% of total raw milk production to create diverse fresh fluid-milk products. This paper reviews energy usage in existing global fluid-milk markets to identify baseline information that allows comparisons of energy performance of individual plants and systems. In this paper, we analyzed energy data compiled through extensive literature reviews on fluid-milk processing across a number of countries and regions. The study has found that the average final energy intensity of individual plants exhibited significant large variations, ranging from 0.2 to 12.6 MJ per kg fluid-milk product across various plants in different countries and regions. In addition, it is observed that while the majority of larger plants tended to exhibit higher energy efficiency, some exceptions existed for smaller plants with higher efficiency. These significant differences have indicated large potential energy-savings opportunities in the sector across many countries. Furthermore, this paper illustrates a positive correlation between implementing energy-monitoring programs and curbing the increasing trend in energy demand per equivalent fluid-milk product over time in the fluid-milk sector, and suggests that developing an energy-benchmarking framework, along with promulgating new policy options should be pursued for improving energy efficiency in global fluid-milk processing industry.

  20. Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries

    International Nuclear Information System (INIS)

    Hayashi, Daisuke; Krey, Matthias

    2007-01-01

    This paper assesses clean development mechanism (CDM) potential of large-scale energy efficiency measures in selected heavy industries (iron and steel, cement, aluminium, pulp and paper, and ammonia) taking India and Brazil as examples of CDM project host countries. We have chosen two criteria for identification of the CDM potential of each energy efficiency measure: (i) emission reductions volume (in CO 2 e) that can be expected from the measure and (ii) likelihood of the measure passing the additionality test of the CDM Executive Board (EB) when submitted as a proposed CDM project activity. The paper shows that the CDM potential of large-scale energy efficiency measures strongly depends on the project-specific and country-specific context. In particular, technologies for the iron and steel industry (coke dry quenching (CDQ), top pressure recovery turbine (TRT), and basic oxygen furnace (BOF) gas recovery), the aluminium industry (point feeder prebake (PFPB) smelter), and the pulp and paper industry (continuous digester technology) offer promising CDM potential

  1. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry

  2. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  3. 78 FR 79423 - Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a...

    Science.gov (United States)

    2013-12-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2013-BT-DET-0053] Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a Nationally Recognized Certification Program for Small Electric Motors AGENCY: Office of Energy Efficiency and...

  4. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

    International Nuclear Information System (INIS)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2013-01-01

    China's annual cement production (i.e., 1868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in China's cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using bottom–up CSC models, the cumulative cost-effective and technical electricity and fuel savings, as well as the CO 2 emission reduction potentials for the Chinese cement industry for 2010–2030 are estimated. By comparison, the total final energy saving achieved by the implementation of these 23 efficiency measures in the Chinese cement industry over 20 years (2010–2030) is equal to 30% of the total primary energy supply of Latin America or Middle East or around 71% of primary energy supply of Brazil in 2007. In addition, a sensitivity analysis with respect to the discount rate is conducted to assess its effect on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost. - Highlights: ► Estimation of energy saving potential in the entire Chinese cement industry. ► Development of the bottom–up technology-rich Conservation Supply Curve models. ► Discussion of different approaches for developing conservation supply curves. ► Primary energy saving over 20 years equal to 33% of primary energy of Latin America

  5. Desiccated coconut industry of Sri Lanka: opportunities for energy efficiency and environmental protection

    International Nuclear Information System (INIS)

    Kumar, S.; Senanayake, G.; Visvanathan, C.; Basu, B.

    2003-01-01

    The desiccated coconut (DC) industry is one of the major export oriented food processing industries in Sri Lanka. This paper discusses the production processes, types of fuel used, energy use pattern and the overall specific thermal and electrical energy consumption in the DC sector. An analysis of the energy use highlights the inefficient processes and the key energy loss areas. Options for energy conservation in the DC mills have been discussed, and carbon dioxide emissions from this sector and its mitigation potential are estimated. Other options to improve efficiency and reduce other pollution and policy aspects have been presented

  6. Saving Energy in Industrial Companies: Case Studies of Energy Efficiency Programs in Large U.S. Industrial Corporations and the Role of Ratepayer-Funded Support

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-08

    This paper is designed for companies looking to cut costs through energy savings, ratepayer-funded program administrators interested in increasing large industrial company participation in energy efficiency program offerings, and state utility commissions.

  7. Assessing global resource utilization efficiency in the industrial sector.

    Science.gov (United States)

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  9. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  10. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  11. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  12. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  13. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  14. IDENTIFY: opportunities for improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cornland, Deborah Wilson; Lazarus, Michael; Heaps, Charles; Hippel, David von; Hill, David [Stockholm Environment Inst., Stockholm (Sweden); Williams, Robert [United Nations Industrial Development Organization (UNIDO), Vienna (Austria)

    1998-09-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. The study resulted in the development of the IDENTIFY software tool which can be useful for evaluating projects under consideration for investment through Activities Implemented Jointly (AIJ). IDENTIFY consists of an Analysis tool which enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology, and process options and a Technology Inventory which provides information describing energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors. (author)

  15. Local learning-networks on energy efficiency in industry - Successful initiative in Germany

    International Nuclear Information System (INIS)

    Jochem, Eberhard; Gruber, Edelgard

    2007-01-01

    Profitable energy-efficiency potentials are often not exploited in industry since management tends not to focus on energy issues. Sharing experiences between companies reveals possibilities for reducing the transaction costs involved. For this purpose, regionally or locally-organised learning networks of companies have been established. Social mechanisms are used to motivate management to pay more attention to energy efficiency in Switzerland and Germany. The main elements of the activities include initial consultation for each company with an experienced engineer, agreement on a common target for energy-efficiency improvement, regular meetings with technical presentations and an exchange of experiences, yearly control of energy consumption and CO 2 emissions as well as scientific monitoring and evaluation of the process. The results of some evaluations show that substantial progress has been made in implementing organisational measures and investments in energy efficiency in the participating companies. The reasons for these achievements are discussed and conclusions drawn about the opportunities and limits of this instrument. Finally, a recommendation is made to implement this instrument on a broader level

  16. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns - Graus, Wina

    2015-01-01

    China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of

  17. Energy conservation in mechanical industry; Maitrise de l`energie dans les industries mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The workshop is composed of 12 communications on the theme of energy consumption, conservation and management in industry, and more especially in metal industry: evaluation of the energy savings potential in the French industry; official energy diagnosis procedure in buildings; the French national gas utility policy for energy conservation and economical performance in industry; energy conservation with speed variators for electric motors; energy audits and energy metering for conservation objectives. Examples of energy efficient systems or energy audits in various industrial sectors (compressed air, industrial buildings, heat treatments, curing...) are also presented. The electric power quality EDF`s contract is also discussed

  18. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  19. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  20. Supporting industries energy and environmental profile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  1. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  2. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  3. Improving energy efficiency in industrial solutions - Walk the talk

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, D. (Siemens AG. Industry Solutions Div., Erlangen (Germany)); Finkbeiner, M. (Technische Univ. Berlin (TUB). Sustainable Engineering, Berlin (Germany)); Holst, J.-C.; Walachowicz, F. (Siemens AG. Corporate Technology, Berlin (Germany)); Irving Olsen, S. (Technical Univ. of Denmark (DTU). Management Engineering, Kgs. Lyngby (Denmark))

    2011-05-15

    This paper describes the outline of the energy efficiency and environmental care policy and management at Siemens Industry Solutions Division. This environmental policy coherently embraces strategic planning, eco-design of energy-efficient industrial processes and solutions, design evaluation and finally communication of both environmental and economic performance of solutions to customers. One of the main tools supporting eco-design and evaluation and controlling of derived design solutions is the so called 'Eco-Care-Matrix' (ECM). The ECM simply visualizes the eco-efficiency of solutions compared to a given baseline. In order to prevent from 'green washing' criticism and to ensure 'walk the talk' attitude the ECM should be scientifically well-founded using appropriate and consistent methodology. The vertical axis of an ECM illustrates the environmental performance and the horizontal axis describes the economical customer benefit of one or more green solutions compared to a defined reference solution. Different scientific approaches for quantifying the environmental performance based on life cycle assessment methodology are discussed especially considering the ISO standards 14040/14044:2006. Appropriate ECM application is illustrated using the example of the Siemens MEROS technology (Maximized Emission Reduction of Sintering) for the steel industry. MEROS is currently the most modern and powerful system for cleaning off-gas in sinter plants. As an environmental technology MEROS is binding and removing sulfur dioxide and other acidic gas components present in the off-gas stream by using dry absorbents and additional electrical power. Advantage in the impact category of acidification potential (by desulfurization) is a trade-off to disadvantages in global warming and resource depletion potential caused by use of electricity. Representing different impacts, indicator results for impact categories with different tendencies have to be

  4. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  5. Energy taxation in a small, open economy: Social efficiency gains versus industrial concerns

    International Nuclear Information System (INIS)

    Bjertnaes, Geir H.; Faehn, Taran

    2008-01-01

    Welfare analyses of energy taxes typically show that systems with uniform rates perform better than differentiated systems, especially if revenue can be recycled by cutting taxes that are more distortionary. However, in practical policy, efficiency gains must be traded off against industrial concerns. Presumably, energy-dependent industries of small, open economies will suffer relatively more if taxed. This computable general equilibrium (CGE) study examines the social costs of compensating the energy-intensive export industries in Norway for their profit losses from imposing the same electricity tax on all industries. The costs are surprisingly modest. This is explained by the role of the Nordic electricity market, which is still limited enough to respond to national energy tax reforms. Thus, an electricity price reduction partly neutralizes the direct impact of the tax on profits. In addition, we examine the effects of different compensation schemes and find significantly lower compensation costs when the scheme is designed to release productivity gains. (author)

  6. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Liu, Huanbin [South China Univ. of Technology, Guangzhou (China). State Key Lab. of Pulp and Paper Engineering

    2013-01-31

    This study assesses the impact of 23 energy-efficiency measures that could be applied in China's pulp and paper industry. We analyze the fuel- and electricity-efficiency improvement potential of these technologies for the year 2010 using a bottom-up conservation supply curve (CSC) model. The fuel CSC model shows that the cost-effective fuel efficiency improvement potential for China's pulp and paper industry is 179.6 PJ, and the total technical fuel-savings potential is 254.3 PJ. These figures represent 26.8 percent and 38.0 percent, respectively, of total fuel used in China’s pulp and paper industry in 2010. The CO2 emissions reduction potential associated with ii the cost-effective fuel savings is 16.9 Mt CO2, and the total technical potential for CO2 emissions reduction is 24.2 Mt CO2. The electricity CSC model shows that the total technical electricity-efficiency potential to 2,316 gigawatt-hours (GWh) or 4.3 percent of total electricity use in the pulp and paper industry in 2010. All of the electricity-efficiency potential is cost effective. The CO2 emissions reduction potential associated with the total electricity savings is 1.8 Mt CO2. Sensitivity analyses for adoption rate, discount rate, electricity and fuel prices, investment costs, and the energy savings from each measure show that these parameters have significant influence on the results. Therefore, the results presented in this report should be interpreted with caution.

  7. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  8. Efficient energy conversion in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F.; Perin-Levasseur, Z.

    2005-07-01

    This yearly report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2005 and the work planned for 2006 within the framework of the Efficient Energy Conversion in the Pulp and Paper Industry project. The results of investigations made at a large pulp and paper facility in Switzerland are presented and analysed. Data models of the steam and condensate networks and of the processes involved are examined. An additional model of the sulphur loop has been also elaborated. From this analysis, a list of required measurements has been developed. Several performance indicators have also been calculated: A systematic analysis method developed to identify sections where condensate could be recovered is discussed. A systematic definition of the hot and cold streams in the process is being developed in order to compute the minimum energy requirements of the process. Evaluating this minimum energy requirement from the data available is to be used to prepare definitions of the energy savings possible.

  9. Voluntary agreements - a measure for energy-efficiency in industry? Lessons from a Swedish programme

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Anna- Lisa [Department of Sociology, Lund University P.O. Box 114, SE-221 00, Lund, (Sweden); Carlsson-Kanyama, Annika [Environmental Strategies Research Group, P.O. Box 2142, SE-103 14, Stockholm, (Sweden)

    2002-08-01

    Voluntary agreements represent a policy instrument for applying new knowledge, routines or technology to specified issues. The traditional role of an authority when using information, and taking economic, or administrative measures is that of an initiator and controller. Voluntary agreements, on the other hand, represent a communication process between an authority and a partner where relations of dependency and mutuality are more important in advancing the programme. This article analyses and discusses the motivational aspects of voluntary agreements, the role of the contract, advising, information, education, time planning and the importance of reporting and evaluation in energy-efficiency programmes. Besides sociological and communication theories, the discussion is based on the outcome of an evaluation of a Swedish energy-efficiency programme. Among the conclusions are that communication processes have to be planned and implemented in time sequences and steps of measures, which was partially neglected in the Swedish programme. Also, agreements between partners have to be defined in ways valid for all partners. In the Swedish programme, quantitative goals, at least measured in kWh, were impossible to achieve for some industries. On the other hand, most industries reported progress in side effects of energy efficiency as for example transportation policy for products, recirculation of waste material, lighting policy and behaviour, qualifications for ISO labelling. Information in combination with voluntary agreements can be efficient for industrial energy conservation. The education and auditing that was part of the Swedish programme were highly appreciated and added to the achievements. (Author)

  10. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  11. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  12. What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to China in developing policies and programs to motivate enterprises to improve energy efficiency.

  13. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  15. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Northeastern Univ., Shenyang (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  16. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  17. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  18. Organizational human factors as barriers to energy efficiency in electrical motors systems in industry

    International Nuclear Information System (INIS)

    Sola, Antonio Vanderley Herrero; Augusto de Paula, Xavier Antonio

    2007-01-01

    This paper presents a study accomplished in the State of Parana in Southern Brazil, aiming at verifying the correlation between organizational human factors (OHF) and the level of energy losses in organizations. The purpose is to subsidize the formularization of institutional policies in organizations to improve the energy efficiency in the productive sector. The research was carried out in ten industries of the following sectors: pulp and paper; food; wood and chemical products. The losses of electric energy were determined in motor systems with the aid of a mathematical model and the evaluation of 27 OHF identified in the literature review was made with the supervisors in the industries by means of a structurized questionnaire. Seven OHF had presented significant correlation with energy losses and six of them are inversely proportional to the losses, in accordance with linear regression analysis. The inversely proportional factors to the losses also with significant correlation are considered determinative OHF and constitute barriers for energy efficiency in organizations. These barriers are linked with the following organizational areas: management system; education of employees; strategical vision. The study recommends the implementation of the determinative OHF in organizations as a way to transpose the human barriers for energy efficiency

  19. Modeling energy efficiency to improve air quality and health effects of China's cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst|info:eu-repo/dai/nl/106856715; Crijns-Graus, Wina|info:eu-repo/dai/nl/308005015; Krol, Maarten|info:eu-repo/dai/nl/078760410; de Bruine, Marco|info:eu-repo/dai/nl/411965085; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China's cement industry is the second largest energy

  20. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  1. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  3. The Boardroom Perspective: How Does Energy Efficiency Policy Influence Decision Making in Industry?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report delves into the major factors or driving forces that decision makers within a large industrial company take into account when deciding to make new investments - the so-called {sup b}oardroom perspective{sup .} The rationale for an individual company making an investment that will reduce energy consumption varies considerably and depends on a range of factors. This report explores those factors that influence companies to invest in energy savings and proposes a methodology to evaluate the effectiveness of a country's energy efficiency and greenhouse gas mitigation policies mix from this boardroom perspective. This paper is the product of collaboration between the IEA and the Institute of Industrial Productivity (IIP).

  4. Energy shocks and detecting influential industries

    International Nuclear Information System (INIS)

    Kang, Dongsuk; Lee, Duk Hee

    2017-01-01

    An industry's relationship of supply and demand with the energy sector can be a critical factor in the stability of its economic performance. Furthermore, the patterns of industry dependence on energy industries can be a major characteristic of entire industrial structure. This research evaluates industries' impact scores for their overall influence on other industries and vulnerability to supply and demand shocks from the energy sector. The study utilizes a sample of Korea's industrial input–output tables from 2010 to 2012. Using a chain of complementary methodologies, this study finds that among four clusters, energy, services, and raw materials are key members that can spread energy shocks to other industries. Therefore, governments need to prepare effective energy efficiency policies for these target industries. - Highlights: • We analyze an industry's impact score of its vulnerability to energy shock and inter-industrial effects. • We utilize the sample of input-output tables in Korea from 2010 to 2012. • We implement simulation, PCA, TOPSIS, cluster analysis about energy shock and industrial trades. • Subsectors of energy, services, raw material are subject to energy shock and influential to others. • These bridge industries can be targets that require policies for effective energy efficiency.

  5. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  6. Energy-efficient architecture of industrial facilities associated with the desalination of sea water

    Directory of Open Access Journals (Sweden)

    Gazizov Timur

    2016-01-01

    Full Text Available The article offers an actual solution of a problem of drinking water shortage in the territory of the Crimean coast, in the city of Sudak, Autonomous Republic of Crimea, Russia. The project includes a development of energy-efficient architecture, its implementation in industrial facilities, such as stations for seawater desalination and an active use of alternative energy sources.

  7. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  8. International comparisons of energy efficiency in power, steel, and cement industries

    International Nuclear Information System (INIS)

    Oda, Junichiro; Akimoto, Keigo; Tomoda, Toshimasa; Nagashima, Miyuki; Wada, Kenichi; Sano, Fuminori

    2012-01-01

    Industrial energy efficiency is of paramount importance both for conserving energy resources and reducing CO 2 emissions. In this paper, we compare specific energy consumption among countries in fossil power generation, steel, and cement sectors. The evaluations were conducted using common system boundaries, allocation, and calculation methods. In addition, we disaggregate within sectors, such as with blast furnace–basic oxygen furnace (BF–BOF) steel and scrap-based electric arc furnace (Scrap-EAF) steel. The results reveal that characteristics vary by sub-sector. Regional differences in specific energy consumption are relatively large in the power, BF–BOF steel, and cement sectors. For coal power generation and BF–BOF steel production, continual maintenance and rehabilitation are of key importance. We confirm these key factors identified in the previous work on our estimated numerical values. In BF–BOF steel production, corrections for hot metal ratios (pig iron production per unit of BOF crude steel production) and quality of raw materials have a large effect on the apparent specific energy consumption. Available data is not yet sufficient for straightforward evaluation of the steel and cement sectors. - Highlights: ► We compare energy efficiency among countries in power, steel, and cement sectors. ► In steel and cement sectors, the results are provided in terms of specific energy consumption (GJ/ton of product). ► We distinguish BOF steel and EAF steel. ► New installation and continual maintenance are the key for energy efficiency. ► Corrections have a large impact on apparent specific energy consumption.

  9. Modeling energy efficiency to improve air quality and health effects of China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Krol, Maarten; Bruine, Marco de; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Highlights: • An integrated model was used to model the co-benefits for China’s cement industry. • PM_2_._5 would decrease by 2–4% by 2030 through improved energy efficiency. • 10,000 premature deaths would be avoided per year relative to the baseline scenario. • Total benefits are about two times higher than the energy efficiency costs. - Abstract: Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China’s cement industry is the second largest energy consumer and key emitter of CO_2 and air pollutants, which accounts for 7% of China’s total energy consumption, 15% of CO_2, and 14% of PM_2_._5, respectively. In this study, a state-of-the art modeling framework is developed that comprises a number of different methods and tools within the same platform (i.e. provincial energy conservation supply curves, the Greenhouse Gases and Air Pollution Interactions and Synergies, ArcGIS, the global chemistry Transport Model, version 5, and Health Impact Assessment) to assess the potential for energy savings and emission mitigation of CO_2 and PM_2_._5, as well as the health impacts of pollution arising from China’s cement industry. The results show significant heterogeneity across provinces in terms of the potential for PM_2_._5 emission reduction and PM_2_._5 concentration, as well as health impacts caused by PM_2_._5. Implementation of selected energy efficiency measures would decrease total PM_2_._5 emissions by 2% (range: 1–4%) in 2020 and 4% (range: 2–8%) by 2030, compared to the baseline scenario. The reduction potential of provincial annual PM_2_._5 concentrations range from 0.03% to 2.21% by 2030 respectively, when compared to the baseline scenario. 10,000 premature deaths are avoided by 2020 and 2030 respectively relative to baseline scenario. The

  10. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  11. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  12. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  13. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other manufactu......Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other...... manufacturing industries. An important question, then, is how well these two highly relevant areas can go hand in hand. By means of comparing the main ideas and drivers behind sustainability and industrialization, respectively, common threads, possible synergies and evident barriers are put forward...... in this discussion paper. The main method is a review to track past merits in the two domains and to detect knowledge gaps that have research potential. A strategic research agenda focusing on energy-efficient construction management is outlined showing the need for future focus on combining industrialization...

  14. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  15. Issues of geothermal and biomass energy efficiency in agriculture, industry, transports and domestic consumption

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2014-12-01

    Full Text Available Increasing energy efficiency should be a concern for both the firm managers and any leader at any level, given that energy efficiency significantly reduce production costs. An important aspect of this is the use of renewable energy sources, in different types of activities, depending on the possibilities to produce it on favorable terms, to supply at relatively low costs and to efficiently consume it both in the producing units and the households. A skilful and powerful leader will seek and support, through its influence, all the means that determine the reduction of the production costs and obtain a profit as high as possible. Wider use of renewable energy promotes concern for the environment through clean energy, for reducing pollution and for facilitate, in some cases, even the increase of the production with the same costs or lower costs. In agriculture, industry, transports and household consumption, a high importance presents the geothermal energy and the biomass as source of energy.

