WorldWideScience

Sample records for energy efficiency commercial

  1. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...

  2. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency and..., Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence...

  3. Deployment of commercial energy efficiency cooking

    International Nuclear Information System (INIS)

    1999-04-01

    This research concerned the promotion of energy-efficient wood stoves in commercial and institutional kitchens in Ethiopia, Kenya, Tanzania and Uganda through technology transfer and training of local commercial stove producers. The key objective of the project was to introduce proven designs of energy-efficient wood stoves to producers in the target countries and train them in the manufacture and marketing of these stoves. The improved designs save 50% of the fuel used by the traditional stoves - a major saving where 10-15% of the kitchen budget is spent on fuel. They also remove smoke more effectively, protect cooks from heat and burns, and are easier to keep clean. The project went well although results have varied from one country to the other. In conclusion, the technology transfer of commercial stove designs can take place between neighbouring countries by a process of training, study visits, prototype development, market surveys and producer support.(author)

  4. Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors

    International Nuclear Information System (INIS)

    Kondo, Kumiko

    2009-01-01

    Unlike the manufacturing sector, the residential/commercial sectors of Japan struggle to meet their environmental requirements. For instance, their CO 2 emission levels have increased tremendously since 1990. This research estimates energy and 'exergy (available energy)' efficiencies in Japan's residential/commercial sectors during the period 1990-2006. Since an exergy analysis reveals 'available energy losses', it is an effective tool to achieve sustainable societies. The primary objective of this paper is to examine the potential for advancing the 'true' energy efficiency in Japan's residential/commercial sectors-by observing energy and exergy efficiency disparities. The results show large differences between the overall energy and exergy efficiencies in the residential (60.12%, 6.33%)/commercial sectors (51.78%, 5.74%) in 2006. This implies great potential for energy savings in both sectors. Furthermore, this research suggests that the residential sector may face more difficulties than the commercial sector, although the latter appears to be less energy-efficient, according to recent statistics. This is because the disparity between energy and exergy efficiencies has expanded in the residential sector since 2000. This study illustrates the importance of exergy analyses in promoting sustainable energy policies and new adaptation strategies.

  5. Commercial mortgages: An underutilized channel for scaling energy efficiency investments?

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Wallace, Nancy; Alschuler, Elena; Kolstad, Leonard

    2016-02-01

    Commercial mortgages currently do not fully account for energy factors in underwriting and valuation, particularly as it relates to the impact of energy costs and volatility on an owner’s net operating income. As a consequence, energy efficiency is not properly valued and energy risks are not properly assessed and mitigated. Commercial mortgages are a large lever and could be a significant channel for scaling energy efficiency investments. A pilot analysis of loans with different mortgage contract structures and locations showed that when energy cost volatility was included in mortgage valuation, a 20% reduction in energy use resulted in a 1.3% average increase in mortgage value. This suggests that the explicit inclusion of energy use and volatility in mortgage valuation can send a strong price signal that financially rewards and values energy efficiency in commercial properties. This paper presents findings from a scoping study addressing energy factors in commercial mortgages. First, we present a review of current practices as it relates to incorporating energy factors into commercial mortgage underwriting and valuation. Next, we detail the impacts of energy factors on property values, net operating income and mortgage valuation. Building operational practices alone can result in energy use variations from -17% to 87%. Finally, we present a set of proposed interventions to properly address energy factors in commercial mortgages, based on extensive discussions with stakeholders including mortgage originators, underwriters, building owners and regulators.

  6. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  7. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    International Nuclear Information System (INIS)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-01-01

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  8. Establishing an energy efficiency recommendation for commercial boilers

    International Nuclear Information System (INIS)

    Ware, Michelle J.

    2000-01-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of$40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over$25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings

  9. Benchmarking the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William; Hui, Y.V.; Lam, Y. Miu

    2006-01-01

    Benchmarking energy-efficiency is an important tool to promote the efficient use of energy in commercial buildings. Benchmarking models are mostly constructed in a simple benchmark table (percentile table) of energy use, which is normalized with floor area and temperature. This paper describes a benchmarking process for energy efficiency by means of multiple regression analysis, where the relationship between energy-use intensities (EUIs) and the explanatory factors (e.g., operating hours) is developed. Using the resulting regression model, these EUIs are then normalized by removing the effect of deviance in the significant explanatory factors. The empirical cumulative distribution of the normalized EUI gives a benchmark table (or percentile table of EUI) for benchmarking an observed EUI. The advantage of this approach is that the benchmark table represents a normalized distribution of EUI, taking into account all the significant explanatory factors that affect energy consumption. An application to supermarkets is presented to illustrate the development and the use of the benchmarking method

  10. Enabling Energy Efficiency in South Africa's Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  11. Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Hochman, Gal; Fedets, Iryna

    2016-01-01

    Improvement of energy efficiency is an important element of energy policy for a sustainable supply of energy in Ukraine. However, the country is facing several challenges to the large-scale deployment of energy efficient technologies. We conducted a two-stage quota sample survey of 509 commercial and industrial firms of all regions of Ukraine to understand the barriers to energy efficiency improvements. Our study finds that more than two-thirds of the commercial and industrial firms in the country view improvement of energy efficiency very important to their business. However, due to several barriers they are unable to realize the improvements of energy efficiency. Among the 19 potential barriers investigated in the study, the survey results show that high upfront investment requirement, lack of government policies to support energy efficiency improvements, higher cost of capital, and lack of information and awareness are the most critical barriers to the improvement of energy efficiency in the industrial and commercial sectors in Ukraine. - Highlights: • Despite attractiveness, large scale deployment of energy efficiency is lacking. • Several barriers are responsible for slow implementation of energy efficiency. • Understanding the barriers from the field is crucial to design effective policies. • A survey of commercial and industrial firms reveals the key barriers. • Financial barriers are the main hurdles to adopt energy efficient technologies.

  12. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  13. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  14. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  15. The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study

    International Nuclear Information System (INIS)

    Buck, J.; Young, D.

    2007-01-01

    The achievement of energy efficiency in commercial buildings is a function of the activities undertaken, the technology in place, and the extent to which those technologies are used efficiently. We study the factors that affect efficient energy use in the Canadian commercial sector by applying a stochastic frontier approach to a cross-section of Canadian commercial buildings included in the Commercial and Institutional Building Energy Use Survey (CIBEUS). Structural and climate-control features of the buildings as well as climatic conditions are assumed to determine the location of the frontier, while management-related variables including such factors as ownership type and activities govern whether or not the maximally attainable efficiency along the frontier is achieved. Our results indicate that although, on average, buildings appear to be fairly efficient, certain types of operations are more likely than others to exhibit energy efficiencies that are significantly worse than average. These results, along with those related to the effects of physical characteristics on the stochastic efficiency frontier, suggest that there is scope for focused policy initiatives to increase energy efficiency in this sector

  16. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  17. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    International Nuclear Information System (INIS)

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando

    2006-01-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m 2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  18. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  19. Estimating the energy and exergy utilization efficiencies for the residential-commercial sector: an application

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2006-01-01

    The main objectives in carrying out the present study are twofold, namely to estimate the energy and exergy utilization efficiencies for the residential-commercial sector and to compare those of various countries with each other. In this regard, Turkey is given as an illustrative example with its latest figures in 2002 since the data related to the following years are still being processed. Total energy and exergy inputs in this year are calculated to be 3257.20 and 3212.42 PJ, respectively. Annual fuel consumptions in space heating, water heating and cooking activities as well as electrical energy uses by appliances are also determined. The energy and exergy utilization efficiency values for the Turkish residential-commercial sector are obtained to be 55.58% and 9.33%, respectively. Besides this, Turkey's overall energy and exergy utilization efficiencies are found to be 46.02% and 24.99%, respectively. The present study clearly indicates the necessity of the planned studies toward increasing exergy utilization efficiencies in the sector studied

  20. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  1. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  2. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...

  3. In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining

    Directory of Open Access Journals (Sweden)

    Byeongjoon Noh

    2017-11-01

    Full Text Available Significant amounts of energy are consumed in the commercial building sector, resulting in various adverse environmental issues. To reduce energy consumption and improve energy efficiency in commercial buildings, it is necessary to develop effective methods for analyzing building energy use. In this study, we propose a data cube model combined with association rule mining for more flexible and detailed analysis of building energy consumption profiles using the Commercial Buildings Energy Consumption Survey (CBECS dataset, which has accumulated over 6700 existing commercial buildings across the U.S.A. Based on the data cube model, a multidimensional commercial sector building energy analysis was performed based upon on-line analytical processing (OLAP operations to assess the energy efficiency according to building factors with various levels of abstraction. Furthermore, the proposed analysis system provided useful information that represented a set of energy efficient combinations by applying the association rule mining method. We validated the feasibility and applicability of the proposed analysis model by structuring a building energy analysis system and applying it to different building types, weather conditions, composite materials, and heating/cooling systems of the multitude of commercial buildings classified in the CBECS dataset.

  4. Quantification protocol for energy efficiency in commercial and institutional buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Alberta Environment has developed an approved methodology that can be used to quantify the reduction of direct and indirect greenhouse gas emission observed after the implementation of energy efficiency measures in commercial and institutional buildings. This methodology concerns energy conservation measures that target the heating system, the ventilation, the air conditioning and lightning systems, but also includes building envelope, tap water heating, elevators, occupant small electrical equipment, outdoor lighting, swimming pool pumping or heating. Calculation methodologies for energy conservation proposed by the Efficiency Valuation Organization were adapted by Alberta Environment. The protocol detailed in this document is based on the fact that emissions reductions are represented by the difference between the energy use in the project condition and a baseline. This approach proposes simple and advanced calculation methodologies that allow project developers to use one or the other, depending on the availability of data and on the limitations of the project, to maximize the greenhouse gas emissions reductions quantified. 14 refs., 11 tabs., 5 figs.

  5. 10 CFR 431.86 - Uniform test method for the measurement of energy efficiency of commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... efficiency of commercial packaged boilers. 431.86 Section 431.86 Energy DEPARTMENT OF ENERGY ENERGY... Boilers Test Procedures § 431.86 Uniform test method for the measurement of energy efficiency of... packaged boiler equipment classes. (B) On or after March 2, 2012, conduct the thermal efficiency test as...

  6. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  7. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  8. Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China

    International Nuclear Information System (INIS)

    Hou, Jing; Liu, Yisheng; Wu, Yong; Zhou, Nan; Feng, Wei

    2016-01-01

    The energy efficiency of existing commercial buildings is more challenging to regulate and improve than the energy efficiency of new constructions. In 2011 and 2012, the Chinese Government selected four cities- Shanghai, Tianjin, Shenzhen, and Chongqing- to implement pilot commercial building energy efficiency retrofit program. Based on site surveys and expert interviews in these pilot cities, this research conducted a comparative analysis on incentive policies of local city level. The analysis results show that policy designs of existing commercial buildings should be further improved. The aspects that influence the implementation effect in the future, such as subsidy level, installments, and business model promotion, should be specified in the policy clauses. Referring to the technical solution and cost-benefit in Chongqing, we found that lighting system is the most common retrofit objects while envelope system is the least common one. And the subsidy incentive is greatest for educational buildings, followed by office buildings. In the end, we further discussed the problems and obstacles in commercial building retrofit market, and provided a series of recommendations. - Highlights: • Data and information were collected through site surveys to the four pilot cities. • Policy design and effectiveness in four cities were comparatively analyzed. • Well-designed policy increases market response, energy savings and EMC adoption. • Lighting is the most common retrofit while envelope is the least common one. • Subsidy incentive is greatest for educational buildings due to the utility tariff.

  9. Commercial Midstream Energy Efficiency Incentive Programs: Guidelines for Future Program Design, Implementation, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Milostan, Catharina [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States); Guzowski, Leah Bellah B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Many electric utilities operate energy efficiency incentive programs that encourage increased dissemination and use of energy-efficient (EE) products in their service territories. The programs can be segmented into three broad categories—downstream incentive programs target product end users, midstream programs target product distributors, and upstream programs target product manufacturers. Traditional downstream programs have had difficulty engaging Small Business/Small Portfolio (SBSP) audiences, and an opportunity exists to expand Commercial Midstream Incentive Programs (CMIPs) to reach this market segment instead.

  10. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  11. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coleman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wallace, Nancy [Univ. of California, Berkeley, CA (United States); Issler, Paulo [Univ. of California, Berkeley, CA (United States); Kolstad, Lenny [Inst. for Market Transformation, Washington, DC (United States); Sahadi, Robert [Inst. for Market Transformation, Washington, DC (United States)

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body of research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.

  12. Measuring Energy Efficiency in China’s Transport Sector

    Directory of Open Access Journals (Sweden)

    Han Hao

    2017-05-01

    Full Text Available Energy efficiency is one of the key factors affecting energy consumption and greenhouse gas (GHG emissions. By focusing on China’s transport sector, this study comprehensively reviews and compares the energy efficiency performance of passenger vehicles, light-duty commercial vehicles, commercial road transport, commercial water transport, aviation transport and railway transport, and identifies the opportunities for further energy efficiency improvements. It is found that railway transport exhibited the greatest improvement in energy efficiency during the past decade, which was mainly driven by progress in its electrification. Passenger vehicles have also experienced considerable energy efficiency improvements, which can be mainly attributed to the establishment of mandatory fuel consumption standards. In contrast, commercial road transport has shown the least improvement, due to insufficient policy implementations. Based on the analysis, it is recommended that, as China’s present policy framework to improve energy efficiency in the transport sector is generally effective, it should be consistently maintained and successively improved. Electrification represents a major opportunity for improvement of energy efficiency in the transport sector. Such potential should be fully tapped for all transport modes. Greater effort should be put into improving the energy efficiency of commercial road transport. The policy instruments utilized to improve the energy efficiency of heavy-duty vehicles should be as intensive and effective as the policy instruments for passenger vehicles.

  13. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  14. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  15. Human-centered sensor-based Bayesian control: Increased energy efficiency and user satisfaction in commercial lighting

    Science.gov (United States)

    Granderson, Jessica Ann

    2007-12-01

    The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general

  16. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  17. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  18. Estimating energy conservation potential in China's commercial sector

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Ailun

    2015-01-01

    With low energy intensity and great potential for growth, the commercial sector has become one of the key sectors for energy conservation and emission reduction in the context of China's rapid urbanization process. Based on the EIA (Energy Information Administration) statistical methods, this paper calculates the energy consumption of China's commercial sector from 1981 to 2012, specifies the determinants of commercial energy demand, forecasts future energy consumption and estimates the energy conservation potentials using the Johansen co-integration methodology. The results indicate: (i) GDP (Gross Domestic Product) and urbanization have positive effects on the energy consumption of the commercial sector while labor productivity and energy price contribute to reduction in the sector's energy consumption. (ii) Under the basic scenario, energy consumption of the commercial sector will be 317.34 and 469.84 Mtce (million tons of coal equivalent) in 2015 and 2020 respectively. (iii) Under the moderate and advanced scenario, about 187.00 and 531.45 Mtce respectively of the energy consumption of the commercial sector can be conserved from 2013 to 2020. The findings have important implications for policy-makers to enact energy-saving policies. - Highlights: • Calculation of China's commercial energy consumption and saving potential. • Co-integration model is applied to estimate commercial energy efficiency. • Decomposition of driving forces of energy consumption. • Future policies for commercial energy efficiency are discussed

  19. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  20. Understanding the potential of facilities managers to be advocates for energy efficiency retrofits in mid-tier commercial office buildings

    International Nuclear Information System (INIS)

    Curtis, Jim; Walton, Andrea; Dodd, Michael

    2017-01-01

    Realising energy efficiency opportunities in new commercial office buildings is an easier task than retrofitting older, mid-tier building stock. As a result, a number of government programs aim to support retrofits by offering grants, upgrades, and energy audits to facilitate energy efficiency opportunities. This study reports on a state government program in Victoria, Australia, where the uptake of such offerings was lower than expected, prompting the program team to consider whether targeting facilities managers (FMs), rather than building owners, might be a better way of delivering the program. The influences and practices of FMs that impact on their ability to be advocates for energy efficiency were explored. The results revealed that complex building ownership arrangements, poor communication skills, isolation from key decision making processes, a lack of credible business cases and information, split incentives, and the prospect of business disruptions can all impact on FMs’ ability to drive organizational change. Future program efforts should continue to interrogate the social context of retrofits in mid-tier buildings, including other influences and influencers beyond FMs, and adapt accordingly. - Highlights: • Energy efficiency retrofits of older commercial buildings can be a challenge. • Government support for retrofits is not always taken up by building owners. • Targeting facilities managers (FMs) to encourage retrofits is proposed. • FMs’ ability to be advocates for energy efficiency is constrained. • Government offerings need to better fit with the realities of the problem.

  1. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  2. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  3. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  4. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess

  5. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  6. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  7. 10 CFR 431.97 - Energy efficiency standards and their effective dates.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...

  8. Energy and exergy analysis at the utility and commercial sectors of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Abdessalam, H.; Shahruan, B.S.

    2007-01-01

    In this paper, sectoral energy and exergy analysis model is applied to the utility and commercial sectors of Malaysia by considering the energy and exergy flows from 1990 to 2003. The energy and exergy efficiencies are determined for the sub-sectors and devices used in these two sectors. It has been found the hydroelectric power plant sub-sector is more energy and exergy efficient compared to the thermal power plant sub-sector. The energy and exergy efficiencies of utility and commercial sectors of Malaysia are compared with a few other countries around the world as well. The utility and commercial sectors of Malaysia are found to be more efficient than that of Thailand, Brunei, China, and Vietnam in 1999

  9. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  10. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  11. Chapter 2: Commercial and Industrial Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gowans, Dakers [Left Fork Energy, Harrison, NY (United States); Telarico, Chad [DNV GL, Mahwah, NJ (United States)

    2017-11-02

    The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.

  12. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  13. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  14. Commercial Discount Rate Estimation for Efficiency Standards Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-13

    Underlying each of the Department of Energy's (DOE's) federal appliance and equipment standards are a set of complex analyses of the projected costs and benefits of regulation. Any new or amended standard must be designed to achieve significant additional energy conservation, provided that it is technologically feasible and economically justified (42 U.S.C. 6295(o)(2)(A)). A proposed standard is considered economically justified when its benefits exceed its burdens, as represented by the projected net present value of costs and benefits. DOE performs multiple analyses to evaluate the balance of costs and benefits of commercial appliance and equipment e efficiency standards, at the national and individual building or business level, each framed to capture different nuances of the complex impact of standards on the commercial end user population. The Life-Cycle Cost (LCC) analysis models the combined impact of appliance first cost and operating cost changes on a representative commercial building sample in order to identify the fraction of customers achieving LCC savings or incurring net cost at the considered efficiency levels.1 Thus, the choice of commercial discount rate value(s) used to calculate the present value of energy cost savings within the Life-Cycle Cost model implicitly plays a key role in estimating the economic impact of potential standard levels.2 This report is intended to provide a more in-depth discussion of the commercial discount rate estimation process than can be readily included in standard rulemaking Technical Support Documents (TSDs).

  15. The Commercial Energy Consumer: About Whom Are We Speaking?

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Christopher

    2006-05-12

    Who are commercial sector customers, and how do they make decisions about energy consumption and energy efficiency investment? The energy policy field has not done a thorough job of describing energy consumption in the commercial sector. First, the discussion of the commercial sector itself is dominated by discussion of large businesses/buildings. Second, discussion of this portion of the commercial sectors consumption behavior is driven primarily by theory, with very little field data collected on the way commercial sector decision-makers describe their own options, choices, and reasons for taking action. These limitations artificially constrain energy policy options. This paper reviews the extant literature on commercial sector energy consumption behavior and identifies gaps in our knowledge. In particular, it argues that the primary energy policy model of commercial sector energy consumption is a top-down model that uses macro-level investment data to make conclusions about commercial behavior. Missing from the discussion is a model of consumption behavior that builds up to a theoretical framework informed by the micro-level data provided by commercial decision-makers themselves. Such a bottom-up model could enhance the effectiveness of commercial sector energy policy. In particular, translation of some behavioral models from the residential sector to the commercial sector may offer new opportunities for policies to change commercial energy consumption behavior. Utility bill consumption feedback is considered as one example of a policy option that may be applicable to both the residential and small commercial sector.