  16. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  17. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  18. Ex-post assessment of China's industrial energy efficiency policies during the 11th Five-Year Plan

    International Nuclear Information System (INIS)

    Yu, Yuqing; Wang, Xiao; Li, Huimin; Qi, Ye; Tamura, Kentaro

    2015-01-01

    China implemented a package of policies during the 11th Five-Year Plan (2006–2010) to improve industrial energy efficiency. This assessment provides a methodology that establishes a causal relationship between policy implementation and energy conservation effects. To enhance the confidence in the research findings, this assessment applies two distinctive and independent approaches: one top-down and the other bottom-up. This assessment finds that industrial energy efficiency policies collectively achieved energy savings of 322 Mtce (9.4 EJ) against the baseline scenario. This accounted for 59% of the sector's total energy savings from 2006 to 2010. The remaining energy savings were realised through autonomous technology improvement (33%) and sector-level structural shift (8%). Correspondingly, cumulative avoided CO 2 emissions realised through energy efficiency policies amounted to 760 million tons. This assessment concludes that industrial energy efficiency policies were effective in realising energy conservation targets, but energy conservation effects were not achieved in a cost-effective way. Command and control measures were dominantly implemented, with economic incentives and informational measures taking a complementary role; while market based instruments did not play an important role. As China is planning on implementing a nationwide emissions trading scheme, special attention needs to be paid to policy interaction and coordination. - Highlights: • EE policies applied in the industry sector achieved energy savings of 322 Mtce. • Energy saving realized through EE policies accounted for 59% of the sector's total. • Avoided CO 2 emissions realized by EE policies amounted to 760 million tons. • Autonomous technology improvement accounted for 33% of the sector's total energy savings. • Sector-level structural shift accounted for the remaining 8% energy savings

  19. Industrial electricity demand and energy efficiency policy: The role of price changes and private R and D in the Swedish pulp and paper industry

    International Nuclear Information System (INIS)

    Henriksson, Eva; Söderholm, Patrik; Wårell, Linda

    2012-01-01

    The objective of this paper is to analyze electricity demand behaviour in the Swedish pulp and paper industry in the context of the increased interest in so-called voluntary energy efficiency programs. In these programs tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. We employ a panel data set of 19 pulp and paper firms, and estimate both the own- and cross-price elasticities of electricity demand as well as the impact of knowledge accumulation following private R and D on electricity use. The empirical results show that electricity use in the Swedish pulp and paper industry is relatively own-price insensitive, and the self-reported electricity savings following the voluntary so-called PFE program support the notion of important information asymmetries at the company level. However, the results display that already in a baseline setting pulp and paper firms tend to invest in private R and D that have electricity saving impacts, and our model simulations suggest that up to about one-third of the industry sector's self-reported electricity savings in PFE could be attributable to pure baseline effects. Future evaluations of voluntary energy efficiency programs must increasingly recognize the already existing incentives to reduce energy use in energy-intensive industries. - Highlights: ► We analyze electricity demand behaviour in the Swedish pulp and paper industry. ► An important context is the voluntary energy efficiency programs PFE. ► The electricity savings following PFE are significant, but price responses are low. ► Still, already in a baseline setting firms tend to invest in electricity-saving R and D. ► These baseline issues are not adequately addressed in PFE.

  20. Energy management оf industrial enterprise

    Directory of Open Access Journals (Sweden)

    Lyaskovskaya E.A.

    2017-01-01

    Full Text Available In the intensifying condition of economic situation and increasing competitiveness in domestic and foreign markets, the most important way to develop competitive ability of an industrial company is to reduce energy costs in the production process. Insufficient level of the efficiency of energy resources usage affects an industrial company’s performance indicators and its investment attractiveness. A promising way of solving this matter is to develop and implement a strategy of rational energy consumption, which is aimed at the realization of company’s potential to optimize the consumption of electric energy by using internal and external resources in order to minimize energy costs. The strategy of rational energy consumption defines how an industrial company acquires electric energy and uses it to sustain the production. While developing and implementing the strategy, one should use a systemic and complex way and consider the following: peculiarities of electric energy and power as products; the structure of electric energy market and the possibilities of its consumers; peculiarities of price-formation on electric energy market; technical and technological, organizational and administrative, social and economic parameters of a company, characteristic features of its resource potential and production processes; the results of company’s energy efficiency audit and energy problems; company’s reserves that can increase its energy efficiency. An integral strategy of energy consumption includes a strategy for energy preservation and efficiency and a strategy for energy costs management. Both strategies are interrelated and serve for one purpose, which is minimizing the energy costs. This division helps simplify the analysis, search for alternatives and realization of energy management on operative, tactical and strategic levels, considering the regional and industry-specific peculiarities of an industrial company, its financial performance and

  1. Quantifying the Co-benefits of Energy-Efficiency Programs: A Case Study of the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lobscheid, Agnes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dai, Yue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    China’s cement industry accounted for more than half of the world’s total cement production in 2010. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries and one of the key industrial contributors to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of industrial PM emissions and 27 percent of total national PM emissions. Although specific regulations and policies are needed to reduce the pollutant emissions from the cement industry, air pollution can also be reduced as a co-benefit of energy efficiency and climate-change mitigation policies and programs. Quantifying and accounting for these co-benefits when evaluating energy efficiency and climate-change mitigation programs reveals benefits beyond the programs’ energy and global warming impacts and adds to their cost effectiveness. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emissions reductions that result from energy-saving measures in China’s cement industry.

  2. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  3. THE CONTRIBUTION OF ENERGY EFFICIENCY TOWARDS THE SUCCESS OF INDUSTRIAL ORGANISATIONS IN SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    P.A. Gouws

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Internationally, governments and lobby groups increasingly put pressure on organisations to reduce their impact on the environment. To this end, various studies show the drivers, barriers, and contributions of energy efficiency towards a more sustainable environment, particularly through reduced greenhouse gas emissions and other by-products. In the study summarised in this paper, the factors that drive organisational success were compared with the effects that energy efficiency projects have on organisations. Methods, policies, and strategies on the application of energy efficiency were also studied. The findings are that, in general, most organisations have energy efficiency policies and strategies in place, and they include internal and external stakeholders in their energy efficiency efforts. These efforts also show a positive correlation with the factors that contribute to the perceived success of organisations in the South African industrial sector. These strategies must be maintained in the longer term, as energy efficiency will play a more important role in the future.

    AFRIKAANSE OPSOMMING: Organisasies, wêreldwyd, word toenemend onder druk geplaas deur regerings- en aksiegroepe om hul impak op die omgewing te verminder. Na aanleiding hiervan toon verskeie studies die drywers, struikelblokke en bydraes van energie-doeltreffendheid na ʼn meer volhoubare omgewing, veral ten opsigte van groenhuisgas-emissies en ander neweprodukte. In hierdie studie is die faktore wat die sukses van organisasies dryf vergelyk met die effek van die toepassing van energiedoeltreffendheidsprojekte op organisasies. Metodes, beleid en strategieë in terme van die toepassing van energiedoeltreffendheid is ook bestudeer. Die bevindinge is dat die meeste organisasies, oor die algemeen, beleid en strategieë in plek het in terme van energiedoeltreffendheid; dié organisasies sluit interne en eksterne belanghebbendes in waar hulle strewe na

  4. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  5. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  6. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  7. Network for the increase of the industrial energy efficiency; Mreza industrijske energetske efikasnosti (MIEE)

    Energy Technology Data Exchange (ETDEWEB)

    Krstulovic, V [Energetski institut Hrvoje Pozar, Zagreb (Croatia)

    1997-12-31

    Introduction of the idea of a network for the increase of the industrial energy efficiency, international activities in that area, some experiences, targets and plan of the building of such network in Croatia. (author). 3 figs.

  8. Industrial wastewater treatment with a bioelectrochemical process: assessment of depuration efficiency and energy production.

    Science.gov (United States)

    Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G

    2018-01-01

    Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.

  9. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  10. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  11. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  12. Canada's voluntary industrial energy conservation programme

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Jr., C. A.

    1979-07-01

    The organization of the voluntary industrial energy conservation program is described. There are 15 industrial sectors in the program and the plan implemented by the sectors including individual companies, trade associations, industry task forces, task force coordinating committee, and government is described. Targets for attack are mainly housekeeping projects, energy efficiency in retrofitting, and new processes. Problems are identified. It is concluded that compiled total performance has essentially achieved its target of 12% improved energy efficiency two years ahead of schedule. (MCW)

  13. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  14. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  15. Energy efficiency and barriers towards meeting energy demand in industries in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Unachukwu, Godwin O.; Zarma, I.H.; Sambo, A.S.

    2010-09-15

    Energy is an important production factor and therefore should be managed in parallel with land, labor and capital. Energy efficient production should be seen as a quick and cheaper source of new energy supply as the cost of providing energy can be several times the cost of saving it. Increasingly energy efficiency is deemed to include not only the physical efficiency of the technical equipment and facilities but also the overall economic efficiency of the energy system.

  16. Energy efficiency solutions for driers used in the glass manufacturing and processing industry

    Directory of Open Access Journals (Sweden)

    Pătrașcu Roxana

    2017-07-01

    Full Text Available Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

  17. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  18. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  19. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  20. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    International Nuclear Information System (INIS)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors

  1. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors.

  2. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  3. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  4. Energy conservation status in Taiwanese food industry

    International Nuclear Information System (INIS)

    Ma, Chih-Ming; Chen, Ming-Hue; Hong, Gui-Bing

    2012-01-01

    The food industry in Taiwan is labor intensive, the cost of raw materials is high, and there is much product diversification. Although this industry is primarily small and medium scale, it is a large user of electricity in Taiwan's manufacturing sector. The concentration of greenhouse gases (GHGs) from manufacturing activities and vehicle emissions has increased remarkably. Energy audits are a basic and direct means by which energy efficiency can be improved, energy consumption reduced, and carbon dioxide emissions inhibited. This work summarizes the energy saving potential of 76 firms and the energy savings implemented by 23 firms as determined by energy audit tracking and from the on-line energy declaration system in Taiwan's food industry. The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings and opportunities for improving the efficiency of the food industry. - Highlights: ► This work summarizes the energy saving potential and the energy savings implemented in food industry. ► The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings. ► The opportunities for improving the efficiency of the food industry can be a reference.

  5. 76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency...: Notice of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  6. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  7. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  8. Strategies for reconciling environmental goals, productivity improvement, and increased energy efficiency in the industrial sector: Analytic framework

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.A.

    1995-06-01

    The project is motivated by recommendations that were made by industry in a number of different forums: the Industry Workshop of the White House Conference on Climate Change, and more recently, industry consultations for EPAct Section 131(c) and Section 160(b). These recommendations were related to reconciling conflicts in environmental goals, productivity improvements and increased energy efficiency in the industrial sector.

  9. Investing in efficient industrial boiler systems in China and Vietnam

    International Nuclear Information System (INIS)

    Yang Ming; Dixon, Robert K.

    2012-01-01

    Energy efficiency in industrial boiler steam systems can be very low due to old technologies, improper design and non-optimal operation of the steam systems. Solutions include efficiency assessments and investments in steam system optimizations, education and training for operators of the systems. This paper presents case studies on assessing and investing in boiler steam systems in China and Vietnam. Methodologies and approaches for data collection and analyses were designed specifically for each of the two countries. This paper concludes: (1) investing in energy efficiency in industrial boiler steam system in China and Vietnam are cost effective; (2) government should not sent national energy efficiency standards lower than that of energy companies or energy equipment manufactures. - Highlights: ► GEF successfully catalyzed investment in industrial energy efficiency boilers in China in 1990s. ► With about $100 million of investment by the GEF/World Bank/Chinese government, the project will mitigate 40 million tons of CO 2 by 2019. ► This generated lowest unit cost of carbon reduction in the world: about $2.5 per ton of CO 2 mitigation. ► Investing in energy efficiency in industrial boiler steam system today in Vietnam will be the same cost effective as in China: $2.1 per ton of CO 2 mitigation.

  10. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  11. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  12. Integration and communication as central issues in Dutch negotiated agreements on industrial energy efficiency

    NARCIS (Netherlands)

    Bressers, Johannes T.A.; de Bruijn, Theo; Dinica, V.

    2007-01-01

    This paper analyses specific aspects of the implementation of the second multi-annual agreement for energy efficiency concluded in the Netherlands with various industrial sectors for the period 2002-2010. The agreement is a follow-up on a previous negotiated agreement that was generally seen as

  13. Energy efficiency in the European water industry. A compendium of best practices and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [Watercycle Research Institute KWR, Nieuwegein (Netherlands); Uijterlinde, C. [Foundation for Applied Water Research STOWA, Amersfoort (Netherlands)

    2010-02-15

    This European report on best practices of energy efficiency in the water industry showcases 23 energy efficiency initiatives which were collected as case studies from European water utilities. The 25 case studies presented in this report will be submitted to UKWIR and Black and Veatch, for potential inclusion in the Global Water Research Coalition (GWRC) global compendium of best practice case studies. The aim of the GWRC-compendium is to identify the promising developments and future opportunities to help deliver incremental improvements in energy efficiency through optimisation of existing assets and operations. But also more substantial improvements in energy efficiency from the adoption of novel (but proven at full scale) technologies. The European report describes case studies from: Belgium, Denmark, France, Germany, Hungary, Netherlands, Norway, Spain and Switzerland. Black and Veatch has gathered furthermore information on 47 cases from the UK. These are reported separately and are not included in this European overview.

  14. Industrial strategies for improving energy efficiency and reducing greenhouse gas emissions: Examples from the Climate Wise program

    International Nuclear Information System (INIS)

    Buhsmer, K.; Nelson, H.; Wayman, A.; Winkelman, S.; Milmoe, P.H.

    1997-01-01

    Climate Wise is a partnership initiative between the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and industry designed to stimulate the voluntary reduction of greenhouse gas emissions among participating manufacturing companies. Climate Wise works with the manufacturing sector, which comprises 25 to 30 percent of the total US energy consumption, to promote the continued and increased implementation of energy efficiency and other pollution prevention measures. This paper reviews the energy use and CO 2 emissions profiles of the following three energy intensive industries: cement, petroleum, and iron and steel. The paper also identifies what a typical Action Plan for a company from each of these industries might look like and the types of savings (energy, CO 2 emissions, and energy costs) which might be achieved. The measures featured in these Action Plans are widely applicable and are likely to offer relatively short payback times. In addition, the paper describes other measures and existing or emerging technologies that may be available to these industries

  15. Results of the joint efforts of Bulgarian and American specialists in the programme for energy efficiency in the industry

    International Nuclear Information System (INIS)

    Spasov, Khr.; Folkenbury, H.

    1992-01-01

    The Program on Energy Efficiency in the Industry was initiated in 1991 by the US Agency for International Development in cooperation with the Bulgarian Ministry of the Industry and Commerce and the Committee for Energy (CE). Within this program a series of energy audits in 8 firms, representative for different sectors of the industry, was carried out. In 1992 the joint teams of CE, the firm Ekotekhproduct, Intern Resources Group (USA) and employees of the chosen firms completed an audit programme, aiming at facilitating the development of an energy conservation policy by providing data for establishing the measures and investment priorities for energy efficiency improvement. The measurements and the results of the carried out equipment set-ups undoubtedly proved the presence of vast recourses for energy conservation in low or zero investment procedures including measures in the following fields: setting of the combustion processes of the steam generators and water heating boilers; insulation repairs; elimination of leakages; condenser chambers repairs. The estimated gains in efficiency, the recourse conservation and the expected requites are presented for each case and for each site under study. 17 general causes for inefficient energy consumption in the industry are enumerated, among which: equipment run-down, careless operation and maintenance practice, lack of advanced control devices, lack of consistent concept for information flows, lack of control and maintenance and lack of incentives for actuation of energy conservation measures. 1 tab. (R.Ts.)

  16. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  17. Estimating the changes in the distribution of energy efficiency in the U.S. automobile assembly industry

    International Nuclear Information System (INIS)

    Boyd, Gale A.

    2014-01-01

    This paper describes the EPA's voluntary ENERGY STAR program and the results of the automobile manufacturing industry's efforts to advance energy management as measured by the updated ENERGY STAR Energy Performance Indicator (EPI). A stochastic single-factor input frontier estimation using the gamma error distribution is applied to separately estimate the distribution of the electricity and fossil fuel efficiency of assembly plants using data from 2003 to 2005 and then compared to model results from a prior analysis conducted for the 1997–2000 time period. This comparison provides an assessment of how the industry has changed over time. The frontier analysis shows a modest improvement (reduction) in “best practice” for electricity use and a larger one for fossil fuels. This is accompanied by a large reduction in the variance of fossil fuel efficiency distribution. The results provide evidence of a shift in the frontier, in addition to some “catching up” of poor performing plants over time. - Highlights: • A non-public dataset of U.S. auto manufacturing plants is compiled. • A stochastic frontier with a gamma distribution is applied to plant level data. • Electricity and fuel use are modeled separately. • Comparison to prior analysis reveals a shift in the frontier and “catching up”. • Results are used by ENERGY STAR to award energy efficiency plant certifications

  18. Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries

    International Nuclear Information System (INIS)

    Saidur, R.; Mahlia, T.M.I.

    2010-01-01

    Electric motors use major share (i.e. about 30-80% of total industrial energy consumption) of total industrial energy use around the world. Experiences from other countries show that government intervention in the form of regulations such as mandatory and voluntary approaches can save sizeable amount of energy along with the reduction in emissions associated with energy savings. This paper presents potential energy savings by introducing high-efficiency motors as a case study in Malaysian industrial sector. Emission reductions associated with the energy savings has been estimated and presented as well. It was also estimated that a cumulative amount of 1940 and 892 GWh of energy can be saved for 20 and 120 kW motors, respectively, in Malaysia relative to BAU over the next 10 years. Similarly, a cumulative amount of USD 100 million and USD 60 million can be saved as utility bills for the same motor categories. It has been found that the payback period of different capacities of motors are less than a year. Based on results, it was found that 1789 million kg of CO 2 emission can be avoided by replacing standard motors with high-efficiency motors.

  19. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  20. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  1. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  2. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  3. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  4. Study of energy efficiency measures in cement industry; Estudo de medidas de eficiencia energetica na industria de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Roberta Ferreira Carrijo; Gorla, Filipe Debonzi [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    Methods of energy conservation play an important role in the future energetic supply. The cement industry, being energetic intensive, is an important niche of performance of such methods. It is intended, in the present work, to estimate the impact of energy conservation through different scenarios. The projections have been realized considering both the technical (equipment efficiency) and economical (Industrial Transformation Worth - ITW) aspects of the cement sector. (author)

  5. Establishing strategic energy assessment indicators for Zimbabwe: A key to improving electrical energy efficiency

    Science.gov (United States)

    Goto, Felix

    In Zimbabwe, there is still very little realization of the potential of demand side management (DSM) to increase industrial energy efficiency. Without clear guidelines that indicate the most economic energy efficiency strategies to implement, it is difficult for industry to easily evaluate the benefits of energy assessments. This research focused on establishing and evaluating indicators that guide correct implementation of energy assessments into Zimbabwean industry. This quantitative and qualitative study used a theoretic approach to develop indicators that identified industrial subsectors that should be targeted for DSM interventions. This may bring about reduction in energy demand in high power consuming Zimbabwean industrial companies, which were compared with energy utility performances of similar industrial companies in countries located in other parts of the world. This research used pattern-matching, categorical aggregation, and stochastic frontier regression analysis for data analysis. In maximizing electrical efficiency, the implications of this study may be used by individual companies in Zimbabwe to perform energy efficiency self-diagnoses, operational efficiency evaluations, and capital resource justifications. From a societal perspective, this study may benefit Zimbabwe because it provides opportunities for the alleviation of both shortages in power supply and the capital constraints of building new generating capacity. This study will also benefit ordinary Zimbabweans by lowering energy costs and providing reliable power. This promotes sustainable economic growth and lowers the need for foreign currency to import power.

  6. Prerequisites to promote energy efficiency investments in Bulgaria

    International Nuclear Information System (INIS)

    Boernsen, O.

    1994-01-01

    The PHARE Energy Programme's team observation and advice to the Committee of Energy in Bulgaria are outlined. In comparison to the Western European countries energy intensity in Bulgaria is 2-3 times higher. It is explained by the energy intensive industrial structure and the old and depreciated capital equipment. Cost-covering energy prices would make energy efficiency investment financially feasible and would attract financiers. But the lesson from Western European experience is that availability of finance capital and cost reflecting energy prices is not at all a necessary prerequisite for energy efficiency improvement. This improvement can be achieved with no cost or low cost measures. The potential for energy efficiency in industry (consuming more than 50% of the energy) is 11%-20%; in buildings - 6%; in transport - 4%. There are other obstacles, as lack of information, other business interests and no internal expertise, especially for small and medium size industries. The basic prerequisite to improve energy efficiency is raising of awareness and change of management culture, as well as radical change in organisational and management structures. (orig.)

  7. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  8. Process Industry and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Over a period of two years the NAP's Special Interest Group Energy (SIG-E) has dedicated itself to studying the way in which the process industry and its supply chain has been dealing with energy as a theme. In the past it was strongly believed that many opportunities were left unused and that different forms of cooperation inside the chain should contribute to accelerated improvement of energy efficiency in the process industry. Sixteen companies that are actively involved in the entire value chain have scrutinised their daily situation wondering how to operate more successfully. With approximately one quarter of total energy consumption the Dutch process industry is a major player in reaching national energy and climate objectives by 2020. The objective (improve energy efficiency by 2% annually) is as ambitious as that 'business as usual' is insufficient. A drastic change in how matters are approached is thus essential. The question is how to proceed? By analysing energy projects, in-depth interviews with decision makers in the industry, through literature searches and by organising lectures inside and outside the sector, SlG-E has been able to develop a true picture of the mechanisms concerning energy-related investments. Two major points of interest have been energy-oriented tendering (demand side) and the market introduction of innovations (supply side). The main problems of 'how to do more in the energy domain' is: (a) the process industry is insufficiently familiar with the capabilities of the supply chain, and (b) the supply chain is insufficiently aware of the questions that exist in the process industry. Therefore, the links in the value chain understand each other poorly. The answer to this problem is compound and consists of more interaction between the process industry and the supply chain (machine constructors, engineering firms and consultancies, education and research). As for the process industry: (a) Make improved energy

  9. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  10. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  11. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  12. Climate change mitigation through energy efficiency : opportunities in Atlantic Canada

    International Nuclear Information System (INIS)

    Cote, R.; Archibald, G.

    2008-01-01

    Canada's total energy use is expected to increase by 20 per cent between 2005 and 2020. Studies have suggested that successful energy efficiency initiatives could reduce growth in demand by up to 50 per cent, while reducing greenhouse gases (GHGs) by an estimated 40 per cent. Energy use comprises approximately 65.4 per cent of total expenditures for most businesses. Atlantic region industries contribute nearly 7 per cent of Canadian industrial energy consumption while contributing 5 per cent to the Canadian industrial gross domestic product (GDP). Energy efficiency practices adopted by industry operators in the Maritimes included modifications to boilers, process cooling equipment, motors, compressed air equipment, lighting and HVAC systems. Energy efficiency performance values in the Maritimes range from 11 to 100 per cent, with an average of 65 per cent. Opportunities for improving energy efficiency include inefficient lighting, leaking faucets, poor heat distribution, and inappropriate solid waste segregation. Cost savings for various energy efficiency measures were presented. Case studies of various eco-efficiency programs conducted at plants and businesses in the Maritimes were also included. tabs., figs.