  16. Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector

    International Nuclear Information System (INIS)

    Anson, Sam; Turner, Karen

    2009-01-01

    In this paper, we use an energy-economy-environment computable general equilibrium (CGE) model of the Scottish economy to examine the impacts of an exogenous increase in energy augmenting technological progress in the domestic commercial Transport sector on the supply and use of energy. We focus our analysis on Scottish refined oil, as the main type of energy input used in commercial transport activity. We find that a 5% increase in energy efficiency in the commercial Transport sector leads to rebound effects in the use of oil-based energy commodities in all time periods, in the target sector and at the economy-wide level. However, our results also suggest that such an efficiency improvement may cause a contraction in capacity in the Scottish refined oil supply sector. This 'disinvestment effect' acts as a constraint on the size of rebound effects. However, the magnitude of rebound effects and presence of the disinvestment effect in the simulations conducted here are sensitive to the specification of key elasticities of substitution in the nested production function for the target sector, particularly the substitutability of energy for non-energy intermediate inputs to production.

  17. Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Anson, Sam [Transport Analytical Services, Scottish Government, Victoria Quay, Edinburgh, EH6 6QQ (United Kingdom); Turner, Karen [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2009-09-15

    In this paper, we use an energy-economy-environment computable general equilibrium (CGE) model of the Scottish economy to examine the impacts of an exogenous increase in energy augmenting technological progress in the domestic commercial Transport sector on the supply and use of energy. We focus our analysis on Scottish refined oil, as the main type of energy input used in commercial transport activity. We find that a 5% increase in energy efficiency in the commercial Transport sector leads to rebound effects in the use of oil-based energy commodities in all time periods, in the target sector and at the economy-wide level. However, our results also suggest that such an efficiency improvement may cause a contraction in capacity in the Scottish refined oil supply sector. This 'disinvestment effect' acts as a constraint on the size of rebound effects. However, the magnitude of rebound effects and presence of the disinvestment effect in the simulations conducted here are sensitive to the specification of key elasticities of substitution in the nested production function for the target sector, particularly the substitutability of energy for non-energy intermediate inputs to production. (author)

  18. Commercial Building Energy Asset Rating Program -- Market Research

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  19. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Shah, N. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, W. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficient and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and Indonesia

  20. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  1. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  2. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  3. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  4. Alliance for Sustainable Colorado Renovation Raises Its Energy Performance to New Heights, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Alliance for Sustainable Colorado (The Alliance) is a nonprofit organization aiming to transform sustainability from vision to reality. Part of its mission is to change the operating paradigms of commercial building design to make them more sustainable. Toward that end The Alliance uses its headquarters, The Alliance Center at 1536 Wynkoop Street in Denver, as a living laboratory, conductingpilot studies of innovative commercial-building-design solutions for using and generating energy.

  5. Roadmap for the Future of Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria.

  6. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  7. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  8. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  9. Establishing a commercial building energy data framework for India

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Satish [Alliance for an Energy Efficient Economy, New Delhi (India); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Stratton, Hannah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathew, Paul A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singh, Mohini [Synurja, Inc. (India)

    2018-04-18

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The United States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.

  10. Commercial and institutional consumption of energy survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    This paper presented the results of a survey on 2004 energy consumption data for commercial and institutional establishments in Canada. The objective of the survey was to enable Natural Resources Canada to develop programs to support institutions seeking to gain greater energy efficiency and reduce greenhouse gas (GHG) emissions. Data were published by energy source and region. Energy intensity data were presented by region amongst the following commercial and institutional sectors: retail trade including food and non-food; education including colleges and universities; health care including non-hospital health care and hospitals; and accommodation and food services. Data obtained on each establishment's energy consumption and floor area were used to calculate their energy intensity ratio which included accounting for weather conditions, age of buildings and energy sources. It was observed that commercial and institutional establishments consumed nearly 945 million gigajoules in 2004. The wholesale trade and warehousing sector used the highest amount of energy, accounting for 17 per cent of all commercial and institutional energy use. The education sector accounted for 16 per cent of energy use, while the office sector accounted for 14 per cent. The energy intensity rate of hospitals in Canada was the highest of all sectors and subsectors, due to their nearly constant use of lighting and medical equipment. Retail trade accounted for the largest share of establishments at 26 per cent of all establishments, followed by offices with 22 per cent. Education accounted for the largest percentage of floor area. 4 tabs., 10 figs.

  11. Utilizing Commercial Real Estate Owner and Investor Data to Analyze the Financial Performance of Energy Efficient, High-Performance Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Deborah [JDM Associates, Falls Church, VA (United States); Hosseini, Farshid [JDM Associates, Falls Church, VA (United States); White, Andrew [JDM Associates, Falls Church, VA (United States)

    2017-05-01

    Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study to test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.

  12. The analysis of energy consumption of a commercial building in Tianjin, China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m 2 per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  13. Public R and D and commercialization of energy-efficient technology: A case study of Japanese projects

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Osamu, E-mail: o-kimura@criepi.denken.or.j [Central Research Institute of Electric Power Industry, 2-11-1 Iwatokita, Komae City, 201-8511 Tokyo (Japan)

    2010-11-15

    Are public R and D programs really effective in developing innovative technologies? How many technologies developed in these programs have been successfully commercialized? What are the key factors for successful commercialization and diffusion in the market? This paper tries to answer these questions by examining the Japanese experience of public R and D in demand-side energy efficiency, focusing on two major projects conducted in the 1980s and 1990s. It is found that of the 34 technologies developed in the two projects, only seven have been commercialized so far, four of those seven have only a very limited number of installations, and only one has a growing market. The results show that, while public R and D investments have a high risk of failure, they can bring new technologies to the market after a certain lead time. In addition, several factors resulting in the success or failure of commercialization/diffusion are identified, such as long-term R and D support by the government, a marketing strategy to respond to and influence market demand, and combination of R and D and deployment policy.

  14. Public R and D and commercialization of energy-efficient technology. A case study of Japanese projects

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Osamu [Central Research Institute of Electric Power Industry, 2-11-1 Iwatokita, Komae City, 201-8511 Tokyo (Japan)

    2010-11-15

    Are public R and D programs really effective in developing innovative technologies? How many technologies developed in these programs have been successfully commercialized? What are the key factors for successful commercialization and diffusion in the market? This paper tries to answer these questions by examining the Japanese experience of public R and D in demand-side energy efficiency, focusing on two major projects conducted in the 1980s and 1990s. It is found that of the 34 technologies developed in the two projects, only seven have been commercialized so far, four of those seven have only a very limited number of installations, and only one has a growing market. The results show that, while public R and D investments have a high risk of failure, they can bring new technologies to the market after a certain lead time. In addition, several factors resulting in the success or failure of commercialization/diffusion are identified, such as long-term R and D support by the government, a marketing strategy to respond to and influence market demand, and combination of R and D and deployment policy. (author)

  15. Public R and D and commercialization of energy-efficient technology: A case study of Japanese projects

    International Nuclear Information System (INIS)

    Kimura, Osamu

    2010-01-01

    Are public R and D programs really effective in developing innovative technologies? How many technologies developed in these programs have been successfully commercialized? What are the key factors for successful commercialization and diffusion in the market? This paper tries to answer these questions by examining the Japanese experience of public R and D in demand-side energy efficiency, focusing on two major projects conducted in the 1980s and 1990s. It is found that of the 34 technologies developed in the two projects, only seven have been commercialized so far, four of those seven have only a very limited number of installations, and only one has a growing market. The results show that, while public R and D investments have a high risk of failure, they can bring new technologies to the market after a certain lead time. In addition, several factors resulting in the success or failure of commercialization/diffusion are identified, such as long-term R and D support by the government, a marketing strategy to respond to and influence market demand, and combination of R and D and deployment policy.

  16. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Ahlfeldt, Christopher [Navigant Consulting, Inc., Burlington, MA (United States); Hiraiwa, Hirokazu [Navigant Consulting, Inc., Burlington, MA (United States); Sathe, Amul [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States)

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  17. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  18. Trends in energy use and fuel efficiency in the US commercial airline industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.B.

    1981-12-01

    The record of the US commercial airline industry in improving fuel efficiency from 1973 to 1980 is examined. The components of the efficiency changes and how much fuel they saved are identified. The analysis focused only on the transportion of passengers, excluding helicopter service, commuter service, and flights devoted solely to transporting cargo. (MHR)

  19. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  20. Compliance Verification Paths for Residential and Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  1. 77 FR 72763 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-06

    ... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency...; commercial heating, ventilating, air-conditioning (HVAC) equipment; and commercial water heating equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...

  2. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  3. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  4. Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update)

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Chung, Greg [Navigant Consulting, Burlington, MA (United States)

    2016-06-01

    The Department of Energy commissioned a technology characterization and assessment of appliances used in commercial buildings for cooking, cleaning, water heating, and other end-uses. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development, and demonstration opportunities to improve energy efficiency in each end-use. This report serves as an update to a 2009 report of the same name by incorporating updated data and sources where possible and updating the available technology options that provide opportunities for efficiency improvements.

  5. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  6. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

  7. Energy efficiency: The Italian situation and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, Alessandro; Beccarello, Massimo; Gallanti, Massimo

    2010-09-15

    The paper reports the results of a study led by Confindustria (Italian Federation of Industrial Associations) on the Italian situation with respect to energy efficiency policies and their effective implementations. The study is being continuously updated with the contributions of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) and ERSE (previously CESI Ricerca) and highlights the obtainable savings through efficient technologies now already available for applications in the final uses of energy for both the industrial, commercial and domestic sectors.

  8. How energy efficient is your car?

    Science.gov (United States)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  9. The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1994-05-01

    The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

  10. Purchasing-power-parity (PPP) approach to energy-efficiency measurement: implications for energy and environmental policy

    International Nuclear Information System (INIS)

    Birol, Fatih; Okogu, B.E.

    1997-01-01

    The weaknesses of the traditional measure of national output are well known and, in recent years, efforts to find more appropriate alternatives have intensified. One such methodology is the PPP approach which may capture the real value of the GDP. In general, this approach raises the incomes of developing countries by a substantial amount, and this has serious implications for energy indicators on which policies are usually based. A further problem is that non-commercial energy is usually left out of energy-intensity calculations. We analyze the issue of energy-efficiency and carry out calculations based on three approaches: the traditional approach, the PPP-based income approach and an approach which includes non-commercial energy. The results confirm the limitations of using the PPP approach, as its results in a spuriously high energy-efficiency level suggesting high technological sophistication for developing countries. The inclusion of non-commercial energy gives more complete picture. The main conclusion is that applying the PPP method in energy-intensity calculations may be misleading. (Author)

  11. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  12. 76 FR 18428 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Science.gov (United States)

    2011-04-04

    ... Ice Makers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... this proposed rule may be submitted to Office of Energy Efficiency and Renewable Energy through the... Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence Avenue, SW...

  13. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  14. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  15. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  16. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  17. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  18. Measurement Issues for Energy Efficient Commercial Buildings: Productivity and Performance Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    In previous reports, we have identified two potentially important issues, solutions to which would increase the attractiveness of DOE-developed technologies in commercial buildings energy systems. One issue concerns the fact that in addition to saving energy, many new technologies offer non-energy benefits that contribute to building productivity (firm profitability). The second issue is that new technologies are typically unproven in the eyes of decision makers and must bear risk premiums that offset cost advantages resulting from laboratory calculations. Even though a compelling case can be made for the importance of these issues, for building decision makers to incorporate them in business decisions and for DOE to use them in R&D program planning there must be robust empirical evidence of their existence and size. This paper investigates how such measurements could be made and offers recommendations as to preferred options. There is currently little systematic information on either of these concepts in the literature. Of the two there is somewhat more information on non-energy benefits, but little as regards office buildings. Office building productivity impacts can be observed casually, but must be estimated statistically, because buildings have many interacting attributes and observations based on direct behavior can easily confuse the process of attribution. For example, absenteeism can be easily observed. However, absenteeism may be down because a more healthy space conditioning system was put into place, because the weather was milder, or because firm policy regarding sick days had changed. There is also a general dearth of appropriate information for purposes of estimation. To overcome these difficulties, we propose developing a new data base and applying the technique of hedonic price analysis. This technique has been used extensively in the analysis of residential dwellings. There is also a literature on its application to commercial and industrial

  19. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  20. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  1. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  2. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  3. 78 FR 40945 - Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise...

    Science.gov (United States)

    2013-07-09

    ... AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final rule... CONTACT: Mr. Mohammed Khan, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy... Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, SW...

  4. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  5. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    Science.gov (United States)

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and

  6. An energy efficiency promotion strategy for industries and buildings in Thailand

    International Nuclear Information System (INIS)

    Vongsoasup, Sirinthorn; Du Pont, Peter

    2004-01-01

    Since 1992, when the Thai Parliament endorsed the Energy Conservation Promotion (ENCON) Act, the promotion of energy efficiency has been a cornerstone of Thailand's energy policy. The ENCON Act focuses on large commercial and industrial end users and is accompanied by a 'carrot' in the form of the Energy Conservation Promotion Fund (ENCON Fund), which provides financial incentives to install energy-efficiency measures. For the past several years, Thailand's Department of Alternative Energy Development and Efficiency (DEDE), the lead government agency implementing energy efficiency, has been reassessing its programs, simplifying the procedures, and improving its program promotion. In late 2002 and early 2003, Thailand launched two large-scale pilot programs. The 30% Subsidy Program provides rebates of up to USD 50,000 per facility to stimulate investment in energy-saving projects. This program has been remarkably successful, and allocated its entire budget of USD 2.5 million within the first 6 months of implementation. The average time for project approval is just 30 days. Every dollar of subsidy leverages 3.2 dollars in private sector investment and results in more than 16 dollars of energy cost savings over the lifetime of the equipment. The Energy Efficiency Revolving Fund is designed for larger projects and is administered directly by commercial banks. The fund is providing a total of USD 50 million of zero-interest loans to banks for lending at a low interest rate (< 4%) to commercial and industrial end users. Project investments are typically in the range of USD 400,000 to USD 800,000 million, with the maximum loan amount being USD 1.25 million. After one year of project implementation, USD 20 million has been loaned for energy-efficiency projects, of which USD 12 million has come from the Fund and USD 8 million from the bank's own funds. Implementation of these two pilot programs is providing the basis for the Thailand's newly created Ministry of Energy to

  7. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  8. US energy conservation and efficiency policies: Challenges and opportunities

    International Nuclear Information System (INIS)

    Dixon, Robert K.; McGowan, Elizabeth; Onysko, Ganna; Scheer, Richard M.

    2010-01-01

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  9. US energy conservation and efficiency policies. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K.; Onysko, Ganna [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth; Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future. (author)

  10. US energy conservation and efficiency policies: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K. [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States); Onysko, Ganna, E-mail: gonysko@thegef.or [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  11. Advanced Nano-Composites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to increase energy efficiency and operating lifetime of wear-intensive industrial components and systems by developing and commercializing a family of ceramic-based monolithic composites that have shown remarkable resistance to wear in laboratory tests.

  12. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  13. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Science.gov (United States)

    2010-01-01

    ... efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks Test Procedures § 431.106 Uniform test method for the measurement...

  14. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  15. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  16. Efficient use of energy: from the regulatory incentives to the present energy efficiency law; Uso eficiente da energia: dos incentivos regulatorios recentes ate a atual lei de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Jamil [Escola Federal de Engenharia de Itajuba, MG (Brazil). Inst. de Engenharia Eletrica]. E-mail: jamil@iee.efei.br

    2002-07-01

    This paper presents the most recent regulatory milestones related to the energetic efficiency up to the approval of the 10,295 Regulation, as of October 17, 2001, establishing the maximum level of energy specific consumption, or minimum of energy efficiency, of energy consumers machines and devices manufactured or commercialized in Brazil.

  17. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  18. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    buildings, and by issuing an annual “premier’s report card,” making public the progress on province-wide efficiency efforts. For a province that continues to enjoy growth in business and population, updated guidelines around new building codes have been proven to improve energy efficiency. And there remains a significant opportunity for Alberta to improve efficiency in its commercial and industrial sectors, the largest users of energy, by providing government incentives to replace ageing equipment with more efficient technology. Alberta is also well suited for a shift toward more combined heat and power generation plants, which can repurpose generated heat that is otherwise wasted, significantly reducing energy demand and costs. And in a province awash in natural gas, incentives to encourage travel using compressed or liquefied natural gas vehicles could serve to boost energy efficiency in the transportation sector as well. Alberta is fortunate in that it has abundant energy and prosperity, making improved energy efficiency a matter of choice, rather than — as in some jurisdictions — one of urgent necessity. It is, however, a choice that Alberta has enough reasons, and resources, to make. All it requires is the will.

  19. Commercial and institutional consumption of energy survey : summary report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Fecteau, V.; Hulan, I.; McNabb, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2007-06-15

    A survey was conducted on the energy consumption of Canada's commercial and institutional sectors. The primary purpose was to improve the understanding of various aspects of energy consumption in these sector and to enable Natural Resources Canada to develop programs to support institutions that seek to achieve greater energy efficiency and reduce their greenhouse gas emissions. Energy intensity data was presented by energy source and region amongst the following commercial and institutional sectors: retail trade including food and non-food; education including colleges and universities; health care including non-hospital health care and hospitals; and, accommodation and food services. Data obtained on each establishment's energy consumption and floor area were used to calculate their energy intensity ratio. In 2005, the commercial and institutional establishments consumed 1.04 billion gigajoules, nearly double the annual consumption of all private households in Ontario. The total energy intensity was 1.54 GJ per square metre. The lowest energy rating was found in social assistance establishments, while the highest energy rating was in food services and drinking places, followed by hospitals. Quebec and the Atlantic provinces had the lowest energy intensity levels, while the Prairie provinces had the highest energy intensity rate. The survey included data on the age of establishments; the energy sources used for space heating cooling and water heating; establishment spending on energy consumption; and, the use of auxiliary equipment. refs., tabs., figs.

  20. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  1. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  2. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  3. A roadmap for navigating voluntary and mandated programs for building energy efficiency

    International Nuclear Information System (INIS)

    Peterman, Andrew; Kourula, Arno; Levitt, Raymond

    2012-01-01

    Commercial building owners and managers often face the challenge of selecting the appropriate combination of voluntary and mandated programs for commercial building energy efficiency. Using a mixed-method, both quantitative and qualitative approach, this study finds that barriers to energy efficiency can be interpreted as strategic drivers for the emergence of five forms of voluntary and mandated program forms. We argue that the links between energy efficiency programs in commercial buildings should be conceptualized in a comprehensive manner by evaluating the strategic drivers that have ultimately led to the emergence of the principal forms of voluntary programs: economic incentives; certifications; alliances and partnerships; and internal company programs. We develop a conceptual framework that helps building owners and managers: identify the primary drivers for energy efficiency efforts; assess the efficacy and limitations of available program forms; apply each program form strategically in conjunction with a number of other program forms; and, ultimately, predict the emergence of new program forms. In addition to United States Department of Energy survey data, this study draws upon data collected through semi-structured interviews with experts at major U.S.-based corporations, federally funded laboratories, government agencies, and non-governmental organizations. - Highlights: ► Distills a complex system of energy efficiency programs into a single framework. ► Classify drivers, emerging forms, and shortcomings of each voluntary program form. ► Present survey and interview data from retail, real estate, and hospital experts. ► None of these programs alone meet organizational needs for energy efficiency. ► Entrepreneurs will play a key role by capitalizing on broken agency challenges.

  4. Energy-efficient electric motors study

    Science.gov (United States)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  5. Energy efficiency: Separate report to December 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Hydro-Quebec's energy efficiency project puts a priority on energy conservation and improvement of the existing network to satisfy long-term electricity demand. The objective of the project's energy savings program is to save 9.3 TWh by the year 2000, allocated among three sectors. The program is to be carried out in three phases. The first, 1990-1992, corresponds to a sensitization phase, and has had success in terms of commercial impact. The second phase, 1993-1995, is in progress; a third phase to end at the year 2000 will bring adjustments and refinements needed to attain the stated objective. The success of the first two years of the program has contributed to maintaining two performance indicators relating to residential customer satisfaction with regard to energy efficiency activities and the levels of energy savings generated. The project's load management program provides for interventions that will lead to a reduction in peak demand of 3,320 MW by 2000. In the second phase of the program, three programs were launched in 1993 with the objective of saving 3.7 TWh, or 2 TWh in the residential sector, 1.2 TWh in commercial and institutional lighting, and 0.5 TWh in industrial systems. Other programs will be tested in pilot projects in 1994. Programs in the areas of electrotechnologies and residential dual-energy started in 1993 but results are not yet available. To carry out its energy efficiency programs, Hydro-Quebec has entered cooperative agreements with manufacturers, distributors, and vendors, and has developed different forms of collaboration with government agencies and institutions. The proposed energy efficiency programs will sustain nearly 38,000 person-years of employment in Quebec from now to 2000. 10 tabs

  6. Energy consumption quota management of Wanda commercial buildings in China

    Science.gov (United States)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  7. 78 FR 33262 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Science.gov (United States)

    2013-06-04

    ... information, costs or prices, market shares, or other commercial matters regulated by U.S. antitrust laws. A... Energy Policy and Conservation Act of 1975 (EPCA), Public Law 94-163 (42 U.S.C. 6291-6309) established...

  8. Energy efficiency outlook in China’s urban buildings sector through 2030

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Feng, Wei; Rue du Can, Stephane de la; Khanna, Nina Zheng; Ke, Jing; Zhou, Nan

    2016-01-01

    This study uses bottom-up modeling framework in order to quantify potential energy savings and emission reduction impacts from the implementation of energy efficiency programs in the building sector in China. Policies considered include (1) accelerated building codes in residential and commercial buildings, (2) increased penetration of district heat metering and controls, (3) district heating efficiency improvement, (4) building energy efficiency labeling programs and (5) retrofits of existing commercial buildings. Among these programs, we found that the implementation of building codes provide by far the largest savings opportunity, leading to an overall 17% reduction in overall space heating and cooling demand relative to the baseline. Second are energy efficiency labels with 6%, followed by reductions of losses associated with district heating representing 4% reduction and finally, retrofits representing only about a 1% savings. - Highlights: • We use a bottom-up modeling approach to quantify emission reduction from efficiency programs. • Heating and cooling are the main focus of this study. • We find that building codes lead to 17% reduction compare to the baseline. • Other programs analyzed concern district heat, building labeling and retrofits of buildings.

  9. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  10. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cheesbrough, Kate; Bader, Meghan

    2016-08-26

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing access to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.

  11. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ...) Measurement of flue CO 2 (carbon dioxide) for oil-fired commercial warm air furnaces. In addition to the flue... commercial warm air furnace. The test procedure for the measurement of the condensate from the flue gas under... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy...

  12. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  13. Commercial demand for energy: a disaggregated approach. [Model validation for 1970-1975; forecasting to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.R.; Cohn, S.; Cope, J.; Johnson, W.S.

    1978-04-01

    This report describes the structure and forecasting accuracy of a disaggregated model of commercial energy use recently developed at Oak Ridge National Laboratory. The model forecasts annual commercial energy use by ten building types, five end uses, and four fuel types. Both economic (utilization rate, fuel choice, capital-energy substitution) and technological factors (equipment efficiency, thermal characteristics of buildings) are explicitly represented in the model. Model parameters are derived from engineering and econometric analysis. The model is then validated by simulating commercial energy use over the 1970--1975 time period. The model performs well both with respect to size of forecast error and ability to predict turning points. The model is then used to evaluate the energy-use implications of national commercial buildings standards based on the ASHRAE 90-75 recommendations. 10 figs., 12 tables, 14 refs.

  14. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  15. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  16. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Hydro Quebec's energy efficiency initiatives are reviewed and the economic benefits it expects to garner from such programs are described. Energy efficiency programs affect the cost of supplying electricity, and rates usually rise during the early years and are subsequently offset by the benefits the program generates. Energy efficiency programs should allow Hydro Quebec to avoid $6 billion in expenditures for electricity supply, while entailing contributions of $1.4 billion for the efficiency measures. Evaluation of the potential for efficiency has allowed Hydro Quebec to set a target of 12.9 TWh/y in 1999 on a potential estimated at 18% of regular sales in Quebec in 1989, namely 23.3 TWh. Customers, who contribute $1.4 billion of their own funds to efficiency programs will realize savings of $3.2 billion. Hydro Quebec programs insist strongly on replacement of appliances and motors of all sorts, and in the residential sector, purchases of slightly less than $0.5 billion will consist of electric lamps (3%), water heaters (2.4%), insulation products (32%), hardware (2.5%), and various electric appliances (33%). In the commercial sector, expenditures will be higher, reaching ca $650 million. These are allocated to purchases of electric lamps (18%), heating equipment (12%), insulation products (24%), street lighting (4%), and various electric devices such as controls (39%). 2 figs., 4 tabs

  17. Energy-efficient buildings program evaluations. Volume 1: Findings and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Mayi, D.; Edgemon, S.D.

    1997-04-01

    This study was conducted for the US Department of Energy (DOE) by Pacific Northwest National Laboratory (PNNL). DOE operates the Building Standards and Guidelines Program (BSGP) to increase the effectiveness of building energy codes, standards, and guidelines. The main purpose of this report is to lay the groundwork for conducting an overall evaluation of the program and its effectiveness. Another purpose of this report is to summarize an extensive set of relevant evaluations and provide a building efficiency and program evaluation information resource for program designers, managers, and evaluators. This study presents information from 119 evaluations that have been conducted of both utility and code programs related to energy efficiency in new residential and commercial buildings. The authors used the information in these evaluations to identify major themes and lessons learned from utility and code programs. They also used the information to gain insights into appropriate evaluation methodologies and establish guidelines for designing future evaluations and an evaluation of the BSGP. The report presents general lessons about evaluating programs that have implications for future evaluations included the following. The evaluations provided the basis for developing an effective evaluation approach for residential building energy-efficiency codes and other energy-efficiency programs and other insights for conducting commercial building program evaluations. The findings for conducting effective evaluations are categorized by steps in the evaluation process.

  18. University of Utah, Energy Commercialization Center

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James [Univ. of Utah, Salt Lake City, UT (United States)

    2014-01-17

    given direct business development support by the ECC, many of whom then generated direct economic development impacts. In addition, the ECC served an important role as community convener, educator and relationship builder through hosting numerous public and private events including: Energize 2013; Millennial Train whistle stop; business plan competition supporter; Clean Tech Open Accelerator organizer; Sustainable Startups Series developer, and much more. While the ECC did not fully apply, develop, and transmit the University of Utah’s TCO commercialization model to cleantech, it nevertheless assisted numerous inventors, entrepreneurs and institutions in furthering the growth of clean energy and energy efficiency technologies. The TCO’s commercialization model was not applied to regional clean tech initiatives for several main reasons. First, flaws with the commercialization model were realized after the ECC’s formation. Second, leadership changes within the TCO and ECC hampered early organizational development and implementation initiatives. Third, misaligned incentives between the ECC, regional universities, institutions, and the State of Utah resulted in a lack of collaboration and knowledge transfer regarding commercialization. In principle, everyone was aligned and willing to collaborate, but reality was much different and challenging.

  19. Energy retrofit of commercial buildings. Case study and applied methodology

    Energy Technology Data Exchange (ETDEWEB)

    Aste, N.; Del Pero, C. [Department of Building Environment Science and Technology (BEST), Politecnico di Milano, Via Bonardi 3, 20133 Milan (Italy)

    2013-05-15

    Commercial buildings are responsible for a significant share of the energy requirements of European Union countries. Related consumptions due to heating, cooling, and lighting appear, in most cases, very high and expensive. Since the real estate is renewed with a very small percentage each year and current trends suggest reusing the old structures, strategies for improving energy efficiency and sustainability should focus not only on new buildings, but also and especially on existing ones. Architectural renovation of existing buildings could provide an opportunity to enhance their energy efficiency, by working on the improvement of envelopes and energy supply systems. It has also to be noted that the measures aimed to improve the energy performance of buildings should pay particular attention to the cost-effectiveness of the interventions. In general, there is a lack of well-established methods for retrofitting, but if a case study achieves effective results, the adopted strategies and methodologies can be successfully replicated for similar kinds of buildings. In this paper, an iterative methodology for energy retrofit of commercial buildings is presented, together with a specific application on an existing office building. The case study is particularly significant as it is placed in an urban climatic context characterized by cold winters and hot summers; consequently, HVAC energy consumption is considerable throughout the year. The analysis and simulations of energy performance before and after the intervention, along with measured data on real energy performance, demonstrate the validity of the applied approach. The specifically developed design and refurbishment methodology, presented in this work, could be also assumed as a reference in similar operations.

  20. High-efficiency integrated piezoelectric energy harvesting systems

    Science.gov (United States)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  1. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  2. Innovative financing for energy-efficiency improvements. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, M.; Schwartz, H.K.; Feder, J.M.; Smith, D.C.; Green, R.H.; Williams, J.; Sherman, J.L.; Carroll, M.

    1982-01-01

    The use of utility-assisted financing, tax-exempt financing, bank financing, leasing, and joint venture financing to promote energy efficiency investments for each of three different categories of buildings (multifamily, commercial, and industrial) is discussed in separate chapters. (MCW)

  3. Learning energy efficiency: experience curves for household appliances and space heating, cooling, and lighting technologies

    NARCIS (Netherlands)

    Weiss, M.; Junginger, H.M.; Patel, M.K.

    2008-01-01

    Improving demand side energy efficiency is an important strategy for establishing a sustainable energy system. Large potentials for energy efficiency improvements exist in the residential and commercial buildings sector. This sector currently accounts for almost 40% of the European Union’s (EU)

  4. Role of local governments in promoting energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.

    1980-11-01

    An examination is made of the incentives which influence the decisions by local governments to adopt energy-efficiency programs, either unilaterally or in partnership with the Federal government. It is found that there is significant potential for improved energy efficiency in urban residential, commercial, and industrial buildings and that exploiting these opportunities is in the interest of both Federal and local governments. Unless there is a unique combination of strong local leadership, a tradition of resource management, and external energy shocks, communities are unlikely to realize this potential. Conflicting demands, traditional perceptions, and lack of funding pose a major barrier to a strong unilateral commitment by local governments. A Federal-local partnership built upon and complementary to existing efforts in areas such as housing, social welfare, and economic development offers an excellent opportunity to realize the inherent potential of local energy-efficiency programs. At the local level, energy is not perceived as an isolated issue, but one which is part of a number of problems arising from the continuing increase in energy prices.

  5. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  6. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  7. A Commercialization Roadmap for Carbon-Negative Energy Systems

    Science.gov (United States)

    Sanchez, D.

    2016-12-01

    The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.

  8. Energy efficient direct current distribution in commercially used buildings with smart power link to the AC distribution grid; Energieeffiziente Gleichstromverteilung in kommerziell genutzten Gebaeuden mit intelligenter Kopplung zum Niederspannungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Roland [Siemens AG, Erlangen (Germany); Boeke, Ulrich [Philips Group Innovation-Research, Eindhoven (Netherlands); Maurer, Wilhelm [Infineon Technologies AG, Neubiberg (Germany); Zeltner, Stefan [Fraunhofer-Inst. fuer Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen (Germany)

    2012-07-01

    The joint undertaking ''Direct Current Components and Grid'' (DCC+G) takes on the strategic challenge to reduce energy consumption and thus the reduction of CO{sub 2} emission caused by commercially used buildings through research in the fields of Direct Current distribution at a voltage level of {+-} 380 V. The major energy consumers in commercially used buildings, ready for the ''net-zero-energy'' goal of the European Union, are heat pumps for heating, ventilation systems, air conditioning units, cooling units (HVAC), lighting systems and information technology. All these components and subsystems have in common, that the most efficient versions would benefit from a direct current supply. Additionally the local producers of electric energy like photovoltaic systems usually generate DC-current. A Direct Current distribution grid within buildings would avoid the repeating conversion from DC and AC an vice versa and therefore reduce conversion losses. Important components of a direct current distribution grid are central, smart, high efficient, bidirectional rectifiers replacing the large number of small, less efficient rectifiers used today. Such large central rectifiers units could additionally be used to actively improve the power quality of the smart local AC distribution grid. One major part of the described activities is to show energy savings of about 5 % of electrical energy with a 2-phase direct current distribution grid using a voltage level of {+-} 380 V. (orig.)

  9. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  10. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  11. Commercial green energy. Final report

    International Nuclear Information System (INIS)

    Kalweit, B.

    1998-11-01

    Firms offering a Green electricity product have discovered that residential customers are willing to pay extra for the assurance that their electricity is generated through the use of non-polluting or renewable resources. This research investigated the market potential for Green energy at the next level of the energy consuming chain, commercial establishments at which small and medium sized businesses interface with customers. Green energy is proving to be an attractive proposition to some consumers in the residential marketplace. Is there a possibility that Green energy can also be sold to commercial enterprises? This research project sought to answer this question and to investigate the factors that might lead small business people to opt for Green. Answers to these questions will help energy companies target the businesses most likely to accept Green power with the right product set and product features

  12. ENERGY STAR Certified Commercial Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Dishwashers that are effective as of...

  13. ENERGY STAR Certified Commercial Ovens

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.2 ENERGY STAR Program Requirements for Commercial Ovens that are effective as of...

  14. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  15. ENERGY STAR Certified Commercial Fryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Commercial Fryers that are effective as of...

  16. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  17. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  18. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  19. ENERGY STAR Certified Commercial Griddles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Griddles that are effective as of May...

  20. The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency

    Science.gov (United States)

    Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.

    2017-10-01

    The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.

  1. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    Science.gov (United States)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  2. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  3. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  4. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  5. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  6. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  7. Pathways to Commercial Success: Technologies and Innovations Enabled by the U.S. Department of Energy Fuel Cell Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-11

    This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  8. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  9. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  10. Green energy and large commercial users

    International Nuclear Information System (INIS)

    Capage, Adam

    2000-01-01

    The difficulties faced in selling green energy to large commercial users are reviewed in this article. Four steps are identified in helping energy service suppliers (ESP) focus on opportunities for maximising revenue, namely, targeting the best prospects, identifying the right contact person, appealing to the primary contact, and helping contacts to make the sale internally. Companies with environmentally conscious customers and well defined environmental policies and led by those that promote environmental stewardship are recognised as commercial customers most likely to sign a deal for green energy

  11. Malaysia commercial energy flow: status and structure

    International Nuclear Information System (INIS)

    Ridzuan Abdul Mutalib; Maragatham Kumar; Nik Arlina Nik Ali; Abi Muttaqin Jalal Bayar; Aisya Raihan Abdul Kadir; Muhammed Zulfakar Zolkaffly; Azlinda Aziz; Jamal Khaer Ibrahim

    2008-08-01

    With further growth of Malaysia economy, future development of the energy sector in Malaysia is vital to ensure targeted growth. Commercial Energy continues to play a major role in ensuring a balanced energy mix for power generation due to a potential increase in energy demand from various sectors, especially the industrial sector. This paper presents the status and structure of Malaysia Commercial Energy Flow, which gives an overview of the flow of all types of energy sources from primary energy supply to final energy use, and also the potential for nuclear power in electricity generation in Malaysia. (Author)

  12. Mind the gap. Quantifying principal-agent problems in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    Energy efficiency presents a unique opportunity to address three energy-related challenges in IEA member countries: energy security, climate change, and economic development. Yet an energy-efficiency gap exists between actual and optimal energy use. That is, significant cost-effective energy efficiency potential is wasted because market barriers prevent countries from achieving optimal levels. Market barriers take many forms, from inadequate access to capital, isolation from price signals, information asymmetry, and split-incentives. Though many studies have reported the existence of such market barriers, none so far have attempted to quantify the magnitude of their effect on energy use and efficiency. This publication is an unprecedented attempt to quantify the size of one of the most pervasive barriers to energy efficiency - principal-agent problems, or in common parlance, variations on the 'landlord-tenant' problem. In doing so, the book provides energy analysts and economists with unique insights into the amount of energy affected by principal-agent problems. Using an innovative methodology applied to eight case studies (covering commercial and residential sectors, and end-use appliances) from five different IEA countries, the analysis identifies over 3,800 PJ/year of affected energy use - that is, around 85% of the annual energy use of a country the size of Spain. The book builds on these findings to suggest a range of possible policy solutions that can reduce the impact of principal-agent problems and help policy makers mind the energy efficiency gap.

  13. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  14. Financing energy efficiency: lessons from experiences in India and China

    DEFF Research Database (Denmark)

    Painuly, J.P.

    2009-01-01

    in China and India. This paper aims to report the experience of a three-country United Nations Environment Programme/World Bank Energy Efficiency Project (involving China, India and Brazil) that is set up to address the financial barrier and identifies the lessons that can be learnt from the project...... on potential of energy efficiency and need to make financing available for this. The banks in India in created specialized schemes for energy efficiency financing, and in China, the project has a positive impact on the new initiatives with the on-lending facility and the guarantee fund for energy management....... Design/methodology/approach – The paper follows the post-completion review approach of a project and presents the activities undertaken and results obtained from the project. Findings – The project seeks to remove the financial barrier through the development of a commercial banking window for energy...

  15. WB to Lend $441m for Energy Efficiency in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The World Bank (WB) has approved loans of $441 million to improve energy efficiency and reduce emissions from power plants in China. The loans, which account for almost one third of planned loans for China in fiscal 2008, would go to three projects, according to the lender.The energy efficiency project, co-financed by the WB and the Global Environment Facility (GEF), would get a loan of $200 million. The project, which would also receive a grant of 13.5 million U.S. dollars from the GEF, aims to boost large-scale loans for energy efficiency programs in China. China's commercial banks are also reported to participate in the project, such as the Export-Import Bank of China and Huaxia Bank, to offer loans ranging from 5 million to 10 million U. S. dollars for energy conservation projects, especially in heavy industries.

  16. California Commercial End-Use Survey - CEUS

    Science.gov (United States)

    Efficiency in Existing Buildings Energy Efficiency Program Contacts Financing Opportunities Home Energy Rebates and Incentives Energy Efficiency Financing Energy Innovations Small Grant (EISG) EPIC Funding commercial building type categories. Download the CEUS Project Final Report. Publication # CEC-400-2006-005

  17. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    Science.gov (United States)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real

  18. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min

    2018-01-17

    Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.

  19. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  20. Penobscot Indian Nation's Strategic Energy Planning Efficiency on tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Sockalexis, Mike; Fields, Brenda

    2006-11-30

    The energy grant provided the resources to evaluate the wind, hydro, biomass, geothermal and solar resource potential on all Penobscot Indian Naiton's Tribal lands. The two objectives address potential renewable energy resources available on tribal lands and energy efficiency measures to be taken after comprehensive energy audits of commercial facilities. Also, a Long Term Strategic Energy Plan was developed along with a plan to reduce high energy costs.

  1. Energy efficiency as a greenhouse gas mitigation strategy

    International Nuclear Information System (INIS)

    Salmon, G.

    1995-01-01

    This paper focuses on the best strategy for New Zealand to follow in order to meet obligations under the Framework Convention on Climate Change (FCCC). The New Zealand government's current policy is to rely on the increased carbon storage in commercial tree plantings to meet 80% of FCCC obligations with the balance being met by policy measures including voluntary energy efficiency agreements with industry and enhanced state support for energy efficiency activities. If targets are not on track for achievement by 2000, the government will introduce a carbon charge in 1997. An alternative strategy involving microeconomic reforms in the electricity and transport sectors and tradable abatement obligations including credits for emission reductions and carbon storage is proposed. 1 fig., 11 refs

  2. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  3. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  4. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  5. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    Energy Technology Data Exchange (ETDEWEB)

    Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Field-Macumber, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); and service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.

  6. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  7. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks

    International Nuclear Information System (INIS)

    Azar, Elie; Menassa, Carol C.

    2014-01-01

    While studies highlight the significant impact of actions performed by occupants and facility managers on building energy performance, current policies ignore the importance of human actions and the potential energy savings from a more efficient operation of building systems. This is mainly attributed to the lack of methods that evaluate non-technological drivers of energy use for large stocks of commercial buildings to support policy making efforts. Therefore, this study proposes a scientific approach to quantifying the energy savings potential due to improved operations of any stock of commercial buildings. The proposed framework combines energy modeling techniques, studies on human actions in buildings, and surveying and sampling methods. The contributions of this study to energy policy are significant as they reinforce the role of human actions in energy conservation, and support efforts to integrate operation-focused solutions in energy conservation policy frameworks. The framework's capabilities are illustrated in a case study performed on the stock of office buildings in the United States (US). Results indicate a potential 21 percent reduction in the current energy use levels of these buildings through realistic changes in current building operation patterns. - Highlights: • Human actions highly influence energy performance of commercial building stocks. • It is challenging to quantify operation-related energy savings potential. • The proposed framework quantifies potential energy savings from improved operations. • The framework can be applied on any stock of commercial buildings. • Applications include support for operation-focused solutions in energy policies

  8. ENERGY STAR Certified Commercial Ice Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Automatic Commercial Ice Makers that are...

  9. Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling

    Science.gov (United States)

    Hatzikraniotis, E.; Zorbas, K. T.; Samaras, I.; Kyratsi, Th.; Paraskevopoulos, K. M.