  13. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    Science.gov (United States)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying

  14. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  15. Promoting energy conservation in China's metallurgy industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    China is undergoing rapid industrialization and urbanization, with consequent dramatic increase in energy demand. Given energy scarcity, environmental pollution, energy security and energy cost constraints, energy conservation will be the major strategy in China's transition to a low-carbon economy. Since the metallurgy industry is a main sector of energy consumption, the efficiency of energy conservation in this industry will affect the future prospects of energy savings. This paper analyzes the energy conservation potential of China's metallurgy industry. First, seemingly unrelated regression method is applied to investigate the relationship between energy relative price, R&D input, enterprise ownership structure, enterprise scale and energy intensity of the metallurgy industry. Then, based on the SUR results, we use the scenario analysis method to predict energy consumption and savings potential in the industry in different scenarios. This paper provides references for China's government and metallurgy industry in formulating relevant energy conservation policies. - Highlights: • Seemingly unrelated regression method is applied to analyze the energy intensity of metallurgy industry. • We use the scenario analysis method to predict energy consuming and energy saving of Chinese metallurgy industry. • Provide references for China's government and metallurgy industry in formulating relevant energy conservation policies.

  16. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Marano, John [JM Energy Consulting, Inc.; Sathaye, Jayant [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Tengfang [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves and CO2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost

  17. The insurance and risk management industries: new players in the delivery of energy-efficient and renewable energy products and services

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    The insurance and risk management industries are typically considered to have little interest in energy issues, other than those associated with large energy supply systems. The historical involvement of these industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, evidences a tradition of mediating and facilitating the use of technology to improve safety and otherwise reduce the likelihood of losses. Through an examination of the connection between risk management and energy technology, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer loss-prevention benefits (such as improved fire safety). This article presents the business case for insurer involvement in the sustainable energy sector and documents early case studies of insurer efforts along these lines. We have mapped these opportunities onto the appropriate market segments (life, health, property, liability, business interruption, etc.). We review steps taken by 53 forward-looking insurers and reinsurers, 5 brokers, 7 insurance organizations, and 13 non-insurance organizations. We group the approaches into the categories of: information, education, and demonstration; financial incentives; specialized policies and insurance products; direct investment; customer services and inspections; codes, standards, and policies; research and development; in-house energy management; and an emerging concept informally known as 'carbon insurance'. While most companies have made only a modest effort to position themselves in the 'green' marketplace, a few have comprehensive environmental programs that include energy efficiency and renewable energy activities

  18. Energy conservation in industrial buildings. Higher energy efficiency with smart control systems; Energieeinsparung im Gewerbebau. Hoehere Energieeffizienz durch 'intelligente' Regeltechnik

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Edgar [CentraLine c/o Honeywell GmbH, Schoenaich (Germany)

    2009-07-01

    With smart control systems, the energy conservation potential of industrial buildings could be fully utilized. This means, e.g., that classic control algorithms must be replaced by new solutions. New methods will ensure higher energy efficiency with maximum comfort; they will also prolong the service life and the inspection intervals of the technical facilities. (orig.)

  19. Estimates of the potential for energy conservation in the Chinese steel industry

    International Nuclear Information System (INIS)

    Lin Boqiang; Wu Ya; Zhang Li

    2011-01-01

    The study evaluates the energy saving potential of the Chinese steel industry by studying its potential future energy efficiency gap. In order to predict the future energy efficiency gap, a multivariate regression model combined with risk analysis is developed to estimate future energy intensity of China's steel industry. It is found that R and D intensity, energy saving investment, labor productivity and industry concentration are all important variables that affect energy intensity. We assess the possible measures as to how China's steel industry can narrow the energy efficiency gap with Japan by means of scenario analysis. Using Japan's current energy efficiency level as baseline, the energy saving potential of China's steel industry is more than 200 million ton coal equivalent in 2008, and it would fall to zero in 2020. However, if greater efforts were made to conserve energy, it would be possible to narrow down the energy efficiency gap between China and Japan by around 2015. Finally, using the results of the scenario analysis, future policy priorities for energy conservation in China's steel industry are assessed in this paper. - Highlights: → The energy saving potential of the Chinese steel industry is evaluated. → A multivariate regression model combined with risk analysis is developed. → R and D, energy saving investment, labor, and structure affect energy intensity.→ The energy saving potential of China's steel industry would fall to zero in 2020.→ Future policy for energy conservation in China's steel industry are assessed.

  20. Energy efficiency achievements in China's industrial and transport sectors: How do they rate?

    International Nuclear Information System (INIS)

    Wu, Libo; Huo, Hong

    2014-01-01

    China is experiencing intensified industrialisation and motorisation. In the world's largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors' performances reflect the effectiveness of China's energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector's demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China's near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and GHGs by 34–35 per cent. - Highlights: • This article makes an investigation into the effectiveness of energy conservation policies in China. • Efficiency improvement reflects the effective governance of energy conservation in China. • Numerous actions have been taken to reduce the road transport sector's demand for energy. • Coal-based energy saving technologies are critical for China's near and medium-term energy saving. • In the long run, renewable energy and expanding the railway transport system are the most effective ways

  1. Mapping and modeling multiple benefits of energy efficiency and emission mitigation in China’s cement industry at the provincial level

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina

    2015-01-01

    Highlights: • Provincial disparities in energy use and emissions are quantified for China’s cement industry. • We describe emission mitigation impacts on EEMs with integrated assessment model. • We quantify the multiple benefits potential in China’s cement industry on provincial level. • Energy efficiency would lead to huge reductions in air pollution in all provinces. • We discuss uncertainty in relation to distribution of energy saving and emission reduction. - Abstract: China’s cement industry is the second largest energy consumer and key emitter of CO 2 and air pollutants. It accounts for 7% of total energy consumption in China and 15% of CO 2 , 21% of PM, 4% SO 2 and 10% of NOx of total emissions, respectively. Provincial disparities in energy consumption and emissions of CO 2 and air pollutants in China’s cement industry are rarely quantified. In this study, an integrated assessment model including provincial energy conservation supply curves (ECSC) (which can shows the cost-effective and technical energy saving potential per province), the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model (which can be used to calculate air pollutant emissions), and ArcGIS (a geographical information system (GIS) with elaborated spatial functions) is developed and used to assess the potential of energy savings in terms of emission mitigation of CO 2 and air pollutants and multiple benefits of energy efficiency measures at the provincial level during the period 2011–2030. The results show significant heterogeneity across provinces in terms of potential of energy saving as well as emission mitigation of CO 2 and air pollutants (i.e. PM, SO 2 , and NOx) in the next two decades. Seven provinces (i.e. Shandong, Sichuan, Jiangsu, Guangdong, Zhejiang, Henan, Hebei), six of which are located in the central- and east-China, account for 47% of the total energy saving potential, equivalent to 26% of baseline energy use in 2030. The energy

  2. Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach

    International Nuclear Information System (INIS)

    Zhang, Chuan; Romagnoli, Alessandro; Zhou, Li; Kraft, Markus

    2017-01-01

    Highlights: •An intelligent energy management system for Eco-Industrial Park (EIP) is proposed. •An explicit domain ontology for EIP energy management is designed. •Ontology-based approach can increase knowledge interoperability within EIP. •Ontology-based approach can allow self-optimization without human intervention in EIP. •The proposed system harbours huge potential in the future scenario of Internet of Things. -- Abstract: An ontology-based approach for Eco-Industrial Park (EIP) knowledge management is proposed in this paper. The designed ontology in this study is formalized conceptualization of EIP. Based on such an ontological representation, a Knowledge-Based System (KBS) for EIP energy management named J-Park Simulator (JPS) is developed. By applying JPS to the solution of EIP waste heat utilization problem, the results of this study show that ontology is a powerful tool for knowledge management of complex systems such as EIP. The ontology-based approach can increase knowledge interoperability between different companies in EIP. The ontology-based approach can also allow intelligent decision making by using disparate data from remote databases, which implies the possibility of self-optimization without human intervention scenario of Internet of Things (IoT). It is shown through this study that KBS can bridge the communication gaps between different companies in EIP, sequentially more potential Industrial Symbiosis (IS) links can be established to improve the overall energy efficiency of the whole EIP.

  3. Combining IPPC and emission trading: An assessment of energy efficiency and CO2 reduction potentials in the Austrian paper industry

    International Nuclear Information System (INIS)

    Starzer, Otto; Dworak, Oliver

    2005-01-01

    In the frame of an innovative project partnership E.V.A. - the Austrian Energy Agency accompanied the Austrian paper industry for the last 2.5 years in developing a branch specific climate change strategy. Within the scope of this project an assessment of the energy efficiency status of the branch was carried out as well as an evaluation of still realisable energy savings and CO 2 reduction potentials. The paper presents the methodology applied, which combines a top down approach (benchmarking and best practice) with a bottom up approach (on-site interviews and energy audits), supported by a huge data collection process. Within the benchmarking process all Austrian paper industry installations affected by the EU emission trading directive were benchmarked against their respective IPPC/BAT values. Furthermore an extensive list of best practice examples derived from existing or ongoing studies was compared with the energy efficiency measures already carried out by the companies ('early actions'). These theory-oriented findings were complemented by several on-site interviews with the respective energy managers as well as by detailed energy audits carried out by a consulting company, covering in total more than 80% of the Austrian paper industry's CO 2 emissions. The paper concludes with the main results of the project, presenting the pros and cons of working with IPPC documents and BAT values in terms of energy efficiency assessments. Recommendations are presented on how to improve the allocation exercise for the next emission trading period from 2008 to 2012

  4. Energy Efficiency in the Mediterranean Building Industry

    International Nuclear Information System (INIS)

    Thibault, H.L.; El Habib, El Andaloussi

    2011-01-01

    Despite the alerts that have been sounded since 1992, as international conferences aimed at curbing global warming have come and gone, and despite the plans for reducing the use of fossil fuel resources that call for the moderation of energy consumption, few actions or incentive measures (and even fewer directives) have actually been developed to act on the demand for energy. Yet, as Henri-Luc Thibault and El Habib El Andaloussi show here, some very concrete measures can have major effects in this area. This is the case with everything relating to the improvement of energy efficiency in building, where housing conditions, the housing stock and related energy consumption (heating, air-conditioning etc.) are concerned. Thibault and El Andaloussi show the potential impact of such measures in the Mediterranean region. Basing themselves on the work of the 'Plan Bleu' organization, which has worked out a revolutionary scenario for the energy field in the countries of the southern and eastern Mediterranean (to 2030), they begin by recalling the importance of buildings in regional energy consumption and the various levers that might be used to reduce that consumption (regulation, materials, efficiency of machinery etc.). In such a scenario, the potential for energy savings in this sector would seem considerable. Moreover, this would enable a substantial decrease in greenhouse gas emissions to be achieved, and would also have very positive effects in terms of job creation. In conclusion, the authors point out the need for investment over 20 years, depending on the particular country concerned, to put in place the five flagship measures of energy saving, which would be genuine investments for the future.. (authors)

  5. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  6. Basic project on the cooperation in enhancement of the international energy consumption efficiency. Survey of energy conservation potential by industry; 2000 nendo kokusai energy shohi koritsuka chosa nado kyoryoku kiso jigyo hokokusho. Gyoshubetsu sho energy potential chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of looking for measures to promote the effective energy conservation in China, the potential energy conservation amount in general plants was surveyed and analyzed by industry. Activities were made in the following fields: 1) survey of the actual state of energy in main industries; 2) energy conservation potential in the cement industry in China; 3) energy conservation potential in thermal power plants in China. In 1), survey was made on 8 industries including the iron/steel industry and oil refining industry. In 2), survey was made of the actual state of the Liulihe cement plant and Shitou cement plant. The subjects extracted were the arrangement of instrumentation equipment such as the exhaust gas analyzer needed for combustion management, improvement of the air/fuel ratio of kiln, enhancement of cooling efficiency of clinker cooler, etc. In 3), the actual state of the Qinling power plant was surveyed, and it was made clear that high efficiency of 38% or more can be maintained if the appropriate use/maintenance management is made (coal unit consumption: 383g/kWh in Qinling and 309g/kWh). (NEDO)

  7. Energy efficiency: The Italian situation and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, Alessandro; Beccarello, Massimo; Gallanti, Massimo

    2010-09-15

    The paper reports the results of a study led by Confindustria (Italian Federation of Industrial Associations) on the Italian situation with respect to energy efficiency policies and their effective implementations. The study is being continuously updated with the contributions of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) and ERSE (previously CESI Ricerca) and highlights the obtainable savings through efficient technologies now already available for applications in the final uses of energy for both the industrial, commercial and domestic sectors.

  8. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  9. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  10. Food industry hungry for energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, D

    1989-04-01

    The United Kingdom food and drink industry is a significant user of energy. Energy use figures are given showing the breakdown in terms of different sectors of the industry and also in terms of the fuel used. Four energy monitoring and target setting demonstration projects are outlined at factories typical of their type in different sectors. The projects have resulted in a much greater awareness by management in the factories involved of energy consumption and waste. Examples are given of improved energy efficiency and consequent energy savings which have resulted from this awareness. (U.K.).

  11. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  12. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  13. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  14. Energy for Japan's new industrial frontier

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, G

    1983-06-01

    Systematic responses by the Japanese government and industry to the successive oil crises of the 1970s are yielding remarkable results; instead of the most vulnerable and technologically-dependent energy system in the world, Japanese industry is emerging as one of the world's most energy-efficient and a major source of the most advanced energy technologies. By the end of the century, if best available prognoses on fusion power technology prove close to accurate, Japan's energy industry will have assumed a technological leadership akin to that of its steel industry today. Significant energy conservation has been achieved by concerted efforts to promote less energy-intensive industries and by advances in technology and equipment for reducing energy consumption in key industries. In 1980, the Japanese government set targets for the development of new energy sources for the coming decade, which, if realized, will contribute substantially to a three-fold increase in non-petroleum energy supply by 1990, and a further doubling of alternative energy supplies by the end of the century. By the year 2000, Japanese reliance on petroleum is expected to decline from 88% in 1977 to 74.9%.

  15. Promotion of Efficient Use of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  16. Innovation-enabling policy and regime transformation towards increased energy efficiency: The case of the circulator pump industry in Europe

    DEFF Research Database (Denmark)

    Ruby, Tobias Møller

    2015-01-01

    When new energy efficient products are struggling with their commercialisation and diffusion into widespread applications you would typically expect policy-makers and green lead-users to guide the way. This paper examines the case of the hot water circulator pump industry in Europe, where parts...... of the industry envisioned and worked for a voluntary energy label, bringing technological innovation, new business and energy savings of approx. 85% for each new circulator pump. The case study explores the complexities of innovation processes where technology, market, actors and policy co-evolve over time...

  17. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  18. Cleanroom energy benchmarking in high-tech and biotech industries

    International Nuclear Information System (INIS)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems

  19. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  20. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total

  1. Contribution to the strategy of energy efficiency

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2003-01-01

    An explanation for the greenhouse effect, i.e.global warming and reasons which contribute to this effect. Greenhouse gasses (GHG) and GWP (Global Warming Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocol and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its resource, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Original)

  2. The Department of Energy`s Solar Industrial Program: 1995 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

  3. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  4. Sustained Energy Savings Achieved through Successful Industrial Customer Interaction with Ratepayer Programs: Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hedman, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Robert P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Russell, Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Many states have implemented ratepayer-funded programs to acquire energy efficiency as a predictable and reliable resource for meeting existing and future energy demand. These programs have become a fixture in many U.S. electricity and natural gas markets as they help postpone or eliminate the need for expensive generation and transmission investments. Industrial energy efficiency (IEE) is an energy efficiency resource that is not only a low cost option for many of these efficiency programs, but offers productivity and competitive benefits to manufacturers as it reduces their energy costs. However, some industrial customers are less enthusiastic about participating in these programs. IEE ratepayer programs suffer low participation by industries across many states today despite a continual increase in energy efficiency program spending across all types of customers, and significant energy efficiency funds can often go unused for industrial customers. This paper provides four detailed case studies of companies that benefited from participation in their utility’s energy efficiency program offerings and highlights the business value brought to them by participation in these programs. The paper is designed both for rate-payer efficiency program administrators interested in improving the attractiveness and effectiveness of industrial efficiency programs for their industrial customers and for industrial customers interested in maximizing the value of participating in efficiency programs.

  5. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  6. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    NARCIS (Netherlands)

    Laurijssen, J.; Gram, F.J. de; Worrell, E.; Faaij, A.P.C.

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in

  7. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  8. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  10. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  11. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  12. Energy efficiency: a source of savings; a priority objective

    International Nuclear Information System (INIS)

    Bethencourt, Anne de; Chorin, Jacky

    2013-01-01

    Energy efficiency is defined as consumption of less energy whilst delivering the same service. Significant progress has been made through the impact of technology, price increases and awareness of waste. Too often viewed as a constraint, energy efficiency nonetheless constitutes the leading potential source of domestic energy for the 2020 goal. Energy efficiency is or will be (depending on the will of the stakeholders, public authorities and society as a whole) a key market for the future and a pathway to creative innovation. Everything is pointing in that direction: the obligation to reduce greenhouse gas emissions fourfold, the new European Directive on Energy Efficiency to be incorporated, the expected increase in energy prices, the presence in France of industry leaders and of a small-scale but important industry in this sector. The goals in energy efficiency entail: - at Community level, that the objective of 20% energy savings for the 2020 goal becomes binding; - at national level, that public policies for energy efficiency are part of a long-term vision, based on the achievements of the Grenelle Environment Forum and avoid sending out any wrong signals which might adversely affect progress. The ESEC proposals are built around the following four themes: - (residential and service sector) buildings: Make energy efficiency into a real sector and a new opportunity 'work together', Optimise tools and regulations, Be innovative in terms of financial support; - fuel poverty; - industry and agriculture; - the particular situation of the overseas departments

  13. Efficient energy management measures in steel industry for economic utilization

    Directory of Open Access Journals (Sweden)

    Gurinderbir Singh Grewal

    2016-11-01

    Full Text Available The application of energy efficient Induction Machines (IM is explained in reference to power consumption savings. In energy efficient IM, losses for various Horse Power (HP ratings are summarized for bringing effective changes in design. Emphasis is laid on how load factor, speed & power quality affect machine’s efficiency. Replacement of conventional IM of higher power rating is done with required energy efficient Doubly Fed Induction Machine (DFIM to enhance the performance at variable speeds near rated power outputs. Results of the proposed approach will give substantial savings in energy & loss reduction. The field data of Jindal Steel Rolling Mill (JSRM at Hisar, Haryana (India is taken into consideration. This paper proposes a non-intrusive air gap torque method for efficiency estimation of in-service IMs. This approach gives results considering stray-load and friction-windage loss according to IEC standard and IEEE112-B standard. The proposed method is validated experimentally whose effectiveness is witnessed using MATLAB/SIMULINK.

  14. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  15. Effects of substituting energy with capital on China's aggregated energy and environmental efficiency

    International Nuclear Information System (INIS)

    Yang Mian; Yang Fuxia; Chen Xingpeng

    2011-01-01

    Substituting energy with capital (SEC) in economic productions has become a common practice both for business owners and policy-makers to improve their energy and environmental efficiency. However, seldom previous studies on energy efficiency and/or environmental performance evaluation took this role into account. This paper aims to shed some light on the effects of SEC on China's aggregated energy and environmental efficiency (AEEE) within a parametric stochastic frontier analysis framework. Moreover, influencing factors of regional efficiency score are also discussed using a pooled regression model. The results indicate that SEC poses significant effects on improving China's AEEE, and this impact appears obvious regional variation that regions with lower efficiency scores hold more extensive potential to improve their AEEE by means of SEC. Furthermore, upgrading industrial structure and decreasing the proportion of coal in energy consumption make great sense to improve China's AEEE. - Highlights: → We examine the effects of substituting energy with capital on China's energy and environmental efficiency. → The efficiency value considering this substitution is higher than that without considering it. → Hebei and Shanxi hold the largest potential of energy saving and SO 2 emissions reduction. → China's energy and environmental efficiency is affected by its energy mix and industrial structure.

  16. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  17. Energy conservation in pulp and paper industry: some thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Sadawarte, N. S.; Prasad, A. K.; Khanolkar, V. D.; Shenoy, S. C.

    1980-03-15

    The pulp and paper industry is highly energy intensive. In view of the spiralling fuel prices and rising power costs, there is an urgent need to conserve energy through better management of various operations in the industry, from the optimal utilization of the forest residues to the shipment of the final product. The total energy concept, e.g., energy generation, distribution and utilization in Indian paper industry is discussed. The need for an energy audit is emphasized and the formats of energy reporting forms are included. Short and long term measures to be enforced to achieve energy savings in the pulp and paper mills are outlined. Some important energy conservation approaches are also discussed. Factors affecting energy efficiency in a pulp and paper mill are reviewed. Some areas where sustained R and D efforts should be focused to make the paper industry nearly self-sufficient in energy generation and utilization are also given. It is essential to have a National Energy Policy clearly defining achievable targets of energy conservation for industry. The Indian paper industry could advantageously form its own committee to review the operation of the various mills in the country and come out with concrete solutions for higher energy efficiency and more effective conservation of energy.

  18. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  19. Influences of economic development in the Brazilian energy efficiency projects

    Directory of Open Access Journals (Sweden)

    Javier Cárcel Carrasco

    2012-09-01

    Full Text Available This work has as main goal to present some of the issues regarding the effects of the Brazilian economy in the effectiveness of national energy efficiency projects in order to provide some guidelines for optimizing the energy saving actions. The replacement of traditional electric motors with high efficiency motors has been considered, or that brings innovation and increases the need to search for new technologies for Brazilian industries. We must consider whether this new paradigm requires a strong federal government's investment in Brazil in order to allow the implementation of energy efficiency programs, mainly in small and medium industries. This document is divided into three main parts. The first part deals with some aspects of the economic crisis. The second presents the most important data of the National Electricity Conservation (PROCEL and Energy Efficiency Program of the ANEEL (National Electric Energy Agency. The third shows data on Small and Medium Industries and how their energy efficiency programs were affected.

  20. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  1. An efficient power market - consequences for energy-intensive industries and regions

    International Nuclear Information System (INIS)

    Bye, Torstein; Hoel, Michael; Stroem, Steinar

    2000-01-01

    From economic theory we know that, unless special arguments can be made, we obtain economic efficiency if all buyers of a homogeneous good pay the same price for the good. If this principle is violated inefficiency will occur. The principle holds for all goods, i.e. both for consumer goods (e.g. clothing or food), inputs in a production process (e.g. raw materials), and for combined goods. Electricity is an example of a combined good that can be used both as a final good and as an input in production processes. In Norway, the energy intensive industry (metals and chemicals) and the paper and pulp industry pay a lower price for their use of electricity than other users pay. The reason is that this industry has signed long-term contracts where the prices have been influenced by political processes. This pricing leads to an inefficient use of electricity in Norway. In this book we study the consequences of changing the electricity prices for this sectors so that we obtain a situation where all domestic users of electricity pay the same price. The book contains numerical calculations of potential structural changes and changes in overall economic welfare (producer and consumer surplus). We also calculate changes in emissions both from these sectors and from the rest of the economy. The last chapter deals with structural change and regional differences, with emphasis on the regions in which the energy intensive firms are located. We discuss how strong the negative impact on these regions will be as a consequence of shutting down non-profitable energy intensive firms when the price of electricity changes. A main conclusion in the book is that Norway will benefit from increasing the electricity price paid by the energy intensive sectors, both in economic terms and with respect to overall pollution. Reduced electricity use in the energy intensive sectors will in the short run lead to increased export of electricity. In the longer run, new investments in power producing

  2. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  3. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  4. Finnish industry's energy requirement

    International Nuclear Information System (INIS)

    Punnonen, J.