    2010-09-01

    Thermoelectric generators (TEGs) make use of the Seebeck effect in semiconductors for the direct conversion of heat to electrical energy. The possible use of a device consisting of numerous TEG modules for waste heat recovery from an internal combustion (IC) engine could considerably help worldwide efforts towards energy saving. However, commercially available TEGs operate at temperatures much lower than the actual operating temperature range in the exhaust pipe of an automobile, which could cause structural failure of the thermoelectric elements. Furthermore, continuous thermal cycling could lead to reduced efficiency and lifetime of the TEG. In this work we investigate the long-term performance and stability of a commercially available TEG under temperature and power cycling. The module was subjected to sequential hot-side heating (at 200°C) and cooling for long times (3000 h) in order to measure changes in the TEG’s performance. A reduction in Seebeck coefficient and an increase in resistivity were observed. Alternating-current (AC) impedance measurements and scanning electron microscope (SEM) observations were performed on the module, and results are presented and discussed.

  10. ENERGY STAR Certified Commercial Steam Cookers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Steam Cookers that are effective as...

  11. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.

  12. Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors

    International Nuclear Information System (INIS)

    Urpelainen, Johannes

    2011-01-01

    Why are some countries developing many energy efficiency innovations, while others are lagging behind? I argue that export orientation and electricity at low variable cost from nuclear and hydropower plants have an interactive effect on energy efficiency innovation. Export-oriented countries have strong incentives to invest in energy efficiency innovation, as they are in a position to export these technology innovations for global markets. But if inexpensive electricity is supplied in a country, the domestic demand for energy efficiency innovation is missing, and so the home market cannot serve as a springboard for international commercialization. I test this theory against international patent data on energy efficiency innovation in insulation, heating, and lighting for 22 OECD countries, 1991-2007. The statistical analysis indicates that export orientation has large positive effects on energy efficiency innovation in countries that do not rely on nuclear and hydroelectricity. - Highlights: → Export-oriented countries produce energy efficiency innovations. → Nuclear and hydropower reduce energy efficiency innovation. → Data on international patents from industrialized countries support the argument.

  13. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  14. Energy efficiency throughout the world. On the way to transition

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard; Blaustein, Edgar; Chappoz, Loic; Labrousse, Michel; Humberset, Suzanne; Peullemeulle, Justine; Magnin, Gerard; Lacassagne, Sylvie; Bertinat, Pablo; Soumaila, Ibrahim; Rialhe, Anne; Clain, Cristina; Poveda, Mentor; Scalambrini Coasta, Heitor; Diniz, Silvio; Osman, Nejib; Singh, Daljit; Sant, Girish; Kokino, Issairo; Methe Myrand, Lea; Raoust, Michel; Novel, Aymeric; Narain, Sunita; D'Monte, Darryl; Lopez, Jose; Mohanty, Brahmanand; Mezghani, Mohamed; Chamonin, Denis

    2012-10-01

    This document gathers several articles from different countries on different topics related to energy transition. The first part deals with the challenge of energy efficiency as a mean on the way to energy transition (in France, in Europe, in Latin America, in Asian developing countries). The second part illustrates through examples the importance of governance issues and political will (access to energy in West Africa, a network in Latin America and the Caribbean, use of LEDs for public lighting in Brazil, Tunisian policy, role of regulation authorities, situation in India). The third part proposes examples illustrating the importance of the local dimension in any policy aimed at energy efficiency (a project in Africa, public support in housing construction in Austin, the Swedish city of Vaxjo, the French city of Montdidier, the example of two quarters of Geneva using the lake water as cooling or heating source, the refrigerator fleet in a Palestinian village). The last part reports several experiments made in different sectors (building thermal rehabilitation in China, green buildings in India, the building sector in India, a new strategy in India for domestic and commercial electric equipment, stimulation of energy efficiency in the Japanese industry, public transport in sub-Saharan cities, energy efficiency in Indian agriculture)

  15. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  16. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  17. Energy efficiency and load curve impacts

    International Nuclear Information System (INIS)

    Feilberg, Nicolai

    2002-01-01

    One of SINTEF Energy Research's European RTD projects is the two-year EFFLOCOM (Energy EFFiciency and LOad curve impacts of COMmercial development in competitive markets). This project will determine the end-user response of different market-related services offered in deregulated power markets. The project will investigate the possibility of influencing load curves by using different price signals and two-way communications via Internet. The partners are from Denmark. Finland, England, France and Norway. SINTEF Energy Research is in charge of the project management. During the project, the changes in load curves will he studied in the in the participating countries before and after deregulation. Specific issues are the use of ICT, time- and situation-dependent tariffs and smart-house technology. The project will consist of 5 work packages that will give recommendations about new methods, guidelines and tools to promote effective use of energy in the partner countries. The total budget is EUR 692 000. (author)

  18. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  19. Energy efficiency survey in Nigeria. A guide to developing policy and legislation

    Energy Technology Data Exchange (ETDEWEB)

    Uyigue, Etiosa; Agho, Matthew; Edevbaro, Agharese; Godfrey, Ogbemudia Osamuyi; Uyigue, Osazee Paul; Okungbowa, Ose Golden

    2009-09-15

    In Nigeria, experts have asserted that Nigeria can save up to half of the energy currently consumed in the country if energy is efficiently utilized. The major challenge has been that energy policy in Nigeria has undermined the importance and gains of energy efficiency to the environment and economic growth. In the midst of the prevailing energy crisis in Nigeria, energy efficiency will play a pivotal role in ensuring access to energy. Efficiency is not only cheaper than all other options; it also leads to growth in jobs and personal income. By reducing energy bills, it frees up money that can be spent elsewhere in the economy. It appears that the concept of energy efficiency seems to be poorly developed in Nigeria. Having discovered the policy gaps in the Nigerian system on energy efficiency, the Community Research and Development Centre designed and embarked on a research that will help to provide guideline for developing policy and legislation in the energy sector. We discovered that there is absence of research materials and data that will guide and strengthen regulatory measures to use energy efficiently in Nigeria. Hence the research was embarked upon to elicit information that will guide the development of energy efficiency policy which will in turn strengthen regulatory measures to use energy efficiently in Nigeria. In this study, we are focusing on the management of electricity; though energy efficiency is applicable to other forms of energy. Another objective of the study is to identify commercially and behaviorally low-cost ways of reducing energy consumption in the residential, public and private sectors in Nigeria. The information from this study, we believe will help to develop energy efficiency policy document applicable in Nigeria. The research will also help to identify renewable energy potential in the different regions of Nigeria. This document will also serve as a training manual for conferences and workshops.

  20. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  1. The Waldo County project: A partnership for energy efficient economic development

    International Nuclear Information System (INIS)

    Baston, D.C.

    1990-01-01

    In April 1988, the state of Maine designated four economically disadvantaged areas as Job Opportunity Zones. An interministerial initiative was put into place to improve the economic situation of these regions and to attract high quality jobs. One of these, Waldo County, formed part of the service territory of Central Maine Power. In May 1988, that utility asked the Alliance to Save Energy to recommend means for aligning its energy efficiency program with the state's economic improvement program in order to bring about effective economic growth in Waldo County. The utility is in the process of adopting all of the energy efficiency measures recommended by the Alliance. The utility's program in this respect is focused on support for existing small businesses in the county. In most of these businesses, the largest component of their electric bill is for lighting. A pilot program to retrofit modern energy-efficient lighting will install state-of-the-art equipment such as electronic ballasts and compact fluorescents without cost to the customer. This program will provide substantial savings to existing businesses and provide efficiency savings to the utility. Marketing of commercial and residential energy management programs is also being intensified. Energy management assistance is also given to new businesses; this assistance includes financial incentives to install energy efficient equipment

  2. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements

  3. A Danish case. Portfolio evaluation and its impact on energy efficiency policy

    Energy Technology Data Exchange (ETDEWEB)

    Togeby, M.; Dyhr-Mikkelsen, K. [Ea Energy Analyses, Frederiksholms Kanal 4, 1220 Copenhagen K (Denmark); Larsen, A.E. [Department of Society and Globalisation, Roskilde University, Universitetsvej 1, 4000 Roskilde (Denmark); Bach, P. [Danish Energy Agency, Amaliegade 44, 1256 Copenhagen K (Denmark)

    2012-01-15

    A political agreement from 2005 stated that an evaluation of the entire Danish energy efficiency policy portfolio must be carried out before the end of 2008, with the aim to assess the following: (1) Is the policy portfolio sufficient to meet the energy efficiency targets? (2) Do the policies enable the national goals to be met in a cost-effective manner? (3) Is the overall design of the policy portfolio appropriate? The evaluation gave recommendations on how to improve and develop the portfolio, mainly using cost-effectiveness as criteria. The evaluation was completed in December 2008, and this paper presents the main findings and the subsequent impact on Danish policy. A key lesson learned is the importance of including all energy efficiency policies in the evaluation. Examining the entire portfolio of policies (as opposed to only selected policies) gave way to findings that would otherwise not have been captured. With its broad perspective, the evaluation found that the policy instruments prioritised the commercial and industrial sectors less than the household and public sectors. The recommendations made by the authors contributed to the implementation of new taxes for the commercial and industrial sectors together with the reform of the Electricity Saving Trust to a Centre for Energy Savings charged with energy savings within all sectors, except transport - both which have been important steps towards a more cost-effective solution.

  4. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  5. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  6. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  7. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  8. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Science.gov (United States)

    2013-12-06

    ... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors; Proposed... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors AGENCY... proposes energy conservation standards for a number of different groups of electric motors that DOE has not...

  9. Experience implementing energy standards for commercial buildings and its lessons for the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Deringer, Joseph

    1998-10-01

    Energy efficiency standards for buildings have been adopted in over forty countries. This policy mechanism is pursued by governments as a means of increasing energy efficiency in the buildings sector, which typically accounts for about a third of most nations' energy consumption and half of their electricity consumption. This study reports on experience with implementation of energy standards for commercial buildings in a number of countries and U.S. states. It is conducted from the perspective of providing useful input to the Government of the Philippines' (GOP) current effort at implementing their building energy standard. While the impetus for this work is technical assistance to the Philippines, the intent is to shed light on the broader issues attending implementation of building energy standards that would be applicable there and elsewhere. The background on the GOP building energy standard is presented, followed by the objectives for the study, the approach used to collect and analyze information about other jurisdictions' implementation experience, results, and conclusions and recommendations.

  10. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  11. The effectiveness of energy management system on energy efficiency in the building

    Science.gov (United States)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  12. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  13. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  14. Design considerations for energy efficient, resilient, multi-layer networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Hansen, Line Pyndt; Ruepp, Sarah Renée

    2016-01-01

    measures. In this complex problem, considerations such as client traffic granularity, applied grooming policies and multi-layer resiliency add even more complexity. A commercially available network planning tool is used to investigate the interplay between different methods for resilient capacity planning......This work investigates different network design considerations with respect to energy-efficiency, under green-field resilient multi-layer network deployment. The problem of energy efficient, reliable multi-layer network design is known to result in different trade-offs between key performance....... Switching off low-utilized transport links has been investigated via a pro-active re-routing applied during the network planning. Our analysis shows that design factors such as the applied survivability strategy and the applied planning method have higher impact on the key performance indicators compared...

  15. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  16. Energy thermal management in commercial bread-baking using a multi-objective optimisation framework

    International Nuclear Information System (INIS)

    Khatir, Zinedine; Taherkhani, A.R.; Paton, Joe; Thompson, Harvey; Kapur, Nik; Toropov, Vassili

    2015-01-01

    In response to increasing energy costs and legislative requirements energy efficient high-speed air impingement jet baking systems are now being developed. In this paper, a multi-objective optimisation framework for oven designs is presented which uses experimentally verified heat transfer correlations and high fidelity Computational Fluid Dynamics (CFD) analyses to identify optimal combinations of design features which maximise desirable characteristics such as temperature uniformity in the oven and overall energy efficiency of baking. A surrogate-assisted multi-objective optimisation framework is proposed and used to explore a range of practical oven designs, providing information on overall temperature uniformity within the oven together with ensuing energy usage and potential savings. - Highlights: • A multi-objective optimisation framework to design commercial ovens is presented. • High fidelity CFD embeds experimentally calibrated heat transfer inputs. • The optimum oven design minimises specific energy and bake time. • The Pareto front outlining the surrogate-assisted optimisation framework is built. • Optimisation of industrial bread-baking ovens reveals an energy saving of 637.6 GWh

  17. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  18. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  19. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  20. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  1. ENERGY STAR Certified Commercial Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers that are...

  2. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  3. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Arent, Douglas J. [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Locklin, Ken [Impax Asset Management Group (United Kingdom)

    2016-04-01

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort is needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.

  4. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  5. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  6. Republic of Macedonia. Regular Review 2006. Part 1. Trends in energy and energy efficiency policies, instruments and actors. Part 2. Indicators on Energy, Energy Efficiency, Economy and Environment

    International Nuclear Information System (INIS)

    2006-01-01

    : preparation of a national strategy on energy efficiency until 2020; legal and other incentive measures; establishment of a fund for financial support; investment projects development and implementation; preparation of regulations, standards and other acts; informational and educational activities; publications and brochures; international activities. The Energy Efficiency Strategy of the Republic of Macedonia until 2020 was prepared in the beginning of 2004, upon an initiative of the Ministry of Economy. It was developed with financial support by USAID by the American company Nexant Inc. in cooperation with national experts, and was adopted by the Government in October 2004. The strategy includes a number of capacity building initiatives and technical activities. Institutional building and capacity building include: founding of an Energy Agency; establishing of certification of energy auditors; energy codes for facilities; equipment standards; founding an Energy Efficiency Fund. A number of technical programmes which were identified and analysed were included into the implementation plan. Some of the more important initiatives included in the Strategy are: a Programme in housing facilities; a Programme in commercial facilities; a Programme in buildings of public institutions; a Programme in industrial facilities; and a Programme in street lighting. A number of energy efficiency and renewable energy projects were realised or are in progress in bilateral cooperation with several European countries and international financial institutions

  7. Commercial building energy use in six cities in Southern China

    International Nuclear Information System (INIS)

    Xu, Peng; Huang, Joe; Shen, Pengyuan; Ma, Xiaowen; Gao, Xuefei; Xu, Qiaolin; Jiang, Han; Xiang, Yong

    2013-01-01

    With China’s continuing economic growth, the percentage of government offices and large commercial buildings has increased tremendously; thus, the impact of their energy usage has grown drastically. In this survey, a database with more than 400 buildings was created and analyzed. We researched energy consumption by region, building type, building size and vintage, and we determined the total energy use and performed end use breakdowns of typical buildings in six cities in southern China. The statistical analysis shows that, on average, the annual building electricity use ranged from 50 to 100 kW h/m 2 for office buildings, 120 to 250 kW h/m 2 for shopping malls and hotels, and below 40 kW h/m 2 for education facilities. Building size has no direct correlation with building energy intensity. Although modern commercial buildings built in the 1990s and 2000s did not use more energy on average than buildings built previously, the highest electricity intensive modern buildings used much more energy than those built prior to 1990. Commercial buildings in China used less energy than buildings in equivalent weather locations in the US and about the same amount of energy as buildings in India. However, commercial buildings in China provide comparatively less thermal comfort than buildings in comparable US climates. - Highlights: ► The worst modern buildings use more energy than the worst old buildings. ► Government office buildings did not use more energy than private office buildings. ► Commercial buildings in China use less energy than buildings in the US. ► Modern commercial buildings don't use more energy than old buildings.

  8. Procool - eco-efficient cold appliances for the commercial use

    International Nuclear Information System (INIS)

    Schaeppi, Bernd; Ritter, Herbert; Barthel, Claus; Hermann, Laurenz; Streif, Oswald

    2005-01-01

    Pro-Cool is an EU-wide demonstration project which supports the development and market penetration of eco-efficient plug-in cold appliances for the commercial use. These products should be both highly energy efficient, free of HFC-containing refrigerants and -foaming agents and eco-efficient in a general sense. Thus the project corresponds with the EU Integrated Product Policy which aims at improving products by considering the ecological impact along the product life cycle. Besides ecological criteria, which are central for the project, other aspects relevant for purchasers like warranty and functionality are taken into account to guarantee the acceptance of the products by the demand side target groups. The so called 'voice of the customer' has been considered in the development of the criteria To achieve the necessary stimulation of the supply and demand side market a combined competition and procurement approach is developed addressing both manufacturers and buyers respectively users of the products. The central measure of the project is a European competition for suppliers what offers leading manufacturers of the market the opportunity to present themselves as innovative companies which provide eco-efficient equipment. Eight leading manufacturers which have a high market share in the selected product categories are taking part in the competition. Furthermore three large companies representing the demand side branches of super market chains and drinks industry already have signed a general agreement to support the project and to consider the products resulting from the competition in their procurement activities. Thus major supply and demand side target groups which are capable to support market transformation have joined the project. The competition terminates by December 2005 and the award of the winning products takes place in spring 2006 at an international fair or conference event. The paper presents the objectives and the concept of the project. Relevant

  9. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  10. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  11. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  12. Direct evidence of an efficient energy transfer pathway from jellyfish carcasses to a commercially important deep-water species.

    Science.gov (United States)

    Dunlop, Kathy M; Jones, Daniel O B; Sweetman, Andrew K

    2017-12-12

    Here we provide empirical evidence of the presence of an energetic pathway between jellyfish and a commercially important invertebrate species. Evidence of scavenging on jellyfish carcasses by the Norway lobster (Nephrops norvegicus) was captured during two deployments of an underwater camera system to 250-287 m depth in Sognefjorden, western Norway. The camera system was baited with two Periphylla periphylla (Scyphozoa) carcasses to simulate the transport of jellyfish detritus to the seafloor, hereby known as jelly-falls. N. norveigus rapidly located and consumed a large proportion (>50%) of the bait. We estimate that the energy input from jelly-falls may represent a significant contribution to N. norvegicus energy demand (0.21 to 10.7 times the energy required for the population of N. norvegicus in Sognefjorden). This potentially high energetic contribution from jelly-falls highlights a possible role of gelatinous material in the support of commercial fisheries. Such an energetic pathway between jelly-falls and N. norvegicus could become more important with increases in jellyfish blooms in some regions.

  13. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  14. High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass

    Science.gov (United States)

    Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva

    2012-10-01

    Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.

  15. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  16. Commercial Bank Efficiency Evaluation in Consideration of the Undesirable Output and Its Link with Stakeholders Relationship: An Application of China’s Commercial Banks

    Directory of Open Access Journals (Sweden)

    Jianyue Ji

    2014-01-01

    Full Text Available Based on the modern contract theory, expectancy theory, and stakeholder theory, this paper analyzes how stakeholders relationship influences the efficiency of commercial banks and finds that the efficiency is a function of stakeholders relationship. A DEA model with Seiford's linear transformation function is developed to evaluate the efficiency in consideration of the undesirable output. The panel Tobit model is established to conduct empirical research with data of 14 Chinese commercial banks from 2004 to 2012. The study finds that except for business customer relation, stakeholder relationship is the key variable that influences comprehensive efficiency of commercial banks.

  17. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  18. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  19. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  20. LIFE: The Case for Early Commercialization of Fusion Energy

    International Nuclear Information System (INIS)

    Anklam, T.; Simon, A.J.; Powers, S.; Meier, W.R.

    2011-01-01

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  1. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  2. National award for energy-efficient town lighting. Compilation of energy-efficient town lighting techniques; Bundeswettbewerb Energieeffiziente Stadtbeleuchtung. Sammlung energieeffizienter Techniken fuer die Stadtbeleuchtung

    Energy Technology Data Exchange (ETDEWEB)

    Piller, Sabine; Huebner, Vanessa; Barbre, Felix; Schaefer, Moritz [Berliner Energieagentur GmbH, Berlin (Germany)

    2009-02-11

    The national award for innovative urban lighting was initiated by the Federal Environmental Office. The resulting publication presents innovative techniques for urban lighting. While it is not a complete market survey, it provides an outline of modern, energy-efficient and environment-friendly technologies that are commercially available. Most systems are also available at comparatively low cost. For more information, interested users should refer to http://www.bmu.de/klimaschutzinitiative/aktuell/41708.php. (orig./AKB)

  3. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  4. Numerical simulation of energy efficiency measures: control and operational strategies

    International Nuclear Information System (INIS)

    Ardehali, M. M.

    2006-01-01

    The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)

  5. Decentralised energy supply in 2020 - Commercial aspects

    International Nuclear Information System (INIS)

    Kleimaier, M.

    2007-01-01

    This comprehensive article summarises the commercial aspects of a study made by the German Association of Electrical, Electronic and Information Technologies VDE on the topic of decentralised energy supply in the year 2020. In a previous article, the technical aspects were examined. This article looks at the findings in connection with commercial aspects of the production of power in decentralised facilities including those using renewable sources of energy. The potential of these forms of electricity generation for the year 2020 is looked at both from the political and economical points of view. The general conditions prevailing for the implementation of decentralised power production in Germany such as the Renewable Energy Law and legislation on combined heat and power generation are discussed. The influence of electricity tariffs and competition in the market is examined, as are various scenarios and concepts for the supply of both power and heating energy. Ways of providing a sustainable energy supply without having to subsidise particular concepts are discussed

  6. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  7. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  8. Public policy analysis of energy efficiency and load management in changing electricity businesses

    International Nuclear Information System (INIS)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-01-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted

  9. Public policy analysis of energy efficiency and load management in changing electricity business

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Energy Analysis Dept.; Hamrin, J. [Centre for Resource Solutions (United States); Eyre, N. [Energy Savings Trust (United Kingdom); Crossley, D.; Maloney, M.; Watt, G. [Energy Futures Australia Pty Ltd (Australia)

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted. (author)

  10. Public policy analysis of energy efficiency and load management in changing electricity businesses

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted.

  11. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  12. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Energy Efficiency in Central Java

    Energy Technology Data Exchange (ETDEWEB)

    Windarto, Joko; Nugroho, Agung; Hastanto, Ari; Mahartoto, Gigih [Diponegoro University, Semarang (Indonesia)

    2012-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Energy has a very important role and has become a basic necessity in national sustainable development. Therefore, energy should be used sparingly and in a rational manner so that present and future energy demand can be met. Given the importance of using energy efficiently Government needs to devise a framework regulating the utilization of energy resources through the efficient application of technology and stimulating energy-saving behaviours. The purpose of this technical working group in CASINDO project is to research the steps and policy measures needed to improve the efficiency of electrical energy consumption in the household, industrial, and commercial buildings sector for Central Java. The government's efforts in promoting energy efficiency in Indonesia are still hampered by public awareness factor. This study exists to promote public awareness of energy efficiency by describing the financial benefits and possibilities of savings energies in order to support the government's energy saving program, replacement of old equipment that uses high power consumption with a new low-power one, reduction of unnecessary lighting, appreciation to the people who find and develop energy-efficient power utilization, persuade industries to uses the speed controller driver for production and fan motor to streamline the electrical energy usage.

  13. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  14. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  15. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  16. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  17. Efficiency of environmental policies aiming at fostering the adoption of new technologies: the case of renewable energies

    International Nuclear Information System (INIS)

    Lamy, M.L.

    2004-10-01

    This thesis aims to study the efficiency of promotion policies of renewable energies in electric power production taking into account the environment economy problems. The techniques at a commercial scale are particularly discussed. The first part deals with the incitement to technical progress in favor of the environmental protection. The second part proposes an empirical analysis based on the efficiency economical parameters and the last part analyses theoretically the efficiency of promotion tools of renewable energies. (A.L.B.)

  18. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  19. Energy efficiency in Norway (1997). Cross Country Comparison on Energy Efficiency Indicators - Phase 5

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    2000-02-01

    This is the national report for Norway in phase 5 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of maximum 7-8 TWH from 1990 to 1997. This corresponds to a saving of 0.5% per year. In the same period, final energy use per Gross Domestic Product (GDP) was reduced by approx 2.4% per year. Thereby most of the reduction in final energy intensity can not be attributed to increased energy efficiency. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  20. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  2. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    Science.gov (United States)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  3. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S; Krsikapa, S [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D; Nickel, J; Ardley, S; Zabrowski, D [Fisher Consultants (Canada); Barker, R F [ed.

    1996-05-15

    Market and technical information on gas fired equipment used in the commercial food service sector in Canada and in each province or territory was presented. Results of a market study and technology review were integrated to establish energy consumption and energy saving potential in this sector. Eight categories of commercial cooking appliances were studied. They were: fryers, griddles, broilers, ranges, ovens, tilting skillets, steam kettles and steamers. Focus was on gas fired appliances, although electric appliances were also included. The total energy consumption of the appliances was estimated at 76,140.37 GBtu in 1994. Gas appliances accounted for 63 per cent of the total inventory and consumed 83 per cent of the total energy used. Cooking energy efficiencies for the gas fired commercial cooking equipment ranged from 10 per cent to 60 per cent. The electric appliances had cooking energy efficiencies ranging from 35 per cent to 95 per cent. A list of recommendations were made for the many opportunities to introduce higher efficiency commercial cooking appliances, essential to slow down or to stabilize the energy consumption of cooking appliances over the next decade. 66 refs., 14 tabs., 18 figs.

  4. Energy demand analysis in the household, commercial and agriculture sector

    International Nuclear Information System (INIS)

    Lapillonne, B.

    1991-01-01

    This chapter of the publication is dealing with Energy Demand Analysis in the Household, Commercial and Agricultural Sector. Per Capita total energy consumption in the residential and commercial sector is given and variation among countries are discussed. 12 figs, 1 tab

  5. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-20

    . This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  6. Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index

    International Nuclear Information System (INIS)

    Ang, B.W.

    2006-01-01

    Since the 1973 world oil crisis, monitoring trends in energy efficiency at the economy-wide level has been an important component of energy strategy in many countries. To support this effort, various energy efficiency-related indicators have been developed. We examine some classical indicators which are often found in national and international energy studies in the 1970s and 1980s. We then describe the recent developments in using the index decomposition analysis to give an economy-wide composite energy efficiency index based on a bottom-up approach. This composite index is superior to the classical indicators as an economy-wide energy efficiency measure and has lately been adopted by a growing number of countries for national energy efficiency trend monitoring

  7. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  8. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  9. ENERGY STAR Certified Commercial Hot Food Holding Cabinet

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Hot Food Holding Cabinets that are...

  10. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  11. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  12. Casino Rama hits the jackpot with energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-10-15

    A lighting retrofit program was conducted by Casino Rama in an effort to improve quality while reducing costs and environmental impacts. Casino Rama, Ontario's only commercial First Nation's casino, was opened in July 1996. With over 25,000 bulbs in use, the facility had a lot to gain by reducing energy costs. Toronto Hydro (TH) Energy Services evaluated the facility's current usage level and recommended ways to increase energy efficiency. The casino used mostly incandescent and fluorescent lights which provided adequate light, but which required a great deal of upkeep. The operators wanted to relamp the lighting package that consumed the most electricity with high-efficiency lighting systems that would maintain a consistent look with that of the warm-glow provided by incandescent light bulbs. In order to benefit from energy savings, an efficient, non-invasive system was needed with minimal construction costs to retrofit the lighting system. TH Energy concluded that high-quality, longer-lasting lamps were required. TCP Inc. provided energy-efficient compact fluorescent lamps (CFLs) that have an average life of 10,000 hours and use a quarter of the energy of standard incandescent bulbs, resulting in increased energy savings, lower utility costs and greenhouse gas reduction. The retrofit involved the replacement of more than 5,000 bulbs with over 4,000 CFLs being installed on the 3 massive canopies over the casino entrance. Long-life LED products lasting up to 50,000 hours were also used for the glass elevator shaft, which minimized maintenance costs. Cold-cathode lamps that last an average 25,000 hours were recommended for rapid cycle applications such as signage. The relamping process was completed in 7 working days with minimal disruption to business activity. The casino has saved $200,000 from its annual hydro bill and has freed up valuable manpower for other maintenance-related tasks. The relamping is reducing greenhouse gas emissions by 7 to 8

  13. Casino Rama hits the jackpot with energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2007-10-15

    A lighting retrofit program was conducted by Casino Rama in an effort to improve quality while reducing costs and environmental impacts. Casino Rama, Ontario's only commercial First Nation's casino, was opened in July 1996. With over 25,000 bulbs in use, the facility had a lot to gain by reducing energy costs. Toronto Hydro (TH) Energy Services evaluated the facility's current usage level and recommended ways to increase energy efficiency. The casino used mostly incandescent and fluorescent lights which provided adequate light, but which required a great deal of upkeep. The operators wanted to relamp the lighting package that consumed the most electricity with high-efficiency lighting systems that would maintain a consistent look with that of the warm-glow provided by incandescent light bulbs. In order to benefit from energy savings, an efficient, non-invasive system was needed with minimal construction costs to retrofit the lighting system. TH Energy concluded that high-quality, longer-lasting lamps were required. TCP Inc. provided energy-efficient compact fluorescent lamps (CFLs) that have an average life of 10,000 hours and use a quarter of the energy of standard incandescent bulbs, resulting in increased energy savings, lower utility costs and greenhouse gas reduction. The retrofit involved the replacement of more than 5,000 bulbs with over 4,000 CFLs being installed on the 3 massive canopies over the casino entrance. Long-life LED products lasting up to 50,000 hours were also used for the glass elevator shaft, which minimized maintenance costs. Cold-cathode lamps that last an average 25,000 hours were recommended for rapid cycle applications such as signage. The relamping process was completed in 7 working days with minimal disruption to business activity. The casino has saved $200,000 from its annual hydro bill and has freed up valuable manpower for other maintenance-related tasks. The relamping is reducing greenhouse gas emissions by 7 to 8 per cent, based

  14. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  15. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  16. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  17. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  18. Promotion of Efficient Use of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  19. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... Energy Efficiency and Renewable Energy Advisory [[Page 69656

  20. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  1. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  2. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  3. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  4. Development of a Training Program for Commercial Building Technicians

    Energy Technology Data Exchange (ETDEWEB)

    Rinholm, Rod

    2013-05-31

    This project focused on developing and deploying a comprehensive program of 22 training modules, including certification requirements, and accreditation standards for commercial building technicians, to help achieve the full savings potential of energy efficient buildings, equipment, and systems. This curriculum extended the currently available commercial building technician programs -- training a labor force in a growing market area focused on energy efficiency. The program helps to remove a major market impediment to low energy/zero energy commercial building system acceptance, namely a lack of operating personnel capable of handling more complex high efficiency systems. The project developed a training curriculum for commercial building technicians, with particular focus on high-efficiency building technology, and systems. In Phase 1, the project team worked collaboratively in developing a draft training syllabus to address project objectives. The team identified energy efficiency knowledge gaps in existing programs and plans and plans to address the gaps with either modified or new curricula. In Phase 2, appropriate training materials were developed to meet project objectives. This material was developed for alternative modes of delivery, including classroom lecture materials, e-learning elements, video segments, exercises, and hands-on training elements. A Certification and Accreditation Plan and a Commercialization and Sustainability Plan were also investigated and developed. The Project Management Plan was updated quarterly and provided direction on the management approaches used to accomplish the expected project objectives. GTI project management practices tightly coordinate project activities using management controls to deliver optimal customer value. The project management practices include clear scope definition, schedule/budget tracking, risk/issue resolution and team coordination.

  5. Estimating the energy-saving benefit of reduced-flow and/or multi-speed commercial kitchen ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.; Schmid, F.; Spata, A.J.

    1999-07-01

    Kitchen exhaust ventilation systems are recognized as a major energy user within commercial food service facilities and restaurants. Minimizing the design ventilation rate of an appliance/hood system by optimizing hood performance in the laboratory is a viable strategy for reducing the makeup air heating and cooling loads as well as the exhaust and supply fan energy. Cutting back the exhaust flow under conditions of noncooking (appliance idle) can further reduce the energy load associated with a kitchen ventilation system. An optimized, two-speed exhaust system was installed within the scope of an energy-efficient, quick service restaurant (QSR) design and demonstration project. This paper evaluates the energy benefit of this variable-flow strategy as well as the savings associated with reducing the design ventilation rate (compared to an off-the-shelf exhaust hood). The paper describes a new public-domain software tool for estimating heating and cooling loads associated with the makeup air requirements of commercial kitchens. This bin-based software provides ASHRAE engineers with an alternative to hand calculations or more sophisticated hour-by-hour simulation. The dramatic impact that both makeup air set point and geographic location have on the outdoor air load is illustrated. The paper concludes with an industry-wide projection of energy savings associated with optimizing the design and operation of commercial kitchen ventilation (CKV) systems.

  6. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  7. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  8. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  9. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  10. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  11. The analysis of energy consumption and greenhouse gas emissions of a large-scale commercial building in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-02-01

    Full Text Available Reasonable test, diagnosis, and analysis are meaningful for building energy efficiency retrofit and management. Energy consumption and greenhouse gas emission of a large-scale commercial building are described in this article. Basic information about energy consumption equipment is included in the investigation. Further diagnoses about the operational state of air-conditioning water systems, and ducted systems were implemented. Energy consumption decreased 200 kWh/m2 per year from 2007 to 2009 after energy-saving reconstruction in 2006. Next, a carbon audit was carried out; this comprised CO2 emission statistics associated with the energy use and categorization and structural analysis (categorization refers to energy categorization and structural analysis means the composition and its proportion relationship of all kinds of primary energy and secondary energy in energy production or consumption. Greenhouse gas emissions could be less than 150 kg/m2 per year from 2007 to 2009. An analysis of the correlation between CO2 emissions, building gross domestic product, and energy efficiency is also presented. This article makes an analysis on the energy utilization and energy-saving reconstruction of a public commercial building in Shanghai and then makes an analysis of carbon audit about greenhouse gas emissions related to energy utilization (it analyzes the status of building’s energy utilization and greenhouse gas emissions, to have a more comprehensive understanding on the internal relationship between energy consumption and its greenhouse gas emissions and provide researchful reference data for the development with reduction strategies of greenhouse gas emission in future building.

  12. Management of efficient use of energy and energy efficiency markets in Europe

    International Nuclear Information System (INIS)

    Lutz, Wolfang F.

    1999-01-01

    The present paper is based on the study S ystematization of European Legal, regulatory, and Institutional Frameworks for the Efficient Use of Energy , conducted in the framework of the project entitled Building up the Institutional and Regulatory Design to Consolidate Modernization of Energy Policies in the Countries of Latin America: Efficient Use of energy, implemented by the United Nations Economic Commission for Latin America and the Caribbean, in cooperation with the Synergy Programme of the European Commission of the Directorate General of Energy. (The author)

  13. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  14. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... within the field of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public...

  15. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...

  16. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  17. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...

  18. Improvement of powertrain efficiency through energy breakdown analysis

    International Nuclear Information System (INIS)

    Damiani, Lorenzo; Repetto, Matteo; Prato, Alessandro Pini

    2014-01-01

    Highlights: • Energy breakdown analysis for the vehicular powertrain. • Model for road vehicles simulation in different missions. • Implemented powertrain management strategies: intelligent gearbox, Stop and Start, free wheel. • Innovative hybrid powertrain turned to engine thermodynamic cycles minimization. • Evaluation of fuel savings associated to each management strategy. - Abstract: A vehicular powertrain can be thought as an energy conversion chain, each component being characterized by its efficiency. Significant global efficiency improvements can be achieved once is identified the system energy breakdown, individuating the losses connected to each powertrain component; it is then possible to carry out the most appropriate interventions. This paper presents a simulation study of a diesel-fuelled commercial vehicle powertrain based on the above summarized point of view. The work aims at individuating the energy flows involved in the system during different missions, proposing an intelligent combination of technical solutions which minimize fuel consumption. Through a validated Matlab–Simulink model, able to indicate the powertrain energy breakdown, simulations are carried out to evaluate the fuel saving associated to a series of powertrain management logics which lead to the minimization of engine losses, the recovery of reverse power in deceleration and braking, the elimination of useless engine cycles. Tests were performed for different real missions (urban, extra-urban and highway). The results obtained point out a –23% fuel consumption (average value for urban, extra-urban and highway missions) compared to the traditional powertrain. Clearly, such result affects positively the CO 2 emission

  19. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  20. Lost opportunities: Modeling commercial building energy code adoption in the United States

    International Nuclear Information System (INIS)

    Nelson, Hal T.

    2012-01-01

    This paper models the adoption of commercial building energy codes in the US between 1977 and 2006. Energy code adoption typically results in an increase in aggregate social welfare by cost effectively reducing energy expenditures. Using a Cox proportional hazards model, I test if relative state funding, a new, objective, multivariate regression-derived measure of government capacity, as well as a vector of control variables commonly used in comparative state research, predict commercial building energy code adoption. The research shows little political influence over historical commercial building energy code adoption in the sample. Colder climates and higher electricity prices also do not predict more frequent code adoptions. I do find evidence of high government capacity states being 60 percent more likely than low capacity states to adopt commercial building energy codes in the following year. Wealthier states are also more likely to adopt commercial codes. Policy recommendations to increase building code adoption include increasing access to low cost capital for the private sector and providing noncompetitive block grants to the states from the federal government. - Highlights: ► Model the adoption of commercial building energy codes from 1977–2006 in the US. ► Little political influence over historical building energy code adoption. ► High capacity states are over 60 percent more likely than low capacity states to adopt codes. ► Wealthier states are more likely to adopt commercial codes. ► Access to capital and technical assistance is critical to increase code adoption.

  1. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...

  2. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  3. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  4. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  5. Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T. D., IV; Miller, M.; Fleming, L.; Younge, K.; Newcomb, J.

    2011-03-01

    Low-carbon energy innovation is essential to combat climate change, promote economic competitiveness, and achieve energy security. Using U.S. patent data and additional patent-relevant data collected from the Internet, we map the landscape of low-carbon energy innovation in the United States since 1975. We isolate 10,603 renewable and 10,442 traditional energy patents and develop a database that characterizes proxy measures for technical and commercial impact, as measured by patent citations and Web presence, respectively. Regression models and multivariate simulations are used to compare the social, institutional, and geographic drivers of breakthrough clean energy innovation. Results indicate statistically significant effects of social, institutional, and geographic variables on technical and commercial impacts of patents and unique innovation trends between different energy technologies. We observe important differences between patent citations and Web presence of licensed and unlicensed patents, indicating the potential utility of using screened Web hits as a measure of commercial importance. We offer hypotheses for these revealed differences and suggest a research agenda with which to test these hypotheses. These preliminary findings indicate that leveraging empirical insights to better target research expenditures would augment the speed and scale of innovation and deployment of clean energy technologies.

  6. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...

  7. Commercial Building Energy Asset Rating Tool User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  8. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-10-18

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable... Efficiency and Renewable Energy, U.S. Department of Energy. [FR Doc. 2012-25636 Filed 10-17-12; 8:45 am...

  9. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  10. 76 FR 43218 - Commercial and Industrial Pumps

    Science.gov (United States)

    2011-07-20

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Commercial and Industrial Pumps AGENCY: Department of Energy... efficient product designs for commercial and industrial pumps. The comment period closed on July 13, 2011... commercial and industrial pumps. The comment period is extended to September 16, 2011. DATES: The comment...

  11. Role of executive agencies for energy efficiency with a view on activities of Serbian Energy Efficiency Agency

    Directory of Open Access Journals (Sweden)

    Kovačić Bojan J.

    2012-01-01

    Full Text Available Many countries, particularly in Europe, have executive energy efficiency agencies at national, regional and local levels that are organized in different ways. For all of them, it is common that there are existing strategic needs in their countries for enhancement of conditions and measures for rational use of energy and fuels. Serbian Energy Efficiency Agency was established in 2002 within the reform of the energy sector in Serbia and its current status was defined in 2004 by the Energy Law. It contributes to the improvement of social responsibility towards energy in all structures of the state and society, by proposing energy efficiency incentives, promoting importance of energy efficiency, as well as by managing energy efficiency and renewable energy programs and projects.

  12. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  13. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  15. Promotion of energy efficiency in enterprises

    International Nuclear Information System (INIS)

    Beltrani, G.; Schelske, O.; Peter, D.; Oettli, B.

    2003-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made within the framework of the research programme on energy-economics fundamentals on how the energy efficiency of enterprises can be improved. The report first examines the present state of affairs in Swiss enterprises and looks into the interaction of energy efficiency and environmental management systems. ISO 14001 certification is discussed and examples are given of the responses of various enterprises to a survey concerning the role of energy efficiency in environmental management. Both hindrances and success factors for the embedding of energy-efficiency measures in environmental management activities are discussed and examples are given. Instruments available in Switzerland and from abroad that can be used to promote energy efficiency in enterprises are discussed. Four particular instruments are presented; guidelines and computer-based tools that help in the making of energy-relevant investment decisions, incentives to take part in an energy-benchmark system for small and medium-sized enterprises (SME), low-interest loans for investments in energy-efficiency for SMEs and the closer definition of 'continuous improvement' of energy efficiency within the framework of ISO 14001. The results of a survey amongst those involved are discussed. The report is concluded with recommendations for the implementation of the guidelines and for improvements in the integration of energy efficiency in environmental management systems

  16. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  17. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  18. Econometric models for distinguishing between market-driven and publicly-funded energy efficiency

    International Nuclear Information System (INIS)

    Horowitz, Marvin J.