    2000-01-01

    Industry uses around half of the electricity consumed in Finland. In 1999, this amounted to 42.3 TWh and 420 PJ of fuel. Despite the continual improvements that have been made in energy efficiency, energy needs look set to continue growing at nearly 2% a year. Finnish industrial output rose by some 5.5% in 1999. In energy-intensive sectors such as pulp and paper, output rose by 3.4%, in the metal industry by 4%, and in the chemical industry by 3.1%. Growth across Finnish industry is largely focused on the electrical and electronics industries, however, where growth last year was 24.3% The Finnish forest products industry used a total of 26.1 TWh of electricity last year, up 1% on 1998. This small increase was the result of the industry's lower-than-average operating rate in the early part of the year The metal industry used 7.2 TWh of electricity, an increase of 5.8% on 1998. Usage in the chemical industry rose by 2% to 5.2 TWh. Usage by the rest of industry totalled 3.8 TWh, up 2.3% on 1998. All in all, industry's use of electricity rose by 2% in 1999 to 42,3 TWh. Increased demand on industry's main markets in Europe will serve to boost industrial output and export growth this year. This increased demand will be particularly felt in energy-intensive industries in the shape of an increased demand for electricity. Overall, electricity demand is expected to grow by 3% this year, 1% more than industry's longterm projected electricity usage growth figure of 2%. The structure of industry's fuel use in Finland has changed significantly over the last 25 years. Oil, for example, now accounts for only some 10% of fuel use compared to the 40% typical around the time of the first oil crisis. Oil has been replaced by biofuels, peat, and natural gas. The pulp and paper industry is the largest industrial user of renewable energy sources in Finland, and uses wood-related fuels to cover nearly 70% of its fuel needs

  5. Changes to Regulatory Systems for more Efficient Nuclear Energy Deployment: An Industry Viewpoint

    International Nuclear Information System (INIS)

    Pelin, H.

    2016-01-01

    Nuclear energy is required to play a much larger role in the energy mix in most credible energy scenarios that address climate change (680 GW additional capacity by 2050 according to IEA, 1000 GW according to World Nuclear Association). To reach these ambitious targets, a concerted effort will be required involving industry, governments and regulators. Changes to regulatory systems and processes – including licensing (design, site, operation), export control, security and waste - is one important area that can stimulate faster and more cost effective development of nuclear capacity. In the past, regulators were mainly concerned with authorizing a limited number of reactors from a limited number of designs under a national standard. Today regulators need resources to assess a wider range of designs, while each licensee needs to complete a thorough safety assessment even if the design has been assessed and approved elsewhere. These developments are the inevitable consequence of globalization and competition within the industry. This paper examines the current state of nuclear regulation in relation to the main attributes of good regulation as defined by the OECD. It further looks at ongoing efforts among regulators to share experience or harmonize requirements, such as within MDEP, or to agree common safety levels, such as in WENRA, in order to reach common positions and improve their regulatory approaches. Finally, it will assess the work of industry to demonstrate the benefits – both in terms of efficiency as well as safety – of harmonised regulations notably through the activities of the World Nuclear Association/CORDEL Working Group. (author)

  6. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  7. Energy-Efficient Broadcasting Scheme for Smart Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-01-01

    Full Text Available In smart Industrial Wireless Sensor Networks (IWSNs, sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN. However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.

  8. EU energy policies achievement by industries in decentralized areas

    Science.gov (United States)

    Destro, Nicola; Stoppato, Anna; Benato, Alberto; Schiro, Fabio

    2017-11-01

    Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees) for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  9. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  10. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  11. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  12. Vested interests, energy efficiency and renewables in Japan

    International Nuclear Information System (INIS)

    Moe, Espen

    2012-01-01

    This paper sets out to analyze Japanese renewable energy policy. A default expectation is that countries with unsolved energy problems will have more ambitious renewable energy policies (including energy efficiency). The Japanese case only partially conforms. The theoretical proposition made here is that it is essential to analyze a country's vested interest structure before we can make any inferences about its renewable energy policies. The vested interest perspective – derived from a combination of Joseph Schumpeter and Mancur Olson, and focusing on structural economic change – both complements and rivals the default expectation. Structural economic change, like the rise of renewables, typically leads to resistance from the existing vested interest structure, which feels that it stands to lose from the rise of new industries. The position of a new industry vis-à-vis the existing vested interest structure is thus crucial. In the Japanese case, the solar industry has been far more on the inside of this structure than wind. This has made it far harder for the wind industry to rise than for solar. Energy efficiency is however the ultimate insider approach to energy policy, not challenging any vested interest structures, and has been the favored approach for over three decades. - Highlights: ► The importance of vested interest structures in understanding Japanese energy policy. ► Explaining why energy efficiency, solar and wind have fared so differently in Japan. ► Explaining why an energy-scarce country does not have more ambitious renewable energy policies.

  13. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  14. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    International Nuclear Information System (INIS)

    Oladiran, M.T.; Meyer, J.P.

    2007-01-01

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries

  15. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  16. Identification and quantification of principal–agent problems affecting energy efficiency investments and use decisions in the trucking industry

    International Nuclear Information System (INIS)

    Vernon, David; Meier, Alan

    2012-01-01

    Energy related Principal–Agent (PA) problems cause inefficient combinations of investment, operating costs, and usage behavior. The complex market structure of the trucking industry contributes to split incentives because entities responsible for investments in energy efficiency do not always pay fuel costs and drivers are often not rewarded for fuel-efficient operation. Some contractual relationships exist in the trucking industry that hinder responses to fuel price signals. Up to 91% of total trucking fuel consumption in the U.S. is affected by “usage” PA problems, where the driver does not pay fuel costs and lacks incentive for fuel saving operation. Approximately 23% of trailers are exposed to an “efficiency problem” when owners of rented trailers do not pay fuel costs and therefore have little incentive to invest in efficiency upgrades such as improved trailer aerodynamics and reduced tire rolling resistance. This study shows that PA problems have the potential to significantly increase fuel consumption through avoided investments, insufficient maintenance, and fuel-wasting practices. Further research into the causes and effects of PA problems can shape policies to promote better alignment of costs and benefits, leading to reduced fuel use and carbon emissions. - Highlights: ► We identify and quantify principal agent market failures in the trucking industry. ► Up to 91% of truck fuel consumption is exposed to a usage principal–agent market failure. ► Twenty-three percent of trailers are exposed to an efficiency principal–agent market failure. ► These market failures at least partially insulate key decision makers from fuel price signals.

  17. Energy use efficiency in the Indian manufacturing sector: An interstate analysis

    International Nuclear Information System (INIS)

    Mukherjee, Kankana

    2008-01-01

    This paper approaches the measurement of energy efficiency from a production theoretic framework and uses Data Envelopment Analysis to measure energy efficiency in the Indian manufacturing sector. Using data from the Annual Survey of Industries for the years 1998-99 through 2003-04, the study compares the energy efficiency in manufacturing across states, based on several models. The results show considerable variation in energy efficiency across states. Comparing the results across our models, we find that the relative pricing of energy does not provide the appropriate incentives for energy conservation. A second-stage regression analysis reveals that states with a larger share of manufacturing output in energy-intensive industries have lower energy efficiency. Also, higher quality labor force associates with higher energy efficiency. Finally, the power sector reforms have not yet had any significant impact on achieving energy efficiency

  18. Energy Efficiency Policy Developments: September 2011-September 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The purpose of this report is to highlight energy efficiency policy action and planning in IEA member and key non-member countries over the period from September 2011 to September 2012. The report provides an overview of energy efficiency policy developments across the seven sectors covered by the IEA 25 Energy Efficiency Policy Recommendations (25 EEPR) – Cross-sectoral activities, Buildings, Appliances and Equipment, Lighting, Transport, Industry and Energy Providers.

  19. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  20. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  1. EU energy policies achievement by industries in decentralized areas

    Directory of Open Access Journals (Sweden)

    Destro Nicola

    2017-01-01

    Full Text Available Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  2. The Industrial Engineer and Energy and Environment

    Directory of Open Access Journals (Sweden)

    Sirichan Thongprasert

    2009-02-01

    Full Text Available Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  3. The Industrial Engineer and Energy and Environment

    OpenAIRE

    Sirichan Thongprasert

    2009-01-01

    Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  4. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  5. Industrial energy economy, national and international aspects

    International Nuclear Information System (INIS)

    1993-01-01

    VDI-report 1061 contains the papers given on the Conference of the same name in Essen on the 22 and 23.6.1993. German industry suffers not only from high wage and on-cost but high, energy costs as well. Waste disposal problems and impending taxes on wages are the cause of these difficulties. The EC believes that competition between energy supplies may help to reduce energy costs. This report deals with cost-efficient energy supply for the German industry and books at the background of this scenario. This industry puts forward its wishes and demands to politicians and energy economy. Representatives of energy suppliers discuss energy supplies, demand, availability, safety of supplies, competitiveness, quality and environmental aspects. The influence of energy costs and environmental taxation on the industrial and economic future of Germany and the situation in the Eastern States of Germany are a further subject of discussion. The views of the EC commission, the industry and the energy suppliers on energy transports across the EC are discussed as well. (orig./UA) [de

  6. A framework to characterize energy efficiency measures

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; De Donatis, Alessio

    2014-01-01

    Highlights: • A novel framework to characterize energy efficiency measures is proposed. • It allows a greater knowledge sharing, facilitating the adoption of the best measures. • It supports policy-makers in developing drivers for industrial energy efficiency. - Abstract: The need to increase the diffusion of energy efficiency measures (EEMs) is of crucial importance to achieve a consistent reduction of energy consumption and green house gases (GHG) emissions. A clear comprehension of the characteristics of such EEMs could assist in gathering and capitalizing all the information needed by industrial firms in selecting and adopting technologies, as well as by policy-makers in designing appropriate policies for their diffusion. Therefore, in this study, starting from a literature review of the studies analyzing the attributes of EEMs, we aim at providing an innovative and comprehensive framework to characterize such measures, based on 17 attributes grouped according to six categories, such as: economic, energy, environmental, production-related, implementation-related and the possible interaction with other systems. We applied this scheme to an extensive range of EEMs in cross-cutting technologies, i.e. motors, compressed air, lighting and HVAC systems. The analysis provides a relevant contribution firstly to the structuring and the sharing of knowledge on EEMs and hence to the comprehension of the barriers currently hindering their adoption; secondly, it provides a structured basis for the analysis of the drivers that policy-makers should develop in order to promote industrial energy efficiency

  7. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  8. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  9. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  10. Efficient Use of Energy: as a Life Style

    Directory of Open Access Journals (Sweden)

    Omneya Sabry

    2017-06-01

    Full Text Available Since the Early Eighties of the last Century, the Egyptian Government considered Energy Conservation as one of the main pillars of Energy Planning in Egypt, based on the fact that investing in Energy Efficiency is more cost effective than in constructing new Power Plants.Energy Efficiency (EE Programs financed by International Financing Institutions focused at that time, on Energy Audits in Industrial Buildings, Power Plants, Electricity Transmission and in some other Governmental Buildings. Recommendations for Efficient Use of Energy and reducing energy consumption at those entities were implemented by the Use of Efficient Lamps, Improving Power Factor, Waste Heat Recovery, Thermal Insulation, Efficient Firing in Boilers…. Consequently, High Quality Energy Efficient Products were competing in the market with others not having the same advantage.Although the above mentioned EE Programs included Awareness Campaigns for all sectors but the consumption in Residential Sector remained high and increased more and more ,exceeding even the consumption in Industrial Sector specially that the prices of electricity were highly subsidized.For that reason, more awareness campaigns (Lectures, Brochures, Audio and visual advertisement and more incentives were offered by Ministry of Electricity and Renewable Energy (MoERE to consumers in the Residential Sector. Meanwhile, a Program to reduce gradually subsidies on electricity prices started aiming to push consumers to follow energy efficiency instructions and buy efficient appliances especially while they were suffering from electricity cut for about two years.To prepare for Market Transformation to efficient appliances the Government, issued the Standard Specifications and Labeling for Energy Efficient Appliances (lamps, refrigerators, freezers, washing machines, air conditioners, dish washers and others. Meanwhile, these Standards are supported with Accredited Testing Labs in National Entities (NREA

  11. 10 CFR 431.97 - Energy efficiency standards and their effective dates.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...

  12. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  13. Chapter 2: Commercial and Industrial Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gowans, Dakers [Left Fork Energy, Harrison, NY (United States); Telarico, Chad [DNV GL, Mahwah, NJ (United States)

    2017-11-02

    The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.

  14. Incentives for energy efficiency in the EU emission trading scheme

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Joachim [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Rogge, Karoline [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); ETH Zurich (Switzerland). Group for Sustainability and Technology; Betz, Regina [New South Wales Univ. (Australia). Centre for Energy and Environmental Markets

    2008-07-01

    This paper explores the incentives for energy efficiency induced by the European Union Emissions Trading Scheme (EU ETS) for installations in the energy and industry sectors. Our analysis of the National Allocation Plans for 27 EU Member States for phase 2 of the EU ETS (2008-2012) suggests that the price and cost effects for improvements in carbon and energy efficiency in the energy and industry sectors will be stronger than in phase 1 (2005-2007), but only because the European Commission has substantially reduced the number of allowances to be allocated by the Member States. To the extent that companies from these sectors (notably power producers) pass through the extra costs for carbon, higher prices for allowances translate into stronger incentives for demand- side energy efficiency. With the cuts in allocation to energy and industry sectors these will be forced to greater reductions, thus the non-ET sectors like household, tertiary and transport will have to reduce less, which is more in line with the cost-efficient share of emission reductions. The findings also imply that domestic efficiency improvements in the energy and industry sectors may remain limited since companies can make substantial use of credits from the Kyoto mechanisms. The analysis of the rules for existing installations, new projects and closures suggests that incentives for energy efficiency are higher in phase 2 than in phase 1 because of the increased application of benchmarking to new and existing installations and because a lower share of allowances will be allocated for free. Nevertheless, there is still ample scope to further improve the EU ETS so that the full potential for energy efficiency can be realized. (orig.)

  15. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  16. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  17. Barriers to electric energy efficiency in Ghana

    Science.gov (United States)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  18. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  19. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  20. Energy survey in the New Zealand dairy industry

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, V T; Shannon, D V

    1977-12-25

    An in-depth report on energy consumption in the New Zealand dairy industry for 1974--75 shows that a reduction in fuel consumption per unit of production has occurred when compared with two previous surveys (1954--55 and 1964--65). The increase in thermal efficiency of dairy processing was due mainly to the use of hot water heating systems in milk-treatment stations, the increased capacity of butter and cheese factories, increased thermal efficiency in skim milk drying and casein manufacture, increased efficiency in boiler plants, and higher drying air temperature achieved with the use of indirect oil- and gas-fired air heaters and liquid-phase air heating systems. Total energy consumed by the industry by type is tabulated. Recommendations to the industry following the survey are listed. (MCW)

  1. Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden

    International Nuclear Information System (INIS)

    Thollander, Patrik; Backlund, Sandra; Trianni, Andrea; Cagno, Enrico

    2013-01-01

    Highlights: • Results are based on a questionnaire in the European foundry industry. • The energy efficiency potential is assed to be 7.5% of the total energy use. • Most important drivers to and barriers for energy efficiency are financial followed by organizational. • EPC is used among 23% of the foundries, third party financing among 12%. • Large energy management improvement potentials are uncovered. - Abstract: Energy management plays an important role in the transformation of industrial energy systems towards improved energy efficiency and increased sustainability. This paper aims to study driving forces for improved energy efficiency in some European energy-intensive foundry industries. The investigation has been conducted as a multiple case study involving 65 foundries located in Finland, France, Germany, Italy, Poland, Spain, and Sweden. The most relevant perceived driving forces were found to be financially related, followed by organizational driving forces. Nevertheless, some differences can be appreciated according to the firm’s size and country. Almost half of the studied foundries lack a long-term energy strategy, about one-fourth stated that they have used Energy Performance Contracting (EPC), and only approximately one in ten foundries have used Third Party Financing (TPF). Among the studied foundries, three out of five have conducted an energy audit. On average, the energy saving potential according to the respondents is stated to be 7.5%. In conclusion, energy management in the European foundry industry, despite increasing energy prices and extensive energy policy actions taken by the EU, still seems to have great improvement potential, calling for future research and policy actions in the field

  2. Macroeconomic effects of efficiency policies for energy-intensive industries: the case of the UK Climate Change Agreements, 2000-2010

    International Nuclear Information System (INIS)

    Barker, T.; Foxon, T.

    2007-01-01

    This paper reports a study modeling the UK Climate Change Agreements (CCAs) and related energy-efficiency policies for energy-intensive industrial sectors. Bottom-up estimates of the effects of these policies are introduced into the energy-demand equations of a top-down dynamic econometric model of the UK economy with fifty industrial sectors, MDM-E3. This allowed estimation of the effects of the reduced energy use for the outputs from the sectors, i.e. the reductions in unit costs of the energy-intensive industries, on the demand for their outputs (both in the UK and in the export markets). The model is solved as a counterfactual 2000-2005 and as a projection 2005-2010 in a series of scenarios to allow estimation of the effects of the policies on inflation and growth, as well as on overall energy demand and CO 2 emissions. The system-wide final energy reductions is estimated to be 4.2 mtoe, or 2.6%, of total final demand for energy by 2010, including a rebound effect of 19%, with negligible effects on inflation and a slight increase in economic growth through improved international competitiveness. (author)

  3. Ratepayer-funded energy-efficiency programs in a restructuredelectri city industry: Issues and options for regulators andlegislators

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph; Goldman, Charles; Nadel, Stephen

    1998-05-01

    Electric industry restructuring requires state regulators and legislators to re-examine the purposes served by and the continuing need for ratepayer-funded energy-efficiency programs, as well as the mechanisms to collect funds for these programs and the institutions appropriate to administer them. This paper offers background to these issues and a series of recommendations based on analysis of recent state experiences. Our recommendations are summarized.

  4. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Englander, Jacob; Bharadwaj, Sharad

    2013-01-01

    It has been argued that the oil sands industry is not energy efficient: comparatively large energy inputs are required per unit of energy output from oil sands operations. Unfortunately, quantitative work to date in this area has suffered from poor data availability and uncertain methods. We apply a new methodology and new dataset to compute ERRs (energy return ratios) for the oil sands industry. We collected monthly oil sands energy consumption and output data from 1970 to 2010. Current oil sands operations have mine mouth NERs (net energy returns) of about 6 GJ output per GJ of energy consumed and point of use energy returns of about 3 GJ/GJ. Long-term trends show oil sands operations becoming significantly more efficient: point of use NER increased from about 1 GJ/GJ in 1970 to 3 GJ/GJ in 2010. These energy returns are lower than those observed in historical conventional oil operations, but low energy returns are not likely to hinder development of oil sands operations due to the large resource in place and the ability for largely self-fueled pathways to return significant amounts of energy to society for every unit of external energy supplied. - Highlights: • Oil sands operations have become significantly more energy efficient over the history of the industry. • Oil sands production is largely fueled with energy from the bitumen resource itself, making external energy returns high. • Oil sands production is still significantly less efficient than conventional oil production

  5. Implementation of voluntary agreements for energy efficiency in China

    International Nuclear Information System (INIS)

    Hu Yuan

    2007-01-01

    Low-energy efficiency and environmental pollution have long been taken as key problems of Chinese industry, although a number of command-and-control and economic instruments have been adopted in the last few decades. In this paper, policy and legislation development for voluntary agreements were summarized. The voluntary agreements pilot project in two iron and steel companies in Shandong Province as well as other cases were analyzed. In order to identify the existing problems in Chinese cases, comparison was made between China and industrialized countries in the practices of energy efficiency voluntary agreements. Based on the analysis, detained recommendations, including the use of supporting policies for voluntary agreements, were raised. It is expected that voluntary agreements could play a more important role in energy efficiency improvement of Chinese industry

  6. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  7. The Forest Industry Program. Synthesis; Efficient use of energy and other resources; Effektivare energi- och resursanvaendning. Syntes av det skogsindustriella programmet

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Carl

    2009-02-15

    In 1997 Vaermeforsk together with the Industry launched 'The Forest Industry Programme' and has since then financed more than 70 projects. The scope of the Programme is focused on short term improvements of energy use and efficient use of feed stock. The programme complements other efforts undertaken by the Industry on its own and in joint programmes at research institutes and Universities. The report explores the achievements within the programme and identifies loopholes and challenges for the future. The report is structured according to main process stages and highlights the state of the art at each stage. Sludge Combustion in the bark boiler is still the main choice for remediation. Methods to increase dry matter content such as drying and dewatering as a pre stage before combustion have been explored. No firm conclusions can be drawn from the studies. Further efforts concerning recovery of residuals such as de-inked pulp sludge have been identified but not as a subject to the programme. Bark - The importance of fractions (as a result of drying etc) in the combustion process has been explored thoroughly. A variety of methods to increase drying efficiency have been tested and the conclusion is that the choice of method depends on the mill design. Bark boiler - A vast experience of burning internal fuels such as bark and sludge with high efficiency and low emissions has been gained. New plant design has been explored as well as techniques to upgrade old boiler plants with high commercial potential for the operator due to increased expected life time. Recovery boiler - Significant efforts has been devoted to comply with the increased restrictions on emissions not the least in the design of the next generation of boilers. A principle for dividing and sharing the NO{sub x} burden between mills has been developed and implemented successfully. Soothing/sooth intervals, cracking and best choice of materials for the super heater to increase life time are other

  8. Comparison the programs of energy efficiency for industrial electric motors; Comparacao de programas de eficiencia energetica para motores eletricos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues dos; Demanboro, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: cam@fec.unicamp.br; jimnaturesa@yahoo.com; joubert@fec.unicamp.br; anto1810@fec.unicamp.br

    2006-07-01

    This paper aims to present a comparison among the existing programs of energy efficiency for industrial electric motors in Brazil, in the United States of America and in the European Community. The analysis is restricted to the action of each program, considering that the mentioned countries present distinct economical, political and social characteristics. Therefore, it is intended to discuss the main barriers existing in the Brazilian industrial context which cause difficulties to develop a program of electric motors efficiency and to indicate some ways to overcome those barriers. (author)

  9. Exergy analysis on industrial boiler energy conservation and emission evaluation applications

    Science.gov (United States)

    Li, Henan

    2017-06-01

    Industrial boiler is one of the most energy-consuming equipments in china, the annual consumption of energy accounts for about one-third of the national energy consumption. Industrial boilers in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment. In recent years, our country in the big scope, long time serious fog weather, with coal-fired industrial boilers is closely related to the regional characteristics of high strength and low emissions [1]. The energy-efficient and emission-reducing of industry boiler is of great significance to improve China’s energy usage efficiency and environmental protection. Difference in thermal equilibrium theory is widely used in boiler design, exergy analysis method is established on the basis of the first law and second law of thermodynamics, by studying the cycle of the effect of energy conversion and utilization, to analyze its influencing factors, to reveal the exergy loss of location, distribution and size, find out the weak links, and a method of mining system of the boiler energy saving potential. Exergy analysis method is used for layer combustion boiler efficiency and pollutant emission characteristics analysis and evaluation, and can more objectively and accurately the energy conserving potential of the mining system of the boiler, find out the weak link of energy consumption, and improve equipment performance to improve the industrial boiler environmental friendliness.