    2005-01-01

    Central to the problem of estimating energy program benefits is the necessity to differentiate between changes in energy use that would have occurred in the absence of public programs versus declines in energy use that would not have occurred but for public programs. The former changes are often referred to as naturally-occurring or market-driven effects. They occur due to a combination of one or more independent variables, such as changes in prices, incomes, weather, and technology. For a rigorous, scientifically-valid program evaluation, it is essential to first control for these variables before making statistical inferences related to public program effects. This paper describes the economic and statistical issues surrounding quantitative studies of energy use, energy efficiency, and public programs. To illustrate the strengths and weaknesses of different impact evaluation approaches, this paper describes three new studies related to electricity use in the U. S. commercial buildings sector. Specification and estimation of time series and cross section econometric models are discussed, as are their capabilities for obtaining long-run estimates of the net impacts of energy efficiency programs

  19. EFFICIENT USE OF ENERGY IN A ELECTRIC ARC FURNANCE BY HEAT INTEGRATION APPROACH

    OpenAIRE

    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni

    2016-01-01

    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  20. Assessing the Efficiency of commercial Tunisian Banks using Fuzzy Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Houssine Tlig

    2017-08-01

    Full Text Available The banking sector is of great importance to Tunisian's economy. Major commercial banks continue to spend high proportion of their budgets on new technologies and innovation in order to satisfy their customers and enhance their competitiveness. Consequently, performance analysis has become part of their management practices.This paper aims to evaluate the efficiency of commercial Tunisian banks in terms of several crisp and imprecise data. Two approaches of fuzzy data envelopment analysis (FDEA, the possibility approach and the approach based on relations between fuzzy numbers (BRONF, are used to obtain the efficiency score of each bank. The results show that, in a competitive environment, no-financial inputs and outputs should be taken into account in order to obtain credible and realistic efficiency scores.

  1. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  2. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  3. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  4. Impacts of optimum cost effective energy efficiency standards

    International Nuclear Information System (INIS)

    Brancic, A.B.; Peters, J.S.; Arch, M.

    1991-01-01

    Building Codes are increasingly required to be responsive to social and economic policy concerns. In 1990 the State of Connecticut passes An Act Concerning Global Warming, Public Act 90-219, which mandates the revision of the state building code to require that buildings and building elements be designed to provide optimum cost-effective energy efficiency over the useful life of the building. Further, such revision must meet the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 90.1 - 1989. As the largest electric energy supplier in Connecticut, Northeast Utilities (NU) sponsored a pilot study of the cost effectiveness of alternative building code standards for commercial construction. This paper reports on this study which analyzed design and construction means, building elements, incremental construction costs, and energy savings to determine the optimum cost-effective building code standard. Findings are that ASHRAE 90.1 results in 21% energy savings and alternative standards above it result in significant additional savings. Benefit/cost analysis showed that both are cost effective

  5. Curriculum for Commissioning Energy Efficient Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Lia [Portland Energy Conservation, Inc., OR (United States)

    2012-12-27

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  6. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  7. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  8. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  9. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  10. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  11. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  12. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  13. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  14. Chapter 4: Small Commercial and Residential Unitary and Split System HVAC Heating and Cooling Equipment-Efficiency Upgrade Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jacobson, David [Jacobson Energy Research, Providence, RI (United States); Metoyer, Jarred [DNV GL, Madison, WI (United States)

    2017-11-02

    The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.

  15. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  16. Modeling international trends in energy efficiency

    International Nuclear Information System (INIS)

    Stern, David I.

    2012-01-01

    I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period. Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on technological change over time. Energy efficiency is measured using a new energy distance function approach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the global production frontier. A country's relative energy efficiency is given by its distance from the frontier—the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil fuel reserves and it converges over time across countries. Globally, technological change was the most important factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.

  17. Energy efficiency action plan. Policy action plan for promotion of energy efficiency in the Czech Republic to 2010

    International Nuclear Information System (INIS)

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply and environmental protection. Therefore, the Czech government aims to promote these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. In addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formulation of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (this report); The Renewable Energy Action Plan (separate report; ECN-C--99-064) deals with policy on promotion of renewable energy production. These two Action Plans provide policy makers in the Czech government with essential information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; and (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  18. Conservation and energy efficiency plan 2006

    International Nuclear Information System (INIS)

    2005-11-01

    This plan outlined details of Nova Scotia's proposed $5 million incremental investment in energy efficiency and conservation measures in 2006. The plan was developed through consultation with various Canadian utilities, customers and external stakeholders. A team of stakeholders identified lighting, pricing, partnerships and education as opportunities offering the greatest potential for results. Market research was conducted to identify market potential and the identification of barriers to customer adoption of programs as well as customer expectations regarding program implementation. It was anticipated that the plan will reduce electricity usage and result in significant savings for customers, as well as reducing greenhouse gas (GHG) emissions. The aim of the plan is to help build a conservation and energy efficiency culture in Nova Scotia and to bring Nova Scotia Power together with community-based partners. Specific plans for 2007 included: a 72 GWh reduction in annual electricity usage; approximately $7.7 million in annual savings to customers; a 16 MW reduction in peak electricity demand; and a 50 thousand tonne reduction of GHGs. A business case was presented along with details of proposed residential, commercial and industrial programs. A cost benefit analysis was provided, as well as an outline of the plan's budget and organizational structure. It was concluded that the success of the various program elements will be based on quantitative and qualitative data on the actual effect on energy use of each customer sector, as well as its effect on system demand profiles. Data will be collected through the use of customer surveys, questionnaires, and direct feedback from partners, educators and manufactures and suppliers. 11 tabs., 16 figs

  19. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  20. 76 FR 80355 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open teleconference... efficiency and renewable energy. The Federal Advisory Committee Act, Public Law 92- 463, 86 Stat. 770...

  1. 76 FR 54224 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-08-31

    ... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting... efficiency and renewable energy. The Federal Advisory Committee Act, Public Law 92-463, 86 Stat. 770...

  2. Energy future Santa Cruz: A citizens' plan for energy self-reliance

    Science.gov (United States)

    Cohn, J.; Stayton, R.

    The results of a grassroots energy conservation project which involved more than 3,100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The energy plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy education and financing, and solar, wind, and ocean energy. An energy implementation guide and glossary are included.

  3. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  4. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  5. Consumer preferences for automobile energy-efficiency grades

    International Nuclear Information System (INIS)

    Koo, Yoonmo; Kim, Chang Seob; Hong, Junhee; Choi, Ie-Jung; Lee, Jongsu

    2012-01-01

    Recently, increases in energy prices have made energy conservation and efficiency improvements even more essential than in the past. However, consumers experience difficulty in obtaining reliable information regarding energy efficiency, so that many countries have implemented regulations to enforce energy-efficiency grade labeling. In this study, consumer preferences regarding energy efficiency grades are analyzed by the mixed logit and MDCEV model based on the revealed preference data of past automobile purchases. Findings show that consumers rationally apply information on energy efficiency grades when purchasing automobiles. However, they tend to show inefficiency in automobile usage patterns. This study discusses political implications of energy efficiency policies as they might impact consumer behaviors of automobile purchase and usage. - Highlights: ► We model discrete choice model to evaluate energy-efficiency grade regulation. ► Consumers apply information on energy efficiency grades when purchasing automobiles. ► However, they tend to show inefficiency in automobile usage patterns. ► The policies for efficient automobile usage are discussed.

  6. Efficiency potential of hot-drink dispensing machines in commercial catering; Effizienzpotenzial bei Heissgetraenkeautomaten in der Betriebsverpflegung

    Energy Technology Data Exchange (ETDEWEB)

    Grieder, T; Huser, A [Encontrol GmbH, Niederrohrdorf (Switzerland); Schmitz, R [Electrosuisse, Fehraltorf (Switzerland)

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the findings of a project that looked into the energy consumption of automatic hot-drink dispensing machines. The report presents the results of a survey made in Switzerland together with various manufacturers and operators of such machines that are used in the company refreshments sector. The survey provides important information on the current market situation, markets and market shares of individual operating companies as well as on machine technology and energy consumption. Also, obstacles to the improvement of energy efficiency in this area are looked at. Important savings that can be made in the operation of such machines are quoted. The report recommends that the results of a parallel survey of domestic coffee-making machines be taken note of and that effort should rather be concentrated in this area, where energy consumption at the national level is quoted as being around twice as high as for the commercial automatic hot-drink dispensing machines.

  7. 76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency...: Notice of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  8. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  9. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  10. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  11. Commercialization of the global nuclear energy partnership (GNEP)

    International Nuclear Information System (INIS)

    Loewen Eric P.; Boaz, Jeffery; Saito, Earl; Boardman, Chuck

    2007-01-01

    In February 2006 President Bush announced the Advanced Energy Initiative, which included the Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP). GNEP has seven broad goals, one of the major elements being to develop and deploy advanced nuclear fuel recycling technology. DOE is contemplating accelerating the deployment of these technologies to achieve the construction of a commercial scale application of these technologies. DOE now defines this approach as 'two simultaneous tracks: (1) deployment of commercial scale facilities for which advanced technologies are available now or in the near future, and (2) further research and development of transmutation fuels technologies'. GE believes an integrated technical solution, using existing reactor and fuel reprocessing technologies, is achievable in the near term to accelerate the commercial demonstration of GNEP infrastructure. The concept involves a single, integrated, commercial scale, recycling facility consisting of the Consolidated Fuel Treatment Center (CFTC), capable of processing LWR and fast reactor Spent Nuclear Fuel (SNF) and fabricating Advanced Recycling Reactor (ARR) actinide fuel. The integrated facility would include a fast reactor that uses actinide-bearing fuel to produce electricity. For optimal performance, GE believes this integrated facility should be co-located to eliminate transportation between the CFTC and ARR, and enhance proliferation resistance. This Advanced Recycling Center takes advantage of previous investments by government and industry in fast reactor technology research and development. To allow for commercial acceptance, a prototypical demonstration reactor and associated fuel cycle facility will be constructed, tested, and licensed. Taking advantage of GE's NRC-reviewed modular sodium-cooled PRISM reactor, only a single reactor will be needed and the cost and risk minimized in the initial phase of the program. This paper outlines a process and a schedule to

  12. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  13. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  14. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  15. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  16. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  17. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  18. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  19. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  20. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  1. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  2. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  3. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  4. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  5. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  6. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  7. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  8. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  9. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable [[Page 6784

  10. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  11. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  12. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  13. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  14. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  15. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  16. Encouraging energy efficiency: Policies and programs

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Successfully overcoming the barriers to higher energy efficiency requires development of policies designed for specific users and locations. Reform of energy pricing, which entails removing subsidies and beginning internalization of externalities, is critical to give technology producers and users proper signals for investment and management decisions. But while a rise in energy prices increases the amount of energy-efficiency improvement that is cost-effective, it does not remove other barriers that deter investment. Minimum efficiency standards or agreements can raise the market floor, and are important because they affect the entire market in the near-term. But they may not raise the celining very much, and do little to push the efficiency frontier. To accomplish these goals, incentives and other market-development strategies are needed. Utility programs in particular can play a key role in pushing energy efficiency beyond the level where users are likely to invest on their own. Policies, programs, and pricing should complement one another. Pricing reform alone will not overcome the many entrenched barriers to higher energy efficiency, but trying to accelerate energy efficiency improvement without addressing energy pricing problems will lead to limited success. Whether tagerting new equipment or management of existing systems, policies must reflect a thorough understanding of the particular system and an awareness of the motivations of the actors. 25 refs

  17. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition. As...

  18. Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor

    International Nuclear Information System (INIS)

    Mottaghizadeh, Pegah; Santhanam, Srikanth; Heddrich, Marc P.; Friedrich, K. Andreas; Rinaldi, Fabio

    2017-01-01

    Highlights: • An electric energy storage system was developed based on a commercially available SOC reactor. • Heat generated in SOFC mode of r-SOC is utilized in SOEC operation of r-SOC using latent heat storage. • A round trip efficiency of 54.3% was reached for the reference system at atmospheric pressure. • An improved process system design achieved a round-trip efficiency of 60.4% at 25 bar. - Abstract: The increase of intermittent renewable energy contribution in power grids has urged us to seek means for temporal decoupling of electricity production and consumption. A reversible solid oxide cell (r-SOC) enables storage of surplus electricity through electrochemical reactions when it is in electrolysis mode. The reserved energy in form of chemical compounds is then converted to electricity when the cell operates as a fuel cell. A process system model was implemented using Aspen Plus® V8.8 based on a commercially available r-SOC reactor experimentally characterized at DLR. In this study a complete self-sustaining system configuration is designed by optimal thermal integration and balance of plant. Under reference conditions a round trip efficiency of 54.3% was achieved. Generated heat in fuel cell mode is exploited by latent heat storage tanks to enable endothermic operation of reactor in its electrolysis mode. In total, out of 100 units of thermal energy stored in heat storage tanks during fuel cell mode, 90% was utilized to offset heat demand of system in its electrolysis mode. Parametric analysis revealed the significance of heat storage tanks in thermal management even when reactor entered its exothermic mode of electrolysis. An improved process system design demonstrates a system round-trip efficiency of 60.4% at 25 bar.

  19. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, James [The Cadmus Group, Portland, OR (United States)

    2017-05-18

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizing continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).

  20. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  1. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  2. Methodology for classification of commercial edification and of service according to the regulation for voluntary tagging of the energy efficiency level of commercial, services and public buildings - economic evaluation of the simulated and classified models; Metodologia para classificacao de edificacao comercial e de servico conforme a regulamentacao para etiquetagem voluntaria do nivel de eficiencia energetica de edificios comerciais, de servicos e publicos - avaliacao economica dos modelos simulados e classificados

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Norma do Nascimento; Rovere, Emilio Lebre La [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Planejamento Energetico], e-mail: normabaptista@ppe.ufrj.br, e-mail: emilio@ppe.ufrj.br

    2008-07-01

    This article presents the methodology developed for determination of energy performance and the classification in accordance with the Regulation for the Voluntary Tagging of the Efficiency Level of commercial, services and public edifications. The methodology applies to commercial and service edification, specifically for offices and schools purposes.

  3. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  4. Energy saving and energy efficiency concepts for policy making

    International Nuclear Information System (INIS)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies.

  5. Energy saving and energy efficiency concepts for policy making

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, V. [SOM, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Becchis, F. [POLIS Department, University of East Piedmont, via Duomo, 6-13100 Vercelli (Italy); Steg, L. [Faculty of Behavioural and Social Sciences, University of Groningen, P.O. Box 72 9700 AB (Netherlands); Russolillo, D. [Fondazione per l' Ambiente ' T. Fenoglio' , Via Gaudenzio Ferrari 1, I-10124 Torino (Italy)

    2009-11-15

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies. (author)

  6. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  7. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  8. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  9. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  10. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  11. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  12. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  13. Energy researchers - 1. Energy efficiency: Energy efficiency is driving innovation; No economic crisis for energy efficiency; How can we change our energy habits?

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2011-01-01

    A first article comments how the race to achieve energy efficiency is driving the emergence of new technologies in transportation and construction (hybrid cars, phase change material, digital mock-ups, and so on). The example of the AGV is evoked, a new version of the TGV developed by Alstom which will run faster and consume less energy. A second article outlines that, due to the support from public authorities and to an increased awareness of energy costs and environmental challenges, the energy savings market is booming. Then, in an interview, a sociologist of the ADEME comments the difficulty of changing habits in terms of energy savings

  14. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  15. Development of Energy Efficiency Indicators in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Russia is sometimes referred to as 'the Saudi Arabia of energy efficiency'; its vast potential to reduce energy consumption can be considered a significant 'energy reserve'. Russia, recognising the benefits of more efficient use of energy, is taking measures to exploit this potential. The president has set the goal to reduce energy intensity by 40% between 2007 and 2020. In the past few years, the IEA has worked closely with Russian authorities to support the development of energy efficiency indicators in Russia, critical to an effective implementation and monitoring of Russia's ambitious energy intensity and efficiency goals. The key findings of the IEA work with Russia on developing energy efficiency indicators form the core of this report.

  16. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  17. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  18. Hydro-Quebec and energy efficiency

    International Nuclear Information System (INIS)

    1990-01-01

    There is growing awareness that energy efficiency is both profitable and environmentally beneficial. In this year's Development Plan, Hydro-Quebec is proposing an Energy Efficiency Project made up of marketing programs designed for all markets throughout the final decade of the 20th century. This Project will have two aspects: energy efficiency and consumption management. Hydro-Quebec aims to reach an energy-efficiency level of 12.9 terawatt hours per year by 1999, fully 55% of its 23-terawatt hour potential. Over the next 10 years the utility intends to spend $1.8 billion for this purpose. Cumulative anticipated energy savings should be in the vicinity of 70 terawatt hours for the coming decade, and more than 130 terawatt hours for the first decade of the next century. Of the overall goal of 12.9 terawatt hours for Horizon 1999, energy savings of 9.0 terawatt hours should be the direct result of this year's proposed marketing programs, and will account for the bulk of anticipated investments. The remaining 3.9 terawatt hours will be gained as customers acquire better electrical appliance and accessory (household appliances, home insulation) buying habits

  19. The transition between energy efficient and energy inefficient states in Cameroon

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2016-01-01

    I use a two-state (energy efficient/inefficient) Markov-switching dynamic model to study energy efficiency in Cameroon in a novel manner, employing yearly data covering 1971 to 2012. I find that the duration of an energy inefficient state is about twice as long as an energy efficient state, mainly due to fuel subsidies, low income, high corruption, regulatory inefficiencies, poorly developed infrastructure and undeveloped markets. To escape from an energy inefficient state a broad policy overhaul is needed. Trade liberalization and related growth policies together with the removal of fuel subsidies are useful, but insufficient policy measures; the results suggest that they should be combined with structural policies, aiming at institutional structure and investment in infrastructure. - Highlights: • I investigate the transition between energy efficient/inefficient states. • On the average, energy inefficient state persists more than energy efficient state. • The duration of energy inefficient state is about twice as long as energy efficient state. • Price, income and trade openness have distinct energy saving effect irrespective of state. • A broad policy overhaul is needed to escape the energy inefficient state.

  20. Energy Efficiency in Norway 1996-1999. Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2002-05-01

    This is the national report for Norway in the EU/SAVE project ''Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects''. The report deals with energy use and energy efficiency in Norway 1990-1999. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.6% per year from 1990 to 1999. The energy efficiency improvement has been calculated to 0.4% pr year, while the role of structural changes has been 1.2% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 8 TWh from 1990 to 1999. (author)

  1. Measuring energy efficiency in economics: Shadow value approach

    Science.gov (United States)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  2. Tariff regulation with energy efficiency goals

    International Nuclear Information System (INIS)

    Abrardi, Laura; Cambini, Carlo

    2015-01-01

    We study the optimal tariff structure that could induce a regulated utility to promote energy efficiency by its customers given that it is privately informed about the effectiveness of its effort on demand reduction. The regulator should optimally offer a menu of incentive compatible two-part tariffs. If the firm's energy efficiency activities have a high impact on demand reduction, the consumer should pay a high fixed fee but a low per unit price, approximating the tariff structure to a decoupling policy, which strengthens the firm's incentives to pursue energy conservation. Instead, if the firm's effort to adopt energy efficiency actions is scarcely effective, the tariff is characterized by a low fixed fee but a high price per unit of energy consumed, thus shifting the incentives for energy conservation on consumers. The optimal tariff structure also depends on the cost of the consumer's effort (in case the consumer can also adopt energy efficiency measures) and on the degree of substitutability between the consumer's and the firm's efforts. - Highlights: • We study the optimal tariff structure that induces an utility to adopt energy efficiency activities. • The regulator optimally offer a menu of incentive compatible two-part tariffs. • If energy efficiency activities have a high effectiveness, decoupling emerges as a solution. • If the energy efficiency actions are less effective, the tariff has a higher per unit price and lower fixed fee. • The optimal tariff structure also depends on the degree of substitutability between the consumer's and the firm's efforts

  3. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Science.gov (United States)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  4. Determinants of energy efficiency across countries

    Science.gov (United States)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  5. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  6. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  7. Global status report on energy efficiency 2008

    NARCIS (Netherlands)

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s,

  8. Energy efficiency in Norway 1990-2002. Monitoring tools for energy efficiency in Europe: The Odyssee and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt

    2004-08-01

    This report presents an analysis of energy efficiency trends in Norway on the basis of energy efficiency indicators extracted from the Odyssee data base, maintained and updated in the framework of the SAVE programme. This analysis focuses on the period 1990-2001/2002. It also examines the policies and measures implemented in the field of energy efficiency with a focus on the years 2000-2003. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 2% pr year in the period 1990 to 2002. The energy efficiency improvement has been calculated to 0.7% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). We have found in total efficiency improvement of approximately 15 TWh from 1990 to 2001. (Author)

  9. Global financial crisis, ownership and bank profit efficiency in the Bangladesh's state owned and private commercial banks

    OpenAIRE

    Kamarudin, Fakarudin; Sufian, Fadzlan; Nassir, Annuar Md.