  10. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  11. The employment impacts of economy-wide investments in renewable energy and energy efficiency

    Science.gov (United States)

    Garrett-Peltier, Heidi

    This dissertation examines the employment impacts of investments in renewable energy and energy efficiency in the U.S. A broad expansion of the use of renewable energy in place of carbon-based energy, in addition to investments in energy efficiency, comprise a prominent strategy to slow or reverse the effects of anthropogenic climate change. This study first explores the literature on the employment impacts of these investments. This literature to date consists mainly of input-output (I-O) studies or case studies of renewable energy and energy efficiency (REEE). Researchers are constrained, however, by their ability to use the I-O model to study REEE, since currently industrial codes do not recognize this industry as such. I develop and present two methods to use the I-O framework to overcome this constraint: the synthetic and integrated approaches. In the former, I proxy the REEE industry by creating a vector of final demand based on the industrial spending patterns of REEE firms as found in the secondary literature. In the integrated approach, I collect primary data through a nationwide survey of REEE firms and integrate these data into the existing I-O tables to explicitly identify the REEE industry and estimate the employment impacts resulting from both upstream and downstream linkages with other industries. The size of the REEE employment multiplier is sensitive to the choice of method, and is higher using the synthetic approach than using the integrated approach. I find that using both methods, the employment level per $1 million demand is approximately three times greater for the REEE industry than for fossil fuel (FF) industries. This implies that a shift to clean energy will result in positive net employment impacts. The positive effects stem mainly from the higher labor intensity of REEE in relation to FF, as well as from higher domestic content and lower average wages. The findings suggest that as we transition away from a carbon-based energy system to

  12. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  13. Energy efficiency in Germany - a meta-analysis. Analysis and recommendations

    International Nuclear Information System (INIS)

    Bauernhansl, Thomas

    2014-01-01

    The Stuttgart Institute of energy efficiency in production compiled the first meta-analysis ''Energy Efficiency in Germany''.It provides facts and figures on the development atatus and knowledge level of energy efficiency in Germany. The study shows the contribution have been made by individual measures and the potentials which are known, but have not yet been lifted. For this meta-analysis more than 250 items available from research institutions, government departments, professional and industry associations have been identified with the main topic of energy efficiency and evaluated. It provides an overview of the status of development and is an important reference work for industry, associations and politics. [de

  14. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  15. Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination

    Directory of Open Access Journals (Sweden)

    Patrik Thollander

    2015-06-01

    Full Text Available Improved industrial energy efficiency is a cornerstone in climate change mitigation. Research results suggest that there is still major untapped potential for improved industrial energy efficiency. The major model used to explain the discrepancy between optimal level of energy efficiency and the current level is the barrier model, e.g., different barriers to energy efficiency inhibit adoption of cost-effective measures. The measures outlined in research and policy action plans are almost exclusively technology-oriented, but great potential for energy efficiency improvements is also found in operational measures. Both technology and operational measures are combined in successful energy management practices. Most research in the field of energy management is grounded in engineering science, and theoretical models on how energy management in industry is carried out are scarce. One way to further develop and improve energy management, both theoretically as well as practically, is to explore how a socio-technical perspective can contribute to this understanding. In this article we will further elaborate this potential of cross-pollinating these fields. The aim of this paper is to relate energy management to two theoretical models, situated action and transaction analysis. We conclude that the current model for energy management systems, the input-output model, is insufficient for understanding in-house industrial energy management practices. By the incorporation of situated action and transaction analysis to the currently used input-output model, an enhanced understanding of the complexity of energy management is gained. It is not possible to find a single energy management solution suitable for any industrial company, but rather the idea is to find a reflexive model that can be adjusted from time to time. An idea for such a reflexive model would contain the structural elements from energy management models with consideration for decisions being

  16. China's economic reform and industry sector energy requirement: A forecast to 2015

    International Nuclear Information System (INIS)

    Gu, A.Y.

    1997-01-01

    With its GDP growing at an average rate of 9.8% for the last seventeen years, China has the world's fastest growing economy. This rapid pace of growth and industrialization has caused economic strain because fuel production cannot keep pace with demand, If China allows this situation to continue, significant oil imports will be necessary. In 1993, the industrial sector contributed 56% to China's GDP and consumed 61% of the total final energy. The industrial sector will remain the largest energy consumer in China well into the next century. According to China's Ninth Five-Year Plan (1996--2000), China will strengthen its ability to develop new products and will use technological advancement to promote industrial development. The Plan calls for special attention in four major areas: microelectronics technology, digital technology, software technology, and network technology. Given China's emphasis on developing light industries and on improving industrial sector energy efficiency, it is important to study the future energy demand of the industrial sector. Two scenarios for future energy requirements are studied through the year 2015: a Business As Usual (BASU) scenario and an Energy Efficient (EE) scenario. The study evaluates China's current economic reform policies and energy efficiency policies. The results of this evaluation are used to assign appropriate growth rates to industrial GDP and the industrial energy intensity for both scenarios. Results from the two scenarios are compared and analyzed

  17. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  18. Structure model of energy efficiency indicators and applications

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Chen, Bai-Sheng; Bor, Yun-Chang; Wu, Yin-Chin

    2007-01-01

    For the purposes of energy conservation and environmental protection, the government of Taiwan has instigated long-term policies to continuously encourage and assist industry in improving the efficiency of energy utilization. While multiple actions have led to practical energy saving to a limited extent, no strong evidence of improvement in energy efficiency was observed from the energy efficiency indicators (EEI) system, according to the annual national energy statistics and survey. A structural analysis of EEI is needed in order to understand the role that energy efficiency plays in the EEI system. This work uses the Taylor series expansion to develop a structure model for EEI at the level of the process sector of industry. The model is developed on the premise that the design parameters of the process are used in comparison with the operational parameters for energy differences. The utilization index of production capability and the variation index of energy utilization are formulated in the model to describe the differences between EEIs. Both qualitative and quantitative methods for the analysis of energy efficiency and energy savings are derived from the model. Through structural analysis, the model showed that, while the performance of EEI is proportional to the process utilization index of production capability, it is possible that energy may develop in a direction opposite to that of EEI. This helps to explain, at least in part, the inconsistency between EEI and energy savings. An energy-intensive steel plant in Taiwan was selected to show the application of the model. The energy utilization efficiency of the plant was evaluated and the amount of energy that had been saved or over-used in the production process was estimated. Some insights gained from the model outcomes are helpful to further enhance energy efficiency in the plant

  19. The Danish agreements on energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    CO{sub 2}-taxes for industry were introduced in 1993. In 1996, the taxes were increased and an agreement system for energy-intensive companies was implemented. The main purpose of the agreement system has been to allow energy-intensive industry to pay a reduced tax rate, while at the same time improving energy efficiency. The evaluation of the energy tax system has shown that it has been possible to establish an energy tax that has led to a decrease in CO{sub 2}-emissions, without causing a decrease in the competitiveness of trade, industry and services. The agreement system has been a very important element in that it has improved energy efficiency in companies in which taxes would not have been a realistic instrument. In the case of companies with agreements, several studies suggest improvements of approximately 2.7% of the total energy use per agreement (three years). The three sources (concrete projects, special investigation and energy management) contribute approximately one third of this reduction each. The values for special investigation and energy management must be used with great care. It is also predicted that a continuation of the agreement system by 2005, relative to a situation without agreements, can lead to a decrease in CO{sub 2}-emissions corresponding to 6% of total emissions in industry and trade. Of this reduction, the highest amount is due to energy management. However, maintaining the positive effects of energy management systems will require that companies give higher priority to the managerial part of the system and not only focus on energy accounting. Some companies have argued that it is costly to carry out energy audits and to have to audits verified. Therefore, consideration should be given to possibilities for reducing the administrative costs of entering into an agreement, without this causing reduced efforts to save energy. A means of achieving these objectives could be to reduce the requirement for energy audits and verification

  20. Selecting appropriate energy efficiency indicators for the Thai Energy Conservation Promotion Programme. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Gruber, E.; Cremer, C.

    2000-06-01

    In 1992 the Thai Government passed the Energy Conservation Promotion (ECP) Act to improve energy efficiency in Thai industry and commerce. The Thai-German Energy Efficiency Promotion Project (ENEP) is supporting the Department of Energy Development and Promotion (DEDP) in its effort to implement the Energy Conservation Program for large buildings and designated factories. About 4000 buildings and factories under the Compulsory Program, have to report every 6 months their energy consumption data to DEDP. Every 3 years energy audits have to be conducted by registered energy consultants, to identify energy saving opportunities, to set saving targets and to recommend energy conservation measures. Investments in energy efficient technologies are subsidized from an Energy Conservation Fund. Data from the energy consumption reports and the energy audit reports are collected in DEDP's database for further processing. The database is structured according to the Thai Standard Industrial Classification. In order to exploit the wealth of information provided by the auditing procedure the objective of the present work carried out by the consultant FhG-ISI for DEDP/BERC on behalf of the German Gesellschaft fuer Technische Zusammenarbeit (GTZ) was to recommend an appropriate set of energy efficiency indicators. This indicator set should allow DEDP to extract from the energy consumption reports, energy audit reports and other sources, useful statistical information to monitor and improve energy efficiency in Thailand. (orig.)

  1. EFFICIENCY IMPROVEMENT IN INDUSTRIAL BOILER BY FLUE GAS DUCT INSULATION

    OpenAIRE

    Sanjay H. Zala

    2017-01-01

    Now a days in industry major losses are find out so here we calculate these losses and find out efficiency of boiler. Boiler efficiency and energy losses from boiler are important parameter for any industry using boiler. In this work a detailed analysis was carried out for boiler at Anish Chemicals Bhavnagar. It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat ...

  2. China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises

    International Nuclear Information System (INIS)

    Jiang, Xuemei; Zhu, Kunfu; Green, Christopher

    2015-01-01

    The paper investigates the energy saving potential associated with firm ownership-related differences in energy efficiency such as those between domestically and foreign-owned firms. Because of a gap in official statistics this topic has barely been touched upon in the scholarly literature. This paper employs a new energy input–output table that distinguishes firm ownership (Chinese owned enterprises, COEs; and foreign-invested enterprises, FIEs) and trade mode (export processing and normal goods production) to analyze the energy efficiency advantage of FIEs in China in 2007. The results show that the total energy intensities of COEs in the industrial sector are generally 5%–35% higher than that of FIEs across industry groups. At an aggregate level, China could save up to 20.3% of its energy use, if industrial COEs could duplicate the energy use efficiency and production technology of FIEs. This gain would require major technology upgrades among COEs. - Highlights: • A new input–output table distinguishing firm ownership and trade mode is employed. • The foreign-invested enterprises are 5%–35% energy efficient than Chinese enterprises in 2007. • China could save 20.3% of energy use if industrial COEs could duplicate the technologies of FIEs

  3. Barriers and opportunities: A review of selected successful energy-efficiency programs

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    In industry, barriers may exist at various points in the decision making process, and in the implementation and management of measures to improve energy efficiency. Barriers may take many forms, and are determined by the business environment and include decision-making processes, energy prices, lack of information, a lack of confidence in the information, or high transaction costs for obtaining reliable information, as well as limited capital availability. Other barriers are the ''invisibility'' of energy efficiency measures and the difficulty of quantifying the impacts, and slow diffusion of innovative technology into markets while firms typically under-invest in R and D, despite the high pay-backs. Various programs try to reduce the barriers to improve the uptake of innovative technologies. A wide array of policies has been used and tested in the industrial sector in industrialized countries, with varying success rates. We review some new approaches to industrial energy efficiency improvement in industrialized countries, focusing on voluntary agreements

  4. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  5. Energy efficiency and energy service companies in restructured markets: international experience

    International Nuclear Information System (INIS)

    Limaye, Dilip R.

    1999-01-01

    There has been considerable recent activity related to restructuring of the energy supply industries. Restructuring usually involves introducing competition into some elements of the ESI (energy supply industries). In some countries the privatization of the government-owned utility businesses is another key element of industry restructuring. The introduction of competition and privatization in the energy market is likely to realign the roles of the industry players (generators, transmission businesses) distribution 'wires' businesses, and retail suppliers) relative to customers. A key challenge faced by policy-makers is to define the appropriate roles and activities of the public and private sector to assure that economically justifiable levels of sustainable energy services are offered in the marketplace. This paper reviews the mechanisms adopted to implement energy efficiency services in a number of countries that have restructured their energy markets, and develops a framework for assessing, comparing and discussing potential new mechanisms. The paper identifies two types of EE mechanisms. (The author)

  6. Energy saving potential in existing industrial compressors

    International Nuclear Information System (INIS)

    Vittorini, Diego; Cipollone, Roberto

    2016-01-01

    The Compressed Air Sector accounts for a mean 10% worldwide electricity consumption, which ensures about its importance, when energy saving and CO_2 emissions reduction are in question. Since the compressors alone account for 15% overall industry electricity consumption, it appears vital to pay attention to machine performances. The paper presents an overview of present compressor technology and focuses on saving directions for screw and sliding vanes machines, according to data provided by the Compressed Air and Gas Institute and PNEUROP. Data were processed to obtain consistency with fixed reference pressures and organized as a function of main operating parameters. Each sub-term, contributing to the overall efficiency (adiabatic, volumetric, mechanical, electric, organic), was considered separately: the analysis showed that the thermodynamic improvement during compression achievable by splitting the compression in two stages, with a lower compression ratio, opens the way to significantly reduce the energy specific consumption. - Highlights: • Compressors technology overview in industrial compressed air systems. • Market compressors efficiency baseline definition. • Energy breakdown and evaluation of main efficiency terms. • Assessment of air cooling-related energy saving potential. • Energy specific consumption reduction through dual stage compression.

  7. Determinants of innovation in energy intensive industry and implications for energy policy

    International Nuclear Information System (INIS)

    Song, ChiUng; Oh, Wankeun

    2015-01-01

    Abstracts: The Korean government adopted “green growth” in 2008 as an environmentally friendly growth strategy. The energy efficiency of Korea, however, is still relatively low due to the large portion of energy intensive industry (EII) in its manufacturing sector. To improve energy efficiency in Korea, from an EII perspective a new approach has to be taken because restructuring entire industries would take too much time and be too costly. This study aims to emphasize the importance of innovation and analyze the effects of R&D on product and process innovations in EII in Korea. The Probit model is adopted to estimate the effects of eight determinants in the Korea Innovation Survey 2008 data. The results of this study demonstrate that one of the most important determinants, the R&D personnel ratio, has a strong positive effect on both product and process innovation, while another determinant, R&D intensity, only has a strong and positive effect on process innovation in EII. Because of the resulting innovation, energy policies should be enacted to enhance energy efficiency. Thus, the Korean government should keep providing incentives for firms in EII to invest more financial and human resources in their R&D activities. -- Highlights: •We analyze determinants on two innovations in energy intensive industry (EII). •The R&D personnel ratio is effective in product innovation in EII. •Both R&D intensity and R&D personnel are effective in process innovation in EII. •In less EII, R&D variables have positive effects on product and process innovations. •The Korean government should strongly support R&D to improve energy efficiency

  8. [Decomposition model of energy-related carbon emissions in tertiary industry for China].

    Science.gov (United States)

    Lu, Yuan-Qing; Shi, Jun

    2012-07-01

    Tertiary industry has been developed in recent years. And it is very important to find the factors influenced the energy-related carbon emissions in tertiary industry. A decomposition model of energy-related carbon emissions for China is set up by adopting logarithmic mean weight Divisia method based on the identity of carbon emissions. The model is adopted to analyze the influence of energy structure, energy efficiency, tertiary industry structure and economic output to energy-related carbon emissions in China from 2000 to 2009. Results show that the contribution rate of economic output and energy structure to energy-related carbon emissions increases year by year. Either is the contribution rate of energy efficiency or the tertiary industry restraining to energy-related carbon emissions. However, the restrain effect is weakening.

  9. Fourth Annual Report on Energy Efficiency

    International Nuclear Information System (INIS)

    Di Franco, Nino; Bertini, Ilaria; Federici, Alessandro; Moneta Roberto

    2015-01-01

    Here we present the main elements of the annual report on energy efficiency 2015. The results indicate that, thanks to national policies for energy efficiency, Italy saved over 7.5 million tons of oil equivalent per year in the period 2005-2013. Compared to the National Plan for Energy Efficiency 2014, the report shows that the 2020 objectives have already been achieved for more than 20%, with residential (35.7% of the target) and industry (26.6%) among the sectors that contributed most to this result. Substantial savings could result from the agribusiness sector through the dissemination of efficient technologies in the logistics and large retail chains. A key role lies with the banks: 86% of banks has developed products dedicated to efficiency, necessitating guidelines for replicability of projects, and audit and rating to assess their quality [it

  10. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  11. Turkey's energy efficiency assessment: White Certificates Systems and their applicability in Turkey

    International Nuclear Information System (INIS)

    Duzgun, B.; Komurgoz, G.

    2014-01-01

    The last decade has seen an increase in the importance of energy efficiency and the sustainable use of energy resources due to their significant benefits for reducing a country's dependence on foreign energy resources and increasing awareness on environmental problems. Turkey aims to reduce its energy intensity by 20% up to 2023, and in order to accomplish this target, the country plans to use energy more effectively in various industries and develop financial mechanisms for energy efficiency. Although much effort has been made to improve energy efficiency, additional policies such as marked-based incentives are still necessary. This article deals with one of the many market-based energy efficiency policies, called Tradable White Certificates (WhC) or Energy Efficiency Obligations. The current situation of the energy field in Turkey and energy consumption by industries is presented first in this paper, followed by potentials for energy efficiency in each industry and energy efficiency policies. Furthermore, the theory and applicability of a WhC System is introduced and discussed in terms of market conditions, choice of obligated participants and market mechanisms and barriers for the Turkish electricity and natural gas market to benefit from the residential and industrial energy savings potential. - Highlights: • Energy efficiency is the most effective way to reduce foreign energy dependency. • Turkey aims reducing at least 20% of energy intensity in the year 2023. • Energy consumption of industry is 35% of total energy consumption in Turkey. • Marked based policy elements create new opportunities in environmental markets. • WhC System can be implemented in PMUM under the control of regulatory authority

  12. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    Global warming resulting from the use of fossil fuels is threatening the environment and energy efficiency is one of the most important ways to reduce this threat. Industry, transport and buildings are all high energy-using sectors in the world and even in the most technologically optimistic...... perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...

  13. Stimulating R and D of industrial energy-efficient technology; the effect of government intervention on the development of strip casting technology

    International Nuclear Information System (INIS)

    Luiten, E.E.M.; Blok, Kornelis

    2003-01-01

    Strip casting technology in steel-making is known as an innovative energy-efficient technology. Stimulating the development (R and D) of such industrial process technologies is an appealing government intervention strategy for reducing greenhouse gas emissions. In this article, we analyse (a) the R and D trajectory of strip casting technology and (b) the effect of government intervention on the development of this particular energy-efficient technology. For this purpose we made a detailed investigation of the networks within which the technology was developed. The huge capital cost advantages of strip casting technology were already notified back in the 19th century. However, only after 1975 a robust technology network emerged. There is no single, simple determinant explaining the slow emergence of the technology network: the innovative technology had to become a more incremental improvement to the conventional production facilities before R and D was seriously pursued. Once the technology network emerged, it proved to have a strong momentum of itself. Steel firms maintained their confidence in the strategic cost advantages of the technology and persistently invested in up-scaling the technology. The effect of government intervention was minimal, because the technology network had its own strong momentum. All in all, R and D was only loosely influenced by energy-efficiency considerations or by government intervention. The major policy lesson is that information on technology networks and its momentum--in addition to classic information on energy-efficiency improvements and investments costs--is required to improve the effect of government intervention in the field of industrial energy-efficiency R and D and innovation

  14. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  15. Energy management technologies: special focus on textile industry

    International Nuclear Information System (INIS)

    Dayo, F.B.O.

    2000-08-01

    requirement in international competitiveness. The focus of this paper is the review of energy management technologies that can be used to achieve energy efficiency improvement objectives in textile manufacturing. The paper is arranged as follows: in section 2, the characteristics of energy consumption in textile manufacturing are presented; energy efficiency improvement technology options for the textile industry are discussed in section 3, section 4 covers a discussion of process specific technologies for improving energy use efficiency in textile manufacturing; the paper is concluded in section 5 with salient recommendation for promoting rational use of energy in the Nigerian Textile Industrial Sector

  16. Energy and emission analysis for industrial motors in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Rahim, N.A.; Ping, H.W.; Jahirul, M.I.; Mekhilef, S.; Masjuki, H.H.

    2009-01-01

    The industrial sector is the largest user of energy in Malaysia. Industrial motors account for a major segment of total industrial energy use. Since motors are the principle energy users, different energy savings strategies have been applied to reduce their energy consumption and associated emissions released into the atmosphere. These strategies include using highly efficient motors, variable speed drive (VSD), and capacitor banks to improve the power factor. It has been estimated that there can be a total energy savings of 1765, 2703 and 3605 MWh by utilizing energy-efficient motors for 50%, 75% and 100% loads, respectively. It was also found that for different motor loads, an estimated US$115,936 US$173,019 and US$230,693 can be saved in anticipated energy costs. Similarly, it is hypothesized that a significant amount of energy can be saved using VSD and capacitor banks to reduce speed and improve the power factor, thus cutting energy costs. Moreover, a substantial reduction in the amount of emissions can be effected together with the associated energy savings for different energy savings strategies. In addition, the payback period for different energy savings strategies has been found to be reasonable in some cases.

  17. The quid-pro-quo of environmental agreements: Reflections on industrial energy efficiency agreements from five countries

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter

    2001-10-01

    This workshop paper reflects on the exchange of values between the government side and the business side, which is a core logic of environmental agreements. The reflections refer to case studies of industrial energy efficiency agreements from Denmark, France, Germany, Netherlands and Sweden, originating from the VAIE project (Voluntary Agreements, Implementation and Efficiency). The government bargaining chips discussed are monetary rewards, help to gain competitive advantage, regulatory flexibility and political protection. The business side bargaining chips are emission limits, organisational change, investments, information, submission to control and political pain reduction. The discussion underlines the need for substantial commitments by the government side, as a precondition for achieving effective agreements.