    2016-01-01

    Abstract: This paper studies the impact of global financial crisis focusing on State Owned Commercial Banks (SCBs) and Private Commercial Banks (PCBs) ownership and others bank specific and macroeconomics factors influencing profit efficiency level of the Bangladesh banking sector. The Slack-Based Data Envelopment Analysis (SBM-DEA) method employed to compute the profit efficiency of 31 commercial banks operating in the Bangladesh over the years 2004-2011. Furthermore, the multivariate panel ...

  10. Autonomy-oriented mechanisms for efficient energy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiming; Shi, Benyun

    2010-09-15

    Due to the uneven geographical availability of energy resources, it is essential for the energy suppliers and consumers in different countries/regions to most efficiently, economically, as well as reliably distribute energy resources. In this paper, starting from a specific energy distribution problem, we present a decentralized behavior-based paradigm that draws on the methodology of autonomy-oriented computing. The goal is twofold: (i) to characterize the underlying mechanism of the energy distribution systems, (ii) to provide scalable solutions for efficient energy distribution. We conjecture that efficient energy trading markets can emerge from appropriate behavior-based mechanisms, which can autonomously improve energy distribution efficiency.

  11. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  12. Energy efficiency rating of districts, case Finland

    International Nuclear Information System (INIS)

    Hedman, Åsa; Sepponen, Mari; Virtanen, Mikko

    2014-01-01

    There is an increasing political pressure on the city planning to create more energy efficient city plans. Not only do the city plans have to enable and promote energy efficient solutions, but it also needs to be clearly assessed how energy efficient the plans are. City planners often have no or poor know how about energy efficiency and building technologies which makes it difficult for them to answer to this need without new guidelines and tools. An easy to use tool for the assessment of the energy efficiency of detailed city plans was developed. The aim of the tool is for city planners to easily be able to assess the energy efficiency of the proposed detailed city plan and to be able to compare the impacts of changes in the plan. The tool is designed to be used with no in-depth knowledge about energy or building technology. With a wide use of the tool many missed opportunities for improving energy efficiency can be avoided. It will provide better opportunities for sustainable solutions leading to less harmful environmental impact and reduced emissions. - Highlights: • We have created a tool for assessing energy efficiency of detailed city plans. • The energy source is the most important factor for efficiency of districts in Finland. • Five case districts in Finland were analyzed. • In this paper one residential district has in-depth sensitivity analyses done

  13. Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine

    International Nuclear Information System (INIS)

    Ibrik, I.H.; Mahmoud, M.M.

    2005-01-01

    Energy conservation in utilities has played a vital role in improving energy efficiency in the industrial, commercial and residential sectors. The electrical energy consumption in Palestine has increased sharply in the past few years and achieved by the end of 2001 to 10% per year. It is expected that this percentage will increase to about 12% if the current political situation will end hopefully with peace. Modern energy efficient technologies are needed for the national energy policy. Such technologies are investigated in this paper. Implementing of a national 3 years project aiming at energy efficiency improvement in residential and industrial sectors as well as in public utilities, which include wide range of diversified audits and power measurements, had led to creating this paper. Measurement and audit results had shown that the total conservation potential in these sectors is around 15% of the total energy consumption. The associated costs of the investment in this field are relatively low and correspond to a pay back period varying in the range from 6 to 36 months. Consequently, the energy conservation policy will be seriously improved in the forthcoming years. It is estimated that 10% of the new energy purchasing capacity will be reduced accordingly

  14. Partial-factor Energy Efficiency Model of Indonesia

    OpenAIRE

    Nugroho Fathul; Syaifudin Noor

    2018-01-01

    This study employs the partial-factor energy efficiency to reveal the relationships between energy efficiency and the consumption of both, the renewable energy and non-renewable energy in Indonesia. The findings confirm that consumption of non-renewable energy will increase the inefficiency in energy consumption. On the other side, the use of renewable energy will increase the energy efficiency in Indonesia. As the result, the Government of Indonesia may address this issue by providing more s...

  15. Jcpenney Buying into Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  16. Genetic parameters of rumination time and feed efficiency traits in primiparous Holstein cows under research and commercial conditions.

    Science.gov (United States)

    Byskov, M V; Fogh, A; Løvendahl, P

    2017-12-01

    Feed efficiency has the potential to be improved both through feeding, management, and breeding. Including feed efficiency in a selection index is limited by the fact that dry matter intake (DMI) recording is only feasible under research facilities, resulting in small data sets and, consequently, uncertain genetic parameter estimates. As a result, the need to record DMI indicator traits on a larger scale exists. Rumination time (RT), which is already recorded in commercial dairy herds by a sensor-based system, has been suggested as a potential DMI indicator. However, RT can only be a DMI indicator if it is heritable, correlates with DMI, and if the genetic parameters of RT in commercial herd settings are similar to those in research facilities. Therefore, the objective of our study was to estimate genetic parameters for RT and the related traits of DMI in primiparous Holstein cows, and to compare genetic parameters of rumination data between a research herd and 72 commercial herds. The estimated heritability values were all moderate for DMI (0.32-0.49), residual feed intake (0.23-0.36), energy-corrected milk (ECM) yield (0.49-0.70), and RT (0.14-0.44) found in the research herd. The estimated heritability values for ECM were lower for the commercial herds (0.08-0.35) than that for the research herd. The estimated heritability values for RT were similar for the 2 herd types (0.28-0.32). For the research herd, we found negative individual level correlations between RT and DMI (-0.24 to -0.09) and between RT and RFI (-0.34 to -0.03), and we found both positive and negative correlations between RT and ECM (-0.08 to 0.09). For the commercial herds, genetic correlations between RT and ECM were both positive and negative (-0.27 to 0.10). In conclusion, RT was not found to be a suitable indicator trait for feed intake and only a weak indicator of feed efficiency. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  18. Energy efficiency at Hydro-Quebec: Why forget the substitution of electricity by natural gas?

    International Nuclear Information System (INIS)

    Bernard, J.-T.

    1994-01-01

    Hydro-Quebec has launched an energy program which will cost $1.9 billion and which intends to save 9.3 TWh of electricity consumption by the year 2000, equivalent to 5.6% of the forecasted electricity consumption. The program only considers electricity and ignores other energy sources. An analysis is conducted to determine whether the subsidies that Hydro-Quebec is prepared to spend in each sector of the program would be sufficient to make up the difference between the cost of electricity and that of natural gas for the end-user. A positive response to this question will allow identification of a less costly way that Hydro-Quebec could realize its energy efficiency objectives. The analysis takes into account the marginal cost of electricity production, the average cost of energy efficiency measures, electricity prices, and the prices of natural gas and of gas-burning equipment. The results of a detailed analysis of four typical cases in the residential and commercial sectors indicate that market segments exist in which an energy efficiency program that includes substitution of other forms of energy for electricity would be preferable to a simple reduction in electricity consumption. However, the rationale for the Hydro-Quebec program is that electricity prices are based on historical average costs; as a result, electricity prices are lower than marginal costs. This problem should be addressed before considering expensive energy efficiency programs where the least-cost alternative is not even considered. 5 refs., 1 fig., 2 tabs

  19. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  20. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  1. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  2. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  3. Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India

    Energy Technology Data Exchange (ETDEWEB)

    Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheung, Iris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wardell, Bob [Infosys Technologies Limited; Deshpande, Manoj [Infosys Technologies Limited; Ugarkar, Jayraj [Infosys Technologies Limited

    2013-04-01

    This report documents the technical evaluation of a collaborative research, development, and demonstration (RD&D) project that aims to address energy efficiency of Miscellaneous and Electronic Loads (MELs) (referred to as plug loads interchangeably in this report) using load monitoring and control devices. The goal s of this project are to identify and provide energy efficiency and building technologies to exemplary information technology (IT) office buildings, and to assist in transforming markets via technical assistance and engagement of Indian and U.S. stakeholders. This report describes the results of technology evaluation and United States – India collaboration between the Lawrence Berkeley National Laboratory (LBNL), Infosys Technologies Limited (India), and Smartenit, Inc. (U.S.) to address plug - load efficiency. The conclusions and recommendations focus on the larger benefits of such technologies and their impacts on both U.S. and Indian stakeholders.

  4. Benefits for whom? Energy efficiency within the efficient market

    International Nuclear Information System (INIS)

    Chello, Dario

    2015-01-01

    How should the lack of an efficient energy market affect the design of energy efficiency policies and their implementation? What the consequences of an inefficient energy market on end users’ behaviour? This article tries to give an answer to such questions, by considering the decision making of domestic users following a few fundamental concepts of behavioural economics. The mechanism of price formation in the market, with particular reference to the internal energy market in Europe, will be examined and we will show that price remains the inflexible attribute in making an energy choice. Then, some conclusions will be addressed to policy makers on how to overcome the barriers illustrated.

  5. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  6. Program for Energy Research and Technologies 1977--1980. Annual report 1977 on efficient uses of energy fossil sources of primary energy new sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main objectives within the policy of the Federal Government Program for Energy Research and Technologies 1977--1980 can be summarized as follows: guaranteeing the continuity of energy supply in the medium to long term in the Federal Republic at economically favourable costs considering the requirements necessary for the protection of the environment and population. The financial support is effected under the general headings of Development of Energy Resources, Energy Conservation and Efficient Use of Energy. An additional aspect of the support policy is the development of technologies which are of importance for other countries, specifically for the developing countries. Support of a project is effected through a research and development grant from the Federal Government and this can range from less than 50% to 100%. For this the Government receives an irrevocable, free of charge and non-exclusive right to make use of research and development results. In special cases full repayment is agreed subject to commercial success. Based on agreements signed by the Federal Minister of Research and Technology and the Federal Minister of Economic Affairs on the one hand and the Juelich Nuclear Research Establishment (KFA) on the other, the Project Management for Energy Research (PLE) in KFA Juelich is acting on behalf of these Ministries. The Project Management's activities in non-nuclear energy research in general (for the Federal Ministry of Research and Technology) and development and innovation in coal mining and preparation (for the Federal Ministry of Economic Affairs) have the following general objectives: to improve the efficiency of Government support; to ensure that projects are efficiently handled; and to reduce the workload of the Ministries. The individual projects are listed and described briefly.

  7. Energy efficiency in South Africa: A decomposition exercise

    International Nuclear Information System (INIS)

    Inglesi-Lotz, R.; Pouris, A.

    2012-01-01

    Improvement of energy efficiency has been accepted as one of the most cost-effective approaches towards sustainable economic development and reduction of the continuously increasing energy consumption internationally. South Africa, being among the developing countries, is not an exception even though historically low energy prices and the lack of appropriate policies have created an energy intensive economy. This paper examines the factors affecting the trends in energy efficiency in South Africa from 1993 to 2006 and particularly the impact of structural changes and utilisation efficiency of the country's energy intensity. Identifying and understanding the driving forces are necessary ingredients in the development of appropriate policy-making. This paper also provides disaggregation of the energy efficiency trends in the main sectors of the economy. We determine that structural changes of the economy have played an important and negative role in the increasing economy-wide energy efficiency. On the other hand, the energy usage's intensity was a contributing factor to the decreasing trend of energy efficiency. We suggest that differentiated price policies may be required if South Africa is to create an effective energy efficiency policy. -- Highlights: ► Improving energy efficiency can lead to lower energy consumption and emissions. ► A decomposition analysis examines the factors affecting efficiency in South Africa. ► With unchanged economic structure, the energy efficiency would be 0.75 units lower. ► Intensity was a contributing factor to the decreasing trend of energy efficiency.

  8. Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms

    Directory of Open Access Journals (Sweden)

    Mette Talseth Solnørdal

    2018-02-01

    Full Text Available Research has identified an extensive potential for energy efficiency within the manufacturing sector, which is responsible for a substantial share of global energy consumption and greenhouse gas emissions. The purpose of this study is to enhance the knowledge of vital drivers for energy efficiency in this sector by providing a critical and systematic review of the empirical literature on drivers to energy efficiency in manufacturing firms at the firm level. The systematic literature review (SLR is based on peer-reviewed articles published between 1998 and 2016. The findings reveal that organizational and economic drivers are, from the firms’ perspective, the most prominent stimulus for energy efficiency and that they consider policy instruments and market drivers to be less important. Secondly, firm size has a positive effect on the firms’ energy efficiency, while the literature is inconclusive considering sectorial impact. Third, the studies are mainly conducted in the US and Western European countries, despite the fact that future increase in energy demand is expected outside these regions. These findings imply a potential mismatch between energy policy-makers’ and firm mangers’ understanding of which factors are most important for achieving increased energy efficiency in manufacturing firms. Energy policies should target the stimulation of management, competence, and organizational structure in addition to the provision of economic incentives. Further understanding about which and how internal resources, organizational capabilities, and management practices impact energy efficiency in manufacturing firms is needed. Future energy efficiency scholars should advance our theoretical understanding of the relationship between energy efficiency improvements in firms, the related change processes, and the drivers that affect these processes.

  9. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    Science.gov (United States)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  10. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peffer, Therese [Univ. of California, Berkeley, CA (United States); Council on International Education Exchange (CIEE), Portland, ME (United States); Blumstein, Carl [Council on International Education Exchange (CIEE), Portland, ME (United States); Culler, David [Univ. of California, Berkeley, CA (United States). Electrical Engineering and Computer Sciences (EECS); Modera, Mark [Univ. of California, Davis, CA (United States). Western Cooling Efficiency Center (WCEC); Meier, Alan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-10

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. The user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.

  11. Start point to savings - Better load demand analysis in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Abaravicius, Juozas; Pyrko, Jurek [Lund Univ., Dept of Energy Sciences (Sweden)

    2007-07-01

    Existing installations and energy systems in most commercial buildings could be used in a more efficient way to provide savings - both in terms of energy and load demand. The key for effective operation is a thorough and detailed analysis of energy use patterns that creates essential baseline for energy savings and the development of demand response (DR) strategies. The knowledge of energy demand variations is still very limited and the use of methods to analyse the load demand is rare. Many utilities have recently installed interval (hourly) metering even for smaller commercial users and households. This is a big step forward; however, experience shows that the data is being used only to a limited extent, mostly for billing purposes only. This paper reports about a study conducted with the objective of developing a detailed load demand analysis for commercial buildings. The study results should provide essential information for the formation and evaluation of future DR and energy efficiency strategies. This study was performed in collaboration with IKEA and E.ON and contributes to an ongoing IKEA energy efficiency programme. Two sample department stores in Sweden were selected and analysed within this project. The demand data analysis covers almost 3 years period, 2004-2006.This study contributes to new knowledge of energy use patterns (load demand) in commercial buildings. It proposes solutions of load-related problems, evaluates energy and load savings potential, identifies and analyses the needs, motives and barriers for participation in DR programmes. The study provides recommendations for ongoing and future efficiency and DR strategies and discusses the potential economic benefits from the DR measures.

  12. Contracting for Efficiency. A Best Practices Guide for Energy-Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Saralyn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Payne, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  13. Contracting for Efficiency: A Best Practices Guide for Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Saralyn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Payne, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-11-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  14. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  15. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  16. Energy efficiency practices among road freight hauliers

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Stenholm, Pekka; Tapio, Petri; McKinnon, Alan

    2012-01-01

    The reduction of greenhouse gases (GHG) is a highly prevalent public policy goal among European Union member countries. In the new White Paper on transport, the role of road freight transports in this is strongly emphasized. This far, however, the efficiency practices utilised in logistics firms are less studied. Drawing from policy goals and new survey data on 295 road transport firms our results show that hauliers are aware of the possible energy efficiency actions but lack the knowledge and resources to fully utilize them. Energy efficiency seems also to be unimportant for many shippers, so there are no incentives for hauliers to improve it. Examples from various countries show that clear energy efficiency improvements can be achieved with active cooperation between hauliers, shippers and policy makers. Such cooperation can be developed in Finland through the sectoral energy efficiency agreements. The novelty and the utility of these results allow scholars to answer important open questions in the national-level determinants of enhancing energy efficiency practices among road freight hauliers, and contribute to our understanding of how these can be fostered in public policies. - Highlights: ► Hauliers still monitor their fuel consumption with unsophisticated methods. ► Larger hauliers are more active in energy efficiency related issues than smaller ones. ► Hauliers are aware of energy efficiency actions, but lack knowledge of implementation. ► Finnish energy efficiency agreement provides a good framework for public policies. ► Companies that monitor and improve energy efficiency may gain competitive advantage.

  17. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  18. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  19. Decision regarding Gazifere Inc.'s request to maintain current tariffs, its distribution plan and energy efficiency plan

    International Nuclear Information System (INIS)

    Cote-Verhaaf, A.; Patoine, M.A.; Tanguay, F.

    2002-01-01

    In June 2002 Gazifere Inc. applied to Quebec's Regie de l'energie for approval to maintain its current gas tariffs in its area of operation, the Outaouais region of Quebec. Gazifere also presented its program for energy efficiency and its distribution program with a request to extend its distribution network in the Outaouais. The energy efficiency program includes the rental of residential water heaters, water and gas savings, high efficiency furnaces, rental of commercial water heaters, and a program for low income families. The Regie reviewed the application and declared that the current fees could remain in effect until October 1, 2002. It also approved the modifications proposed by Gazifere to the adjustment of rates. The Regie reviewed the objectives of the energy efficiency programs and approved a volumetric budget for the plan and authorized that the deferred rate be kept in the energy efficiency program. The Regie approved that the energy efficiency plan should extend over 3 years with the exception of the residential inspection program until more information could be gathered on the energy savings in the residential sector. The Regie made a request to Gazifere to provide data on industrial consumption before authorizing $3,730,200 for extension of their distribution network. It approved the amount $5,306,400 as exploitation charges for the year 2002-2003. refs., tabs

  20. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  1. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  2. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  3. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  4. Enhancemenent of the energy efficiency by means of the energy efficiency commitment system. Brief: Energy efficiency commitment system (EnEffVSYS); Steigerung der Energieeffizienz mit Hilfe von Energieeffizienz-Verpflichtungssystemen. Kurz: Energieeffizienz-Verpflichtungssysteme (EnEffVSys)

    Energy Technology Data Exchange (ETDEWEB)

    Agricola, Annegret C.; Joest, Steffen; Czernie, Marc; Heuke, Reemt; Kalinowska, Dominika; Peters, Sebastian [Deutsche Energie-Agentur GmbH, Berlin (Germany); Perner, Jens; Bothe, David [Frontier Economics Ltd., Koeln (Germany)

    2012-12-15

    The origin of the contribution under consideration is the new EU energy efficiency regulation (EU-EnEff-RL) which is valid since 4th December 2012. This regulation emphasizes the increase of the energy efficiency in Europe. Under this aspect, the contribution under consideration reports on (a) the framework conditions for energy efficiency and energy consumption in Europe; (b) the development of the energy consumption and energy efficiency in the past; (c) the economic potentials of energy efficiency in Germany up to the year 2020; (d) whether the advancement of the German, market based approach or the implementation of the energy efficiency commitment system in Germany would be the better way in order to reach the energy efficiency targets derived from the EU energy efficiency regulation.

  5. Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

    2004-09-30

    ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

  6. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  7. Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carlson, Stephen [DNV GL, Madison, WI (United States)

    2017-10-04

    This Commercial and Industrial Lighting Controls Evaluation Protocol (the protocol) describes methods to account for energy savings resulting from programmatic installation of lighting control equipment in large populations of commercial, industrial, government, institutional, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. When lighting controls are installed in conjunction with a lighting retrofit project, the lighting control savings must be calculated parametrically with the lighting retrofit project so savings are not double counted.

  8. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  9. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  10. International Congress on Energy Efficiency and Energy Related Materials

    CERN Document Server

    Bahsi, Zehra; Ozer, Mehmet; ENEFM2013

    2014-01-01

    The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings   Economical and Environmental Issues Environment Energy Requirements Economic Development   Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Supercon...