  18. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    Science.gov (United States)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  19. Energy efficiency - Germany's most important energy source with an elevated potential of marketing. Lectrures; Energieeffizienz - Deutschlands wichtigste Energiequelle mit hohem Marketingpotenzial. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    At the ICG Conference of the Innovation Congress GmbH (Cologne, Federal Republic of Germany), held at the Hotel Centrovital, Berlin (Federal Republic of Germany) on 31 May and 1 June 2007, the following lectures were held: (1) Energy efficiency at the European level (DG TREN, Brussels, Belgium); (2) Energy efficiency as a ''highlight'' of the German EU and G8 presidency - The action plans ''Energy efficiency'' from Brussels and Berlin (F. Schafhausen); (3) Potentials of energy efficiency - Industrial customers are targeted (H. Bradtke); (4) Energy Agencies as a partner for projects of energy efficiency (N. Huettenhoelscher); (5) Energy efficiency in practice - concepts and campaigns (S. Kohler); (6) Failure of the politics in the energy efficiency - the consumer is footing the bill. (H. Krawinkel); (7) The capital goods industry as an offerer of energy efficient technology (M.F. Zelinger); (8) Customer orientation and energy efficiency in focus (J. Hogrefe); (9) Energy efficiency measures as a new area of business for public utilities (D. Attig); (10) Energy efficiency in household, commerce, and industry - chances for market partnerships (H. Meixner); (11) Energy efficiency from the view of the heating industry (H. Schulte); (12) JI and CDM - Approaches for the marketing of energy efficient solutions (M.F. Zelinger).

  20. Market in Germany. Renewable energy and energy conservation in the German construction industry

    International Nuclear Information System (INIS)

    2008-02-01

    This market survey for Germany is on the subject of renewable energy and energy efficient constructing and housing improvement. In order to meet sectoral or thematic information needs of Dutch exporting industries and investing companies, the EVD facilitates the realisation of up-to-date market surveys on promising markets in selected countries. The requested study is very relevant for the Dutch exporting industry, as the German building and construction market is of increasing importance to the Dutch building, installation and equipment building sector. Moreover the German market is a European innovator on renewable energy (RE) and energy efficient (EE) homes or even so-called 'passive' houses. The developments in the German market can guide the Dutch industry in the development of their export strategies. The main target groups for the market surveys are small- and medium-sized enterprises (SMEs) in the Netherlands. Interesting groups among these SMEs are those enterprises that start their business on a foreign market [nl

  1. The Next Frontier in Industiral Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2010-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  2. Energy consumption and CO2 emissions of industrial process technologies. Saving potentials, barriers and instruments

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang

    2013-01-01

    Which contribution can the increase of energy efficiency achieve in the industry energy for the energy transition in Germany? To answer this question a model-based analysis of existing energy efficiency potentials of the energy-intensive industries is performed, which account for about 70% of the total energy demand of the industry. Based on this industry for each sector are instruments proposed for the implementation of the calculated potential and to overcome the existing barriers. [de

  3. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    Directory of Open Access Journals (Sweden)

    Feng Tao

    2012-01-01

    Full Text Available The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  4. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    Science.gov (United States)

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  5. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    Science.gov (United States)

    Tao, Feng; Li, Ling; Xia, X. H.

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  6. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    DEFF Research Database (Denmark)

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    In Germany, 19.6 % of the industrial final energy consumption (FEC) can be allocated to the chemical industry. Energy efficiency measures with focus on the chemical industry could thus significantly contribute to reaching the German goal of reducing greenhouse gas emissions by 80 % in 2050 compared...

  7. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  8. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  9. Asian success stories in promoting energy efficiency in industry and building

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [International Inst. for Energy Conservation (IIEC), Bangkok (Thailand)

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  10. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  11. Establishing an energy efficiency recommendation for commercial boilers

    International Nuclear Information System (INIS)

    Ware, Michelle J.

    2000-01-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of$40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over$25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings

  12. Who should administer energy-efficiency programs?

    International Nuclear Information System (INIS)

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2005-01-01

    The restructuring of the US electricity industry created a crisis for utility operated energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities--utilities, state agencies, and non-profit corporations--that might be administrators. Four criteria are developed for choosing among program administration options: compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition

  13. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  14. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  15. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  17. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  18. Energy efficiency indicators of Italy (1970-1992)

    Energy Technology Data Exchange (ETDEWEB)

    D` Angelo, E; Perrella, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia; Bianco, R

    1996-02-01

    This report is aimed at presenting the results of the energy efficiency evolution in Italy for the 1970-1992 period Results come from the data-base developed under the SAVE/EnR project on `Cross countries comparison on energy efficiency indicators`. In order to be comparable among countries, efforts have been made to harmonize the data collection as well as the definition and the calculation of energy efficiency indicators. Selected indicators are considered in order to illustrate the potentiality of the project (around 200 different energy efficiency indicators can be calculated and presented). Emphasis is put on the interpretation of the so-called `techno-economic indicators` as well as explanatory indicators both for the economic and techno-economic approaches. Industry, transport, tertiary, residential and transformation sectors have been analyzed.

  19. Efficiency as a Priority of EU Energy Policy

    Directory of Open Access Journals (Sweden)

    Jacek Malko

    2014-06-01

    Full Text Available According to recent conclusions of the European Council it is necessary to stress the need to increase energy efficiency in the EU so as to achieve the objective of saving 20% of the energy consumption compared to projections for 2020 as estimated by the Commission in its Green Paper on Energy Efficiency and to make good use of their National Energy Efficiency Actions Plans for this purpose (i.e. Second NEEAPs from 30 June 2011. It should improve the EU’s industrial competiveness with a potential for creating substantial benefits for households, business and public authorities.

  20. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  1. Environment-adjusted regional energy efficiency in Taiwan

    International Nuclear Information System (INIS)

    Hu, Jin-Li; Lio, Mon-Chi; Yeh, Fang-Yu; Lin, Cheng-Hsun

    2011-01-01

    This study applies the four-stage DEA procedure to calculate the energy efficiency of 23 regions in Taiwan from 1998 to 2007. After controlling for the effects of external environments, only Taipei City, Chiayi City, and Kaohsiung City are energy efficient. Note that Kaohsiung City reaches the efficiency frontier due to the adjustment via partial environmental factors such as higher education attainment and transport vehicles. We also find a worsening trend for Taiwan's energy efficiency. Not only is there a gap of energy efficiency between Taiwan's metropolitan areas and the other regions, but the gap has also widened in recent years. Those inefficient counties should be given priority and the savings potential. Except for road density, the evidence indicates that each environmental factor has partial incremental effects on input slacks. As more cars and motorcycles are unfavorable externalities affecting partial energy efficiency, the central government should help local governments retire inefficient old motor vehicles, encourage energy-saving vehicle models, and provide convenient mass transportation systems. Besides, people with higher education cause industrial energy inefficient in Taiwan. The conscious of effective energy saving is necessary to schools, communities, and employee accordingly.

  2. The effect of increasing exports on industrial energy intensity in China

    International Nuclear Information System (INIS)

    Zheng Yingmei; Qi Jianhong; Chen Xiaoliang

    2011-01-01

    Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO 2 emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors. - Research highlights: → We examine the impact of exports on industrial energy intensity in China. → Greater exports increase industrial energy intensity as a whole. → Divergences exist in the impact of exports on energy intensity across sub-sectors. → China should discard policies encouraging exports at the cost of energy efficiency. → Export policy to reduce energy intensity should cater to sub-sector characteristics.

  3. The effect of increasing exports on industrial energy intensity in China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yingmei [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China); Qi Jianhong, E-mail: sducatherine@gmail.co [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China); Chen Xiaoliang [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China)

    2011-05-15

    Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO{sub 2} emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors. - Research highlights: {yields} We examine the impact of exports on industrial energy intensity in China. {yields} Greater exports increase industrial energy intensity as a whole. {yields} Divergences exist in the impact of exports on energy intensity across sub-sectors. {yields} China should discard policies encouraging exports at the cost of energy efficiency. {yields} Export policy to reduce energy intensity should cater to sub-sector characteristics.

  4. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  5. Energy conservation potential in Taiwanese textile industry

    International Nuclear Information System (INIS)

    Hong, Gui-Bing; Su, Te-Li; Lee, Jenq-Daw; Hsu, Tsung-Chi; Chen, Hua-Wei

    2010-01-01

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  6. The benefit of the Dutch Energy Investment Allowance (EIA) for high-efficiency installations in industrial buildings; EIA maakt hr-apparatuur voor bedrijfsgebouwen voordelig

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A. [ed.

    1998-02-01

    Gas-fired condensing appliances for space heating of industrial buildings are more expensive than appliances that do not show a high efficiency. In many cases, however, it is still cheaper to invest in condensing appliances. Not only because of lower exploitation costs, but also because of the ISO-high-efficiency subsidy regulation (`ISO-hr`), the energy investment allowance (EIA) and the energy conservation fund. The technologies that are eligible for the EIA are listed in the `Energielijst` (energy list) for 1998

  7. Differential electricity pricing and energy efficiency in South Africa

    International Nuclear Information System (INIS)

    Kohler, Marcel

    2014-01-01

    By international standards the economy of South Africa is extremely energy intensive with only a few countries having higher intensities. SA's primary energy use per unit of GDP is amongst the highest in the world. The high energy and electricity intensity of the economy partly reflects SA's resource endowments (in particular the abundance of coal) but is also a function of the historical under-pricing of coal and electricity by the authorities. South African mining and industrial electricity efficiency is particularly concerning and considerably lower than the global average. This paper sets out to fill a significant gap in the South African energy literature by highlighting the importance of incorporating electricity demand factors as part of the country's energy policy and electricity planning horizon. The paper focuses its attention on modelling the electricity consumption of SA's industrial and mining sectors given these account for the lion's share of electricity demand. A differential electricity pricing policy which targets electricity intensive industrial and mining activities (as practised in China since 2004) is viewed by the author to be a superior policy to blanket electricity price increases administered by authorities in an effort to encourage electricity savings and improve energy efficiency in South Africa. - Highlights: • SA's primary energy use per unit of GDP is amongst the highest in the world. • SA industrial electricity efficiency is considerably lower than the global average. • A differential electricity pricing policy which targets electricity intensive activities. • Differential tariffs raise the cost of energy inefficiency and induces energy saving. • Highlights importance of energy demand modelling in electricity supply planning

  8. Problems of organization and development of the Latvian energy efficiency network

    International Nuclear Information System (INIS)

    Petrov, B.; Puikevica-Puikevska, I.

    1999-01-01

    The idea to create an Energy Efficiency Network (Network) was put forward in Canada. In 1989 similar activities started in Norway. Taking account the difficult economical situation in the Latvia industry, such a Network would help to develop our enterprises under conditions of competition. In the future, this Network is to ensure a stabile operation of the international level. Therefore Network's purposes are: to promote decision-making process with due account for the energy efficiency measures and environment-friendly energy use in industry; to encourage reducing the specific consumption of energy; to promote the information exchange among industrial enterprises as well as with new technology suppliers, and service and consulting enterprises. The task of Network is to process information on the activities of enterprises, to perform computations and to show the condition of every enterprise in the same branch of industry, by means of diagrams and tables, as well as to reveal weak points of the enterprise. The benefits of the Network participants: Network information data base allows the participants to compare their energy efficiency data with those of other enterprises in the same branch of industry; opportunity to receive information on the newest achievements in the energy efficiency measures; opportunity to familiarise themselves with the necessary project documentation, reports, ets. Network's activities are organised due consideration for particular needs of an enterprise reported directly by the participants of the enterprise. (author)

  9. Energy Conservation Projects to Benefit the Railroad Industry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction

  10. ENERGY EFFICIENCY IN THE SHIPPING SECTOR – A CASE STUDY

    Directory of Open Access Journals (Sweden)

    BRANISLAV DRAGOVIŠ

    2017-12-01

    Full Text Available The improvement of Ship Energy Efficiency has been a major issue for the Shipping industry, primarily for three reasons; Firstly because fuel expenses of merchant ships contribute substantially to the overall expenses, secondarily, as conventional diesel engines and gas turbines emit large amounts of Greenhouse Gases (GHGs, contributing to the Climate Change and thirdly due to recent legislation including IMO Resolutions and EU Directives. The above in addition to the recent economic recession, have made it imperative for the industry to lower costs and introduce novel technologies and technical innovations, through the application of the Energy Efficiency Design Index (EEDI and Energy Efficiency Operation Index (EEOI.This paper aims to contribute to the identification of methods and management tools in order to improve energy efficiency, by developing Ship Energy Efficiency Management Plans (SEEMPs. The paper focuses especially on investments, modifications, management and operational changes that can be deployed, in order to improve energy efficiency of existing ships. Finally, the economic result of modifications made on an existing vessel is presented, using data from a study performed by the authors in collaboration with several shipping companies.

  11. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  12. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  13. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  14. Energy efficiency and human activity: Past trends, future prospects

    International Nuclear Information System (INIS)

    Schipper, L.; Meyers, S.; Howarth, R.B.; Steiner, R.

    1992-01-01

    This book, sponsored by the Stockholm Environmental Institute (SEI), presents a detailed analysis of changes in world energy use over the past twenty years. It considers the future prospects of energy demand, and discusses ways of restraining growth in consumption in order to meet environmental and economic development goals. Based on a decade of research by the authors and their colleagues at Lawrence Berkeley Laboratory in collaboration with the SEI, it presents information on energy use and the forces shaping it in the industrial, developing, and formerly planned economies. Looking separately at industry, passenger travel, freight transport, and the residential and service sectors, the authors describe the impact on energy use of growth in activity, structural change, and change in energy intensities, and discuss the role of energy prices and energy conservation policies in the industrial countries and the former Soviet Union. The book presents an overview of the potential for improving energy efficiency, and discusses the policies that could help realize the potential. While calling for strong action by governments and the private sector, the authors stress the importance of considering the full range of factors that will shape realization of the energy efficiency potential around the world

  15. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  16. Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry

    Directory of Open Access Journals (Sweden)

    Apriani Soepardi

    2018-01-01

    Full Text Available The aim of this paper is to analyze and rank the managerial-organizational barriers to energy efficiency improvement from an industry perspective. To that end, this study utilizes the Interpretive Structural Modeling (ISM methodology to identify the contextual relationships among the barriers. In a focus group discussion forum, five practitioners from the steel industry were consulted to identify these mutual linkages. The results indicated that five of the eight barriers proposed are in the linkage category. These barriers include that the energy manager or people in charge of energy management lack influence, there are higher priorities to production activity, there is management resistance to change, there is inadequate management capacity, and there are conflicts of interest within the organization. The management should focus more attention on these barriers, because they have both high driving power and dependency. The findings are intended to help managers from manufacturing sectors identify key barriers and thus develop strategic plans to address these issues.

  17. A framework to bridge the energy efficiency gap in shipping

    International Nuclear Information System (INIS)

    Jafarzadeh, Sepideh; Utne, Ingrid Bouwer

    2014-01-01

    Environmental concerns, emission regulations, fuel prices, and emission taxes increase the demand to improve energy efficiency in shipping. However, several barriers prevent the adoption of cost-effective energy saving measures. In this article a framework is offered to overcome the barriers encountered in shipping. 12 participants from five ship owners in Norway, two equipment suppliers, and a research institute have provided input to this study. The framework makes the barriers evident to ship owners and (energy) managers. It helps them to prioritize and overcome the critical barriers to improve energy efficiency in a consistent manner. Researchers and policy makers can also utilize the framework as it makes challenges to energy efficiency apparent. Finally, due to its generic structure it can be applied to industries other than shipping. - Highlights: • The article offers a framework for overcoming barriers to energy efficiency. • The framework is developed based on input from five ship owners in Norway, two equipment suppliers, and a research institute. • The article presents challenges and barriers to energy efficiency in shipping. • Possible measures for overcoming barriers in shipping are suggested. • The framework is generic in nature and can be applied to other industries

  18. Industry fights energy tax; UK Negotiates agreement

    International Nuclear Information System (INIS)

    Roberts, M.

    1996-01-01

    Europe''s energy-intensive industries have banded together to attack the European Commission''s latest proposal for a carbon-energy tax. Instead of passing a new directive--which the commission has been trying to do for five years--it now wants to expand existing duties on mineral oils to cover coal, natural gas, and electricity. The commission also aims to increase the mineral oil duties. Energy-intensive industries--including producers of chemicals, cars, cement, lime, iron, steel, and other metals--say the plans would destroy their competitiveness. They say they are improving energy efficiency voluntarily and urge the commission to focus on liberalizing Europe''s gas and electricity markets, which would reduce prices

  19. Industrial energy demand and the effect of taxes, agreements and subsidies

    International Nuclear Information System (INIS)

    Bue Bjoerner, T.; Holm Jensen, H.

    2000-10-01

    This report presents an econometric analysis of industrial companies demand for energy. The effect of energy taxes, energy agreements and subsidies to investments in energy efficiency, which have been applied as policy instruments in Denmark since 1993, is also quantified. The econometric analysis is based on an extensive database, which contains information on industrial companies consumption of energy and their value added in a number of years covering the period 1983 to 1997 (information from the years 1983, 1985, 1988, 1990, 1993, 1995, 1996 and 1997 is included). The database has been constructed by combining information from different registers in Statistics Denmark. The database contains information on the majority of all existing industrial companies with more than 20 employees (from 1995 to 1997 primary data on energy consumption were only collected for half the industrial companies with 20-50 employees). The database has a panel (longitudinal) nature, where each industrial company can be followed over time. This makes it possible to compare energy consumption in companies before and after they have been given a subsidy to invest in energy efficiency or entered an energy agreement with the Danish Energy Agency. The econometric analysis utilises the panel nature of the data by relying on so-called fixed effect estimators. (EHS)

  20. Energy Efficiency and Renewable Energy: the key factors for a sustainable future

    Directory of Open Access Journals (Sweden)

    Wolfgang Streicher

    2018-06-01

    Full Text Available within 1.5 to 2°C until 2050 have been taken. The resolution of COP21 in Paris to keep the temperature increase well below 2°C is signed already by 172 of 197 parties (http://unfccc.int/paris_agreement/items/9485.php.One very important step to reach these goals is to develop new ideas and implement existing technologies for energy efficiency and renewable energies in a broad range. This will also bring down the costs for the energy system transformation. The limitation of renewable energies in regions with high population density will lead, on the on the one hand, to large energy distribution networks causing new economic and political dependencies between countries, and, on the other hand, to more efficient technologies and systems like energy efficient buildings (for hot and cold climates, energy efficient transportation systems like more public transportation, smaller and electric (or hydrogen driven cars, and more efficient industrial processes.Knowledge generation and distribution as done in the International Journal on Renewable Energy and Sustainable Development plays an important role for this further development.

  1. Actuarial pricing of energy efficiency projects: lessons foul and fair

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul E-mail: pamathew@lbl.gov; Kromer, J. Stephen; Sezgen, Osman; Meyers, Steven

    2005-07-01

    Recent market convulsions in the energy industry have generated a plethora of post-mortem analyses on a wide range of issues, including accounting rules, corporate governance, commodity markets, and energy policy. While most of these analyses have focused on business practices related to wholesale energy trading, there has been limited analysis of retail energy services, particularly energy efficiency projects. We suggest that there were several business concepts and strategies in the energy efficiency arena whose inherent value may have been masked by the larger failure of companies such as Enron. In this paper, we describe one such concept, namely, actuarial pricing of energy efficiency projects, which leverages a portfolio-based approach to risk management. First, we discuss the business drivers, contrasting this approach with conventional industry practice. We then describe the implementation of this approach, including an actuarial database, pricing curves, and a pricing process compatible with commodity pricing. We conclude with a discussion of the prospects and barriers for the further development of transparent and quantifiable risk management products for energy efficiency, a prerequisite for developing energy efficiency as a tradeable commodity. We address these issues from an experiential standpoint, drawing mostly on our experience in developing and implementing such strategies at Enron.

  2. Actuarial pricing of energy efficiency projects: lessons foul and fair

    International Nuclear Information System (INIS)

    Mathew, Paul; Kromer, J. Stephen; Sezgen, Osman; Meyers, Steven

    2005-01-01

    Recent market convulsions in the energy industry have generated a plethora of post-mortem analyses on a wide range of issues, including accounting rules, corporate governance, commodity markets, and energy policy. While most of these analyses have focused on business practices related to wholesale energy trading, there has been limited analysis of retail energy services, particularly energy efficiency projects. We suggest that there were several business concepts and strategies in the energy efficiency arena whose inherent value may have been masked by the larger failure of companies such as Enron. In this paper, we describe one such concept, namely, actuarial pricing of energy efficiency projects, which leverages a portfolio-based approach to risk management. First, we discuss the business drivers, contrasting this approach with conventional industry practice. We then describe the implementation of this approach, including an actuarial database, pricing curves, and a pricing process compatible with commodity pricing. We conclude with a discussion of the prospects and barriers for the further development of transparent and quantifiable risk management products for energy efficiency, a prerequisite for developing energy efficiency as a tradeable commodity. We address these issues from an experiential standpoint, drawing mostly on our experience in developing and implementing such strategies at Enron

  3. Results of the long-term agreements on energy efficiency. Results 2011; Resultatenbrochure convenanten Meerjarenafspraken energie-efficientie 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The Dutch long-term agreement on Energy Efficiency with various sectors of the industry, the food and beverages industry and the services sector is a covenant aimed at enhancing energy efficiency among medium-sized enterprises. Participants in the covenant include businesses, the Dutch government and the Competent Authority Environmental Protection Act. Participation of businesses means that they must make energy efficiency plans, take measures and deliver annual results for monitoring. In this report the results of 2011 are presented [Dutch] De Meerjarenafspraken Energie-Efficientie met verschillende sectoren uit de industrie, de voedings- en genotmiddelenindustrie en de dienstensector, is een convenant gericht op het bevorderen van de energie-efficientie bij middelgrote bedrijven. Deelnemers aan het convenant zijn de bedrijven, de Rijksoverheid en het Bevoegd Gezag Wet Milieubeheer. Voor bedrijven betekent deelname dat zij energiebesparingplannen maken, maatregelen nemen en dat zij jaarlijks de resultaten hiervan aanleveren voor de monitoring. In dit rapport worden de resultaten van 2011 gepresenteerd.

  4. How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis

    International Nuclear Information System (INIS)

    Özbuğday, Fatih Cemil; Erbas, Bahar Celikkol

    2015-01-01

    Energy efficiency and renewable energy are considered to be two indispensable solutions to control GHG (greenhouse gas) emissions. Moreover, industrialization is at the center of discussions on the roles of countries to reduce CO 2 emissions. However, the literature is underprovided to understand the long run contribution of energy efficiency, renewable energy and industrial composition in reducing GHG emissions at the macro level. In this study, we differentiate the effects of economic activity, energy efficiency, economic structure and use of renewable energy resources on CO 2 emissions. We develop energy efficiency indices for thirty six countries for the period of 1971–2009 and use a CCE (common correlated effects) estimator model that is consistent under heterogeneity and cross-sectional dependence. We find a positive significant effect of energy efficiency on CO 2 emissions in the long-run. Similarly, substituting renewable energy for non-renewable energy reduces CO 2 emissions in the long-run. Our results ensure widely discussed roles of energy efficiency and renewable energy in curbing CO 2 emissions. Furthermore, the scale of economic activity measured by real income and industrialization have significant positive effect on CO 2 emissions. - Highlights: • We model long-run effects of energy efficiency and renewable energy on CO 2 . • Energy efficiency significantly reduces CO 2 emissions over the long term. • Replacing non-renewable energy sources with renewable ones reduces CO 2 emissions. • CO 2 emissions rise with increases in real income. • Industrial composition affects CO 2 emissions

  5. Moving forward on energy efficiency in Canada : a foundation for action

    International Nuclear Information System (INIS)

    2007-01-01

    In addition to having diverse sources of energy, Canada recognizes its potential to minimize wasted energy. Governments can play a vital role in advancing energy efficiency, as investors in programs that stimulate actions, and as policymakers and regulators who help shape the marketplace and reduce barriers to action. This document represented the collaborative efforts of provincial and territorial governments and the federal government, with important input from a wide cross-section of representatives from outside government, including non-governmental organizations and industry. Major energy-using sectors of the Canadian economy were examined, including industry, transportation and the built environment. The report also described many technologies and best practices available for all stakeholders, and highlighted the important roles that other organizations play in promoting energy efficiency in all sectors of the Canadian economy. The report provided an overview of supply and demand and discussed Canada's commitment to energy efficiency. Energy efficiency and conservation, fuel switching and renewable fuels were also discussed. 37 refs., 1 tab., 1 appendix

  6. Industry agreement on efficient electrical motors

    International Nuclear Information System (INIS)

    Schnyder, G.

    2004-01-01

    This comprehensive final report presents the results of a project carried out on behalf of the Swiss Federal Office of Energy (SFOE) and the Swiss Automation Pool (SAP) concerning the efficiency of electrical drives. The main goal of the project was to conclude a target agreement between the federal government and the Swiss electric motors/drives industry. This involves the promotion of the highest, 'eff1' energy-efficiency category of the three categories defined by the European Committee of Manufacturers of Electrical Machines and Power Electronics (CEMP). The report presents the findings of the project and recommends the banning of the use of motors in the lowest, 'eff3' category. Comparisons are made between the CEMP standards and further standards and promotion programmes in the USA and in Great Britain. Associated measures to be taken to aid the promotion of the drive standard are discussed

  7. Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home

    International Nuclear Information System (INIS)

    Pelenur, Marcos J.; Cruickshank, Heather J.

    2012-01-01

    This paper presents a study which linked demographic variables with barriers affecting the adoption of domestic energy efficiency measures in large UK cities. The aim was to better understand the ‘Energy Efficiency Gap’ and improve the effectiveness of future energy efficiency initiatives. The data for this study was collected from 198 general population interviews (1.5–10 min) carried out across multiple locations in Manchester and Cardiff. The demographic variables were statistically linked to the identified barriers using a modified chi-square test of association (first order Rao–Scott corrected to compensate for multiple response data), and the effect size was estimated with an odds-ratio test. The results revealed that strong associations exist between demographics and barriers, specifically for the following variables: sex; marital status; education level; type of dwelling; number of occupants in household; residence (rent/own); and location (Manchester/Cardiff). The results and recommendations were aimed at city policy makers, local councils, and members of the construction/retrofit industry who are all working to improve the energy efficiency of the domestic built environment. -- Highlights: ► 7 demographic variables linked to 8 barriers to adopting energy efficiency measures. ► A modified chi-square test for association was used (first order Rao–Scott corrected). ► Results revealed strong associations between most of the demographics and barriers. ► Data was collected from 198 interviews in the UK cities of Manchester and Cardiff. ► Specific recommendations are presented for regional policy makers and industry.

  8. Energy Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2016-01-06

    Two major issues are facing today s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produces 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, an energy efficient power allocation framework based on maximizing the average EE per parallel channel is presented.

  9. Promoting energy efficiency investments with risk management decision tools

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    This paper reviews current capital budgeting practices and their impact on energy efficiency investments. The prevalent use of short payback 'rule-of-thumb' requirements to screen efficiency projects for risk is shown to bias investment choices towards 'sure bet' investments bypassing many profitable efficiency investment options. A risk management investment strategy is presented as an alternative to risk avoidance practices applied with payback thresholds. The financial industry risk management tool Value-at-Risk is described and extended to provide an Energy-Budgets-at-Risk or EBaR risk management analysis to convey more accurate energy efficiency investment risk information. The paper concludes with recommendations to expand the use of Value-at-Risk-type energy efficiency analysis.

  10. Analysis of energy use and efficiency in Turkish manufacturing sector SMEs

    International Nuclear Information System (INIS)

    Onuet, Semih; Soner, Selin

    2007-01-01

    Small and medium size enterprises (SMEs) have an important role in the Turkish economy because of the workforce involved. According to the size of the industrial facilities, there are different cost components related to the total production costs. Energy cost is usually a small portion of the total production cost, but the Turkish industrial sector comprises approximately 35% of Turkey's total energy consumption and 98.8% of the total number of enterprises in Turkey constitutes the SMEs. Because of the uncertainty of energy costs in the world, it is important to take preventive measures to reduce energy costs and increase efficiencies in industry and consequently in SMEs. In this paper, medium sized enterprises are taken into consideration essentially. Because of getting homogeneity, enterprises with the number of workers between 100 and 200 in the metallic goods industry have been considered in the survey. Energy management includes increasing the profitability by reduced operational costs, and it is also a potential for improving market share. Many different evaluation models have been published in the energy management literature. However, there have not been so many systematic approaches to compare the relative efficiency of the systems. Data envelopment analysis (DEA) is a special linear programming model for deriving the comparative efficiency of multiple-input multiple-output decision making units (DMUs). An evaluation of energy efficiency in 20 medium sized companies has been conducted, and the results are discussed in this paper

  11. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  12. Ingerop - Energy activities and industry - General brochure 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Ingerop is a leading player in France and a major player internationally in engineering and consulting in sustainable mobility, energy transition and living environment and in major issues of today and tomorrow. The industrial engineering provided by Ingerop in France and for export, provides a response to customer expectations, integrating more and more the theme of sustainable development. Faced with a growing demand for electricity both in the world and in Europe Ingerop made the energy sector its priority development. The controlled use of energy (energy efficiency, renewable energy) is an ongoing challenge for Ingerop. The group continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad until the decommissioning phases in France and abroad. Ingerop continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad to decommissioning in France and abroad. Ingerop strengthens its expertise in new energy with new projects in biomass boilers and heat networks. The group has profound geothermal skills in heating networks or fatal energy recovery, permitting them to intervene with local authorities such as farmers, from feasibility studies to commissioning and assisting project management with technical studies. The expertise acquired by the group Ingerop in the 1990's, through the construction of fifty data centers on behalf of SFR, enables a significant experience going back twenty years. Furthermore, development continued on the design of more energy-efficient projects and ensuring increasingly high reliability. This brochure presents Ingerop's skills and main references in its four domains of intervention: energy industry (operation in nuclear environment, conventional power plants, new energy technologies, data centers), other industries, infrastructures, and building industry

  13. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  14. The potential estimation and factor analysis of China′s energy conservation on thermal power industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Lisha

    2013-01-01

    At present, researches about energy conservation are focused on prediction. But there are few researches focused on the estimation of effective input and energy conservation potential, and there has been even no research on energy conservation of thermal power industry of China. This paper will try to fill in such a blank. Panel data on Chinese thermal power industry over 2005–2010 are established, and we adopt the stochastic frontier analysis approach to estimate the energy saving potential of thermal power industry. The results are as follows: (1) the average efficiency of energy inputs in China′s thermal power industry over 2005–2010 was about 0.85, and cumulative energy saving potential equals to 551.04 (Mtce); (2) by improving the non-efficiency factors, the relatively backward inland cities could achieve higher energy saving in thermal power industry; (3) the energy input efficiency of Eastern China Grid is shown to be the highest; (4) in order to realize the energy-saving goal of thermal power industry, one important policy method the government should adopt is to conduct a market-oriented reform in power industry and break the state-owned monopoly to provide incentives for private and foreign direct investment in thermal power sector. -- Highlights: •We adopt SFA model to estimate the coal input efficiency of power sector in China. •We calculate the cumulative energy saving potential equals to 551.04 Mtce. •East China power grid has the highest energy input efficiency. •Some backward inland cities may be the main force for future energy conservation. •Encourage private and foreign direct investment in power sector might be effective

  15. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  16. Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltage unbalance.

  17. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  18. Application of energy conservation technologies in Indian industries

    International Nuclear Information System (INIS)

    Zubair, K.M.

    1992-01-01

    The quadrupling of oil prices in 1973 signaled the beginning of a crises period for the oil importing countries. It hampered the economic growth of developed and developing countries alike. The pace of industrialization slowed down, recession set in and the oil importing developing nations found their balance of payment situation steadily going worse. The second increase of oil prices in 1979 further compounded the problems. It did seem that the problem of economic growth and increasing debt burden was intractable as far as developing nations were concerned. Behind this turmoil were the faint stirrings of alternative actions that sought to wean the world from its oil and fossil fuel dominated economies. These alternatives ranged from harnessing renewable energy sources, such as solar, wind and biomass to implementing end-use energy efficiency strategies. A major lesson of the oil crunch era was that energy efficiency is tangible resource by itself that competes economically with contemporary energy supply options. In addition to this, four major national priorities, viz, economic competitiveness, utilization of scare capital for development, environmental quality and energy security through oil dependence provided an urgent rationale for saving energy. While conservation consciousness has already taken roots in Pakistan industry, it needs to be nurtured and gains need to be consolidated. The need of the hour is to take stock of the situation elsewhere, particularly in similar geographical and socio-economic situations, and plan for an energy efficient tomorrow. This article attempts to delineate the notable developments that have taken place in the application of energy conservation technologies in the Indian industries. These efforts have had a salutary effect on the Indian value added sector which was saddled with old plant and machinery designed in the era of cheap energy. (author)

  19. France's action plan for energy efficiency

    International Nuclear Information System (INIS)

    2011-01-01

    This report first presents the French strategy for energy efficiency which is notably based on several commitments and an energy conservation policy. The second part describes the various policies and measures which have been implemented in France for different sectors: energy demand, housing and office building, transports, industry, exemplary State and local communities, agriculture, wastes, public information and sensitization. Several large appendices complete this report. They address assessment methods, policies and measures, and a European directive

  20. Quantifying the benefits: Energy, cost, and employment impacts of advanced industrial technologies

    International Nuclear Information System (INIS)

    Sullivan, G.P.; Roop, J.M.; Schultz, R.W.

    1997-01-01

    This development effort was supported by the Technologies Partnerships Program established through the US Department of Energy's Office of Energy Efficiency and Renewable Energy via the Office of Industrial Technology (OIT). This program supports research, development, and demonstration of industrial technologies aimed at improving energy efficiency and productivity while reducing pollution, material waste, and operations/maintenance costs. The goal of this program is to develop cost-shared partnerships with industry, government and non-government organizations to foster improved efficiency, productivity, and pollution prevention technologies. This partnership program is believed to be one way that energy efficiency will be delivered to industry in the 21st Century. This paper reports on the development of the Industrial Technology Employment Analysis Model (ITEAM) which calculates economy-wide employment impacts of specific partnership program technologies, using data developed by the technology partner. ITEAM is a desk-top computer model that allows users to evaluate base-case partnership data and/or run sensitivity tests using its graphical-user-interface features. To demonstrate the capabilities of ITEAM, an analysis is presented for the chemicals industry. In addition, the following major industries have been analyzed and summary data are presented: aluminum, stone/clay/glass, forest products, chemicals, metal casting, steel, and petroleum. This paper addresses the development, function, and use of ITEAM. Included is a presentation of key assumptions along with user inputs and a discussion of sensitivities. The results of ITEAM runs for over 20 technology projects in 7 program areas are reported. The paper also explains how the project data are used to modify the 1987 I/O table to impact output and employment. The calculations are explained and the approach is rationalized. The argument for this approach rests on the proposition that improvements in efficiency

  1. Gap analysis of industrial energy management systems in Slovenia

    International Nuclear Information System (INIS)

    Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.

    2016-01-01

    Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.

  2. BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

    2005-10-15

    Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

  3. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    International Nuclear Information System (INIS)

    Laurijssen, Jobien; De Gram, Frans J.; Worrell, Ernst; Faaij, Andre

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in conventional multi-cylinder drying sections are investigated, calculating the effect on energy use. Optimization measures include a) decreasing the amount of water evaporation by applying additives in higher consistencies and by lowering the water viscosity, b) decreasing the heat use of water evaporation by increasing the dew point temperature of the dryer and c) increasing the amount of heat recovery by using exhaust air to not only pre-heat the incoming air but also to increase process water temperatures. These could all be achieved by retrofitting and/or choosing different processing conditions in existing factories. The combined thermal heat saving potential due to the optimization actions is 1.3 GJ h /t paper (or 32% of the drying section's heat use) as compared to the reference situation.

  4. Auditing and analysis of energy consumption of an industrial site in Morocco

    International Nuclear Information System (INIS)

    Boharb, A.; Allouhi, A.; Saidur, R.; Kousksou, T.; Jamil, A.; Mourad, Y.; Benbassou, A.

    2016-01-01

    Presently, the industrial sector is responsible for 21% of energy consumption in Morocco. Fully aware about the challenge of reducing energy consumption and related CO_2 emissions by industries, Moroccan authorities have legislated under the new law (n° 47-09 related to energy efficiency) the obligation of energy audit in Moroccan industries. In such a context, this paper is a Level II energy audit (conforming to ASHRAE classification) performed for an industrial site based in Fez (Morocco) specialized in producing and commercializing cattle feed. A detailed analysis of the characteristics of the energy use has identified a mismanagement of the electrical energy. Through the improvement of the DPF (displacement power factor) to a value of 0.98, it was shown that the factory can save about 52758.74 US$ annually. An improvement of energy efficiency of the interior lighting was also performed. The proposed action concerned the voltage regulation and has the potential of reducing 13.6% of the lighting energy consumption with the mitigation of approximately 27 533 of CO_2/year. Furthermore, harmonic treatment by installing passive filters for VSD (variable speed drives) was carried out. The energy savings related to the harmonic treatment were evaluated to be 26 760 kWh/year. - Highlights: • Detailed analysis of energy use in an industrial site in Morocco. • New method of improving energy efficiency for the interior lighting. • Harmonic treatment using a simulation program. • Economic and environmental evaluation of proposed actions.

  5. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  6. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  7. Efficiency and Import Penetrationon the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the ave-rage level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  8. Policy of productive development and energy efficiency; Politica de desenvolvimento produtivo e eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Naturesa, Jim Silva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico], e-mail: cam@fec.unicamp.br; Mariotoni, Carlos Alberto [Faculdade Politecnica de Jundiai (FPJ), SP (Brazil). Anhanguera Educacional

    2008-07-01

    The new industry policy in Brazil called PDP (Politica de Desenvolvimento Produtivo) and implications on Brazilian energy efficiency program are discussed. The PINTEC - Industrial Research for Technology Innovation (2003/05) indicates a low R and D and I investment of the Brazilian industries. It is expected that and energy efficiency project can be seen as an innovation project because this brings new equipment and a more advanced knowledge to industry, which helps to reduce electrical energy consumption, consumer' bills and production costs. (author)

  9. Energy forum 92: Efficiency, trade and the environment

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    In 1992 B.C. Hydro's annual Electric Energy Forum was held in conjunction with the National Energy Forum to provide an opportunity for delegates from utilities, government, industry, international development agencies, environmental groups, universities and interested members of the public to discuss major energy issues of today and tomorrow. Three main themes were addressed: Efficiency (the latest developments in energy-efficient technologies and their role in sustainable development), trade (strategies for trade in energy and related technologies), and environment (the effects of energy production, use and trade on the local, regional and global environment). This document presents opening remarks, speeches presented, and panel discussions.

  10. Modeling Energy Efficiency As A Green Logistics Component In Vehicle Assembly Line

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper uses System Dynamics (SD) simulation to investigate the concept green logistics in terms of energy efficiency in automotive industry. The car manufacturing industry is considered to be one of the highest energy consuming industries. An efficient decision making model is proposed that capture the impacts of strategic decisions on energy consumption and environmental sustainability. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. SD is the chosen simulation method and the main green logistics issues considered are Carbon Dioxide (CO2) emission and energy utilization. The model will assist decision makers acquire an in-depth understanding of relationship between high level planning and low level operation activities on production, environmental impacts and costs associated. The results of the SD model signify the existence of positive trade-offs between green practices of energy efficiency and the reduction of CO2 emission.

  11. 76 FR 18428 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Science.gov (United States)

    2011-04-04

    ... Ice Makers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... this proposed rule may be submitted to Office of Energy Efficiency and Renewable Energy through the... Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence Avenue, SW...

  12. Energy Tax and Competition in Energy Efficiency. The Case of Consumer Durables

    International Nuclear Information System (INIS)

    Conrad, K.

    2000-01-01

    The purpose of this paper is to analyze the role of an energy tax on technical improvements and on prices of consumer durables induced by strategic competition in energy efficiency. If the gasoline tax is raised this does in principle not affect the producers of cars because the motorist pays for it in terms of a higher cost of using the car. This, however, affects the unit sales of car producers because of substitution towards other modes of transportation. A second element of reaction to energy price variation is an indirect one and relates to the effect of energy prices on technology. Competition forces car producers to develop more energy efficient cars in order to reduce the cost of using a car. This indirect effect can partly offset the direct effect of higher energy prices on demand if it is profitable for the automobile industry to engineer more energy efficient equipment. We will analyze the impact of an energy tax on energy efficiency and on the price of a durable good. This will be done within the framework of a duopoly competing in prices and in the energy efficiency of its products. The government chooses a welfare maximizing energy tax as an incentive to innovate. Then we will analyze a strategic two-stage decision process in which the duopolists first decide about energy efficiency and then compete in prices. 18 refs

  13. Energy and environmental profile of the U.S. iron and steel industry

    International Nuclear Information System (INIS)

    Margolis, N.; Sousa, L.

    1997-01-01

    The iron and steel industry, which accounts for between two and three percent of all energy consumed in this country, is also striving to improve its energy efficiency. The amount of energy required to produce a ton of steel has decreased by more than 40% since 1975. This reduction has been accomplished in part through adoption of more energy-efficient and productive processing steps. However, the capital to invest in new technologies is increasingly limited, especially as the costs of environmental control continue to rise. Other than foreign competition, the biggest challenge facing the industry today is compliance with environmental regulations. The Clean Air Act and the Resource Conservation and Recovery Act have had significant impacts on the industry. Since 1970, the industry has invested approximately $6 billion in pollution control systems. The industry spent approximately $230 million in both 1993 and 1994 on capital expenditures for pollution abatement. In a typical year, 15% of the industry's capital investments go to environmental projects. The industry faces even more challenges in the future as new, more stringent regulations are enacted. Topics covered here are: market trends and statistics; energy and materials consumption; and an environmental overview

  14. Ecological total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Li Lanbing; Hu Jinli

    2012-01-01

    Most existing energy efficiency indices are computed without taking into account undesirable outputs such as CO 2 and SO 2 emissions. This paper computes the ecological total-factor energy efficiency (ETFEE) of 30 regions in China for the period 2005–2009 through the slack-based model (SBM) with undesirable outputs. We calculate the ETFEE index by comparing the target energy input obtained from SBM with undesirable outputs to the actual energy input. Findings show that China's regional ETFEE still remains a low level of around 0.600 and regional energy efficiency is overestimated by more than 0.100 when not looking at environmental impacts. China's regional energy efficiency is extremely unbalanced: the east area ranks first with the highest ETFEE of above 0.700, the northeast and central areas follow, and the west area has the lowest ETFEE of less than 0.500. A monotone increasing relation exists between the area's ETFEE and China's per capita GDP. The truncated regression model shows that the ratio of R and D expenditure to GDP and the degree of foreign dependence have positive impacts, whereas the ratio of the secondary industry to GDP and the ratio of government subsidies for industrial pollution treatment to GDP have negative effects, on the ETFEE. - Highlights: ► Most energy efficiency indices ignore undesirable outputs such as CO 2 and SO 2 emissions. ► The ecological total-factor energy efficiency (ETFEE) is computed by slack-based model (SBM). ► The datasets contains 30 regions in China for the period 2005–2009. ► China's regional energy efficiency is extremely unbalanced. ► A monotone increasing relation exists between ETFEE and per capita GDP.

  15. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C.W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  16. Problems in the implementation of energy conservation methods: the industrial view

    Energy Technology Data Exchange (ETDEWEB)

    Broad, C. W.

    1977-10-15

    It is pointed out that New Zealand industry has been identified as putting little effort into energy conservation. An energy conservation campaign in industry to increase efficiency and reduce wastage could have major benefits for New Zealand as a whole. Little progress in implementing energy conservation techniques in industry is apparent at present. Business decisions are in the main motivated by profits. Because of the low place of energy in industry's costs of production, seen as a single factor, it hardly rates greater priority over other established production costs. A need to integrate energy costs and material costs is apparent. The need for education is obvious, now, with cheap and limitless energy no longer existing.

  17. Energetic retrofitting of industrial heat supply systems. Possibilities of enhancing the efficiency and energy conservation at large combustion engineering plants; Energetische Modernisierung industrieller Waermeversorgungssysteme. Moeglichkeiten der Effizienzsteigerung und der Energieeinsparung an grossen feuerungstechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In the contribution under consideration, the Deutsche Energie-Agentur GmbH (Berlin, Federal Republic of Germany) reports on an energetic modernization of industrial heat supply systems. Possibilities of an enhancement of the energetic efficiency and energy conservation at large combustion engineering plants are described. After an introduction to this theme, the author of this contribution provides an overview of the optimization of heat supply systems, and reports on the following aspects: Optimisation of the heat demand; energy efficient heat generation; heat recovery; energy efficient conversion technology and generation technology; associate partners for more energy efficiency in industry and commerce; best practice examples.

  18. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  19. Energy-Efficiency Options for Insurance Loss Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

    1997-06-09

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  20. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  1. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  2. Energy efficiency in transport and mobility from an eco-efficiency viewpoint

    International Nuclear Information System (INIS)

    Uson, Alfonso Aranda; Capilla, Antonio Valero; Bribian, Ignacio Zabalza; Scarpellini, Sabina; Sastresa, Eva Llera

    2011-01-01

    European Union countries' current energy policies for the transport sector promote, amongst other initiatives; urban mobility plans, the renewal of fleets of cars and industrial vehicles and the introduction of biofuel. From the point of view of eco-efficiency and Life Cycle Assessment (LCA), energy policies must go further. The objective of this paper is to analyse the current transport model and the policies on energy efficiency being promoted in the EU from a LCA point of view. Special attention has been paid to private vehicles, in assessing the environmental impact of the various stages of manufacture, their use and disposal, and the consequences of plans to renew fleets. How old should a vehicle ideally be so that when it is changed, the embodied energy in the materials of the vehicle is less than the gain in energy efficiency due to changing the model for example? In addition the paper analyses the different means of transport in the energy consumption-time ratio from a LCA viewpoint. The fact that reducing transport times leads to greater energy consumption gives rise to the question: how long does nature take to repair the environmental damage caused?

  3. EVALUATION OF ENERGY CONSUMPTION IN AGRO-INDUSTRIAL WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    2016-07-01

    Full Text Available Energy consumption during waste water treatment is a very important factor affecting food industry plants. Apart from highly efficient treatment of dairy and meat sewage, a low energy consumption is required in order to lower its costs. During the research period parameters of raw and treated sewage were tested (BOD, COD, N-total, P-total. Also, the energy consumption from selected processes as well as total consumption were measured. Indicators of energy consumption per m3 and removed load were calculated. It was found that biological treatment and aeration played the main role in energy consumption in both objects. It was respectively 40 and 47% for Bielmlek and JBB plants. The second biggest energy consuming stage of treatment in both objects was sludge processing. Energy required to process excessive sludge equaled 30% of the total energy usage in both plants. Energy consumption factors related to hydraulic flow gave results in the range from 2,05 to 3,3 kWhm-3 and from 2,72 to 3,23 kWhm-3 for Bielmlek and JBB plants respectively. The research will be continued in order to optimize energy consumption while retaining high efficiency treatment in food industry WWTPs. Finally a mathematical model will be prepared for optimizing energy consumption in food industry WWTPs.

  4. US energy conservation and efficiency policies: Challenges and opportunities

    International Nuclear Information System (INIS)

    Dixon, Robert K.; McGowan, Elizabeth; Onysko, Ganna; Scheer, Richard M.

    2010-01-01

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  5. US energy conservation and efficiency policies. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K.; Onysko, Ganna [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth; Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future. (author)

  6. US energy conservation and efficiency policies: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K. [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States); Onysko, Ganna, E-mail: gonysko@thegef.or [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  7. Development of bench marking services for energy efficiency and CO{sub 2} emissions in forest industry; Metsaeteollisuuden energiatehokkuutta ja CO{sub 2}-paeaestoejae koskevien benchmarking-palvelujen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Saarentaus, A. [Poeyry Forest Industry Consulting Oy, Vantaa (Finland)

    2006-12-19

    The goal of the project is to develop energy-efficiency and CO{sub 2} missions related benchmarking services for pulp and paper and mechanical wood working industry. The services make it possible to 1) position individual production plants based on their energy-efficiency and CO{sub 2} missions, 2) offer process phase level information on energy-efficient and low mission process technology, 3) analyse changes in the competitive position both at production plant as well as country level due to changes in CO{sub 2}-allocation and energy procurement. (orig.)

  8. Auditing energy use -a systematic approach for enhancing energy efficiency

    International Nuclear Information System (INIS)

    Ardhapnrkar, P.M.; Mahalle, A.M.

    2005-01-01

    Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)

  9. New horizons for Korean energy industry--shifting paradigms and challenges ahead

    International Nuclear Information System (INIS)

    Chang, H.-J.Hyun-Joon.

    2003-01-01

    Korean energy industry is experiencing a radical paradigm shift. Vertically integrated monopoly is being dismantled while state-owned energy companies are privatized. The industry is in transition from extensive government control to more flexible and market-oriented operation. Along with the task of successfully implementing these structural changes, Korea is now faced with challenges of addressing energy security with the decentralized supply system. This paper discusses ongoing efforts to transform electric power and natural gas industries in Korea, and then explores possible schemes for regional energy cooperation that will enhance efficiency and supply security

  10. Evaluation of corporate energy management practices of energy intensive industries in Turkey

    International Nuclear Information System (INIS)

    Ates, Seyithan Ahmet; Durakbasa, Numan M.

    2012-01-01

    Turkey is one of a number of countries who still lack a national management standard for energy. Industrial energy consumption accounts for 42% of Turkey's total energy consumption. With the help of a questionnaire and analytical framework, this paper investigates Industrial Energy Management Practice in Turkey and highlights significant bottlenecks and shortcomings of energy intensive industries in terms of energy management application. The survey was carried out as a multiple case study of the Turkish iron, steel, cement, paper, ceramics and textile industries. Outcomes of the questionnaire are evaluated according to the analytical framework which covers company characteristics, regulations, external relations of the companies and internal organizational conditions. After analyzing these elements on the basis of a minimum requirement list, it was found that only 22% of the surveyed companies actually practice corporate energy management in Turkey. The main barriers to proper energy management implementation were identified as lack of synergy between the stakeholders, the extent and scope of energy manager courses, and inadequate awareness of and lack of financial support for energy management activities. As a guideline to overcome present obstacles, a set of policy options are offered: strengthening and restructuring of legal and institutional frameworks, promotion of energy efficiency, education, training and capacity building and facilitating implementation of the international energy management standard ISO 50001. -- Highlights: ► Developing an analytical scheme to assess degree of Energy Management Application. ► Investigation of Energy Management Practices in Turkish Energy Intensive Industries. ► Analysis of challenges which hinder full implementation of energy management in Turkey. ► Presenting a set of essential policy options thought for all stakeholders.

  11. Public policy analysis of energy efficiency and load management in changing electricity businesses

    International Nuclear Information System (INIS)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-01-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted

  12. Public policy analysis of energy efficiency and load management in changing electricity business

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Energy Analysis Dept.; Hamrin, J. [Centre for Resource Solutions (United States); Eyre, N. [Energy Savings Trust (United Kingdom); Crossley, D.; Maloney, M.; Watt, G. [Energy Futures Australia Pty Ltd (Australia)

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted. (author)

  13. Public policy analysis of energy efficiency and load management in changing electricity businesses

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  15. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  16. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  17. Demands for energy policy by industry and the economy

    International Nuclear Information System (INIS)

    Thumann, J.R.

    2007-01-01

    'The Use of Nuclear Power for Peaceful Purposes' is a key topic in energy policy which produces a split of opinions in Germany, and which the policy of the Grand Coalition seeks to bypass. The Federation of German Industries (BDI) wants to achieve a sensible way of handling this source of energy because, after all, we are facing the challenge of having to secure economic development and prosperity and, at the same time, reduce global CO 2 emissions. If this is to be achieved, industry and politics together must build a bridge into a future with less CO 2 . That bridge would be supported on 4 pillars: - a global strategy of CO 2 reduction, - energy efficiency, - a broad energy mix, - energy research and development. In these efforts, industry and the BDI consider nuclear power an indispensable part of a viable climate and energy policy. Next to lignite, nuclear power offers electricity generation at the lowest cost, and promotes climate protection through CO 2 -free generation. As far as energy efficiency and a broad energy mix are concerned, the potentials for technical development play an important role. This is an area in which German industry can develop future markets for itself by being a leader in technology. Energy research should advance the development of existing technologies and open up new options. In this way, energy research contributes to high technologies in Germany. For nuclear power, it must be ensured that German scientists are able to participate in promising developments of new reactors in the same way in which this is the case in the development and construction of ITER, the international fusion reactor, in France. (orig.)

  18. Worldwide trends in energy use and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Improvements in energy efficiency over the past three decades have played a key role in limiting global increases in energy use and CO{sub 2} emissions. For IEA countries, energy efficiency gains since 1990 have led to annual energy savings of more than 16 EJ in 2005 and 1.3 Gt of avoided CO{sub 2} emissions. However, the recent rate of efficiency improvement has been much lower than in the past. The good news is that a large potential remains for further energy and CO{sub 2} savings across all sectors. In industry alone, the application of proven technologies and best practices on a global scale could save between 1.9 Gt and 3.2 Gt of CO{sub 2} emissions per year. In public power generation, if all countries produced electricity at current best practice levels, CO{sub 2} savings would be between 1.8 Gt and 2.5 Gt. 40 figs., 5 tabs., 3 annexes.

  19. Energy efficiency as a competitive advantage; Energieeffizienz als Wettbewerbsvorteil

    Energy Technology Data Exchange (ETDEWEB)

    Agricola, A.C. [Deutsche Energie-Agentur GmbH (dena), Berlin (Germany)

    2008-06-15

    'The Energy Efficiency Award 'with a prize of 30,000 Euro is conferred to enterprises from industry and trades for transformation of outstanding operational projects for the increase of energy efficiency. The winners of the 'Energy Efficiency Award 2008' point out the role of the increase of energy efficiency in the cost reduction and increase of net yield. The first price was conferred to Festo AG (Esslingen, Federal Republic of Germany). This enterprise could save 38 % of the annual energy costs by an energy-efficient conversion of a location extension in comparison to a conventional planning. The second price was conferred to Leiber GmbH (Bremsche, Federal Republic of Germany) and Mercedes-Benz factory Untertuerkheim of Daimler Benz AG. With a new energy-efficient waste water purification, Leiber GmbH could save 72 % of the current consumption in comparison to the technology used previously. By means of suitable energy efficiency measures, Mercedes-Benz factory Untertuerkheim could save nearly 9 million Euro per year at energy costs. For these three examples, the author of the contribution under consideration describes the measures leading to this success.

  20. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  1. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  2. Guide to energy efficiency opportunities in Canadian foundries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In Canada, the foundry sector employs about 15000 people and most of the companies are members of the Canadian Foundry Association (CFA). The CFA is committed to reducing its greenhouse gas emissions and is therefore looking for energy savings which, in addition to reducing emissions, would help the industry save costs and improve its competitiveness. The aim of this document is to provide operators with a guide to improving energy efficiency in their foundries. The report provides guidance on carrying out energy audits, gathering energy saving ideas, prioritizing projects, and charting the course of improved energy performance. Many different energy saving ideas for many kinds of operation are presented in this guidebook as a help to operators in finding where they could improve their energy efficiency; references to energy saving methods from all over the world are provided. This guidebook is a useful tool for helping foundry operators improve energy efficiency in their operations.

  3. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  4. Enabling Energy Efficiency in South Africa's Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  5. Market leadership by example: Government sector energy efficiency in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  7. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China

    International Nuclear Information System (INIS)

    Guo, Z.C.; Fu, Z.X.

    2010-01-01

    A survey of the key issues associated with the development in the Chinese iron and steel industry and current situations of energy consumption are described in this paper. The apparent production of crude steel in China expanded to 418.78 million tonnes in 2006, which was about 34% share of the world steel production. The iron and steel industry in China is still one of the major high energy consumption and high pollution industries, which accounts for the consumption of about 15.2% of the national total energy, and generation of 14% of the national total wastewater and waste gas and 6% of the total solid waste materials. The average energy consumption per unit of steel is about 20% higher than that of other advanced countries due to its low energy utilization efficiency. However, the energy efficiency of the iron and steel industry in China has made significant improvement in the past few years and significant energy savings will be achieved in the future by optimizing end-use energy utilization. Finally, some measures for the industry in terms of the economic policy of China's 11th five-year plan are also presented.

  8. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  9. Trends in energy use and fuel efficiency in the US commercial airline industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.B.

    1981-12-01

    The record of the US commercial airline industry in improving fuel efficiency from 1973 to 1980 is examined. The components of the efficiency changes and how much fuel they saved are identified. The analysis focused only on the transportion of passengers, excluding helicopter service, commuter service, and flights devoted solely to transporting cargo. (MHR)

  10. International spillover and rebound effects from increased energy efficiency in Germany

    International Nuclear Information System (INIS)

    Koesler, Simon; Swales, Kim; Turner, Karen

    2016-01-01

    The pollution/energy leakage literature raises the concern that policies implemented in one country, such as a carbon tax or tight energy restrictions, might simply result in the reallocation of energy use to other countries. This paper addresses these concerns in the context of policies to increase energy efficiency, rather than direct action to reduce energy use. Using a global CGE simulation model, we extend the analyses of ‘economy-wide’ rebound from the national focus of previous studies to incorporate international spill-over effects from trade in goods and services. Our focus is to investigate whether these effects have the potential to increase or reduce the overall (global) rebound of local energy efficiency improvements. In the case we consider, increased energy efficiency in German production generates changes in comparative advantage that produce negative leakage effects, thereby actually rendering global rebound less than national rebound. - Highlights: • Offers first CGE analysis of full global spill-over effects of energy efficiency • Derives rebound definitions at sector, all industry, economy-wide and global levels • Extends understanding of how rebound extends from industry to global economy levels • Shows that changes in comparative advantage may constrain global rebound effects

  11. Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program

    Directory of Open Access Journals (Sweden)

    Fredrik Backman

    2017-01-01

    Full Text Available Improved energy efficiency has become a strategic issue and represents a priority for European competitiveness. Countries adopt various energy policies on local and national levels where energy audit programs are the most common energy end-use efficiency policy for industrial small- and medium-sized enterprises (SMEs. However, studies indicate that cost-efficient energy conservation measures are not always implemented, which can be explained by the existence of barriers to energy efficiency. This paper investigates how Swedish municipalities can support local micro- and small-sized enterprises with improved energy efficiency and the existence of different barriers to the implementation of energy efficiency. Relating this empirical case study to the theoretical barriers outlined in the text, this study found that the major explanatory factors related to non-implementation of cost-effective energy efficiency measures among micro- and small-sized industrial enterprises were bounded rationality (lack of time and/or other priorities, split incentives (having other priorities for capital investments, and imperfect information (slim organization and lack of technical skill. This study also found that information in the form of a report was the main thing that companies gained from working on the project “Energy-Driven Business”. Notably, the study involved companies that had participated in a local energy program and, still, companies face major barriers inhibiting implementation, indicating a need to further study other alternative policy models and how knowledge transfer can be improved.

  12. Effective energy management system using ISO 9000/14000 concept industries

    International Nuclear Information System (INIS)

    Asfaazam Kasbani; Kamaruzzaman Sopian

    2006-01-01

    Energy management is a system of managing energy utilization wisely and it includes issues such as energy efficiency (conservation), use of renewable energy, use of technology and development of energy policy. Its benefits has been well known for cost reduction and increase competitiveness and also other indirect impact such as preserving the natural resources and reduction of green-house gases. Although various strategies have been formulated by the government for the industries to adopt energy management, the result seems to be minimal and stagnant in some ways due to the various barriers which exists. Industries on the other hand, have successfully welcomed two famous management system namely the Environmental Management System ISO 14000 and the Quality Management System ISO 9000 to be implemented at their premises. This paper shows how energy management system can be effectively implemented by comparing similar generic management elements of energy management to ISO 9000/14000 standards. The seven (7) elements of energy management system discussed are top management commitment, policy establishment, energy management team, energy audit, energy efficiency projects, monitoring and training

  13. China's coke industry: Recent policies, technology shift, and implication for energy and the environment

    International Nuclear Information System (INIS)

    Huo, Hong; Lei, Yu; Zhang, Qiang; Zhao, Lijian; He, Kebin

    2012-01-01

    China is the largest coke producer in the world, accounting for over 60% of the world coke production, which makes the coke industry in China a significant coal consumer and air pollutant emitter. Recently, China has taken a series of measures to improve energy efficiency and reduce emissions from the coke industry, including eliminating old and low energy-efficiency coking technologies, promoting advanced technologies, and strengthening energy and environmental requirements on coking processes. As a consequence, China's coke industry is experiencing an unprecedented technology shift, which was characterized by the elimination of old, inefficient, and polluting indigenous ovens and small machinery ones within 10 years. This study examines the policies and the prompt technology shift in China's coke industry, as well as the associated energy and environmental effects, and discusses the implications with respect to the development of the coke industry in China towards a more efficient and clean future. As China sets stricter requirements on energy efficiency and the ambient environment, a more significant change focusing on technologies of energy saving and emission reduction is urgently needed at present. Those mature technologies, including coke dry quenching, coke oven gas recycle, fine particle removal, etc., should be enforced in the near future. - Highlights: ► With 60% of world coke output, China's coke making has big energy/pollution issues. ► Actions were taken to improve energy and environmental performance of coke plants. ► China's coke industry is experiencing an unprecedented technology shift. ► Another shift, focusing on technologies of energy and emission saving, is needed. ► More measurement studies on coking emissions are needed given the importance.

  14. Prospects for revitalization of the U.S. nuclear energy industry

    International Nuclear Information System (INIS)

    Colvin, Joe F.

    1998-01-01

    Today I want to make two key points about the U.S. nuclear energy industry. First, key policy issues are beginning to converge in a way that is very positive for our industry - and for society as a whole. And Second, the industry has worked hard to prepare for the future - and we are ready to make the most of these positive developments. Nuclear energy's prospects are the brightest they have been at any time in history. The plan identifies the building blocks that must be in place before utilities start building the next generation of nuclear plants. One, we wanted to improve the efficiency and reliability of our operating nuclear plants. Two, we wanted to establish a regulatory framework for license renewal. Three, we wanted to develop a more efficient licensing process for new plants. In closing, I am confident that the 21st century will bring a renaissance for nuclear energy-in the United States and around the world. The U.S. nuclear energy industry has a renewed vitality and sense of mission today. We've worked hard preparing for the future- and we will continue to be strong players in worldwide energy policy development in the 21st century. (Cho, G. S.)

  15. Creating Jobs through Energy Efficiency Using Wisconsin's Successful Focus on Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Masood; Corrigan, Edward; Reitter, Thomas

    2012-03-30

    The purpose of this project was to provide administrative and technical support for the completion of energy efficiency projects that reduce energy intensity and create or save Wisconsin industrial jobs. All projects have been completed. Details in the attached reports include project management, job development, and energy savings for each project.

  16. Potential energy savings and CO2 emissions reduction of China's cement industry

    International Nuclear Information System (INIS)

    Ke, Jing; Zheng, Nina; Fridley, David; Price, Lynn; Zhou, Nan

    2012-01-01

    This study analyzes current energy and carbon dioxide (CO 2 ) emission trends in China's cement industry as the basis for modeling different levels of cement production and rates of efficiency improvement and carbon reduction in 2011–2030. Three cement output projections are developed based on analyses of historical production and physical and macroeconomic drivers. For each of these three production projections, energy savings and CO 2 emission reduction potentials are estimated in a best practice scenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal the potential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related direct emission reductions of 3.2 to 4.4 gigatonnes in 2011–2030 under the best practice scenarios. The continuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules and reduce CO 2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiency is the most important policy measure for reducing the cement industry's energy and emissions intensity, given the current state of the industry and the unlikelihood of significant carbon capture and storage before 2030. In addition, policies to reduce total cement production offer the most direct way of reducing total energy consumption and CO 2 emissions. - Highlights: ► This study models output and efficiency improvements in Chinese cement industry from 2011–2030. ► Energy savings and CO 2 emission reductions estimated for 3 scenarios relative to frozen scenario. ► Results reveal cumulative final energy savings potential of 27.1–37.5 EJ and 3.2–4.4 Gt CO 2 reductions. ► Increasing efficiency is the most important policy for reducing cement energy and emissions intensity.

  17. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  18. Promoting energy efficiency in developing countries: The role of NGOs

    International Nuclear Information System (INIS)

    Wojtaszek, E.I.

    1993-06-01

    Developing countries need energy growth to spur economic growth. Yet energy activities contribute significantly to local water pollution and global greenhouse gas emissions. Energy efficiency offers the means to achieve the twin goals of sustainable economic/social development and environmental protection. Energy efficiency increases industrial competitiveness and frees up capital so it can be applied to other uses, such as health and education. The key to improving energy efficiency in developing countries will be acquiring and applying Western technologies, practices, and policies and building national institutions for promoting energy efficiency. Relevant energy-efficient technologies include the use of better electric motors, adjustable speed controls, combined cycle power cogeneration, improved lighting, better refrigeration technologies, and improved electric power transmission and distribution systems. Western countries can best help developing countries by providing guidance and resources to support nongovernmental organizations (NGOS) staffed by local experts; these institutions can capture the energy efficiency potential and ensure environmental protection in developing countries

  19. Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors

    International Nuclear Information System (INIS)

    Olanrewaju, O.A.; Jimoh, A.A.; Kholopane, P.A.

    2012-01-01

    This paper puts forward an integrated approach, based on logarithmic mean divisia index (LMDI) – an index decomposition analysis (IDA) method, an artificial neural network (ANN) and a data envelopment analysis (DEA) for the analysis of total energy efficiency and optimization in an industrial sector. The energy efficiency assessment and the optimization of the proposed model use LMDI to decompose energy consumption into activity, structural and intensity indicators, which serve as inputs to the ANN. The ANN model is verified and validated by performing a linear regression comparison between the specifically measured energy consumption and the corresponding predicted energy consumption. The proposed approach utilizes the measure-specific, super-efficient DEA model for sensitivity analysis to determine the critical measured energy consumption and its optimization reductions. The proposed method is validated by its application to determine the efficiency computation and an analysis of historical data as well as the prediction and optimization capability of the Canadian industrial sector. -- Highlights: ► An integrated IDA–ANN–DEA model for energy management is proposed. ► The model relies on aggregate energy and GDP data. ► The model explains how energy can be managed in the Canadian Industrial sector.

  20. Analysis of the energy consumption of the industry, agriculture and construction industry 1982-1996. Background document for the report `Monitoring energy consumption and energy policy in the Netherlands; Analyse energieverbruik industrie, landbouw en bouw 1982-1996. Achtergronddocument bij het rapport Monitoring Energieverbruik en Beleid Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Van Dril, A.W.N. [ECN-Beleidsstudies, Petten (Netherlands)

    1999-01-01

    In this study energy consumption is related to economic and physical production of the manufacturing industry, agriculture and construction in the Netherlands from 1982-1996. Analysis of separate effects is performed and an attempt is made to explain the divergence found between energy consumption and production. These separate effects include developments in economic output, sectoral composition, product output and composition, energy technology, energy prices and policy regarding efficiency improvement. In manufacturing industry, energy intensity and efficiency improvements occur in all sectors with 1-1,5% annually on average. This effect mainly concerns fuel consumption, whereas electricity intensity slowly rises in most sectors. No clear price sensitivity was observed. Energy intensive sectors have gained a larger share in total production. Upgrading of products with respect to their physical content (dematerialization) was not clearly found on an aggregated level. Data problems occur in the chemical sector. Energy efficiency policy has modest effects. In greenhouse horticulture, energy price sensitivity was found and major efficiency improvements consequently occurred only in the early eighties. In refineries, also upgrading of products contributed to an intensity improvement of 4% on average. 9 refs.