  11. End-Use Efficiency to Lower Carbon Emissions

    International Nuclear Information System (INIS)

    Marnay, Chris; Osborn, Julie; Webber, Carrie

    2001-01-01

    Compelling evidence demonstrating the warming trend in global temperatures and the mechanism behind it, namely the anthropogenic emissions of carbon dioxide and other greenhouse gases (GHG), has spurred an international effort to reduce emissions of these gases. Despite improving efficiency of the U.S. economy in terms of energy cost per dollar of GDP since the signing of the Kyoto Protocol, energy consumption and carbon emissions are continuing to rise as the economy expands. This growing gap further emphasizes the importance of improving energy use efficiency as a component in the U.S. climate change mitigation program. The end-use efficiency research activities at Berkeley Lab incorporate residential, commercial, industrial, and transportation sectors. This paper focuses on two successful U.S. programs that address end-use efficiency in residential and commercial demand: energy efficient performance standards established by the Department of Energy (DOE) and the Environmental Protection Agency's (EPA's) ENERGY STAR(registered trademark) program

  12. Energy future Santa Cruz. A citizens plan for energy self-reliance: Executive summary

    Science.gov (United States)

    Cohn, J.; Stayton, R.

    A grassroots energy conservation project which involved more than 3100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy eduction and financing, and solar, wind, and ocean energy. If the plan is successfully implemented, the energy that the community is projected to use in 1991 can be lowered by 24 to 35 percent.

  13. 10 CFR 435.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  14. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  15. Energy efficiency and barriers towards meeting energy demand in industries in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Unachukwu, Godwin O.; Zarma, I.H.; Sambo, A.S.

    2010-09-15

    Energy is an important production factor and therefore should be managed in parallel with land, labor and capital. Energy efficient production should be seen as a quick and cheaper source of new energy supply as the cost of providing energy can be several times the cost of saving it. Increasingly energy efficiency is deemed to include not only the physical efficiency of the technical equipment and facilities but also the overall economic efficiency of the energy system.

  16. Moving around efficiently: Energy and transportation

    Directory of Open Access Journals (Sweden)

    Hermans L. J. F.

    2013-06-01

    Full Text Available Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  17. National energy efficiency study. The Czech Republic

    International Nuclear Information System (INIS)

    Maly, M.; Jakubes, J.; Spitz, J.; Van Wees, M.T.; Uyterlinde, M.A.; Martens, J.W.; Van Oostvoorn, F.; Henelova, V.; Vazac, V.; Zalesak, M.; Marousek, J.; Szomolanyiova, J.; Havlickova, M.; Zeman, J.; Ten Donkelaar, M.; Travnicek, S.; Stejskal, F.; Pribyl, E.; Blokker, L.; Bizek, V.; Velthuijsen, J.W.

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech Government aims to promote these two sustainable options. The National Energy Efficiency Study has developed specific policies for the promotion of end use energy efficiency and renewables. These are described in two Action Plans, and in this report which serves as a background document. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy, including a listing of actions for implementation. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is presented to support project identification. In addition, two separate Action Plans have been published: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (separate document, ECN-C-99-065); and (2) The Renewable Energy Action Plan (separate document, ECN-C-99-064) deals with policy on promotion of renewable energy production. These two policy documents should provide policy makers in the Czech Government with essential information on potentials, targets, the required budget, and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation

  18. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  19. The role of values in public beliefs and attitudes towards commercial wind energy

    International Nuclear Information System (INIS)

    Bidwell, David

    2013-01-01

    Mandates for renewable energy lead to siting disputes, because meeting the mandates requires the development of renewable energy production facilities. Proposals for one common form of renewable energy, commercial wind farms, are frequently met with forceful local opposition. Dissatisfied with simplistic explanations for this opposition (i.e., NIMBY), social scientists have urged a more nuanced understanding of public attitudes towards wind energy and other renewables. Based on a survey of residents of coastal Michigan, this article explores the role of general values and beliefs in shaping attitudes towards the potential development of commercial wind energy projects in or near respondents’ communities. Structural equation modeling reveals that support of commercial wind energy depends largely on a belief that wind farms will provide economic benefits to the community. Underlying values have substantial and important indirect effects on beliefs regarding the likely economic outcomes of wind farm development. Altruistic values buoy wind energy attitudes, while values of traditionalism diminish wind energy support. The pivotal role of values in attitudes towards renewables lends support for more participatory development processes. - Highlights: ► Predictors of attitudes towards commercial wind energy development are examined. ► Support is influenced by beliefs in community economic benefit. ► Underlying values have substantial and important indirect effects on beliefs. ► Altruistic values buoy attitudes towards wind energy. ► Values associated with traditionalism diminish wind energy support

  20. Transforming State-of-the-Art into Best Practice: A Guide for High-Performance Energy Efficient Buildings in India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma; Ravache, Baptiste; Sartor, Dale

    2018-04-13

    India launched the Energy Conservation Building Code (ECBC) in 2007, and a revised version in 2017 as ambitious first steps towards promoting energy efficiency in the building sector. Pioneering early adopters—building owners, A&E firms, and energy consultants—have taken the lead to design customized solutions for their energy-efficient buildings. This Guide offers a synthesizing framework, critical lessons, and guidance to meet and exceed ECBC. Its whole-building lifecycle assurance framework provides a user-friendly methodology to achieve high performance in terms of energy, environmental, and societal impact. Class A offices are selected as a target typology, being a high-growth sector, with significant opportunities for energy savings. The practices may be extrapolated to other commercial building sectors, as well as extended to other regions with similar cultural, climatic, construction, and developmental contexts

  1. Time-varying value of electric energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    2017-06-30

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range

  2. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    Science.gov (United States)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  3. 10 CFR 433.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle cost-effective...

  4. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  5. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  6. Energy efficiency in Norway (1996). Cross Country Comparison on Energy Efficiency Indicators, Phase 4

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    1998-12-01

    This is the national report for Norway in phase 4 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. Final energy use per Gross Domestic Product (GDP) was reduced by approx 2.3% per year from 1990 to 1996. Doing detailed sector analysis we are applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity. Calculating an aggregate intensity index from the sector intensities gives an average intensity reduction of 0.4% per year. Thereby most of the reduction in final energy per unit GDP are due to structural changes, and not technical improvements. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  7. Energy efficiency and economic value in affordable housing

    International Nuclear Information System (INIS)

    Chegut, Andrea; Eichholtz, Piet; Holtermans, Rogier

    2016-01-01

    Strong rental protection in the affordable housing market often prohibits landlords from charging rental premiums for energy-efficient dwellings. This may impede (re)development of energy efficient affordable housing. In the Netherlands, affordable housing institutions regularly sell dwellings from their housing stock to individual households. If they can sell energy efficient dwellings at a premium, this may stimulate investments in the environmental performance of homes. We analyze the value effects of energy efficiency in the affordable housing market, by using a sample of 17,835 homes sold by Dutch affordable housing institutions in the period between 2008 and 2013. We use Energy Performance Certificates to determine the value of energy efficiency in these transactions. We document that dwellings with high energy efficiency sell for 2.0–6.3% more compared to otherwise similar dwellings with low energy efficiency. This implies a premium of some EUR 3,000 to EUR 9,700 for highly energy efficient affordable housing. - Highlights: • Dutch affordable housing suppliers recoup sustainability investment by selling dwellings. • Energy-efficient affordable dwellings sell at a premium. • A-labeled dwellings are 6.3% – 9,300 euros – more valuable than C-labeled ones. • The combined value effect of refurbishing an affordable housing dwelling, including improving the energy efficiency, of 20% would more than pay for the retrofit.

  8. Commercial effectiveness assessment of implementation the energy efficiency raising of the building project due to introduction of automatic heat consumption control

    Directory of Open Access Journals (Sweden)

    Zvonareva Yu.N.

    2017-01-01

    Full Text Available Introduction of the automated metering stations and regulation (AUU located directly in the heated building besides creation of comfortable conditions indoors leads to decrease in consumption of thermal energy. The annual expected effect of realization of the offered actions (installation of metering stations and automatic control can make up to 22% consumed and that isn–t less important, the paid thermal energy. In general, efficiency of implementation of the project on introduction of AUU can be characterized by considerable decrease in heat consumption of the building and, respectively, reduction of a payment for the consumed energy resources. In this paper we evaluated the effectiveness of implementation of increase of energy efficiency of the building investment project (hereinafter SP. We calculated the ratio of expenses and the results considered actions for inhabitants of an apartment house located in Kazan after installation of a weather-dependent regulation. As a result of calculation of the imitating model created on the basis of basic data and the investment project plan the main results of determination of economic efficiency of the Project have been received. For the analysis and increase of reliability of a settlement assessment of efficiency of the investment project calculations at different options of a set of basic data are executed.

  9. An energy-efficient metro speed profiles for energy savings: application to the Valencia metro

    Energy Technology Data Exchange (ETDEWEB)

    Villalba Sanchis, I.; Salvador Zuriaga, P.

    2016-07-01

    Nowadays one of the main priorities for metro line operators is the reduction of energy consumption, due to the environmental impact and economic cost. In order to achieve this objective different strategies can be applied, normally focused into rolling stock, infrastructure and/or operation. Considering short-term measures and related to the traffic operation strategies, different approaches are being researched. One of the most effective strategy which reduce net energy consumption is the use of efficient driving techniques. These techniques produces a speed profile between two stations that requires the minimum net energy consumption, without degrading commercial running times or passenger comfort. In this paper, a computer model for calculating the metro vehicles speed profiles minimizing the energy consumption was developed. The equations considered in the model represent the behavior of a single vehicle operated under manual driving, subject to different constraints such as the headway, cycle time, distances and acceleration limits. The proposed model calculates different commands to be systematically executed by the driver. The resulting simulator has been tuned by means of on board measurements of speed, accelerations and energy consumption obtained along different lines in Metro de Valencia network. For this purpose, different scenarios are analyzed to assess the achievable energy savings. In general terms and comparing with the actual energy consumption, the solutions proposed can reduce the net energy consumption around 19%. (Author)

  10. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  11. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  12. Energy efficiency of substance and energy recovery of selected waste fractions

    International Nuclear Information System (INIS)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-01-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  13. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  14. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  15. Environment-adjusted regional energy efficiency in Taiwan

    International Nuclear Information System (INIS)

    Hu, Jin-Li; Lio, Mon-Chi; Yeh, Fang-Yu; Lin, Cheng-Hsun

    2011-01-01

    This study applies the four-stage DEA procedure to calculate the energy efficiency of 23 regions in Taiwan from 1998 to 2007. After controlling for the effects of external environments, only Taipei City, Chiayi City, and Kaohsiung City are energy efficient. Note that Kaohsiung City reaches the efficiency frontier due to the adjustment via partial environmental factors such as higher education attainment and transport vehicles. We also find a worsening trend for Taiwan's energy efficiency. Not only is there a gap of energy efficiency between Taiwan's metropolitan areas and the other regions, but the gap has also widened in recent years. Those inefficient counties should be given priority and the savings potential. Except for road density, the evidence indicates that each environmental factor has partial incremental effects on input slacks. As more cars and motorcycles are unfavorable externalities affecting partial energy efficiency, the central government should help local governments retire inefficient old motor vehicles, encourage energy-saving vehicle models, and provide convenient mass transportation systems. Besides, people with higher education cause industrial energy inefficient in Taiwan. The conscious of effective energy saving is necessary to schools, communities, and employee accordingly.

  16. Enhancing energy efficiency in public buildings: The role of local energy audit programmes

    International Nuclear Information System (INIS)

    Annunziata, Eleonora; Rizzi, Francesco; Frey, Marco

    2014-01-01

    In the objective of reaching the “nearly zero-energy buildings” target set by the European Union, municipalities cover a crucial role in advocating and implementing energy-efficient measures on a local scale. Based on a dataset of 322 municipalities in Northern Italy, we carried out a statistical analysis to investigate which factors influence the adoption of energy efficiency in municipal buildings. In particular, the analysis focuses on four categories of factors: (i) capacity building for energy efficiency, (ii) existing structure and competences for energy efficiency, (iii) technical and economic support for energy efficiency, and (iv) spill-over effect caused by adoption of “easier” energy-efficient measures. Our results show that capacity building through training courses and technical support provided by energy audits affect positively the adoption of energy efficiency in municipal buildings. The size of the municipal authority, the setting of local energy policies for residential buildings and funding for energy audits are not correlated with energy efficiency in public buildings, where the “plucking of low hanging fruit” often prevails over more cost-effective but long-term strategies. Finally, our results call for the need to promote an efficient knowledge management and a revision of the Stability and Growth Pact. - Highlights: • Public procurement supports the deployment of the energy efficiency of buildings. • Energy audits and other factors influence energy efficiency in public buildings. • Econometric analysis applied to data from 322 municipalities in Northern Italy. • Municipalities need to overtake the “plucking of low-hanging fruit”. • Knowledge management should be associated with removal of budget constraints

  17. Energy-Efficient Capacitance-to-Digital Converters for Low-Energy Sensor Nodes

    KAUST Repository

    Omran, Hesham

    2015-11-01

    Energy efficiency is a key requirement for wireless sensor nodes, biomedical implants, and wearable devices. The energy consumption of the sensor node needs to be minimized to avoid battery replacement, or even better, to enable the device to survive on energy harvested from the ambient. Capacitive sensors do not consume static power; thus, they are attractive from an energy efficiency perspective. In addition, they can be employed in a wide range of sensing applications. However, the sensor readout circuit–i.e., the capacitance-to-digital converter (CDC)–can be the dominant source of energy consumption in the system. Thus, the development of energy-efficient CDCs is crucial to minimizing the energy consumption of capacitive sensor nodes. In the first part of this dissertation, we propose several energy-efficient CDC architectures for low-energy sensor nodes. First, we propose a digitally-controlled coarsefine multislope CDC that employs both current and frequency scaling to achieve significant improvement in energy efficiency. Second, we analyze the limitations of successive approximation (SAR) CDC, and we address these limitations by proposing a robust parasitic-insensitive opamp-based SAR CDC. Third, we propose an inverter-based SAR CDC that achieves an energy efficiency figure-of-merit (FoM) of 31fJ/Step, which is the best energy efficiency FoM reported to date. Fourth, we propose a differential SAR CDC with quasi-dynamic operation to maintain excellent energy efficiency for a scalable sample rate. In the second part of this dissertation, we study the matching properties of small integrated capacitors, which are an integral component of energy-efficient CDCs. Despite conventional wisdom, we experimentally illustrate that the mismatch of small capacitors can be directly measured, and we report mismatch measurements for subfemtofarad integrated capacitors. We also correct the common misconception that lateral capacitors match better than vertical capacitors

  18. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  19. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S; Krsikapa, S [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D; Nickel, J; Ardley, S; Zabrowski, D [Fisher Consultants (Canada); Barker, R F [ed.

    1996-05-15

    Technical information on commercial gas cooking appliances was presented. This second volume provided an appliance-by-appliance comprehensive assessment of the energy performance of commercial food service equipment. Energy assessments were made for the following categories of cooking equipment: fryers, griddles, broilers, ranges, Chinese ranges, ovens, steamers, steam kettles, and braising pans. Recommendations were made for improving the energy efficiency and overall performance of gas appliances to support of the Canadian gas utilities marketing and energy conservation initiatives. 71 refs., 37 tabs., 58 figs.

  20. The Inefficiencies of Energy Efficiency : Reviewing the Strategic Role of Energy Efficiency and its Effectiveness in Alleviating Climate Change

    NARCIS (Netherlands)

    Read, S.A.; Lindhult, Erik; Mashayekhi, A.

    2016-01-01

    Our present economy is high-energy and demand-intensive, demand met through the use of high energy yield fossil fuels. Energy efficiency and renewable energy sources are proposed as the solution and named the ‘twin pillars’ of sustainable energy policy. Increasing energy efficiencies are expected to

  1. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  2. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  3. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  4. Toward a Low-Carbon Economy : Renewable Energy and Energy Efficiency Portfolio Review

    OpenAIRE

    World Bank

    2013-01-01

    Renewable energy and energy efficiency projects continue to perform strongly in the World Bank Group (WBG) energy portfolio and are increasingly being mainstreamed in the WBG's energy lending. In fiscal 2007 a total of US$1,433 million supported 63 renewable energy and energy efficiency projects in 32 countries. In addition to operational activities, the WBG engages in a variety of economic sector work and technical assistance focused on renewable energy and energy efficiency. This work is an...

  5. 75 FR 81637 - Commercial Lease for the Cape Wind Energy Project

    Science.gov (United States)

    2010-12-28

    ... Commercial Lease for the Cape Wind Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and... Renewable Energy Development on the Outer Continental Shelf (``OCS'') for the Cape Wind Energy Project... requirements of 30 CFR 285.231. The Lease is for the Cape Wind Energy Project (``Project'') which grants Cape...

  6. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  7. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  8. Designing an energy-efficient quick service restaurant

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.; Spata, A.J.; Turnbull, P.; Allen, T.E.

    1999-07-01

    Food service operators typically focus on controlling labor and food costs in order to increase profits. Energy, which typically represents 2% to 6% of the total cost to operate, is often a lower priority due to the complexity of food service operations and the lack of practical information. However, in an increasing competitive market, operators are actively seeking opportunities to further reduce overhead, and energy represents a good candidate. This paper presents an overview of the design and application of energy-efficient technologies to a quick service restaurant (QSR) and the resulting energy savings. Included in the discussion are the relevance of energy efficiency in a QSR, the criteria for choosing appropriate energy-efficient technologies, the replication of results to other restaurants, and the performance of the individual energy-saving technologies. Three different techniques were used to estimate energy savings of the energy-efficient technologies, with results in the range of 12% to 18% savings in overall annual restaurant energy costs.

  9. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically

  10. Energy-Recovery Linacs for Commercial Radioisotope Production

    International Nuclear Information System (INIS)

    Johnson, Rolland Paul

    2016-01-01

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  11. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  12. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  13. Chapter 15: Commercial New Construction Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keates, Steven [ADM Associates, Inc., Atlanta, GA (United States)

    2017-10-09

    This protocol is intended to describe the recommended method when evaluating the whole-building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) or packages of measures where evaluators can analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol (IPMVP).

  14. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Indoor air quality handbook: for designers, builders, and users of energy efficient residences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this handbook is to assist designers, builders, and users of energy efficient residences to achieve the goals of energy efficiency and maintenance of high indoor air quality simultaneously. The handbook helps in identifying and controlling potential problems of indoor air quality. It identifies sources and discusses effective ways to decrease concentrations of air contaminants. It focuses on indoor air quality in both single and multifamily energy-efficient residences. Information about commercial structures such as hospitals and office buildings is presented when it also applies to residences. Basic concepts of contaminants and their concentrations, sources and removal mechanisms, contaminant distribution, heat transfer, and air exchange are discussed. The effects of the building system on indoor air quality are examined. The effects of the external environment, building envelope, environmental control systems, interior design, furnishings, and inhabitants on the emission, dispersion, and removal of indoor air contaminants as well as direct and indirect effects of energy-efficient features are discussed. The health effects of specific air contaminants and the health standards developed for them are examined. Available methods for predicting and measuring contaminants and for evaluating human responses are discussed. Methods and equipment available for the control of indoor air pollution once the contaminants have been identified are also evaluated. The potential legal aspects, including regulatory intervention and civil lawsuits, of failure to evaluate and control indoor air pollution are discussed. A list of references, a glossary, and an index are also included

  16. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  17. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  18. An Energy-Efficient Scheme for Multirelay Cooperative Networks with Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Dingcheng Yang

    2016-01-01

    Full Text Available This study investigates an energy-efficient scheme in multirelay cooperative networks with energy harvesting where multiple sessions need to communicate with each other via the relay node. A two-step optimal method is proposed which maximizes the system energy efficiency, while taking into account the receiver circuit energy consumption. Firstly, the optimal power allocation for relay nodes is determined to maximize the system throughput; this is based on directional water-filling algorithm. Secondly, using quantum particle swarm optimization (QPSO, a joint relay node selection and session grouping optimization is proposed. With this algorithm, sessions can be classified into multiple groups that are assisted by the specific relay node with the maximum energy efficiency. This approach leads to a better global optimization in searching ability and efficiency. Simulation results show that the proposed scheme can improve the energy efficiency effectively compared with direct transmission and opportunistic relay-selected cooperative transmission.

  19. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (Deringer Group, Riva, MD (USA)); Hall, J.D. (American Inst. of Architects, Washington, DC (USA)) (comps.)

    1990-09-01

    The Whole-Building Energy Design Targets project is being conducted for the US Department of Energy (DOE) by the Pacific Northwest Laboratory (PNL). The objective of the project is to develop a flexible methodology for setting energy performance guidelines with which architects, engineers, planners, and owners can assess energy efficiency in commercial building design. This volume, the third in the four-volume report on the Targets project concept stage, contains the minutes of the workshops as well as summaries of the expert's written comments prepared at the close of each workshop. In Section 2, the building energy simulation workshop is summarized. Section 3 provides a summary of the building cost workshop.

  20. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency